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Abstract

3D object detection (3DOD) from multi-view images is an economically appealing
alternative to expensive LiDAR-based detectors, but also an extremely challenging
task due to the absence of precise spatial cues. Recent studies have leveraged
the teacher-student paradigm for cross-modal distillation, where a strong LiDAR-
modality teacher transfers useful knowledge to a multi-view-based image-modality
student. However, prior approaches have only focused on minimizing global dis-
tances between cross-modal features, which may lead to suboptimal knowledge
distillation results. Based on these insights, we propose a novel structural and
temporal cross-modal knowledge distillation (STXD) framework for multi-view
3DOD. First, STXD reduces redundancy of the feature components of the student
by regularizing the cross-correlation of cross-modal features, while maximizing
their similarities. Second, to effectively transfer temporal knowledge, STXD en-
codes temporal relations of features across a sequence of frames via similarity
maps. Lastly, STXD also adopts a response distillation method to further enhance
the quality of knowledge distillation at the output-level. Our extensive experiments
demonstrate that STXD significantly improves the NDS and mAP of the based
student detectors by 2.8% ∼ 4.5% on the nuScenes testing dataset.

1 Introduction

3D object detection (3DOD) is the task of locating and classifying objects in 3D space using
input data from specific modalities, which typically include LiDAR point clouds [61, 14, 7] and
camera images [54, 34, 24]. 3DOD is central to understanding the surrounding environment and has
been widely applied to various complex vision systems, such as autonomous driving [44], robotic
manipulation [71, 65], and augmented reality [42]. Recently, camera-based multi-view 3DOD has
emerged as an attractive alternative to expensive LiDAR-based methods, thanks to its ubiquity, low
cost, and the semantically rich information from colorized pixels. In general, current works on
multi-view 3DOD aim to extract a unified bird’s-eye view (BEV) feature map from multiple camera
images. However, 3DOD from only camera-specific BEV features is extremely challenging due to
the lack of precise spatial cues [39], which leads to inferior performance of camera-based models
compared to LiDAR-based models. To bridge the gap, some prior works [16, 11, 19, 29, 9] introduced
a teacher-student paradigm for cross-modal knowledge distillation to transfer geometrically-rich 3D
information from LiDAR models (teacher) to camera-based 3DOD models (student). The current
state-of-the-art 3DOD models typically follow a similar detection paradigm, where modality-specific
encoders are used to extract BEV features, followed by a 3D object detection head [29, 34, 55, 7].
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Figure 1: Examples of BEV features generated by (a) the LiDAR model, (b)-(d) the model trained
with different feature-level distillation methods, and (e) the camera-only model. Here we visualize
the L2-norm value of the BEV features. More examples are provided in the Appendix.

Hence, recent works have taken the BEV features from different modalities as the focal point of
knowledge distillation [16, 29], and then applied additional response-level distillation [11, 19, 9].

One of the main challenges in cross-modal knowledge distillation is transferring modality-specific
knowledge from the teacher to the student in a different modality. This is primarily because the
features learned by different modalities are typically non-homogeneous, and there exist distributional
divergences between the feature spaces as shown in Fig.1-(a) and (e). Most existing distillation
methods aim to minimize global distances between cross-modal features (i.e., L2-distance). While
this approach has achieved some success, it fails to capture the structural knowledge inherent in
the modality-specific features, which can lead to suboptimal knowledge distillation, as shown in
Fig.1-(c) and (d). To address these challenges, we first propose a distillation method that regularizes
cross-correlation of BEV features from the teacher and the student models. In particular, we intro-
duce a decorrelation mechanism [67, 2] to reduce redundancy among feature components, thereby
maximizing the information contained in the features. Our structural knowledge distillation approach
ultimately prevents information collapse in the student model and enhances the component-wise
feature similarities across different modalities, as illustrated in Fig.1-(a) and (b).

We also explore the integration of temporal knowledge embedded in features of previous frames.
Although temporal information has been actively exploited in recent 3DOD approaches [34, 29, 32,
41], it has been relatively understudied for cross-modal distillation. The main challenge is the spatio-
temporal misalignment between past and current frames. For instance, in driving scenes, foreground
objects may have different locations or disappear over time. Thus, directly matching the misaligned
cross-modal features could result in incorrect distillation. Instead, we leverage the temporal relations
of the BEV features by generating temporal similarity maps between the teacher’s current and past
frames. Specifically, we train the student model to generate the BEV feature of the current frame,
which mimics the temporal relations encoded in the similarity maps from the teacher. In this way, we
can avoid false matching issues when transferring temporal information over a sequence of frames.
To further improve the quality of transferred knowledge, we also adopt the response distillation
approach [10, 59, 19, 9], which assigns quality scores to the predictions of the teacher model, thereby
enabling the distillation of only meaningful information at the prediction-level.

Our structural and temporal cross-modal distillation (STXD) framework integrates the proposed
feature- and response-level distillation approaches (see Fig.2), and demonstrated a significant im-
provement on the nuScenes 3DOD benchmark [3], leading to up to 3.2% NDS and 4.5% mAP
improvement over the based student models. We also conducted detailed ablation studies to validate
the effectiveness of each component of STXD. Notably, our framework does not require additional
computational cost at testing time, while improving the prediction performance of the student models.

2 Related Work

LiDAR-based 3DOD. Recent LiDAR-based 3DOD detectors can be categorized based on the
representation types of 3D space: voxel-based and point-based approaches. The voxel-based ap-
proaches [69, 58, 27, 48, 14, 7] convert point clouds into a regular voxel-grid representation. Point-
based approaches [62, 49, 64, 61] extract point-wise features directly from raw point clouds. Both
approaches involve transforming low-level features into a BEV representation, which is then followed
by an object detection head that generates response features.
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Figure 2: An overview of STXD framework for multi-view 3D object detection. Structural and
temporal feature-level distillation is applied to the unified bird’s-eye view (BEV) features extracted
and transformed from both LiDAR- and camera-based backbones (Sec.3.2 and 3.3). Response-level
distillation is applied to the 3D box candidates predicted by both LiDAR- and camera-based detectors
(Sec.3.4). During testing, only the camera model is utilized without additional computational cost.

Camera-based 3DOD. Camera-based approaches typically perform 3DOD on either single- or
multi-view images. Prior works on single-view 3DOD aim to detect 3D boxes directly from image
features [5, 38, 53], or using intermediate geometric representations (e.g., pseudo-lidar [66, 12, 50],
probabilistic depth-cues [47, 52]). More recently multi-view 3DOD approaches [21, 33, 29] use the
lift-splat-shoot method [43, 47] to transform multi-image features into a unified bird’s-eye view (BEV)
representation followed by an object detection head. Other works on multi-view images [54, 34, 35,
24] aim to implicitly learn query-based BEV features sampled from corresponding 2D image features
based on attention mechanisms [4, 72]. While some of these works [50, 47, 33] utilize LiDAR point
clouds as input for explicit supervision of depth cues, they do not fully exploit the potential of LiDAR-
based 3DOD features, which have appeared to be effective for improved prediction performance of
camera-based models. In light of this work, we further provide new perspectives on the structural and
temporal knowledge embedded in the LiDAR-based BEV features.

Multi-Modal 3DOD. Recently, integrating complementary information from different modality
sensors, especially LiDAR and cameras, has demonstrated improved 3DOD performance. One
line of work fuses intermediate feature representations in the BEV space [8, 31, 36, 63], while
other approaches try to fuse object proposals from each modality in the detection head [25, 6, 1].
Another line of work augments point clouds with semantic information extracted from corresponding
images [51, 51, 57]. However, these methods require both sensors to be available during test time.
In contrast, our cross-modal distillation approach leverages both modalities only during training to
transfer useful knowledge from LiDAR-based to camera-based 3DOD models. During testing, we
use only multi-camera images without any additional computational costs.

Knowledge Distillation for 3DOD. Most prior works on knowledge distillation for object detection
have focused on transferring knowledge among single-modal detectors, particularly for 2D object
detection (e.g., [15, 59]) and LiDAR-based models (e.g., [60, 56]). Relatively fewer works have
studied cross-modal distillation for object detection. MonoDistill [11] projects LiDAR point clouds
into perspective image space to distill spatially aligned LiDAR features to a camera-based student
model. LIGA-Stereo [16] aims to transfer intermediate features from LiDAR to a stereo camera-based
student model. CMKD [19] and BEVDistill [9] employ knowledge distillation from LiDAR-based
models at both the feature and response levels to minimize the gap between modalities. Similarly,
UVTR [29] tries to directly match the BEV representations of the camera model to the LiDAR-based
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teacher. Although these methods have achieved some success, they still do not carefully consider
the distributional divergences between non-homogeneous modalities. To mitigate the modality gap
between LiDAR and camera features, TIG-BEV [22] learns the inner geometry of foreground
objects by encouraging the student’s features to replicate the self-correlation of the teacher’s features.
However, this method still does not consider cross-modal associations among BEV features from
the teacher and student models. Differs from previous methods, our distillation approach considers
structural knowledge in the features by introducing cross-modal cross-correlation regularization
inspired by the decorrelation mechanism [67, 2]. Furthermore, we introduce a method for effectively
distilling temporal information contained in previous frames of the teacher. We also utilize response-
level distillation to further improve the quality of knowledge distillation at the predictions level.

3 Methodology

3.1 Preliminary

Recent 3D object detectors share a similar detection paradigm, where low-level features are extracted
from modality-specific encoders and subsequently transformed into BEV features (see Fig.2). For
example, modern LiDAR-based detectors [69, 27, 55] use 3D encoders to extract low-level features
from the raw point clouds, then the features are further transformed to the BEV features F ∈
RX×Y×Z×D with spatial extent of X × Y ×Z and the number of channels D. For recent multi-view
image detectors, there are two mainstream approaches for transforming the low-level image features
to the BEV features: (1) estimating depth cues [21, 33, 29] via lift-splat-shoot [43] and (2) implicit
learning of depth via cross-attention mechanism [35, 34]. Regardless of the type of transform methods,
the BEV features can be represented by G ∈ RX×Y×Z×D, similar to the LiDAR-based detectors. In
this work, as illustrated in Fig.2, we aim to train a high-performing camera-based detector (student) by
distilling useful knowledge from a LiDAR-based detector (teacher) while considering the structural
and temporal information embedded in the modality-specific BEV featuers, F and G.

3.2 Correlation Regularizing Distillation

Prior works on cross-modal distillation directly force the student to mimic the BEV feature from
the teacher by calculating element-wise distance loss (i.e., ||F −G||2, [19, 29]), or weighted via
foreground mask (i.e., ||Wfg · (F−G)||2, [11, 9]). However, they ignore the structural knowledge
inherent in modality-specific features and may not effectively distill rich information contained in
the features. Recently, several self-supervised learning methods have incorporated cross-correlation
regularization to maximize the information contained in features [67, 2]. These methods can also
be applied to the problem of LiDAR-to-camera knowledge distillation, since LiDAR and camera
features can be regarded as different representations obtained from the same scene, and have a spatial
one-to-one correspondence. From this intuition, we propose the Correlation Regularizing Distillation
(CD) loss that maximizes the similarity between aligned features while regularizing cross-correlation
along feature dimensions. Let batches of N aligned D-dimensional LiDAR and camera features be
given as F = [f1, f2, ..., fN ]T ∈ RN×D and G = [g1,g2, ...,gN ]T ∈ RN×D, respectively. N is the
number of serialized BEV features, given by X · Y · Z. Following [67], each feature is transformed
to be mean-centered along the batch dimension, denoted by F̂ and Ĝ. Then, CD loss is defined as:

C = F̂T Ĝ ∈ RD×D, (1)

LCD :=
∑
i

(1−C(i, i))2 + λc
∑
i

∑
j 6=i

C(i, j)2, (2)

where C denotes a dimensional cross-correlation matrix and λc ≥ 0 is a balancing hyper-parameter.
The first term of Eq.2 encourages the aligned LiDAR and camera feature components to be similar,
while the second term reduces the correlation among feature components that are not aligned. Hence,
CD loss can reduce duplicated information in the learned features, allowing for the student to learn
diverse information from the teacher. We analyzed the effectiveness of the CD loss in Sec.4.2.

3.3 Temporal Consistency Distillation

In driving scenes, sensor data is received sequentially. Therefore, the past few frames may contain
valuable information for detecting objects in the current frame, and incorporating temporal infor-
mation has brought significant improvements to 3DOD [34, 29, 32, 41]. However, directly learning
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from the LiDAR features of the past frames (i.e., via L2-distance) may not be effective due to the
spatially and temporally misaligned non-homogeneous features. To address this issue, we propose the
Temporal Consistency Distillation (TD) loss, which indirectly distills the teacher’s information from
past frames by introducing a temporal similarity map. Let batches of aligned LiDAR and camera
features of the current frame be given as F(0) and G(0), respectively. We are also given the LiDAR
features of the k-th previous frame, denoted by F(−k), k ∈ [1,K], where K is the maximum number
of past frames referred to. Then, the cross-modal temporal similarity map S(−k) and the intra-modal
temporal similarity map T(−k) between the current and the k-th previous frame are calculated as:

S(−k) = G(0)F(−k)T ∈ RN×N , T(−k) = F(0)F(−k)T ∈ RN×N , k ∈ [1,K]. (3)
Then TD loss is defined as:

LTD :=
∑
k

DKL(S
(−k)||T(−k)), (4)

where DKL is the Kullback-Leibler divergence (KLD). Since S(−k) and T(−k) are matrices, we
apply a softmax function to each row of them, and then calculate the KLD for each row. Based
on the temporal similarity map, TD loss distills the teacher’s information of past frames indirectly,
avoiding spatial false matching issues across the time frames. We also demonstrated and analyzed the
effectiveness of TD in Sec.4.2.

3.4 Response-Level Distillation

In general, detector models infer a large number of candidates, but not all candidates contain
meaningful information. Since only a few candidates detect target objects, it is necessary for a student
to selectively learn from the predictions of the teacher. Inspired by recent works on prediction-guided
distillation [10, 59, 19, 9], we define the Response-Level Distillation (RD) loss that assigns quality
scores to the predictions of the teacher model, enabling the distillation of only meaningful information.
Let us define {(bi, ci)}Mi=1 as prediction results of teacher model, where bi and ci are regression
and classification results for the i-th of M box candidates, respectively. In a similar manner, student
prediction can be defined as {(b̃j , c̃j)}M̃j=1. Following [10, 59], quality score qi for i-th candidate of
the teacher predictions can be calculated as follow:

qi =
(
c∗i

)1−γ
·
(
IoU

(
b∗i ,bi

))γ
, (5)

where c∗i is the predicted probability for the class of the ground truth box that is matched to i-th can-
didate of the teacher predictions, b∗i is a regression parameter of the ground truth box that is matched
to i-th candidate of the teacher predictions, and γ is a hyper-parameter balancing classification and
localization. Then RD loss is defined as:

LRD :=
∑
j

qπ(j) ·
(
‖bπ(j) − b̃j‖1 +DKL(cπ(j)||c̃j)

)
, (6)

where π(j) is a function that returns the index of the corresponding teacher’s prediction matched
with the j-th student’s prediction. By combining RD with our structural and temporal distillation
(CD,TD), we achieved additional improvement on the detection performance as reported in Sec.4.2.

3.5 Optimization Objective

Finally, the overall optimization objective for the student models can be obtained by integrating the
aforementioned three distillation losses and the task loss Ltask:

Ltotal = LCD + LTD + LRD + Ltask, (7)
where Ltask is adopted from a general set-to-set target assignment for the student with ground truth,
including regression and classification losses [54], based on the Hungarian algorithm [26].

4 Experiments

We now present extensive experimental results to validate our structural and temporal cross-modal
knowledge distillation framework (STXD) for 3D object detection (3DOD) task. We first introduce
the details of experimental setting (Sec.4.1) followed by various ablation studies to validate the
effectiveness of each component in STXD (Sec.4.2). Then, we compare STXD against several leading
methods on the nuScenes [3] dataset (Sec.4.3). Additional experiments are provided in the Appendix.
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4.1 Experimental Settings

Dataset. We evaluate our STXD framework on the nuScenes [3] benchmark dataset, which is
large-scale and widely used by recent research works on 3D object detection. The nuScenes dataset
comprises 1,000 driving scenes with a duration of approximately 20s, which are divided into 700,
150, and 150 scenes for training, validation, and testing, respectively. Each scene consists of RGB
images collected by six cameras, which capture a 360◦ field of view at 12Hz and 32-beam LiDAR
point clouds at 20Hz. Annotations for 23 categories of objects are provided for each sample at a rate
of 2Hz, and the metrics for the 3DOD task are evaluated using 10 classes of objects, as defined by
the official evaluation metrics. These metrics include mean Average Precision (mAP) and nuScenes
Detection Score (NDS). In detail, mAP measures the recall and precision of predicted bounding
boxes, while NDS is a weighted sum of mAP and five true positive nuScenes metrics: mean Average
Translation Error (mATE), mean Average Scale Error (mASE), mean Average Orientation Error
(mAOE), mean Average Velocity Error (mAVE), and mean Average Attribute Error (mAAE).

Baseline Models. To validate the effectiveness of our approach, we adopt two state-of-the-art cross-
modal distillation approaches as baselines. Similar to concurrent work [9], we use BEVFormer [34]
as the image-modality student model and Object-DGCNN [55] as the LiDAR-modality teacher
model, where the DGCNN attention module of the transformer-decoder is replaced with vanilla
multi-head attention. For the second baseline, we adopt the multi-view camera (single frame of
UVTR-C, multi-frame of UVTR-CS) and LiDAR (UVTR-L) models from UVTR [29] as the student
and teacher models, respectively. Our base student models represent two mainstream methods for
transforming 2D perspective image features into 3D BEV features, where BEVFormer uses cross-
attention mechanism [4, 72] and UVTR-C/CS is based on estimating depth distributions through
lift-splat-shoot approach [43, 47].

Implementation Details. The input image size for the student models is set to 1600 × 900. For
both teacher and student models, we use a voxel size of (0.1m, 0.1m, 0.2m), and the input point
clouds are filtered within a range of [−51.2m, 51.2m] for the X and Y axes and [−5.0m, 3.0m] for
the Z axis. The dimensions of the BEV feature grids are 128× 128, and the number of channel D for
BEV features is set to 256. We train all student models for 24 epochs without using CBGS [70]. λc
in Eq.2 is set to 0.01 according to [67]. More implementation details are provided in the Appendix.

4.2 Ablation Studies

For our ablation studies, we implemented BEVFormer [34] with ResNet-101-DCN as backbone
network for the student model, and evaluated the trained model on the nuScenes validation dataset.

Ablation on Distillation Methods. To validate the effects of each proposed distillation approach
in Sec.3, we conducted an ablation study on the loss function. As shown in Tab.1, each loss term
contributes to the improvement in performance. Specifically, the proposed feature-level distillation
(CD and TD) plays a crucial role in enhancing the performance. When CD and TD losses are applied
solely, NDS is increased by 2.47% and 1.77%, respectively. When all loss terms are combined,
the performance is further improved without any conflicts, resulting in the best performance with
a significant improvement of NDS by 2.87% and mAP by 3.52%. These results demonstrate the
effectiveness of our structural and temporal distillation as well as the response distillation method.

Table 1: Ablation on our distillation losses.
CD TD RD NDS(%) mAP(%)

- - - 51.44 40.51
- - X 52.88 42.07
- X - 53.21 42.66
X - - 53.91 43.26

- X X 53.70 42.86
X - X 53.89 43.42
X X - 54.00 43.41
X X X 54.31 44.03

Table 2: Comparisons of feature-level distillation
methods. Bottom results are obtained by applying dif-
ferent representation learning strategies to CD loss.

Method NDS(%) mAP(%)

w/o KD 51.44 40.51
MSE 51.67 41.01
MSE w/ GT 51.84 41.03

CD w/ VICReg [2] 52.04 40.89
CD w/ CLIP [45] 52.47 41.69
CD w/ Barlow Twins [67] 53.91 43.26
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Comparison with Feature-Level Distillation Methods. To solely examine the effectiveness of
our correlation regularizing distillation (CD), we compared it to the following feature-level distillation
methods without applying other distillation approaches. MSE is a baseline method [19, 29] that
simply minimizes the element-wise L2-distance between the features of a teacher and a student. MSE
w/ GT is similar to MSE, but it only distills features near the ground truth point [11, 9]. Our CD
loss in Eq.2 draws inspiration from the Barlow Twins [67] approach for representation learning. To
validate our choice, we also conducted a comparison with other alternative methods. Specifically, we
applied VICReg [2] and CLIP [45] to CD loss and evaluated their impact.

Tab.2 highlights that even in the absence of other distillation losses, the CD loss alone delivers the
most promising performance, resulting in a significant increase of 2.47% in NDS. At the bottom of
Tab.2, we observe that other representation learning methods also lead to performance improvements.
Notably, the Barlow Twins method achieves the best performance among the tested methods. From a
distillation perspective, VICReg solely relies on MSE loss to transfer the teacher’s knowledge, which
is referred to as the invariance term in [2]. As a result, the structural knowledge from the teacher may
not be fully exploited, leading to suboptimal performance. CLIP is a contrastive learning method
that typically requires a large and diverse set of positive and negative pairs of features for effective
learning. In the case of 3DOD, however, cross-modal feature batches extracted from a scene typically
contain only a limited number of positive pairs, while the number of negative pairs is much larger.
Consequently, the effectiveness of contrastive learning may be compromised in the context of 3DOD.
In contrast, Barlow Twins leverages the structural knowledge by exploiting cross-correlation between
the cross-modal features (see Eq.1), and is robust to the size of feature set [67]. Thus, our correlation
regularizing distillation (CD) is the most effective when implemented with Barlow Twins.

Correlation Regularization Effect of CD Loss. In Sec.3.2, we discussed that distillation with
correlation regularization aims to maximize the information contained in the learned features, allowing
the individual components of the feature to become more informative. Here we validate our argument
using two qualitative measures: (1) effective dimension and (2) dimensional redundancy.

Table 3: Effective dimension deff

for different feature-level distillation
methods and teacher.

Method deff d2
eff

MSE 3.810 14.519
MSE w/ GT 4.059 16.474
CD (Ours) 4.389 19.267
Teacher 5.757 33.137

(1) Effective dimension [46] quantitatively measures the di-
mensionality of features. A higher effective dimension indi-
cates lower redundancy among the features. In Tab.3, we com-
pare effective dimensions deff of features learned through var-
ious feature-level distillation methods. Since deff is bounded
by
√
D = 16, we also provide the squared values for a intu-

itive interpretation, bounded by D = 256. For example, the
features learned through CD can be effectively represented in
a dimensional space of at least 20 dimensions, approximately.
Notably, our CD loss achieves the highest effective dimension
compared to other feature distillation methods.

Figure 3: Trend of dimensional redun-
dancy of features over training progress of
the student model.

(2) Dimensional redundancy: Redundant feature com-
ponents exhibit higher correlation among themselves.
From this intuition, we quantify the redundancy in fea-
tures by utilizing Eq.1 and 2. For camera features G,
we define a dimensional self-correlation matrix Cself =
ĜT Ĝ. We then calculate the second term of Eq.2 for
Cself and refer to the resulting value as the dimensional
redundancy of G. Fig.3 depicts the dimensional redun-
dancy of features learned from the MSE and CD loss
throughout the training progress. Results demonstrate
that the CD loss is more effective in reducing dimen-
sional redundancy compared to the MSE loss. Further-
more, even when the MSE loss is replaced with the CD
loss during training, a decrease in dimensional redun-
dancy is still observed (red dashed lines).

These results indicate that distilling features through a simple element-wise comparison can lead to
dimensional collapse. In contrast, our information maximization distillation method leverages the
structural knowledge embedded in the feature space by considering the cross-correlation of feature
components, and ultimately contributes to significantly improved prediction performance (see Tab.1).
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Table 4: Performance comparisons on the nuScenes validation set. For fair comparisons, we use
ResNet-101-DCN as backbone for all the experiments. † indicates our implementation of BEV-
Former [34] with modified BEV grid size of 128×128. ∗ indicates our implementation of Object-
DGCNN [34] with a modified transformer-decoder module. In modality column, ‘L’, ‘C’, and ‘L→ C’
represent LiDAR, Camera, and knowledge distillation from LiDAR to Camera, respectively.

Method Modality NDS(%) mAP(%) mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
Obj-DGCNN∗ [55] L 66.7 60.9 0.332 0.260 0.307 0.264 0.202
UVTR-L [29] L 66.4 59.3 0.345 0.259 0.313 0.218 0.185

DETR3D [54] C 42.5 34.6 0.773 0.268 0.383 0.842 0.216
PETR [35] C 44.2 37.0 0.711 0.267 0.383 0.865 0.201
PolarFormer [24] C 52.8 43.2 0.648 0.270 0.348 0.409 0.201
BEVDepth [33] C 53.8 41.8 - - - - -

BEVFormer† [34] C 51.4 40.5 0.690 0.275 0.360 0.362 0.194
+BEVDistill [9] L→ C 52.4 41.7 - - - - -
+STXD (Ours) L→ C 54.3 44.0 0.635 0.264 0.365 0.309 0.198

UVTR-C [29] C 44.1 36.2 0.758 0.272 0.410 0.758 0.203
+L2C [29] L→ C 45.0 37.2 0.735 0.269 0.397 0.761 0.193
+STXD (Ours) L→ C 46.1 39.0 0.698 0.265 0.413 0.755 0.203

UVTR-CS [29] C 48.3 37.9 0.731 0.267 0.350 0.510 0.200
+L2CS [29] L→ C 48.8 39.2 0.720 0.268 0.354 0.534 0.206
+STXD (Ours) L→ C 50.8 41.4 0.662 0.265 0.381 0.484 0.199

Table 5: Performance of the pro-
posed method depending on K.

K NDS(%) mAP(%) mAVE↓
1 54.06 43.48 0.3246
2 54.13 43.45 0.3148
3 54.31 44.03 0.3093

Effect of K on TD Loss. The temporal consistency distillation
(TD) in Eq.4 utilizes the BEV features extracted from the past
K frames. Tab.5 demonstrates increasing the value of K results
in improved 3DOD performance, particularly in terms of mAVE
(mean Average Velocity Error). By leveraging the information
from consecutive frames through the TD loss, the student can ef-
fectively learn the dynamics of target objects, leading to accurate
predictions of their dynamic attributes. This highlights the impor-
tance of referencing past frames, as it allows the teacher to transfer a greater amount of information
to the student, resulting in improved 3DOD performance. Similar results have also been echoed in
concurrent works [32, 41], which also leverage temporal information for the single-modal 3DOD.

Figure 4: Examples of temporal similarity maps for
(a) teacher model, (b) student model trained with TD,
and (c) student model trained without TD.

Visualization of Temporal Similarity Map.
The similarity map defined in Eq.3 calculates
the element-wise similarity between the BEV
features of the current and past frames. In
Fig.4, we select the feature element corre-
sponding to the location of the car object in
the current BEV space and calculate its sim-
ilarity to the entire features of the past frames.
Notably, the student model trained with TD
exhibits improved similarity patterns with the
teacher (see Fig.4-(a) and (b)). This indicates
that the student model has learned to capture
similar temporal relations and representations
from the teacher by referring to the past frames. The competence of our temporal distillation approach
ultimately contributes to the improved 3DOD performance, as demonstrated in our ablation studies
(see Tab.1 and 5). We provide more temporal similarity visualization results in the Appendix.

4.3 Comparisons with Other Methods

To demonstrate the generalizability of our approach, we apply STXD to both UVTR [29] and
BEVFormer [34] baselines. For a fair comparison, we use ResNet-101-DCN [18, 13] as the backbone
of our student models, unless otherwise specified. Tab.4 shows the evaluation results on the nuScenes
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Table 6: Performance comparisons on the nuScenes testing set. † indicates implementation of BEV-
Former [34] with modified BEV grid size of 128×128. ‡ indicates the use of V2-99 [28] as backbone,
otherwise ResNet-101-DCN is used for a fair comparison. In modality column, ‘L’, ‘C’, and ‘L→ C’
represent LiDAR, Camera, and knowledge distillation from LiDAR to Camera, respectively.

Method Modality NDS(%) mAP(%) mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
DETR3D [54] C 47.9 41.2 0.641 0.255 0.394 0.845 0.133
PETR [33] C 45.5 39.1 0.647 0.251 0.433 0.933 0.143
PolarFormer [24] C 54.3 45.7 0.612 0.257 0.392 0.467 0.129

BEVFormer† [34] C 52.6 42.4 0.620 0.263 0.457 0.387 0.132
+STXD (Ours) L→ C 55.5 46.5 0.579 0.259 0.462 0.363 0.113

BEVFormer‡ [34] C 55.5 45.7 0.605 0.263 0.371 0.375 0.116
+STXD (Ours) L→ C 58.3 49.7 0.546 0.256 0.383 0.356 0.117

UVTR-C [29] C 43.0 36.4 0.724 0.266 0.486 0.898 0.143
+L2C [29] L→ C 44.0 38.2 0.677 0.262 0.493 0.925 0.150
+STXD (Ours) L→ C 45.8 40.2 0.634 0.271 0.465 0.918 0.143

UVTR-CS [29] C 48.6 39.0 0.702 0.263 0.435 0.548 0.144
+L2CS [29] L→ C 48.7 39.8 0.679 0.262 0.432 0.612 0.133
+STXD (Ours) L→ C 51.8 43.5 0.614 0.260 0.407 0.589 0.132

validation set, where STXD significantly improves the performance of the based student models,
surpassing the performance of existing distillation methods [29, 9], up to 2.9% in NDS and 3.5% in
mAP. In most cases, the addition of STXD contributes to the improvement of mATE (translation),
mASE (scale), and mAVE (velocity) metrics. Both mATE and mASE are closely related to the
geometric features of 3D objects, and the teacher effectively transfers such important information to
the student models. The improvement in mAVE can be attributed to our temporal distillation method.

Similar results are echoed in our experiments on the nuScenes testing dataset, as shown in Tab.6. We
did not use CBGS [70] or test time augmentations to evaluate the sole effect of our method. STXD
consistently improves NDS and mAP by up to 3.2% and 4.5%, respectively, compared to the various
baseline methods (UVTR-C/CS, L2C/L2CS, BEVFormer†). STXD also improves performances for
the student model with heavy backbone (BEVFormer‡) by 2.8% in NDS and 4.0% in mAP. These
results are significant as models with heavy backbones already achieve high performance, making
it challenging to further improve through knowledge distillation. In the Appendix, we show the
competence of STXD on lightweight backbones as well. These results demonstrate the effectiveness
and versatility of STXD in enabling cross-modal distillation between the teacher and the student
models. Overall, STXD enables the student to learn the maximum amount of information from the
teacher, including geometric and temporal knowledge, leading to significantly enhanced performance.

5 Conclusion

In this paper, we presented STXD, a cross-modal knowledge distillation framework for the multi-view
3D object detection task. STXD is capable of effectively distilling structural and temporal knowledge
across different modalities through Correlation Regularizing Distillation (CD) and Temporal Consis-
tency Distillation (TD). To further enhance the distillation quality, STXD also adopts Response-Level
Distillation (RD), which transfers task-specific knowledge at the output level. Our extensive experi-
ments and ablation studies demonstrated the effectiveness of STXD on the nuScenes dataset, where
the NDS and mAP of the based student detectors are improved by up to 3.2% and 4.5% on the testing
set. Inspired by recent works on multi-modal fusion [36, 63, 1] and other types of 3D perception
tasks (e.g., BEV Segmentation [68, 20], Occupancy Detection [23, 30]), we plan to further explore
the potential of STXD in such various tasks leveraging cross-modal distillation. It would also be
valuable to apply and validate our approach with other models that utilize long-term information
such as [17, 41]. We hope our work provides a solid baseline and new perspectives on structural and
temporal cross-modal distillation.
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Societal Impact. Though the proposed method significantly improves the performance of multi-
view camera-based 3D object detection, it does not guarantee perfect predictions for all cases.
Therefore, when applied to actual autonomous driving scenes, a contingency plan must be included.
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Appendix

In this appendix, we provide additional details of the implementation and training of our method
(Appendix A). We also present additional experimental results, including ablations on lightweight
backbones, additional baselines, and qualitative examples (Appendix B). These results further demon-
strate the effectiveness of our STXD framework in cross-modal distillation for 3D object detection.

A Additional Implementation Details

A.1 Details on Cross-Modal Distillation Baselines

In Sec.4.1 of the manuscript, we introduced two cross-modal distillation baselines for 3D object
detection: (1) BEVFormer [34] as the student model and Object-DGCNN [55] as the teacher model;
and (2) UVTR-C/CS as the student models and UVTR-L as the teacher model [29]. To be more
specific, in the first baseline (Object-DGCNN→ BEVFormer), we set the spatial dimensions of the
bird’s-eye view (BEV) feature to be X = Y = 128, and Z = 1 for both the teacher and student
models, indicating a flat BEV feature space. In accordance with the concurrent work [9], we replaced
the DGCNN attention module of the transformer-decoder in the teacher model with vanilla multi-head
attention. Apart from these modifications, we followed the original implementations of both the
student and teacher models. In the second baseline (UVTR-L → UVTR-C/CS), we utilized the
original implementation of UVTR [29] without any modifications. The dimensions of the bird’s-eye
view (BEV) features were set to X = Y = 128 and Z = 11 for UVTR-C/CS; and Z = 5 for
UVTR-L. Here, Z represents the height of the Bird’s Eye View (BEV) feature space. The BEV
features were further sampled using the (x, y, z) positions of object queries Q, where |Q| = 900.

Note that we adopted two baseline student models that utilize multi-frame inputs. BEVFormer
generates the BEV feature of the current frame by referring to the BEV feature of the past frames
via temporal self-attention mechanism. In UVTR-CS, multi-frame images are concatenated and
forwarded to the image encoder.

A.2 Training Details

For a fair comparison, we used ResNet-101-DCN pretrained by FCOS3D [53] as the backbone
network for the student models in our extensive experiments (see Sec.4.2 and 4.3 in the manuscript)
following prior works [34, 29]. We also showcased the competence of our STXD framework with
other types of backbones, including VoVNet-99 [28] initialized from DD3D [40] as well as lightweight
ResNet-18 and ResNet-50 networks (see B.1). We set the balancing parameter γ to 0.8 and 0.6 for
classification and localization in Eq.5 of the manuscript, following [10, 59]. The weights for each loss
term in Eq.7 of the manuscript are set to (0.1, 100.0, 1.0, 1.0), respectively, in the order mentioned.
The student models were trained for 24 epochs using a learning rate of 2× 10−4, and a batch size of 1
per GPU. All models were trained on 8 of NVIDIA A100 GPU while following the original codebase
for each model. We employed AdamW [37] as the optimizer with a weight decay of 1× 10−2. To
isolate the effect of our STXD framework in cross-modal distillation, we deliberately did not use the
CBGS strategy [70] or test-time augmentation in our experiments.

A.3 Instance Matching Function in Response-Level Distillation

In Sec.3.4, we adopted the commonly used Hungarian algorithm [26] to define set-to-set matching
between the ground-truth and candidates from the teacher and the student, separately. Then, we
constructed a mapping function π(j) between candidates from the teacher and the student based on
matched ground-truth indices.
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B Additional Experimental Results

B.1 Ablations on Lightweight Backbones

To further validate the effectiveness of our STXD framework in practical scenarios where lighter
backbone networks are preferred for deployment on edge devices, we conducted experiments using
smaller backbone networks for the student model. This allows us to assess the performance of
our approach under resource-constrained settings while improving the level of accuracy in 3D
object detection. We trained BEVFormer with ResNet-18 and ResNet-50 backbone networks on
nuScenes training set and evaluated on the validation set. The results in Tab.7 demonstrate that STXD
significantly improves the performance of BEVFormer with smaller backbone networks where it
achieves an improvement of 3.24% and 4.00% in NDS and 3.33% and 4.49% in mAP, respectively.
These improvements are consistent with the results presented in Tab.4 and 6 of the manuscript, further
confirming the versatility and compatibility of our approach across different backbone architectures.

Table 7: Performance of STXD on lightweight backbone networks for the student model.

Method Backbone NDS(%) mAP(%)

BEVFormer [34] ResNet-18 40.42 28.70
+STXD (Ours) ResNet-18 43.66 32.03
BEVFormer [34] ResNet-50 44.06 32.86
+STXD (Ours) ResNet-50 48.06 37.35

B.2 Experiments on Additional Teacher-Student Baseline

To further validate the effectiveness of our approach across various teacher-student baselines, we
extend our experiments to additional student baseline, BEVDepth [33], which relies on LSS-based
feature generation [43], depth supervision, and multi-frame inputs. Here we followed the official
implementation of TiG-BEV [22] for cross-modal distillation with CenterPoint [64] as the teacher
model, but added our feature-level distillation losses for fair comparisons. Results are reported
in Tab.8, where our approach outperforms prior distillation methods, such as BEVDistill [9] and
TiG-BEV [22], by up to +3.2% of NDS. These results are consistent to the results from BEVFormer
and UVTR-C/CS baselines in Tab.4 and 6.

Table 8: Performance comparison of distillation methods on the baseline with CenterPoint as the
teacher and BEVDepth as the student. TiG-BEV (FD): applying only the feature-level distillation
(FD) losses (Linter-channel, Linter-keypoint). TiG-BEV: leveraging full set of losses including inner-depth
supervision proposed in TiG-BEV. STXD (CD): applying our correlation regularizing distillation
loss. STXD (TD): applying our temporal consistency distillation loss.

Method Backbone Modality NDS(%) mAP(%)

CenterPoint [64] VoxelNet L 64.6 56.4
BEVDepth [33] ResNet-50 C 43.1 32.9

+BEVDistill [9] ResNet-50 L→ C 45.4 33.2
+TiG-BEV (FD) [22] ResNet-50 L→ C 45.2 35.8
+TiG-BEV [22] ResNet-50 L→ C 46.1 36.6
+STXD (CD) ResNet-50 L→ C 48.4 37.1
+STXD (TD) ResNet-50 L→ C 48.3 36.1

B.3 Comparison to Correlation-based Distillation Method

Our Correlation Regularizing Distillation (CD) and TiG-BEV [22] both consider dimensional cor-
relation of features. However, these methods are distinct in their underlying objectives and imple-
mentations. TiG-BEV proposes the inter-channel BEV distillation loss (IC loss) that encourages
the student’s features to replicate the dimensional self-correlation of the teacher’s features (i.e.,
minimize ||FTF−GTG||2 ). In contrast, the core contribution of CD is introducing cross-modal
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cross-correlation regularization to prevent student features from being redundant. Specifically, CD
exploits the decorrelation mechanism (the second term of Eq.2) to prevent information collapse
in the student model. However, IC loss does not utilize such an information maximization mecha-
nism, and only relies on the global one-to-one MSE distance (L2-norm) between modality-specific
self-correlation matrices. Hence, CD pursues a different learning principle compared to TiG-BEV.

These differences lead to the competence of CD over TiG-BEV. Tab.9 shows that CD effectively
reduces duplicate dimensional feature components compared to the correlation-based distillation of
TiG-BEV. Furthermore, in Tab. 8, CD ultimately achieves performance improvements over TiG-BEV
and BEVDistill by up to +3.2% of NDS and +3.9% of mAP. These results consistently demonstrate
the significance of mitigating feature redundancy in cross-modal knowledge distillation and enhancing
feature quality through our feature-level distillation approaches.

Table 9: Validation for correlation regularization effect of CD loss. For both TiG-BEV and our STXD,
we measured the effective dimension (deff) and dimensional redundancy values defined in Sec.4.2.
TiG-BEV (FD) represents the results of applying only the feature distillation loss from TiG-BEV.

Method deff↑ d2
eff↑ Dim.Red.↓

TiG-BEV (FD) [22] 1.620 2.634 0.174
STXD (CD) 1.694 2.871 0.062
Teacher [33] 2.194 4.813 0.038

B.4 Qualitative Results

B.4.1 Prediction Results on BEV Space

Fig.5 and 6 provide examples of 3DOD results in the BEV space from the LiDAR-based model (top-
left), the multi-view camera-based model trained with our STXD (top-middle), and the camera-based
model trained without knowledge distillation (camera-only model, top-right). Additionally, at the
bottom of each example, we have included camera views that correspond to the highlighted regions,
which can help in better understanding the results. Overall, STXD enables more accurate prediction
of bounding box locations, scales, and orientations compared to the camera-only model (highlighted
by red dashed boxes). This observation is consistent with the quantitative results in Tab.4 and 6 of
the manuscript. STXD also leads to a reduction of false positives. In certain examples, we observe a
decrease in false positives even when comparing the results to the LiDAR-based model (highlighted
by pink dashed boxes). Notably, in Fig.6, STXD effectively reduces false positive detections in 3DOD
compared to the LiDAR-based model and the camera-only model. These results indicate that our
STXD framework effectively transfers valuable information from the LiDAR-based teacher to the
camera student, leading to improved detection performance.

B.4.2 Qualitative Comparison on BEV Features

As an extension of Fig.1 in the manuscript, we provide additional examples of BEV features learned
using different feature-level distillation methods in Fig.7. In various samples, the model trained with
the correlation regularizing distillation (CD) consistently generates more similar feature patterns
(Fig.7-(b)) to the teacher model (Fig.7-(a)) compared to other methods (Fig.7-(c) and (d)). These
results demonstrate the effectiveness of the proposed method in transferring the rich information
contained in the teacher model to the student model.

B.4.3 Temporal Similarity Maps

As an extension of Fig.4 in the manuscript, Fig.8 illustrates the learning progress of the temporal
similarity map during the training phase for different values of k (k = 1, 2, 3). As the training
progresses, the cross-modal temporal similarity map S(−k) becomes similar to the intra-modal
temporal similarity T(−k). This indicates that the student model effectively learns the temporal
knowledge encoded in the similarity maps from the teacher, and ultimately leads to significant
improvements in 3DOD, as demonstrated in our extensive experiments reported in the manuscript.
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Figure 5: Examples of 3D object detection results from LiDAR-based model (top-left), multi-view
camera-based model with STXD (top-middle), and camera-only model (top-right). Green rectangles
indicate ground truth bounding boxes, while blue rectangles represent the predicted bounding boxes.
Pink dashed boxes highlight the comparisons of STXD with the LiDAR-based model, while red
dashed boxes highlight the comparisons with the camera-only model. We also provide camera views
corresponding to the highlighted regions at the bottom.
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Figure 6: Examples of 3D object detection results from LiDAR-based model (top-left), multi-view
camera-based model with STXD (top-middle), and camera-only model (top-right). Green rectangles
indicate ground truth bounding boxes, while blue rectangles represent the predicted bounding boxes.
Pink dashed boxes highlight the comparisons of STXD with the LiDAR-based model, while red
dashed boxes highlight the comparisons with the camera-only model. We also provide camera views
corresponding to the highlighted regions at the bottom.
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Figure 7: Examples of BEV features generated by (a) the LiDAR-based model, (b)-(d) the multi-view
camera-based model trained with different feature-level distillation methods, and (e) the camera-only
model. We visualize the L2-norm value of BEV features.
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Figure 8: Examples of the learning progress for the temporal similarities during the training phase.
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