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S.1 Video Results

In https://youtu.be/gDnYcQni_Gk, we provide video results on (1) 4D reconstruction compar-
isons, (2) texture transfer, and (3) motion inter- and extrapolation. In 4D reconstruction comparisons,
we compare our method with two baselines with the strongest quantitative results in Tab. 1 in the
main paper: Im2Hands [11] and LoRD† [8]. We qualitatively show that our method reconstructs
more accurate hand shapes with less jittery or abrupt temporal deformations. Please find more details
in the video.

S.2 Additional Ablation Study

Low-pass filtering (LPF). In our method, the joint flow network (Sec. 3.3 in the main paper) refines
the initial Fourier coefficients of the per-frame joints predicted by an off-the-shelf pose estimator [12].
We additionally perform experiments using the initial Fourier coefficients for N = 6 basis functions
without the refinement, which can be interpreted as applying simple low-pass filtering on the noisy
joint trajectory. In Tab. S1 (Joint Flow → LPF), we show that the reconstruction performance
significantly decreases compared to that of our full method, which learns to effectively refine the
initial joint trajectory in the frequency domain using hints from the input RGB frames and hand
skeleton structures.

Table S1: Quantitative comparisons of video-based 4D hand reconstruction on InterHand2.6M [15]
TH subset with low-pass filtering.

Method IoU (%) ↑ CD (mm) ↓ L1-Corr (mm) ↓

Joint Flow → LPF 56.5 5.84 13.9
FOURIERHANDFLOW (Ours) 62.8 4.46 10.8

Number of basis functions (N ). We also investigate the effect of the number of basis functions,
which is N = 6 in our main method. In Tab. S2, we show our reconstruction accuracy and efficiency
using N = {4, 6, 8} basis functions. Overall, our model performance is not affected much by N , but
the performance is slightly decreased when N is too small (e.g. N = 4). Thus, we choose N = 6 in
our main method to achieve a good balance between accuracy and computational efficiency.

Table S2: Quantitative results of video-based 4D hand reconstruction on InterHand2.6M [15] TH
subset with varying number of basis (N ).

N IoU (%) ↑ CD (mm) ↓ L1-Corr (mm) ↓ Training Time (sec.) ↓ Inference Time (sec.) ↓

4 62.5 4.50 10.9 2.50 0.12
6 (Ours) 62.8 4.46 10.8 2.75 0.15

8 62.6 4.45 10.8 2.87 0.18
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These results imply that the function that we aim to reconstruct (i.e., the hand motion captured in
InterHand2.6M [15]) is mostly smooth enough to be reconstructed with a number (N = 6) of Fourier
terms, as our shape reconstruction accuracy does not noticeably increase when using a higher number
of Fourier terms. However, if one has to reconstruct higher-frequency motions (other than the hand
motions in InterHand2.6M), it would be desirable to use a higher number of Fourier terms (N ) in our
method.

Off-the-shelf pose estimator (Ψ). In the Tab. S3, we evaluate our 4D reconstruction results using two
different models for Ψ [12, 5]. While the initial pose accuracies have a considerably large gap (3.7mm
in MPJPE), our final shape accuracies do not vary much, and both settings achieve the state-of-the-art
4D reconstruction results compared to the baseline methods in Tab. 1 in the paper. This demonstrates
that our final shape accuracy is quite robust to the quality of the initial pose predictions.

Table S3: Quantitative results of video-based 4D hand reconstruction on InterHand2.6M [15] TH
subset with varying the initial pose estimator (Ψ) architecture.

Method Initial Joint Error (MPJPE ↓) Shape Accuracy (IoU ↑) Shape Accuracy (CD ↓)

IntagHand [12] 13.3 62.8 4.46
DIGIT [5] 17.0 62.2 4.58

Error in initial pose estimation. To additionally examine what will happen if Ψ provides bad
predictions during testing, we also measure our 4D reconstruction accuracy after injecting uniformly
sampled noise with the amplitude [−x, x] to every dimension of the initial pose prediction in the
test time — following the exact ablation study setting in [9] (Section D in the supplementary). As
shown in Table S4, our model performance is quite robust to the injected noises (gently decreasing its
accuracy for a higher level of noise), and again, all settings achieve state-of-the-art results compared
to the baselines in Tab. 1 in the paper.

Table S4: Quantitative comparisons of video-based 4D hand reconstruction on InterHand2.6M [15]
with different degrees of noise (x) injection in initial pose prediction.

Noise Level (x) IoU (%) ↓ CD (mm) ↓

0mm (No Noise) 62.8 4.46
1mm 62.7 4.48
3mm 62.5 4.50
5mm 62.2 4.53

S.3 Additional Comparisons

Comparisons with Fourier Occupancy Field [6]. Fourier Occpancy Field (FOF) [6] uses Fourier
Series along one of the spatial axes (i.e., z-axis) to enable efficient 3D human reconstruction, while
our method uses Fourier Series along the temporal axis (1) to regularize high-frequency (e.g., jittery)
temporal shape change and (2) to enable efficient 4D hand reconstruction. Along with this difference,
another important difference between FOF and our method lies in the characteristics of the shape
category that each aims to reconstruct. FOF aims to reconstruct clothed humans, which have complex
shape variations (e.g., cloth wrinkles) but with fewer self-occlusions caused by the underlying
shape articulations. In contrast, our method aims to reconstruct human hands, which have more
complex articulations leading to more severe self-occlusions. Thus, most of the existing hand implicit
functions, e.g., [3, 9, 11], use articulated implicit representation to directly model pose-dependent
deformations with respect to the learned canonical hand shape to incorporate strong pose prior.
Similarly, one of our main contributions is also to propose articulation-aware query flows (i.e., pose
and shape flows) to directly model pose-dependent 4D hand deformations. In Tab. S5, we show the
experimental comparisons with FOF, where FOF yields similar results to our non-articulated implicit
function baseline (Occupancy Flow [17]) in Tab. 1 in the paper.
Comparisons with MANO [20] fitting. We also compare ours to a classical MANO [20] fitting-
based approach, where we first predict the keypoints and segmentation masks from the input RGB
frames using [12] and then perform optimization-based MANO parameter fitting to those predictions.
In Tab. S6, MANO fitting is shown to yield less accurate and efficient reconstruction results. This is
because (1) the accuracy of the MANO fitting is directly bound to the accuracy of the intermediate
predictions and (2) the inference involves test-time optimization.
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Table S5: Quantitative comparisons of video-based 4D hand reconstruction on InterHand2.6M [15]
TH subset with Fourier Occupancy Field (FOF) [6].

Method IoU (%) ↑ CD (mm) ↓

FOF [6] 30.4 23.88
FOURIERHANDFLOW (Ours) 62.8 4.46

Table S6: Quantitative comparisons of video-based 4D hand reconstruction on InterHand2.6M [15]
TH subset with a MANO [20] fitting-based approach.

Method IoU (%) ↑ CD (mm) ↓ Inference Time (sec.) ↓

MANO [20] Fitting 43.7 6.48 28.4
FOURIERHANDFLOW (Ours) 62.8 4.46 0.22

Comparisons on joint estimation. Although the primary goal of this research is accurate shape
reconstruction rather than joint estimation, we additionally evaluate our results on MPJPE in com-
parison to [12, 26, 27] in Tab. S7. As [12, 27] originally use the additional ground truth bone length
for rescaling the joint predictions, we use the mean bone length of the hands in the training set of
InterHand2.6M [15] following [11] to perform fair comparisons. Our method achieves lower MPJPE
than the compared methods on InterHand2.6M dataset.

Table S7: Quantitative comparisons of joint estimation on InterHand2.6M [15] TH subset.

Method ACR* [26] Two-Hand-Shape-Pose [27] IntagHand [12] Ours

MPJPE (mm) ↓ 18.3 15.9 13.3 11.0

S.4 Details on the Pre-Trained Occupancy and Implicit Linear Blend Skinning Weight Fields

S.4.1 Background: Linear Blend Skinning (LBS)

We first review linear blend skinning (LBS), which is a widely-used technique to deform a shape
with underlying skeletal structures. It is originally used for deforming a mesh according to rigid bone
transformations [13, 20]. Given a mesh with a set of V initial vertex positions {v̂(i)}Vi=1 and rigid
transformation matrices of B bones {Tb}Bb=1, the deformed vertex positions {v(i)}Vi=1 are computed
as:

v(i) =

B∑
b=1

w
(i)
b Tb v̂

(i), ∀i = 1, ..., V, (1)

where w(i) ∈ [0, 1]B is a skinning weight vector for v̂(i) s.t.
∑B

b=1 w
(i)
b = 1. Each entry w

(i)
b

represents the amount of influence that Tb has on the deformed position of i-th vertex.

Recently, neural implicit 3D shape representations [14, 22] have also adopted LBS for articulated
shape modeling. Since LBS weights should be implicitly defined given an arbitrary 3D query position,
they use a neural network w(·) : R3 → [0, 1]B to learn the mapping from an input query p ∈ R3 to
the corresponding skinning weight vector wp ∈ [0, 1]B . Analogous to Eq. (1), the deformed query
position is computed by applying the weighted average of the transformations {Tb}Bb=1, where the
weights are determined by wp.

S.4.2 Learning Canonical Hand Occupancy and Implicit LBS Weights

We now provide details on pre-training the hand occupancy and LBS weight fields used in our method
(Sec. 3.1 in the main paper), for which we utilize a modified version of LEAP [14] model. LEAP is
originally proposed for learning the occupancy of human bodies from a set of bone transformation
inputs {Tb}Bb=1. It first learns forward and inverse LBS functions using neural networks. Then, it
uses (1) the cycle-distance feature computed via forward and inverse LBS and (2) the point feature
computed using the three types of encoders (i.e. shape, structure, and pose encoders) to predict the
occupancy at the query point (please refer to [14] for more details).
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Note that our method only requires a forward LBS function w(·) : R3 → [0, 1]B , which maps
a query point in the canonical space to a skinning weight vector, and the occupancy function
o(·) : R3 → [0, 1] that models the canonical hand shape. For the forward LBS function w(·), we
directly adopt the architecture of the forward LBS network of LEAP. While the original network
takes the canonical SMPL [13] vertices to extract a shape feature for the canonical human body
shape, our network takes the canonical MANO [20] vertices as inputs to encode the canonical hand
shape. Note that our method is not dependent on MANO model except for this single set of canonical
MANO hand vertices. For the occupancy function o(·), we have empirically found that using the
point feature extracted from the structure encoder is sufficient to obtain a decent-quality canonical
hand occupancy field. Thus, we have removed the shape and pose encoders and the cycle-distance
feature from the occupancy network of LEAP for computational efficiency. For the structure encoder,
we use the kinematic structure of hands instead of human bodies. Other architecture or training
details are unchanged from the original LEAP network.

S.5 Reproducibility

We now report the implementation details for the reproducibility of our method. Note that minor
implementation details will be also available through our code, which will be published after the
review period.

S.5.1 Network Architecture

Joint flow network. For inputs to our joint encoder eθ1(·), we build initial hand-skeleton graphs
{Gt}Tt=1, where T = 17. For each Gt, we use J = 21 nodes each corresponding to a hand joint at
time t with edges of a hand skeleton structure (see the upper branch of Fig. 2 in the main paper). Each
node feature is initially set as the concatenation of the 3D position and pixel-aligned feature [21]
of the corresponding hand joint estimated by the off-the-shelf pose estimator [12]. For the image
encoder used to extract the pixel-aligned features, we adopt the stacked hourglass architecture [16]
with batch normalization [7] replaced with group normalization [25]. We use two stacks with a
feature channel size of 256, except for the output feature channel size set as 128. The 3D joint
position is also augmented using a positional encoder, which is a single linear layer (which is shared
for all joints) that outputs a 128-dimensional positional feature. The concatenated node features are
in the form of RT×J×(128+128+3).

For the joint encoder eθ1(·), we use a network composed of three graph convolution blocks with
inter-block residual connections. Each block consists of two Chebyshev spectral graph convolution
layers [4] with a Chebyshev order of 2 and a feature channel size of 128. Each layer is followed
by layer normalization [2] and ReLU [1] activation. The resulting node features are in the form of
RT×J×128.

Our temporal encoder tθ2(·) then applies a shared convolutional neural network for each joint along
the temporal dimension to extract per-joint temporal features. The layer configurations for each
temporal convolutional layer can be found in Tab. S8 (rows 2-4). The output per-joint temporal feature
is concatenated with the Fourier coefficients of the corresponding joint predicted by an off-the-shelf
pose estimator [12] and fed to a multilayer perceptron (MLP) for refined coefficients prediction. The
layer configurations for each fully-connected layer can be also found in Tab. S8 (rows 5-7).

Table S8: Layer configurations of the temporal encoder in our joint flow network. Each layer (except
the last MLP-3 layer) is followed by ReLU [1] activation.

Layer Description Output Dimension

TCNN-1 (Temporal conv., filter size 3, 96 features, stride 2) J × 96× 8
TCNN-2 (Temporal conv., filter size 3, 64 features, stride 2) J × 64× 3
TCNN-3 (Temporal conv., filter size 3, 64 features, stride 1) J × 64× 1

MLP-1 (Linear, 128 features) J × 128
MLP-2 (Linear, 64 features) J × 64
MLP-3 (Linear, 14 (= 6N + 3) features) J × 14 (= 6N + 3)

Shape flow network. For inputs to our query encoder eω1
(·), we create query descriptors {f t}Tt=1,

where T = 17. For each f t, we concatenate (1) the query position p and (2) the query position

4



after applying the previously estimated pose flow Φpose
θ (p, t) and its pixel-aligned feature [21],

and a skinning weight vector of p predicted by the pre-trained LBS weight function w(·). For the
image encoder used to extract the pixel-aligned features, we adopt the same network architecture
as the image encoder in the joint flow network. The resulting query descriptor is in the form of
R3+3+128+16. For the query encoder eω1

(·), we use a network composed of two fully-connected
layers with a feature channel size of 128. Each layer is followed by ReLU [1] activation. For the
temporal encoder tω2

(·) that predicts the Fourier coefficients of the query-wise displacement flow, we
use a convolutional neural network applied along the temporal dimension, whose layer configurations
can be found in Tab. S9.

Table S9: Layer configurations of the temporal encoder in our shape flow network. Each layer (except
the last TCNN-3 layer) is followed by weight normalization [23] and ReLU [1] activation. B denotes
the query batch size.

Layer Description Output Dimension

TCNN-1 (Temporal conv., filter size 3, 128 features, stride 2) B × 128× 8
TCNN-2 (Temporal conv., filter size 3, 128 features, stride 2) B × 128× 3
TCNN-3 (Temporal conv., filter size 3, 14 (= 6N + 3) features, stride 1) B × 14(= 6N + 3)× 1

Two-hand extension. We now explain the architecture of the two-hand version of our method,
which is used for the experiments on the two-hand (TH) subset of InterHand2.6M [15] dataset and
RGB2Hands [24] dataset. For the joint flow network, we use two networks each trained for left
and right hands, respectively. For the shape flow network, we use one shared network to implicitly
capture the correlation between left and right hands through a shared feature embedding space. Left
and right conditioning is incorporated when creating an initial query descriptor f t in two ways. First,
we use the query position after applying the pose flow w.r.t. the corresponding side of the hand and its
pixel-aligned feature [21]. Second, we concatenate a binary label – [1, 0] for left side and [0, 1] for
right side – to the query descriptor. Other implementation details are unchanged from the single-hand
version of our method.

Off-the-shelf pose estimator [12]. For the off-the-shelf hand pose estimator Ψ(·), we use the joint
estimation module of IntagHand [12] similar to Im2Hands [11]. As IntagHand estimates two-hand
joints, we use the original IntagHand network for the experiments on the two-hand (TH) subset of
InterHand2.6M [15] dataset and RGB2Hands [24] dataset. For the experiments on the single-hand
(SH) subset of InterHand2.6M dataset, we remove the cross hand attention module to perform
single-hand joint estimation. Other architecture or training details are unchanged from the original
IntagHand network. Similar to Im2Hands [11], we note that our method is agnostic to the architecture
of the off-the-shelf pose estimator, thus it is possible to use any other pose estimator.

S.5.2 Training Details and Datasets

Training details. Note that our method first predicts the joint flow and then predicts the shape flow
dependent on the estimated joint flow. Thus, to enable more robust training, we first (1) train the joint
flow network and then (2) train the shape flow network while freezing the parameters of the joint
flow network. We train both networks for 100K training steps using an Adam [10] optimizer with a
learning rate of 1e− 4. As the joint flow network itself does not perform dense shape estimation, we
only use correspondence loss Lcorr (·, ·) w.r.t. the ground truth hand joint positions when training
the joint flow network. For training the shape flow network, we use both the correspondence loss
Lcorr (·, ·) and the occupancy loss Locc(·, ·) with the value of hyper-parameter λ set as 10. Training
on a single RTX 4090 GPU takes about 1 day and 3 days for the joint flow network and the shape
flow network, respectively.

Datasets. For InterHand2.6M [15] dataset, we follow the data pre-processing steps used in Intag-
Hand [12]. For selecting test subsequences of length T = 17, we randomly choose 2K starting
frames from each subset – with a random seed fixed for all experiments – and additionally collect the
following 16 frames. We plan to release the specific test data configurations along with the code.

Data normalization. Along the spatial dimension, we normalize the 3D coordinate space of each
input sequence by aligning the predicted hand root joint of the first frame to the origin point. Along
the temporal dimension, we do not apply normalization.

5



S.5.3 Modification of LoRD [8]

As also briefly mentioned in Sec. 4 in the main paper, the original LoRD [8] network learns 4D
humans conditioned on the input 2.5D or 3D point cloud sequence and SMPL [13] meshes fitted to
the inputs. Since the goal of our work is to learn 4D continuous representation from RGB frame
sequences, we condition the prediction of LoRD on the MANO [20]-topology hand meshes predicted
from the input RGB sequence to make direct comparisons. We use IntagHand [12] for the mesh
prediction, since it has shown the strongest quantitative results among the image-based reconstruction
methods that output fixed-topology meshes (see 3D Mesh category in Tab. 1 in the main paper). We
use the predicted hand meshes for both local part tracking and test-time optimization of LoRD. We
also note that the other 4D continuous representations use network architectures (e.g. [18, 19]) that
specifically takes point cloud inputs, thus it is non-trivial to adapt them to learn directly from RGB
sequence inputs. To the best of our knowledge, ours is the first articulation-aware 4D continuous
representation proposed for RGB sequence inputs.
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