
Supplementary Material481

We provide details omitted in the main paper.482

• Appendix A: related work (cf. subsection 2.3 and section 5 of the main paper).483

• Appendix B: additional benchmark details (cf. subsection 2.2 of the main paper).484

• Appendix C: additional training details (cf. section 4 of the main paper).485

• Appendix D: additional results and analyses (cf. section 4 of the main paper).486

• Appendix E: additional discussions (cf. section 5 of the main paper).487

To keep the same reference numbers as in the main paper, we use plain text for those newly added488

references in the supplementary material.489

A Related Work490

We review related work on other transfer learning paradigms. We briefly describe their settings and491

distinguish their differences from our proposed holistic transfer (HT) problem.492

A.1 Domain Adaptation493

Domain adaptation (DA) is the most iconical machine learning setting to tackle the domain-shift494

problem (Liu et al., 2021; Chen et al., 2022; Shen et al., 2022; Rangwani et al., 2022; Gandelsman et495

al., 2022; Yang et al., 2023). With the common objective of transferring source-domain knowledge496

to target domains, various settings have been proposed to incorporate different constraints and497

assumptions. The assumption can be the degrees of overlap between the source and the target label498

sets (Busto et al., 2017; Cao et al., 2018; You et al., 2019; Saito et al., 2020; Yang et al., 2022; Jang499

et al., 2022). To relax the constraint of accessing source data, source-free DA can solely rely on500

the target data for adaptation (Ding et al., 2022; Kundu et al., 2022; Chhabra et al., 2023). Despite501

the abundant variations, DA settings all share one common assumption: the target distributions in502

training and testing are matched, making our HT fundamentally different from them. In our HT,503

we can encounter target test classes that are unseen in the target training set but seen in the source504

domain. Therefore, HT requires a distinct ability that can generalize the style shifts learned on the505

target seen classes to other unseen classes.506

A.2 Out-of-domain Generalization507

Although fine-tuning a pre-trained model often leads to impressive accuracy for downstream tasks,508

recent studies have revealed that it may compromise the out-of-domain (OOD) robustness of the509

model [20, 2, 37, 21]. Several robust fine-tuning methods are thus proposed to balance the trade-off510

between in-domain downstream accuracy and OOD generalization (Raghunathan et al., 2020; Xie et511

al., 2020; Tian et al., 2023). LP-FT [21] proposed to learn a classifier with frozen features before512

end-to-end fine-tuning to avoid feature distortion. Some other approaches relied on ensembles with513

pre-trained models to increase the robustness (Wortsman et al., 2022; Ilharco et al., 2022). However,514

the main focus of these studies remains on preserving the robustness to different input styles for515

classes seen in the target training set. This is significantly different from HT. Our HT problem aims516

to generalize the styles for classes unseen in the target training set.517

A.3 Continal Learning518

The goal of continual learning (CL) is to sequentially adapt to multiple tasks without catastrophically519

forgetting the previously learned ones [16, 26, 24]. To achieve this goal, existing studies have520

proposed to exploit a replay buffer for storing old data (Rebuffi et al., 2017; Chaudhry et al., 2019;521

Wu et al., 2022; Tiwari et al., 2022; Yoon et al., 2022; Luo et al., 2023; Zhu et al., 2023; Zhou et al.,522

2023), or to constrain the fine-tuning with old models (Yoon et al., 2017; Dhar et al., 2019; Ahn et al.,523

2019; Douillard et al., 2022; Wang et al., 2022). Unlike HT, CL still assumes all the encountered524

training distributions, which could be many, are aligned with their corresponding test distributions.525

Although reducing forgetting can be the first step for HT to maintain unseen class accuracy, we526
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Table 10: A summary of the dataset statistics for our HT benchmark.

Datasets Source domains Target domain #Classes #Seen classes #Target training #Target test

Office-Home

Art
Clipart

65 30
1,471 1,330

Product 1,265 1,361
Real 1,413 1,335

Real
Art

65 30
857 750

Clipart 1,493 1,330
Product 1,459 1,361

FEMNIST 40 writers 10 new writers 62 Vary by data
collection bias

Vary by data
collection bias

Vary by data
collection bias

iWildCam 53 camera trap
locations

21 new camera trap
locations 181 Vary by data

collection bias
Vary by data

collection bias
Vary by data

collection bias

VTAB CLIP

Caltech101 102 51 1,371 6,084
CIFAR100 100 50 22,513 10,000

DTD 47 23 920 1,880
EuroSAT 10 5 8,424 5,400

Flowers102 102 51 510 6,149
Pets 37 18 1,445 3,669

Resisc45 45 22 9,159 6,300
SVHN 10 5 28,197 26,032

SUN397 397 198 37,542 21,750

iNaturalist
(Fungi) CLIP Fungi 12 6 30 60

argue that this is insufficient in HT due to the source-target domain mismatch. Adapting the features527

for unseen classes to the target domain remains a key challenge for HT. Moreover, HT can also be528

potentially compatible with CL to consider learning on a non-iid data stream.529

A.4 Zero-shot Learning530

Zero-shot learning tackles the setting where training and test classes are completely disjoint (Xian et531

al., 2017; Chen et al., 2021; Xu et al., 2022; Pourpanah et al., 2022). As no training data are available532

for test classes, the main challenge resides in learning source features that can generalize to unseen533

semantic meanings. To achieve this, auxiliary information (e.g., texts or attributes) is usually needed534

to describe the test classes and connect them back to the training classes (Xu et al., 2020; Naeem et535

al., 2021; Chen et al., 2022; Li et al., 2022). In HT, we assume the missing classes in target domains536

are already seen in the source domain. We make this assumption to simplify the problem so that537

HT can focus on generalizing the domain shifts to unseen classes. However, we argue that HT is538

compatible with zero-shot learning to make the setting more flexible.539

B Additional Benchmark Details540

To support the study of the HT problem, we create a benchmark that covers extensive scenarios across541

both experimental and realistic public datasets. We provide details about these datasets.542

B.1 Office-Home543

Setup. We consider the standard domain adaptation setting but with some missing classes in the target544

training sets. We use the popular Office-Home dataset consisting of 65 categories from 4 domains545

(Art, Clipart, Real, and Product). In our benchmark, we use Art and Real as source domains; each546

source domain is then transferred to each of the three remaining target domains individually, resulting547

in six source-target pairs. For each source-target pair, we use all the data in the source domain to train548

a source model. Then, for each target domain, we randomly split the data of each class into training549

and test sets with a ratio of 7:3. We randomly sample 30 seen classes and combine the training data550

of these seen classes to create the target training set. Finally, the target test set consists of the test551

images of all 65 classes in the target domain. A summary of the statistics can be found in Table 10.552
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Evaluation. We follow the standard evaluation metric in the Office-Home dataset to compute the553

overall accuracy for each source-target pair. Besides, we explicitly compute the accuracy on the554

unseen-class data to evaluate the transferring performance of the unseen classes. The average accuracy555

over all the source-target pairs is also reported.556

B.2 FEMNIST557

Setup. The FEMNIST dataset contains 62-class hand-written characters from many writers with558

different writing styles. As we can only collect a limited-size data set for each writer, each writer’s559

data only cover a subset of the 62-class characters, resulting in the need for HT. We randomly sample560

40 writers whose data combined can cover all 62 classes and use their data to train a source model.561

Then, we randomly sample 10 new writers. Each new writer’s data is divided into training and test562

sets in a ratio of 7:3. Note that each client may not have enough images per class, which creates a563

realistic scenario of personalization with limited samples, which results in a mismatch of the class564

distributions between training and test sets. The dataset statistics are summarized in Table 10.565

Evaluation. We report the overall accuracy averaged over all the 10 new writers. To evaluate the566

trade-off between seen and unseen classes, we also report the averaged accuracy on the seen and567

unseen classes, respectively. As this dataset has no oracle training set for each new writer, we report568

the seen accuracy computed by chopping out unseen classes in the classifier to evaluate the quality of569

the adapted features.570

B.3 iWildCam571

Setup. We consider a realistic scenario of HT, where we initially have abundant camera traps installed572

across many geo-locations (source domains) and now need to transfer to a new camera trap location573

(target domain). In the new location, we can only use the data collected within a fixed amount of time574

in the beginning (e.g., the first month) as our target training set. As it is impossible for all the animal575

species to appear in the first month, the target training data can bias toward some classes that show576

up. This is a natural data collection bias caused by time.577

We start from the iWildCam dataset in the WILDS [17] benchmark. As we mainly focus on animal578

species classification, we remove the “empty" class for simplicity and thus obtain a total of 181579

classes. For each camera trap location, we sort the images by their timestamps and group images580

into sequences if the difference in their timestamps is smaller than 30 minutes, to avoid information581

leaks. We randomly sample 53 camera trap locations whose images cover all 181 classes and use all582

their data to train a source model. For each of the remaining locations, we randomly sample training583

and test sets based on a ratio of 7:3. We only keep locations with more than 500 images in both the584

training and test sets, thereby resulting in 21 new locations for adaptation. For each new location, we585

form the target training set by sorting the training images by time and only using the first 25% of586

them. A summary of the dataset statistics is given in Table 10.587

Evaluation. We report the overall accuracy averaged over all 21 new locations. To evaluate the588

trade-off between seen and unseen classes, we also report the averaged accuracy on the seen and589

unseen classes, respectively. As this dataset has no oracle training set for each new location, we590

report the seen accuracy computed by chopping out unseen classes in the classifier to evaluate the591

quality of the adapted features.592

B.4 VTAB593

Setup. We consider another practical use of HT by going beyond domain adaptation and fine-tuning594

the zero-shot CLIP [30] for distribution shifts at the task levels. We use the VTAB [39] benchmark595

that includes various image classification tasks. To enable zero-shot predictions, we only use the596

tasks that provide text names for classes, thereby resulting in 9 tasks: Caltech101, CIFAR100, DTD,597

EuroSAT, Flowers102, Pets, Resisc45, SVHN, and SUN397. We use the standard training and test598

sets provided by the VTAB benchmark. Then, we randomly sample half of the classes as seen and599

the remaining as unseen. The target training set only includes the training images of the seen classes,600

while the target test set contains all the test images. A summary of the statistics of this dataset is601

shown in Table 10.602

Evaluation. Following the standard evaluation in VTAB, we report the overall accuracy for each603

of the 9 tasks. Besides, we also compute the accuracy on the unseen-class data to evaluate the604
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transferring performance of unseen classes. Finally, the average accuracy across all 9 tasks is also605

reported.606

B.5 iNaturalist (2021 Version, Fungi)607

Setup. To demonstrate the impact of visually similar classes in HT, we carefully pick 6 pairs of fungi608

classes from the iNaturalist dataset, thus resulting in a total of 12 classes. Each pair of fungi classes609

corresponds to 2 species of visually similar fungi; one is non-toxic, while the other one is toxic. We610

use the zero-shot CLIP model with the fungi names as our source model. Then, the training images611

from the 6 non-toxic fungi classes form the target training set. The target test set consists of all the612

test images from all 12 classes. A summary of the dataset statistics and some examples are shown613

in Table 10.614

Evaluation. We report the seen accuracy on the target test set to evaluate the adaptation performance.615

As wrongly predicting toxic fungi as non-toxic ones can result in severe outcomes, we also report the616

false negative rate, which is computed as the percentage of the images of toxic fungi being predicted617

as non-toxic fungi classes.618

C Additional Training Details619

We provide the training details for our results reported in section 4.620

For the Office-Home dataset, we initialize a ResNet-50 with ImageNet pre-trained weights. Then,621

we train it on the source domain for 20 epochs using the SGD optimizer with a learning rate 1e-3,622

momentum 0.9, weight decay 5e-4, and batch size 64. For all methods that adapt to the target domains,623

we fine-tune the source model for 20 epochs using the SGD optimizer with a learning rate 1e-4,624

momentum 0.9, weight decay 5e-4, and batch size 64. For our suggested HT methods, we set the625

hyper-parameters Ldistill = 10 and Lrank = 100.626

For the FEMNIST dataset, we train a LeNet from scratch on the data of the 40 source writers for 100627

epochs using the SGD optimizer with a learning rate 1e-2, momentum 0.9, weight decay 5e-4, and628

batch size 32. To adapt to each new writer, we fine-tune the source model for 10 epochs using the629

SGD optimizer with a learning rate 1e-3, momentum 0.9, weight decay 1e-4, and batch size 32. We630

set the hyper-parameters Ldistill = 0.1 and Lrank = 10.631

For the iWildCam dataset, we train a ResNet-50, which is initialized with ImageNet pre-trained632

weights, on the data of source camera trap locations for 50 epochs using the SGD optimizer with a633

learning rate 3e-5, momentum 0.9, weight decay 0.0, and batch size 16. When adapting to each new634

location, we fine-tune the source model for 20 epochs using the SGD optimizer with a learning rate635

3e-6, momentum 0.9, weight decay 0.0, and batch size 16. We set the hyper-parameters Ldistill = 50636

and Lrank = 200.637

For the VTAB benchmark, we use the class names for each of the 9 tasks to form the zero-shot CLIP638

models, which are ViT-B/32. We fine-tune the source model on target tasks for 20 epochs using the639

SGD optimizer with a learning rate 1e-5, momentum 0.9, weight decay 0.0, and batch size 64. We set640

the hyper-parameters Ldistill = 1 and Lrank = 5.641

For the iNaturalist Fungi dataset, we use the fungi species names to build a zero-shot CLIP model642

with a ViT-B/32 architecture. We then fine-tune the source model on the target training set for 5643

epochs using the SGD optimizer with a learning rate 5e-5, momentum 0.9, weight decay 0.0, and644

batch size 5. We set the hyper-parameters Ldistill = 1 and Lrank = 1.645

D Additinal Results and Analyses646

D.1 Variances of the Results in section 4647

We provide variances of our results reported in our main paper. We compute the variances across 3648

random seeds. Table 11 shows the variances of the test accuracy on Office-Home. The variances of649

the mean accuracy on FEMNIST and iWildCam are provided in Table 12 and in Table 13, respectively.650

Finally, Table 14 gives the variances of the test accuracy for each of the 9 tasks in VTAB. These651

results reveal that the reported accuracy is relatively robust across random seeds.652
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Table 11: Varainces of domain adaptation 65-way test accuracy on Office-Home with 30 seen and 35 unseen
classes (cf. Table 3). We compute the variances over 3 random seeds. Blue: HT methods suggested by us
in section 3. Red: methods that significantly improve overall accuracy and successfully maintain unseen accuracy
on the source model. ^: the linear classifier is frozen during training.

Domains: source→target Ar→Cl Ar→Pr Ar→Rw Rw→Ar Rw→Cl Rw→Pr Avg.
Methods / Acc. Overall Unseen Overall Unseen Overall Unseen Overall Unseen Overall Unseen Overall Unseen Overall Unseen

Source 0.64 0.11 1.30 1.35 0.25 0.24 0.82 0.90 0.23 1.40 0.30 0.49 0.05 0.11
Naive Target 0.02 0.01 0.14 0.02 0.27 0.53 0.93 1.19 0.00 0.36 0.35 1.11 0.04 0.09

BN only 1.11 3.11 0.22 0.27 0.41 1.07 1.71 7.58 0.68 2.44 1.43 4.47 0.03 0.17
BN (stats) only 0.63 0.06 1.00 1.63 0.02 0.32 0.08 0.17 0.16 0.31 0.15 0.05 0.14 0.16
BN (stats) only 0.57 0.05 0.87 0.58 0.25 0.18 0.05 0.02 0.21 0.02 0.30 0.37 0.12 0.03
LP-FT 0.14 0.14 0.05 0.04 0.08 0.18 0.16 0.61 0.01 0.31 0.35 0.87 0.02 0.04

SGD (w/ frozen classifier^) 0.02 0.52 0.63 1.27 0.75 0.98 0.07 0.31 0.57 0.85 0.09 0.60 0.07 0.18
SGD + Ldistill ^ 0.28 0.09 0.03 0.01 0.70 0.73 0.23 0.94 0.05 0.09 0.15 1.02 0.02 0.01
SGD + Lrank ^ 1.02 0.78 0.39 0.48 0.88 1.13 0.01 0.51 0.07 0.67 0.09 0.03 0.08 0.05
SWA^ 0.23 0.73 0.62 1.44 0.33 0.60 0.45 0.31 1.39 3.39 0.13 0.65 0.02 0.15
SWAD^ 0.43 0.83 0.62 1.79 0.35 0.42 0.45 0.32 1.64 3.71 0.08 0.44 0.03 0.17
LOLSGD^ 0.36 0.20 0.62 1.00 0.20 1.25 0.73 0.61 1.20 1.59 0.17 0.65 0.00 0.11

LOLSGD +Lrank ^ 0.02 0.05 0.24 0.95 0.06 0.05 0.34 0.22 0.63 1.09 0.16 0.96 0.04 0.14
LOLSGD +Ldistill ^ 0.14 0.56 0.79 0.54 0.25 0.09 0.22 0.17 0.28 1.88 0.07 0.08 0.06 0.01
LOLSGD +Ldistill + Lrank ^ 0.18 0.06 0.75 1.82 0.00 0.34 0.26 0.65 0.75 0.36 0.01 0.23 0.12 0.09

Oracle 0.05 0.05 0.06 0.16 0.01 0.16 0.17 0.02 0.22 0.05 0.35 0.20 0.02 0.00

Table 12: Varainces of FEMNIST mean accuracy of
10 new writers (cf. Table 5). We compute the variances
over 3 random seeds.

Methods Overall Seen Seen
(Chopping) Unseen

Source 0.44 0.12 0.07 5.12
Naive Target 0.49 0.77 0.77 5.69

SGD^ 0.43 0.17 0.11 1.90
SGD + Lrank ^ 0.55 0.08 0.04 4.05
SGD + Ldistill ^ 0.37 0.19 0.13 1.72
LOLSGD^ 0.48 0.10 0.17 4.73
LOLSGD +Lrank ^ 0.37 0.10 0.20 2.04
LOLSGD +Ldistill ^ 0.48 0.16 0.37 4.90

LOLSGD +Ldistill +SE^ 0.65 0.26 0.06 6.23

Table 13: Variances of iWildCam mean accuracy of 21
new locations (cf. Table 6). We compute the variances
over 3 random seeds.

Methods Overall Seen Seen
(Chopping) Unseen

Source 0.12 1.45 5.29 0.86
Naive Target 1.66 3.85 4.45 0.04

SGD^ 0.10 1.48 1.67 0.01
SGD + Lrank ^ 0.94 7.73 2.41 2.35
SGD + Ldistill ^ 3.76 1.26 1.32 4.07
LOLSGD^ 0.79 0.37 0.76 1.63
LOLSGD +Lrank ^ 1.70 7.85 5.03 3.98
LOLSGD +Ldistill ^ 1.33 0.67 1.86 3.36

LOLSGD +Ldistill +SE^ 1.17 1.07 2.58 0.15

D.2 Different Numbers of Images per Seen Class653

In the real world, it is unrealistic for end-users to collect data for all classes before adaptation. To654

further consider a lower data collection cost, we reduce the number of training images per seen class655

to study its effects. We conduct the experiment on the Office-Home dataset with “Art" as our source656

domain and “Clipart" as our target domain. Specifically, we randomly sample 10% and 50% of the657

training images for each seen class and fine-tune the source model for the same iterations for fair658

comparisons. Interestingly, Table 15 shows that naive fine-tuning can obtain higher unseen accuracy,659

compared to naive fine-tuning with more data. The reason might be that training with more data660

needs to update the model weights more, making the unseen classes easier to be forgotten. In contrast,661

applying our suggested HT methods, especially for LOLSGD with our regularization, the unseen662

classes can be better maintained across different training data sizes.663

D.3 Effects of the Source Ensemble Coefficients664

In section 4, we apply Source Ensemble (with a mixing coefficient α = 0.5) to reclaim some ability665

of the source model to maintain the unseen accuracy (cf. Table 4). To further understand the trade-off666

between the source and the fine-tuned target models, we study the effects of the mixing coefficient α667

by varying it between [0, 1]. We conduct our study on Office-Home and report the overall and unseen668

accuracy averaged over all the source-target domain pairs. As shown in Figure 6, applying either SE669

or WiSE cannot save the naively fine-tuned target model from being heavily biased to seen classes.670

On SGD with frozen classifiers, our SE shows a better trade-off than WISE [37]. Finally, fine-tuning671

target models with our suggested HT methods can clearly yield the best trade-off.672
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Table 14: Variances of test accuracy for fine-tuning CLIP ViT-B/32 on VTAB (cf. Table 7). 50% of classes in
each task are missing during training. We compute the variances over 3 random seeds.

Overall/Unseen Acc. Caltech101 CIFAR100 DTD EuroSAT Flowers102 Pets Resisc45 SVHN SUN397 Avg.

Methods A
ll.
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A
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.

Source 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Naive Target 0.00 0.00 0.02 0.08 0.17 1.32 0.01 0.02 0.30 0.45 0.05 0.38 0.22 1.45 0.01 0.03 0.01 0.05 0.00 0.01

SGD^ 0.00 0.01 0.02 0.17 0.31 0.33 0.21 0.59 0.16 0.07 0.03 0.15 0.13 1.00 0.03 0.02 0.00 0.01 0.02 0.02
LOLSGD^ 0.01 0.00 0.01 0.03 0.39 1.33 0.16 0.69 0.21 0.12 0.03 0.13 0.01 0.07 2.29 0.14 0.06 0.29 0.04 0.01
LOLSGD +Ldistill ^ 0.00 0.00 0.01 0.04 0.04 0.00 0.13 0.20 0.01 0.02 0.01 0.00 0.01 0.02 1.80 0.01 0.00 0.00 0.01 0.00
LOLSGD +Lrank ^ 0.00 0.01 0.00 0.02 0.07 0.07 0.17 0.34 0.06 0.02 0.02 0.01 0.01 0.10 1.37 0.36 0.03 0.06 0.01 0.00
LOLSGD +Lrank +SE^ 0.01 0.02 0.07 0.14 0.12 0.33 0.06 0.05 0.06 0.03 0.00 0.03 0.05 0.09 1.91 0.82 0.01 0.05 0.00 0.02

Oracle 0.29 0.19 0.00 0.01 0.40 0.50 0.01 0.07 0.27 0.35 0.02 0.14 0.02 0.12 0.00 0.00 0.00 0.01 0.02 0.03

Table 15: Different percentages of the target training data for each seen class on Office-Home: Ar → Cl.

% of target training 10% 50% 100%
Methods/Acc. Overall Unseen Overall Unseen Overall Unseen

Source 47.07 50.29 47.07 50.29 47.07 50.29
Naive Target 41.73 19.74 43.46 9.94 44.96 9.06

SGD^ 51.28 41.96 52.33 28.36 52.11 24.12
SGD + Lrank ^ 50.45 46.49 56.02 40.20 59.17 39.47
SGD + Ldistill ^ 48.80 41.37 53.91 38.30 56.54 39.18
LOLSGD^ 52.63 46.20 54.21 34.94 56.47 35.09
LOLSGD +Lrank ^ 51.13 48.83 55.86 44.74 58.57 43.86
LOLSGD +Ldistill ^ 51.28 45.91 55.19 44.88 57.44 46.35
LOLSGD +Ldistill + Lrank ^ 51.05 50.88 58.65 52.05 60.83 51.75

E Additional Discussions673

E.1 Limitations674

In this paper, we introduce a novel and practical transfer learning problem, holistic transfer, that675

emphasizes the generalization to domain shifts for classes unseen in the target domain but seen in676

the source domain. We establish strong baselines and demonstrate the potential for simultaneously677

improving both seen and unseen target classes. One potential limitation is that we mainly focus on678

vision classification tasks. We leave the studies to image segmentation/object detection and natural679

language processing tasks as our future work. We also plan to explore better approaches for the680

disentanglement of domain styles and classes and to integrate our approach with other learning681

paradigms, like test-time adaptation.682

Figure 6: Effects of Source Ensembles. Ensemble of the source (the star marker) and the target models (the
end point of each line from the source model) with a mixing coefficient α ∈ [0, 1] on Office-Home.
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E.2 Potential Negative Societal Impact683

The goal of our work is to introduce and study a practical transfer learning problem, holistic transfer.684

We provide strong baselines and analyze the problem on publicly available datasets, which are685

adjusted and split to meet our problem setting. As far as we know, our work does not introduce686

additional negative societal impacts compared to the standard transfer learning topics, like domain687

adaptation and out-of-distribution generalization.688

E.3 Computation Resources689

We conduct our experiments on PyTorch and on NVIDIA V100 GPUs. On the Office-Home dataset,690

fine-tuning for 1 target domain with all the compared methods and random seeds takes roughly 36691

hours on 1 GPU. Similar time consumption also applies to iWildCam and VTAB datasets. On the692

smaller FEMNIST dataset, it takes roughly 0.5 hours on 1 GPU to get the required results for 1693

target domain. The whole experiment on iNaturalist Fungi takes roughly 0.5 on 1 GPU. In total, our694

experiments take roughly 1.3K GPU hours.695
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