
Table of Contents307

A PDE Symmetry Groups and Deriving Generators 2308

A.1 Symmetry Groups and Infinitesimal Invariance 3309

A.2 Deriving Generators of the Symmetry Group of a PDE 4310

A.3 Example: Burgers’ Equation . 5311

B Exponential map and its approximations 6312

B.1 Approximations to the exponential map . 7313

C VICReg Loss 8314

D Expanded related works 9315

E Details on Augmentations 10316

E.1 Burgers’ equation . 10317

E.2 KdV . 11318

E.3 KS . 12319

E.4 Navier Stokes . 12320

F Experimental details 12321

F.1 Experiments on Burgers’ Equation . 12322

F.2 Experiments on KdV and KS . 14323

F.3 Experiments on Navier-Stokes . 14324

1

Typo There is a typo in Figure 5: g1 is translation applied in t (not x), while g2 is translation applied325

in x (not y). Whenever applicable, we use the same strength in both x and y axis.326

A PDE Symmetry Groups and Deriving Generators327

Symmetry augmentations encourage invariance of the representations to known symmetry groups of328

the data. The guiding principle is that inputs that can be obtained from one another via transformations329

of the symmetry group should share a common representation. In images, such symmetries are known330

a priori and correspond to flips, resizing, or rotations of the input. In PDEs, these symmetry groups331

can be derived as Lie groups, commonly denoted as Lie point symmetries, and have been categorized332

for many common PDEs [11]. An example of the form of such augmentations is given in Figure 6333

for a simple PDE that rotates a point in 2-D space. In this example, the PDE exhibits both rotational334

symmetry and scaling symmetry of the radius of rotation. For arbitrary PDEs, such symmetries can335

be derived, as explained in more detail below.336

𝑡 = 0
𝑡 = 1

𝑡 = 2

Example: symmetries and invariances of
𝜕𝑦
𝜕𝑡 = 𝛼𝑥

𝜕𝑥
𝜕𝑡 = −𝛼𝑦

rotational symmetry

scaling
symmetry

rotation speed
(invariant quantity)

Figure 6: Illustration of the PDE symmetry group and invariances of a simple PDE, which rotates
a point in 2-D space. The PDE symmetry group here corresponds to scalings of the radius of the
rotation and fixed rotations of all the points over time. A sample invariant quantity is the rate of
rotation (related to the parameter α in the PDE), which is fixed for any solution to this PDE.

The Lie point symmetry groups of differential equations form a Lie group structure, where elements337

of the groups are smooth and differentiable transformations. It is typically easier to derive the338

symmetries of a system of differential equations via the infinitesimal generators of the symmetries,339

(i.e., at the level of the derivatives of the one parameter transforms). By using these infinitesimal340

generators, one can replace nonlinear conditions for the invariance of a function under the group341

transformation, with an equivalent linear condition of infinitesimal invariance under the respective342

generator of the group action [11].343

In what follows, we give an informal overview to the derivation of Lie point symmetries. Full details344

and formal rigor can be obtained in Olver [11], Ibragimov [13], among others.345

In the setting we consider, a differential equation has a set of p independent variables x =346

(x1, x2, . . . , xp) ∈ Rp and q dependent variables u = (u1, u2, . . . , uq) ∈ Rq. The solutions347

take the form u = f(x), where uα = fα(x) for α ∈ {1, . . . , q}. Solutions form a graph over a348

domain Ω ⊂ Rp:349

Γf = {(x, f(x)) : x ∈ Ω} ⊂ Rp × Rq. (10)

In other words, a given solution Γf forms a p-dimensional submanifold of the space Rp × Rq .350

The n-th prolongation of a given smooth function Γf expands or “prolongs" the graph of the solution351

into a larger space to include derivatives up to the n-th order. More precisely, if U = Rq is the352

solution space of a given function and f : Rp → U , then we introduce the Cartesian product space of353

the prolongation:354

U (n) = U × U1 × U2 × · · · × Un, (11)

where Uk = Rdim(k) and dim(k) =
(
p+k−1

k

)
is the dimension of the so-called jet space consisting355

of all k-th order derivatives. Given any solution f : Rp → U , the prolongation can be calculated by356

2

simply calculating the corresponding derivatives up to order n (e.g., via a Taylor expansion at each357

point). For a given function u = f(x), the n-th prolongation is denoted as u(n) = pr(n) f(x). As a358

simple example, for the case of p = 2 with independent variables x and y and q = 1 with a single359

dependent variable f , the second prolongation is360

u(2) = pr(2) f(x, y) = (u;ux, uy;uxx, uxy, uyy)

=

(
f ;

∂f

∂x
,
∂f

∂y
;
∂2f

∂x2
,
∂2f

∂x∂y
,
∂2f

∂y2

)
∈ R1 × R2 × R3,

(12)

which is evaluated at a given point (x, y) in the domain. The complete space Rp × U (n) is often361

called the n-th order jet space [11].362

A system of differential equations is a set of l differential equations ∆ : Rp × U (n) → Rl of the363

independent and dependent variables with dependence on the derivatives up to a maximum order of364

n:365

∆ν(x,u
(n)) = 0, ν = 1, . . . , l. (13)

A smooth solution is thus a function f such that for all points in the domain of x:366

∆ν(x,pr
(n) f(x)) = 0, ν = 1, . . . , l. (14)

In geometric terms, the system of differential equations states where the given map ∆ vanishes on367

the jet space, and forms a subvariety368

Z∆ = {(x,u(n)) : ∆(x,u(n)) = 0} ⊂ Rp × U (n). (15)

Therefore to check if a solution is valid, one can check if the prolongation of the solution falls within369

the subvariety Z∆. As an example, consider the one dimensional heat equation370

∆ = ut − cuxx = 0. (16)

We can check that f(x, t) = sin(x)e−ct is a solution by forming its prolongation and checking if it371

falls withing the subvariety given by the above equation:372

pr(2) f(x, t) =
(
sin(x)e−ct; cos(x)e−ct,−c sin(x)e−ct;− sin(x)e−ct,−c cos(x)e−ct, c2 sin(x)e−ct

)
,

∆(x, t,u(n)) = −c sin(x)e−ct + c sin(x)e−ct = 0.
(17)

A.1 Symmetry Groups and Infinitesimal Invariance373

A symmetry group G for a system of differential equations is a set of local transformations to374

the function which transform one solution of the system of differential equations to another. The375

group takes the form of a Lie group, where group operations can be expressed as a composition of376

one-parameter transforms. More rigorously, given the graph of a solution Γf as defined in Eq. (10), a377

group operation g ∈ G maps this graph to a new graph378

g · Γf = {(x̃, ũ) = g · (x,u) : (x,u) ∈ Γf}, (18)

where (x̃, ũ) label the new coordinates of the solution in the set g · Γf . For example, if x = (x, t),
u = u(x, t), and g acts on (x, u) via

(x, t, u) 7→ (x+ ϵt, t, u+ ϵ),

then ũ(x̃, t̃) = u(x, t) + ϵ = u(x̃− ϵt̃, t̃) + ϵ, where (x̃, t̃) = (x+ ϵt, t).379

Note, that the set g · Γf may not necessarily be a graph of a new x-valued function; however, since380

all transformations are local and smooth, one can ensure transformations are valid in some region381

near the identity of the group.382

As an example, consider the following transformations which are members of the symmetry group of383

the differential equation uxx = 0. g1(t) translates a single spatial coordinate x by an amount t and g2384

scales the output coordinate u by an amount er:385

g1(t) · (x, u) = (x+ t, u),

g2(r) · (x, u) = (x, er · u). (19)

3

It is easy to verify that both of these operations are local and smooth around a region of the identity,386

as sending r, t→ 0 recovers the identity operation. Lie theory allows one to equivalently describe387

the potentially nonlinear group operations above with corresponding infinitesimal generators of the388

group action, corresponding to the Lie algebra of the group. Infinitesimal generators form a vector389

field over the total space Ω × U , and the group operations correspond to integral flows over that390

vector field. To map from a single parameter Lie group operation to its corresponding infinitesimal391

generator, we take the derivative of the single parameter operation at the identity:392

vg|(x,u) =
d

dt
g(t) · (x, u)

∣∣∣∣
t=0

, (20)

where g(0) · (x, u) = (x, u).393

To map from the infinitesimal generator back to the corresponding group operation, one can apply394

the exponential map395

exp(tv) · (x,u) = g(t) · (x,u), (21)

where exp : g → G. Here, exp (·) maps from the Lie algebra, g, to the corresponding Lie group,396

G. This exponential map can be evaluated using various methods, as detailed in Appendix B and397

Appendix E.398

Returning to the example earlier from Equation (19), the corresponding Lie algebra elements are399

vg1 = ∂x ←→ g1(t) · (x, u) = (x+ t, u),

vg2 = u∂u ←→ g2(r) · (x, u) = (x, er · u). (22)

Informally, Lie algebras help simplify notions of invariance as it allows one to check whether400

functions or differential equations are invariant to a group by needing only to check it at the level401

of the derivative of that group. In other words, for any vector field corresponding to a Lie algebra402

element, a given function is invariant to that vector field if the action of the vector field on the given403

function evaluates to zero everywhere. Thus, given a symmetry group, one can determine a set404

of invariants using the vector fields corresponding to the infinitesimal generators of the group. To405

determine whether a differential equation is in such a set of invariants, we extend the definition of a406

prolongation to act on vector fields as407

pr(n) v
∣∣
(x,u(n))

=
d

dϵ

∣∣∣∣
ϵ=0

pr(n) [exp(ϵv)] (x,u(n)). (23)

A given vector field v is therefore an infinitesimal generator of a symmetry group G of a system408

of differential equations ∆ν indexed by ν ∈ {1, . . . , l} if the prolonged vector field of any given409

solution is still a solution:410

pr(n) v[∆ν(x,u
(n))] = 0, ν = 1, . . . , l, whenever ∆(x,u(n)) = 0. (24)

For sake of convenience and brevity, we leave out many of the formal definitions behind these411

concepts and refer the reader to [11] for complete details.412

A.2 Deriving Generators of the Symmetry Group of a PDE413

Since symmetries of differential equations correspond to smooth maps, it is typically easier to derive414

the particular symmetries of a differential equation via their infinitesimal generators. To derive such415

generators, we first show how to perform the prolongation of a vector field. As before, assume we416

have p independent variables x1, . . . , xp and l dependent variables u1, . . . , ul, which are a function417

of the dependent variables. Note that we use superscripts to denote a particular variable. Derivatives418

with respect to a given variable are denoted via subscripts corresponding to the indices. For example,419

the variable u1
112 denotes the third order derivative of u1 taken twice with respect to the variable x1420

and once with respect to x2. As stated earlier, the prolongation of a vector field is defined as the421

operation422

pr(n) v
∣∣
(x,u(n))

=
d

dϵ

∣∣∣∣
ϵ=0

pr(n) [exp(ϵv)] (x,u(n)). (25)

4

To calculate the above, we can evaluate the formula on a vector field written in a generalized form.423

I.e., any vector field corresponding to the infinitesimal generator of a symmetry takes the general424

form425

v =

p∑
i=1

ξi(x,u)
∂

∂xi
+

q∑
α=1

ϕα(x,u)
∂

∂uα
. (26)

Throughout, we will use Greek letter indices for dependent variables and standard letter indices for426

independent variables. Then, we have that427

pr(n) v = v +

q∑
α=1

∑
J

ϕJ
α(x,u

(n))
∂

∂uα
J

, (27)

where J is a tuple of dependent variables indicating which variables are in the derivative of ∂
∂uα

J
.428

Each ϕJ
α(x,u

(n)) is calculated as429

ϕJ
α(x,u

(n)) =
∏
i∈J

Di

(
ϕa −

p∑
i=1

ξiuα
i

)
+

p∑
i=1

ξiuα
J,i, (28)

where uα
J,i = ∂uα

J/∂x
i and Di is the total derivative operator with respect to variable i defined as430

DiP (x, u(n)) =
∂P

∂xi
+

q∑
i=1

∑
J

uα
J,i

∂P

∂uα
J

. (29)

After evaluating the coefficients, ϕJ
α(x, u

(n)), we can substitute these values into the definition of431

the vector field’s prolongation in Equation (27). This fully describes the infinitesimal generator of432

the given PDE, which can be used to evaluate the necessary symmetries of the system of differential433

equations. An example for Burgers’ equation, a canonical PDE, is presented in the following.434

A.3 Example: Burgers’ Equation435

Burgers’ equation is a PDE used to describe convection-diffusion phenomena commonly observed436

in fluid mechanics, traffic flow, and acoustics [41]. The PDE can be written in either its “potential“437

form or its “viscous” form. The potential form is438

ut = uxx + u2
x. (30)

Cautionary note: We derive here the symmetries of Burgers’ equation in its potential form since this439

form is more convenient and simpler to study for the sake of an example. The equation we consider440

in our experiments is the more commonly studied Burgers’ equation in its standard form which does441

not have the same Lie symmetry group (see Table 3). Similar derivations for Burgers’ equation in its442

standard form can be found in example 6.1 of [42].443

Following the notation from the previous section, p = 2 and q = 1. Consequently, the symmetry444

group of Burgers’ equation will be generated by vector fields of the following form445

v = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ ϕ(x, t, u)

∂

∂u
, (31)

where we wish to determine all possible coefficient functions, ξ(t, x, u), τ(x, t, u), and ϕ(x, t, u)446

such that the resulting one-parameter sub-group exp (εv) is a symmetry group of Burgers’ equation.447

448

To evaluate these coefficients, we need to prolong the vector field up to 2nd order, given449

that the highest-degree derivative present in the governing PDE is of order 2. The 2nd prolongation450

of the vector field can be expressed as451

pr(2) v = v + ϕx ∂

∂ux
+ ϕt ∂

∂ut
+ ϕxx ∂

∂uxx
+ ϕxt ∂

∂uxt
+ ϕtt ∂

∂utt
. (32)

Applying this prolonged vector field to the differential equation in Equation (30), we get the infinites-452

imal symmetry criteria that453

pr(2) v[∆(x, t,u(2))] = ϕt − ϕxx + 2uxϕ
x = 0. (33)

5

To evaluate the individual coefficients, we apply Equation (28). Next, we substitute every instance454

of ut with u2
x + uxx, and equate the coefficients of each monomial in the first and second-order455

derivatives of u to find the pertinent symmetry groups. Table 2 below lists the relevant monomials as456

well as their respective coefficients.

Table 2: Monomial coefficients in vector field prolongation for Burgers’ equation.

Monomial Coefficient

1 ϕt = ϕxx

ux 2ϕx + 2(ϕxu − ξxx) = −ξt
u2
x 2(ϕu − ξx)− τxx + (ϕuu − 2ξxu) = ϕu − τt

u3
x −2τx − 2ξu − 2τxu − ξuu = −ξu

u4
x −2τu − τuu = −τu

uxx −τxx + (ϕu − 2ξx) = ϕu − τt
uxuxx −2τx − 2τxu − 3ξu = −ξu
u2
xuxx −2τu − τuu − τu = −2τu
u2
xx −τu = −τu

uxt −2τx = 0
uxuxt −2τu = 0

457

Using these relations, we can solve for the coefficient functions. For the case of Burgers’ equation,458

the most general infinitesimal symmetries have coefficient functions of the following form:459

ξ(t, x) = k1 + k4x+ 2k5t+ 4k6xt (34)
460

τ(t) = k2 + 2k4t+ 4k6t
2 (35)

461

ϕ(t, x, u) = (k3 − k5x− 2k6t− k6x
2)u+ γ(x, t) (36)

where k1, . . . , k6 ∈ R and γ(x, t) is an arbitrary solution to Burgers’ equation. These coefficient462

functions can be used to generate the infinitesimal symmetries. These symmetries are spanned by the463

six vector fields below:464

v1 = ∂x (37)
465

v2 = ∂t (38)
466

v3 = ∂u (39)
467

v4 = x∂x + 2t∂t (40)
468

v5 = 2t∂x − x∂u (41)
469

v6 = 4xt∂x + 4t2∂t − (x2 + 2t)∂u (42)

as well as the infinite-dimensional subalgebra: vγ = γ(x, t)e−u∂u. Here, γ(x, t) is any arbitrary470

solution to the heat equation. The relationship between the Heat equation and Burgers’ equation can471

be seen, whereby if u is replaced by w = eu, the Cole–Hopf transformation is recovered.472

B Exponential map and its approximations473

As observed in the previous section, symmetry groups are generally derived in the Lie algebra of474

the group. The exponential map can then be applied, taking elements of this Lie algebra to the475

corresponding group operations. Working within the Lie algebra of a group provides several benefits.476

First, a Lie algebra is a vector space, so elements of the Lie algebra can be added and subtracted477

to yield new elements of the Lie algebra (and the group, via the exponential map). Second, when478

generators of the Lie algebra are closed under the Lie bracket of the Lie algebra (i.e., the generators479

form a basis for the structure constants of the Lie algebra), any arbitrary Lie point symmetry can be480

obtained via an element of the Lie algebra (i.e. the exponential map is surjective onto the connected481

component of the identity) [11]. In contrast, composing group operations in an arbitrary, fixed482

sequence is not guaranteed to be able to generate any element of the group. Lastly, although not483

extensively detailed here, the "strength," or magnitude, of Lie algebra elements can be measured484

6

using an appropriately selected norm. For instance, the operator norm of a matrix could be used for485

matrix Lie algebras.486

In certain cases, especially when the element v in the Lie algebra consists of a single basis element,487

the exponential map exp(v) applied to that element of the Lie algebra can be calculated explicitly.488

Here, applying the group operation to a tuple of independent and dependent variables results in the so-489

called Lie point transformation, since it is applied at a given point exp(ϵv) · (x, f(x)) 7→ (x′, f(x)′).490

Consider the concrete example below from Burger’s equation.491

Example B.1 (Exponential map on symmetry generator of Burger’s equation). The Burger’s equation492

contains the Lie point symmetry vγ = γ(x, t)e−u∂u with corresponding group transformation493

exp(ϵvγ) · (x, t, u) = (x, t, log (eu + ϵγ)).494

Proof. This transformation only changes the u component. Here, we have495

exp
(
ϵγe−u∂u

)
u = u+

n∑
k=1

(
ϵγe−u∂u

)k · u
= u+ ϵγe−u − 1

2
ϵ2γ2e−2u +

1

3
ϵ3γ3e−3u + · · ·

(43)

Applying the series expansion log(1 + x) = x− x2

2 + x3

3 − · · · , we get496

exp
(
ϵγe−u∂u

)
u = u+ log

(
1 + ϵγe−u

)
= log (eu) + log

(
1 + ϵγe−u

)
= log (eu + ϵγ) .

(44)

497

In general, the output of the exponential map cannot be easily calculated as we did above, especially498

if the vector field v is a weighted sum of various generators. In these cases, we can still apply the499

exponential map to a desired accuracy using efficient approximation methods, which we discuss next.500

B.1 Approximations to the exponential map501

For arbitrary Lie groups, computing the exact exponential map is often not feasible due to the502

complex nature of the group and its associated Lie algebra. Hence, it is necessary to approximate the503

exponential map to obtain useful results. Two common methods for approximating the exponential504

map are the truncation of Taylor series and Lie-Trotter approximations.505

Taylor series approximation Given a vector field v in the Lie algebra of the group, the exponential506

map can be approximated by truncating the Taylor series expansion of exp(v). The Taylor series507

expansion of the exponential map is given by:508

exp(v) = Id+v +
1

2
v · v + · · · =

∞∑
n=0

vn

n!
. (45)

To approximate the exponential map, we retain a finite number of terms in the series:509

exp(v) =

k∑
n=0

vn

n!
+ o(∥v∥k), (46)

where k is the order of the truncation. The accuracy of the approximation depends on the number510

of terms retained in the truncated series and the operator norm ∥v∥. For matrix Lie groups, where511

v is also a matrix, this operator norm is equivalent to the largest magnitude of the eigenvalues of512

the matrix [43]. The error associated with truncating the Taylor series after k terms thus decays513

exponentially with the order of the approximation.514

Two drawbacks exist when using the Taylor approximation. First, for a given vector field v, applying515

v · f to a given function f requires algebraic computation of derivatives. Alternatively, derivatives516

7

can also be approximated through finite difference schemes, but this would add an additional source517

of error. Second, when using the Taylor series to apply a symmetry transformation of a PDE to a518

starting solution of that PDE, the Taylor series truncation will result in a new function, which is not519

necessarily a solution of the PDE anymore (although it can be made arbitrarily close to a solution by520

increasing the truncation order). Lie-Trotter approximations, which we study next, approximate the521

exponential map by a composition of symmetry operations, thus avoiding these two drawbacks.522

Lie-Trotter series approximations The Lie-Trotter approximation is an alternative method for523

approximating the exponential map, particularly useful when one has access to group elements524

directly, i.e. the closed-form output of the exponential map on each Lie algebra generator), but they525

are non-commutative. To provide motivation for this method, consider two elements X and Y in the526

Lie algebra. The Lie-Trotter formula (or Lie product formula) approximates the exponential of their527

sum [22, 44].528

exp(X + Y) = lim
n→∞

[
exp

(
X

n

)
exp

(
Y

n

)]n
≈
[
exp

(
X

k

)
exp

(
Y

k

)]k
, (47)

where k is a positive integer controlling the level of approximation.529

The first-order approximation above can be extended to higher orders, referred to as the Lie-Trotter-530

Suzuki approximations.Though various different such approximations exist, we particularly use the531

following recursive approximation scheme [45, 23] for a given Lie algebra component v =
∑p

i=1 vi.532

T2(v) = exp
(v1

2

)
· exp

(v2

2

)
· · · exp

(vp

2

)
exp

(vp

2

)
· exp

(vp−1

2

)
· · · exp

(v1

2

)
,

T2k(v) = T2k−2(ukv)
2 · T2k−2((1− 4uk)v) · T2k−2(ukv)

2,

uk =
1

4− 41/(2k−1)
.

(48)

To apply the above formula, we tune the order parameter p and split the time evolution into r segments533

to apply the approximation exp(v) ≈
∏r

i=1 Tp(v/r). For the p-th order, the number of stages in534

the Suzuki formula above is equal to 2 · 5p/2−1, so the total number of stages applied is equal to535

2r · 5p/2−1.536

These methods are especially useful in the context of PDEs, as they allow for the approximation of537

the exponential map while preserving the structure of the Lie algebra and group. Similar techniques538

are used in the design of splitting methods for numerically solving PDEs [46, 47]. Crucially, these539

approximations will always provide valid solutions to the PDEs, since each individual group operation540

in the composition above is itself a symmetry of the PDE. This is in contrast with approximations via541

Taylor series truncation, which only provide approximate solutions.542

As with the Taylor series approximation, the p-th order approximation above is accurate to o(∥v∥p)543

with suitably selected values of r and p [23]. As a cautionary note, the approximations here may fail544

to converge when applied to unbounded operators [48, 49]. In practice, we tested a range of bounds545

to the augmentations and tuned augmentations accordingly (see Appendix E).546

C VICReg Loss547

In our implementations, we use the VICReg loss as our choice of SSL loss [9]. This loss contains548

three different terms: a variance term that ensures representations do not collapse to a single point,549

a covariance term that ensures different dimensions of the representation encode different data,550

and an invariance term to enforce similarity of the representations for pairs of inputs related by an551

augmentation. We go through each term in more detail below. Given a distribution T from which to552

draw augmentations and a set of inputs xi, the precise algorithm to calculate the VICReg loss for a553

batch of data is also given in Algorithm 1.554

Formally, define our embedding matrices as Z,Z ′ ∈ RN×D. Next, we define the similarity criterion,555

Lsim, as556

Lsim(u,v) = ∥u− v∥22,
which we use to match our embeddings, and to make them invariant to the transformations. To avoid557

a collapse of the representations, we use the original variance and covariance criteria to define our558

8

Algorithm 1 VICReg Loss Evaluation

Hyperparameters: λvar, λcov, λinv, γ ∈ R
Input: N inputs in a batch {xi ∈ RDin , i = 1, . . . , N}
VICRegLoss(N , xi, λvar, λcov , λinv , γ):

1: Apply augmentations t, t′ ∼ T to form embedding matrices Z,Z ′ ∈ RN×D:

Zi,: = hθ (fθ (t · xi)) and Z ′
i,: = hθ (fθ (t

′ · xi))

2: Form covariance matrices Cov(Z),Cov(Z ′) ∈ RD×D:

Cov(Z) =
1

N − 1

N∑
i=1

(
Zi,: −Zi,:

) (
Zi,: −Zi,:

)⊤
, Zi,: =

1

N

N∑
i=1

Zi,:

3: Evaluate loss: L(Z,Z ′) = λvarLvar(Z,Z ′) + λcovLcov(Z,Z ′) + λinvLinv(Z,Z ′)

Lvar(Z,Z ′) =
1

D

N∑
i=1

max(0, γ −
√

Cov(Z)ii) + max(0, γ −
√
Cov(Z ′)ii),

Lcov(Z,Z ′) =
1

D

N∑
i,j=1,i̸=j

[Cov(Z)ij]
2 + [Cov(Z ′)ij]

2,

Linv(Z,Z ′) =
1

N

N∑
i=1

∥Zi,: −Zi′,:∥2

4: Return: L(Z,Z ′)

regularisation loss, Lreg, as559

Lreg(Z) = λcov C(Z) + λvar V (Z), with

C(Z) =
1

D

∑
i ̸=j

Cov(Z)2i,j and

V (Z) =
1

D

D∑
j=1

max

(
0, 1−

√
Var(Z:,j)

)
.

The variance criterion, V (Z), ensures that all dimensions in the representations are used, while also560

serving as a normalization of the dimensions. The goal of the covariance criterion is to decorrelate561

the different dimensions, and thus, spread out information across the embeddings.562

563

The final criterion is564

LVICReg(Z,Z ′) = λinv
1

N

N∑
i=1

Lsim(Zi,inv,Z
′
i,inv) + Lreg(Z

′) + Lreg(Z).

Hyperparameters λvar, λcov, λinv, γ ∈ R weight the contributions of different terms in the loss. For565

all studies conducted in this work, we use the default values of λvar = λinv = 25 and λcov = 1,566

unless specified. In our experience, these default settings perform generally well.567

D Expanded related works568

Machine Learning for PDEs Recent work on machine learning for PDEs has considered both569

invariant prediction tasks [50] and time-series modelling [51, 52]. In the fluid mechanics setting,570

models learn dynamic viscosities, fluid densities, and/or pressure fields from both simulation and571

real-world experimental data [53, 54, 55]. For time-dependent PDEs, prior work has investigated the572

efficacy of convolutional neural networks (CNNs), recurrent neural networks (RNNs), graph neural573

9

networks (GNNs), and transformers in learning to evolve the PDE forward in time [34, 56, 57, 58].574

This has invoked interest in the development of reduced order models and learned representations for575

time integration that decrease computational expense, while attempting to maintain solution accuracy.576

Learning representations of the governing PDE can enable time-stepping in a latent space, where the577

computational expense is substantially reduced [59]. Recently, for example, Lusch et al. have studied578

learning the infinite-dimensional Koopman operator to globally linearize latent space dynamics [60].579

Kim et al. have employed the Sparse Identification of Nonlinear Dynamics (SINDy) framework to580

parameterize latent space trajectories and combine them with classical ODE solvers to integrate latent581

space coordinates to arbitrary points in time [51]. Nguyen et al. have looked at the development of582

foundation models for climate sciences using transformers pre-trained on well-established climate583

datasets [7]. Other methods like dynamic mode decomposition (DMD) are entirely data-driven, and584

find the best operator to estimate temporal dynamics [61]. Recent extensions of this work have also585

considered learning equivalent operators, where physical constraints like energy conservation or the586

periodicity of the boundary conditions are enforced [29].587

Self-supervised learning All joint embedding self-supervised learning methods have a similar588

objective: forming representations across a given domain of inputs that are invariant to a certain set of589

transformations. Contrastive and non-contrastive methods are both used. Contrastive methods [21, 62,590

63, 64, 65] push away unrelated pairs of augmented datapoints, and frequently rely on the InfoNCE591

criterion [66], although in some cases, squared similarities between the embeddings have been592

employed [67]. Clustering-based methods have also recently emerged [68, 69, 6], where instead593

of contrasting pairs of samples, samples are contrasted with cluster centroids. Non-contrastive594

methods [10, 38, 9, 70, 71, 72, 37] aim to bring together embeddings of positive samples. However,595

the primary difference between contrastive and non-contrastive methods lies in how they prevent596

representational collapse. In the former, contrasting pairs of examples are explicitly pushed away to597

avoid collapse. In the latter, the criterion considers the set of embeddings as a whole, encouraging598

information content maximization to avoid collapse. For example, this can be achieved by regularizing599

the empirical covariance matrix of the embeddings. While there can be differences in practice, both600

families have been shown to lead to very similar representations [16, 73]. An intriguing feature in601

many SSL frameworks is the use of a projector neural network after the encoder, on top of which the602

SSL loss is applied. The projector was introduced in [21]. Whereas the projector is not necessary for603

these methods to learn a satisfactory representation, it is responsible for an important performance604

increase. Its exact role is an object of study [74, 15].605

Equivariant networks and geometric deep learning In the past several years, an extensive set606

of literature has explored questions in the so-called realm of geometric deep learning tying together607

aspects of group theory, geometry, and deep learning [75]. In one line of work, networks have608

been designed to explicitly encode symmetries into the network via equivariant layers or explicitly609

symmetric parameterizations [76, 77, 78, 79]. These techniques have notably found particular610

application in chemistry and biology related problems [80, 81, 82] as well as learning on graphs611

[83]. Another line of work considers optimization over layers or networks that are parameterized612

over a Lie group [84, 85, 86, 87, 88]. Our work does not explicitly encode invariances or structurally613

parameterize Lie groups into architectures as in many of these works, but instead tries to learn614

representations that are approximately symmetric and invariant to these group structures via the SSL.615

As mentioned in the main text, perhaps more relevant for future work are techniques for learning616

equivariant features and maps [39, 40].617

E Details on Augmentations618

The generators of the Lie point symmetries of the various equations we study are listed below. For619

symmetry augmentations which distort the periodic grid in space and time, we provide inputs x and t620

to the network which contain the new spatial and time coordinates after augmentation.621

E.1 Burgers’ equation622

As a reminder, the Burgers’ equation takes the form623

ut + uux − νuxx = 0. (49)

10

Lie point symmetries of the Burgers’ equation are listed in Table 3. There are five generators. As we624

will see, the first three generators corresponding to translations and Galilean boosts are consistent625

with the other equations we study (KS, KdV, and Navier Stokes) as these are all flow equations.626

Table 3: Generators of the Lie point symmetry group of the Burgers’ equation in its standard form
[42, 89].

Lie algebra generator
Group operation

(x, t, u) 7→
g1 (space translation) ϵ∂x (x+ ϵ , t, u)

g2 (time translation) ϵ∂t (x, t+ ϵ , u)

g3 (Galilean boost) ϵ(t∂x + ∂u) (x+ ϵt , t, u+ ϵ)

g4 (scaling) ϵ(x∂x + 2t∂t − u∂u) (eϵx , e2ϵt , e−ϵu)

g5 (projective) ϵ(xt∂x + t2∂t + (x− tu)∂u)

(
x

1− ϵt
,

t

1− ϵt
, u+ ϵ(x− tu)

)

Comments and errata in [12] As a cautionary note, the symmetry group given in Table 1 of [12]627

for Burgers’ equation is incorrectly labeled for Burgers’ equation in its standard form. Instead, these628

augmentations are those for Burgers’ equation in its potential form, which is given as:629

ut +
1

2
u2
x − νuxx = 0. (50)

The potential form is often more convenient for analyzing symmetries of Burgers’ equation. Burgers’630

equation in its standard form is vt + vvx − νvxx = 0, which can be obtained from the transformation631

v = ux. The Lie point symmetry group of the equation in its potential form contains more generators632

than that of the standard form. This is because translating all of these generators into the standard633

form can lose the smoothness and locality of the transformations (some are no longer Lie point634

transformations).635

Fortunately, this error does not carry through in their experiments: [12] only consider input data as636

solutions to Heat equation, which they subsequently transform into solutions of Burgers’ equation637

via a Cole-Hopf transform. Therefore, in their code, they apply augmentations using the symmetry638

group of the Heat equation for which they have the correct symmetry group. We opted only to work639

with solutions to Burgers’ equations itself for a fairer comparison to real-world settings, where a640

convenient transform to a linear PDE such as the Cole-Hopf transform is generally not available.641

E.2 KdV642

Lie point symmetries of the KdV equation are listed in Table 4. Though all the operations listed are643

valid generators of the symmetry group, only g1 and g3 are invariant to the downstream task of the644

inverse problem. (Notably, these parameters are independent of any spatial shift). Consequently,645

during SSL pre-training for the inverse problem, only g1 and g3 were used for learning representations.646

In contrast, for time-stepping, all listed symmetry groups were used.647

Table 4: Generators of the Lie point symmetry group of the KdV equation. The only symmetries used
in the inverse task of predicting initial conditions are g1 and g3 since the other two are not invariant
to the downstream task.

Lie algebra generator
Group operation

(x, t, u) 7→
g1 (space translation) ϵ∂x (x+ ϵ , t, u)

g2 (time translation) ϵ∂t (x, t+ ϵ , u)

g3 (Galilean boost) ϵ(t∂x + ∂u) (x+ ϵt , t, u+ ϵ)

g4 (scaling) ϵ(x∂x + 3t∂t − 2u∂u) (eϵx , e3ϵt , e−2ϵu)

11

E.3 KS648

Lie point symmetries of the KS equation are listed in Table 5. All of these symmetry generators are649

shared with the KdV equation listed in Table 3. Similar to KdV, only g1 and g3 are invariant to the650

downstream regression task of predicting the initial conditions. In addition, for time-stepping, all651

symmetry groups were used in learning meaningful representations.652

Table 5: Generators of the Lie point symmetry group of the KS equation. The only symmetries
used in the inverse task of predicting initial conditions are g1 and g3 since g2 is not invariant to the
downstream task.

Lie algebra generator
Group operation

(x, t, u) 7→
g1 (space translation) ϵ∂x (x+ ϵ , t, u)

g2 (time translation) ϵ∂t (x, t+ ϵ , u)

g3 (Galilean boost) ϵ(t∂x + ∂u) (x+ ϵt , t, u+ ϵ)

E.4 Navier Stokes653

Lie point symmetries of the incompressible Navier Stokes equation are listed in Table 6 [90].654

As pressure is not given as an input to any of our networks, the symmetry gq was not included655

in our implementations. For augmentations gEx
and gEy

, we restricted attention only to linear656

Ex(t) = Ey(t) = t or quadratic Ex(t) = Ey(t) = t2 functions. This restriction was made to657

maintain invariance to the downstream task of buoyancy force prediction in the linear case or easily658

calculable perturbations to the buoyancy by an amount 2ϵ to the magnitude in the quadratic case.659

Finally, we fix both order and steps parameters in our Lie-Trotter approximation implementation to 2660

for computationnal efficiency.661

F Experimental details662

Whereas we implemented our own pretraining and evaluation (kinematic viscosity, initial conditions663

and buoyancy) pipelines, we used the data generation and time-stepping code provided on Github664

by [12] for Burgers’, KS and KdV, and in [18] for Navier-Stokes (MIT License), with slight modifica-665

tion to condition the neural operators on our representation. All our code relies relies on Pytorch.666

Note that the time-stepping code for Navier-Stokes uses Pytorch Lightning. We report the details667

of the training cost and hyperparameters for pretraining and timestepping in Table 7 and Table 8668

respectively.669

F.1 Experiments on Burgers’ Equation670

Solutions realizations of Burgers’ equation were generated using the analytical solution [32] obtained671

from the Heat equation and the Cole-Hopf transform. During generation, kinematic viscosities, ν,672

and initial conditions were varied.673

Representation pretraining We pretrain a representation on subsets of our full dataset containing674

10, 000 1D time evolutions from Burgers equation with various kinematic viscosities, ν, sampled675

uniformly in the range [0.001, 0.007], and initial conditions using a similar procedure to [12]. We676

generate solutions of size 224× 448 in the spatial and temporal dimensions respectively, using the677

default parameters from [12]. We train a ResNet18 [17] encoder using the VICReg [9] approach to678

joint embedding SSL, with a smaller projector (width 512) since we use a smaller ResNet than in the679

original paper. We keep the same variance, invariance and covariance parameters as in [9]. We use680

the following augmentations and strengths:681

• Crop of size (128, 256), respectively, in the spatial and temporal dimension.682

• Uniform sampling in [−2, 2] for the coefficient associated to g1.683

• Uniform sampling in [0, 2] for the coefficient associated to g2.684

• Uniform sampling in [−0.2, 0.2] for the coefficient associated to g3.685

12

Table 6: Generators of the Lie point symmetry group of the incompressible Navier Stokes equation.
Here, u, v correspond to the velocity of the fluid in the x, y direction respectively and p corresponds
to the pressure. The last three augmentations correspond to infinite dimensional Lie subgroups
with choice of functions Ex(t), Ey(t), q(t) that depend on t only. For invariant tasks, we only used
settings where Ex(t), Ey(t) = t (linear) or Ex(t), Ey(t) = t2 (quadratic) to ensure invariance to the
downstream task or predictable changes in the outputs of the downstream task. These augmentations
are listed as numbers 6 to 9.

Lie algebra generator
Group operation
(x, y, t, u, v, p) 7→

g1 (time translation) ϵ∂t (x, y, t+ ϵ , u, v, p)

g2 (x translation) ϵ∂x (x+ ϵ , y, t, u, v, p)

g3 (y translation) ϵ∂y (x, y + ϵ , t, u, v, p)

g4 (scaling)
ϵ(2t∂t + x∂x + y∂y
− u∂u − v∂v − 2p∂p)

(eϵx , eϵy , e2ϵt , e−ϵu , e−ϵv , e−2ϵp)

g5 (rotation) ϵ(x∂y − y∂x + u∂v − v∂u)
(x cos ϵ− y sin ϵ , x sin ϵ+ y cos ϵ , t,

u cos ϵ− v sin ϵ , u sin ϵ+ v cos ϵ , p)

g6 (x linear boost)1 ϵ(t∂x + ∂u) (x+ ϵt , y, t, u+ ϵ , v, p)

g7 (y linear boost)1 ϵ(t∂y + ∂v) (x, y + ϵt , t, u, v + ϵ , p)

g8 (x quadratic boost)2 ϵ(t2∂x + 2t∂u − 2x∂p) (x+ ϵt2 , y, t, u+ 2ϵt , v, p− 2x)

g9 (y quadratic boost)2 ϵ(t2∂y + 2t∂v − 2y∂p) (x, y + ϵt2 , t, u, v + 2ϵt , p− 2y)

gEx
(x general boost)3

ϵ(Ex(t)∂x + E′
x(t)∂u

− xE′′
x(t)∂p)

(x+ ϵEx(t) , y, t,

u+ ϵE′
x(t) , v, p− E′′x(t)x)

gEy (y general boost)3
ϵ(Ey(t)∂y + E′y(t)∂v

− yE′′y(t)∂p)

(x, y + ϵEy(t) , t,

u, v + ϵE′y(t) , p− E′′y(t)y)

gq (additive pressure)3 ϵq(t)∂p (x, y, t, u, v, p+ q(t))
1 case of gEx

or gEy
where Ex(t) = Ey(t) = t (linear function of t)

2 case of gEx
or gEy

where Ex(t) = Ey(t) = t2 (quadratic function of t)
3 Ex(t), Ey(t), q(t) can be any given smooth function that only depends on t

• Uniform sampling in [−1, 1] for the coefficient associated to g4.686

We pretrain for 100 epochs using AdamW [33] and a batch size of 32. Crucially, we assess the quality687

of the learned representation via linear probing for kinematic viscosity regression, which we detail688

below.689

Kinematic viscosity regression We evaluate the learned representation as follows: the ResNet18 is690

frozen and used as an encoder to produce features from the training dataset. The features are passed691

through a linear layer, followed by a sigmoid to constrain the output within [νmin, νmax]. The learned692

model is evaluated against our validation dataset, which is comprised of 2, 000 samples.693

Time-stepping We use a 1D CNN solver from [12] as our baseline. This neural solver takes Tp694

previous time steps as input, to predict the next Tf future ones. Each channel (or spatial axis, if we695

view the input as a 2D image with one channel) is composed of the realization values, u, at Tp times,696

with spatial step size dx, and time step size dt. The dimension of the input is therefore (Tp + 2, 224),697

where the extra two dimensions are simply to capture the scalars dx and dt. We augment this input698

with our representation. More precisely, we select the encoder that allows for the most accurate699

linear regression of ν with our validation dataset, feed it with the CNN operator input and reduce the700

resulting representation dimension to d with a learned projection before adding it as supplementary701

channels to the input, which is now (Tp + 2 + d, 224).702

703

We set Tp = 20, Tf = 20, and nsamples = 2, 000. We train both models for 20 epochs fol-704

13

lowing the setup from [12]. In addition, we use AdamW with a decaying learning rate and different705

configurations of 3 runs each:706

• Batch size ∈ {16, 64}.707

• Learning rate ∈ {0.0001, 0.00005}.708

F.2 Experiments on KdV and KS709

To obtain realizations of both the KdV and KS PDEs, we apply the method of lines, and compute710

spatial derivatives using a pseudo-spectral method, in line with the approach taken by [12].711

Representation pretraining To train on realizations of KdV, we use the following VICReg param-712

eters: λvar = 25, λinv = 25, and λcov = 4. For the KS PDE, the λvar and λinv remain unchanged,713

with λcov = 6. The pre-training is performed on a dataset comprised of 10, 000 1D time evolutions of714

each PDE, each generated from initial conditions described in the main text. Generated solutions were715

of size 128× 256 in the spatial and temporal dimensions, respectively. Similar to Burgers’ equation,716

a ResNet18 encoder in conjunction with a projector of width 512 was used for SSL pre-training. The717

following augmentations and strengths were applied:718

• Crop of size (32, 256), respectively, in the spatial and temporal dimension.719

• Uniform sampling in [−0.2, 0.2] for the coefficient associated to g3.720

Initial condition regression The quality of the learned representations is evaluated by freezing the721

ResNet18 encoder, training a separate regression head to predict values of Ak and ωk, and comparing722

the NMSE to a supervised baseline. The regression head was a fully-connected network, where723

the output dimension is commensurate with the number of initial conditions used. In addition, a724

range-constrained sigmoid was added to bound the output between [−0.5, 2π], where the bounds725

were informed by the minimum and maximum range of the sampled initial conditions. Lastly, similar726

to Burgers’ equation, the validation dataset is comprised of 2, 000 labeled samples.727

Time-stepping The same 1D CNN solver used for Burgers’ equation serves as the baseline for728

time-stepping the KdV and KS PDEs. We select the ResNet18 encoder based on the one that729

provides the most accurate predictions of the initial conditions with our validation set. Here, the730

input dimension is now (Tp + 2, 128) to agree with the size of the generated input data. Similarly731

to Burgers’ equation, Tp = 20, Tf = 20, and nsamples = 2, 000. Lastly, AdamW with the same732

learning rate and batch size configurations as those seen for Burgers’ equation were used across 3733

time-stepping runs each.734

735

A sample visualization with predicted instances of the KdV PDE is provided in Fig. 7 be-736

low:

Ground Truth Predicted (SSL pre-training) Predicted (CNN baseline)

Figure 7: Illustration of the 20 predicted time steps for the KdV PDE. (Left) Ground truth data from
PDE solver; (Middle) Predicted u(x, t) using learned representations; (Right) Predicted output from
using the CNN baseline.

737

F.3 Experiments on Navier-Stokes738

We use the Conditioning dataset for Navier Stokes-2D proposed in [18], consisting of 26,624 2D739

time evolutions with 56 time steps and various buoyancies ranging approximately uniformly from 0.2740

to 0.5.741

14

Table 7: List of model hyperparameters and training details for the invariant tasks. Training time
includes periodic evaluations during the pretraining.

Equation Burgers’ KdV KS Navier Stokes
Network:

Model ResNet18 ResNet18 ResNet18 ResNet18
Embedding Dim. 512 512 512 512

Optimization:
Optimizer LARS [91] AdamW AdamW AdamW
Learning Rate 0.6 0.3 0.3 3e-4
Batch Size 32 64 64 64
Epochs 100 100 100 100
Nb of exps ∼ 300 ∼ 30 ∼ 30 ∼ 300

Hardware:
GPU used Nvidia V100 Nvidia M4000 Nvidia M4000 Nvidia V100
Training time ∼ 5h ∼ 11h ∼ 12h ∼ 48h

Table 8: List of model hyperparameters and training details for the timestepping tasks.
Equation Burgers’ KdV KS Navier Stokes
Neural Operator:

Model CNN [12] CNN [12] CNN [12] Modified U-Net-64 [18]
Optimization:

Optimizer AdamW AdamW AdamW Adam
Learning Rate 1e-4 1e-4 1e-4 1e-3
Batch Size 16 16 16 64
Epochs 20 20 20 50

Hardware:
GPU used Nvidia V100 Nvidia M4000 Nvidia M4000 Nvidia V100 (8)
Training time ∼ 1d ∼ 2d ∼ 2d ∼ 5d

Representation pretraining We train a ResNet18 for 100 epochs with AdamW, a batch size of 64742

and a learning rate of 3e-4. We use the same VICReg hyperparameters as for Burgers’ Equation. We743

use the following augmentations and strengths (augmentations whose strength is not specified here744

are not used):745

• Crop of size (16, 128, 128), respectively in temporal, x and y dimensions.746

• Uniform sampling in [−1, 1] for the coefficients associated to g2 and g3 (applied respectively747

in x and y).748

• Uniform sampling in [−0.1, 0.1] for the coefficients associated to g5.749

• Uniform sampling in [−0.01, 0.01] for the coefficients associated to g6 and g7 (applied750

respectively in x and y).751

• Uniform sampling in [−0.01, 0.01] for the coefficients associated to g8 and g9 (applied752

respectively in x and y).753

Buoyancy regression We evaluate the learned representation as follows: the ResNet18 is frozen754

and used as an encoder to produce features from the training dataset. The features are passed through755

a linear layer, followed by a sigmoid to constrain the output within [Buoyancymin,Buoyancymax].756

Both the fully supervised baseline (ResNet18 + linear head) and our (frozen ResNet18 + linear head)757

model are trained on 3, 328 unseen samples and evaluated against 6, 592 unseen samples.758

Time-stepping We use smaller trajectories (32) as in [18] (56) to reduce computational burden.759

To condition on our representation, we simply replace the Fourier embedding of the buoyancy by a760

learned projection of our representation. We compare our conditioning to the parameter conditioning,761

and no conditioning. All methods are however conditioned on time, and use a single frame to predict762

a future one. We use the same base configuration as the one provided in [18] for conditioning with763

modified UNet-64, except we double the effective batch size (since we use 8 GPUs instead of 4) and764

thus increase the base learning rate to 1e-3. We also depart from [18] by evaluating the learned PDE765

surrogate at four subsequent time horizons: {1, 2, 4, 8}.766

15

Table 9: Time-stepping MSE (↓) for Navier-Stokes on various time horizons.
Time horizon 1 2 4 8
Method:
Time conditioned 0.0028 ± 0.0001 0.0035 ± 0.0001 0.0053 ± 0.0001 0.0106 ± 0.0001
Time + Rep. cond. (ours) 0.0008 ± 0.0001 0.0014 ± 0.0001 0.0032 ± 0.0001 0.0092 ± 0.0001
Time + Param. cond. 0.0006 ± 0.0001 0.0013 ± 0.0001 0.0027 ± 0.0001 0.0091 ± 0.0001

Time-stepping results. We report our complete results after 20k iterations in Table 9.767

16

In order for the appendix to be self-contained, we include references again at the end of the appendix.768

This reference numbering includes references that appear in the appendix, but not the main body of769

the paper.770

References771

[1] Mazier Raissi, Paris Perdikaris, and George E. Karniadakis. Physics-informed neural networks:772

A deep learning framework for solving forward and inverse problems involving nonlinear partial773

differential equations. Journal of Computational Physics, 378:686–707, 2019. ISSN 0021-9991.774

URL https://doi.org/10.1016/j.jcp.2018.10.045.775

[2] George E. Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu776

Yang. Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021. URL777

https://doi.org/10.1038/s42254-021-00314-5.778

[3] Samuel H Rudy, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Data-driven discovery779

of partial differential equations. Science advances, 3(4):e1602614, 2017.780

[4] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations781

from data by sparse identification of nonlinear dynamical systems. Proceedings of the National782

Academy of Sciences, 113(15):3932–3937, 2016. URL https://doi.org/10.1073/pnas.783

1517384113.784

[5] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,785

Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual786

models from natural language supervision. In arXiv preprint arXiv:2103.00020, 2021.787

[6] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,788

and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings789

of the IEEE/CVF International Conference on Computer Vision, pages 9650–9660, 2021.790

[7] Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover.791

ClimaX: A foundation model for weather and climate. arXiv preprint arXiv:2301.10343, 2023.792

[8] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. Signature793

verification using a" siamese" time delay neural network. Advances in neural information794

processing systems, 6, 1993.795

[9] Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regular-796

ization for self-supervised learning. arXiv preprint arXiv:2105.04906, 2021.797

[10] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena798

Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,799

et al. Bootstrap your own latent-a new approach to self-supervised learning. NeurIPS, 2020.800

[11] Peter J. Olver. Symmetry groups and group invariant solutions of partial differential equations.801

Journal of Differential Geometry, 14:497–542, 1979.802

[12] Johannes Brandstetter, Max Welling, and Daniel E Worrall. Lie point symmetry data augmenta-803

tion for neural pde solvers. arXiv preprint arXiv:2202.07643, 2022.804

[13] Nail H Ibragimov. CRC handbook of Lie group analysis of differential equations, volume 3.805

CRC press, 1995.806

[14] Gerd Baumann. Symmetry analysis of differential equations with Mathematica®. Springer807

Science & Business Media, 2000.808

[15] Florian Bordes, Randall Balestriero, Quentin Garrido, Adrien Bardes, and Pascal Vincent.809

Guillotine regularization: Improving deep networks generalization by removing their head.810

arXiv preprint arXiv:2206.13378, 2022.811

[16] Quentin Garrido, Yubei Chen, Adrien Bardes, Laurent Najman, and Yann Lecun. On the812

duality between contrastive and non-contrastive self-supervised learning. arXiv preprint813

arXiv:2206.02574, 2022.814

17

https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1073/pnas.1517384113

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image815

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,816

pages 770–778, 2016.817

[18] Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized818

pde modeling. arXiv preprint arXiv:2209.15616, 2022.819

[19] Victor Isakov. Inverse problems for partial differential equations, volume 127. Springer, 2006.820

[20] Randall Balestriero, Mark Ibrahim, Vlad Sobal, Ari Morcos, Shashank Shekhar, Tom Goldstein,821

Florian Bordes, Adrien Bardes, Gregoire Mialon, Yuandong Tian, et al. A cookbook of822

self-supervised learning. arXiv preprint arXiv:2304.12210, 2023.823

[21] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework824

for contrastive learning of visual representations. In International conference on machine825

learning, pages 1597–1607. PMLR, 2020.826

[22] Hale F Trotter. On the product of semi-groups of operators. Proceedings of the American827

Mathematical Society, 10(4):545–551, 1959.828

[23] Andrew M Childs, Yuan Su, Minh C Tran, Nathan Wiebe, and Shuchen Zhu. Theory of trotter829

error with commutator scaling. Physical Review X, 11(1):011020, 2021.830

[24] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von831

Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the832

opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.833

[25] Nadav Brandes, Dan Ofer, Yam Peleg, Nadav Rappoport, and Michal Linial. Proteinbert:834

a universal deep-learning model of protein sequence and function. Bioinformatics, 38(8):835

2102–2110, 2022.836

[26] Jianyi Yang, Ivan Anishchenko, Hahnbeom Park, Zhenling Peng, Sergey Ovchinnikov, and837

David Baker. Improved protein structure prediction using predicted interresidue orientations.838

Proceedings of the National Academy of Sciences, 117(3):1496–1503, 2020.839

[27] Rui Wang, Robin Walters, and Rose Yu. Incorporating symmetry into deep dynamics models840

for improved generalization. arXiv preprint arXiv:2002.03061, 2020.841

[28] Jack Richter-Powell, Yaron Lipman, and Ricky TQ Chen. Neural conservation laws: A842

divergence-free perspective. arXiv preprint arXiv:2210.01741, 2022.843

[29] Peter J. Baddoo, Benjamin Herrmann, Beverley J. McKeon, J. Nathan Kutz, and Steven L.844

Brunton. Physics-informed dynamic mode decomposition (pidmd), 2021. URL https://845

arxiv.org/abs/2112.04307.846

[30] Marc Finzi, Ke Alexander Wang, and Andrew G Wilson. Simplifying hamiltonian and lagrangian847

neural networks via explicit constraints. Advances in neural information processing systems,848

33:13880–13889, 2020.849

[31] Yuhan Chen, Takashi Matsubara, and Takaharu Yaguchi. Neural symplectic form: learn-850

ing hamiltonian equations on general coordinate systems. Advances in Neural Information851

Processing Systems, 34:16659–16670, 2021.852

[32] Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani,853

Dirk Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine854

learning. Advances in Neural Information Processing Systems, 35:1596–1611, 2022.855

[33] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint856

arXiv:1711.05101, 2017.857

[34] Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P. Brenner. Learning data-driven858

discretizations for partial differential equations. Proceedings of the National Academy of Sci-859

ences, 116(31):15344–15349, 2019. URL https://doi.org/10.1073/pnas.1814058116.860

18

https://arxiv.org/abs/2112.04307
https://arxiv.org/abs/2112.04307
https://arxiv.org/abs/2112.04307
https://doi.org/10.1073/pnas.1814058116

[35] Mert Bulent Sariyildiz, Yannis Kalantidis, Karteek Alahari, and Diane Larlus. No reason for no861

supervision: Improved generalization in supervised models. In International Conference on862

Learning Representations, 2023.863

[36] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,864

Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning865

robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.866

[37] Adrien Bardes, Jean Ponce, and Yann LeCun. VICRegl: Self-supervised learning of local visual867

features. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,868

Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/869

forum?id=ePZsWeGJXyp.870

[38] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In CVPR,871

2020.872

[39] Robin Winter, Marco Bertolini, Tuan Le, Frank Noe, and Djork-Arné Clevert. Un-873

supervised learning of group invariant and equivariant representations. In S. Koyejo,874

S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neu-875

ral Information Processing Systems, volume 35, pages 31942–31956. Curran Associates,876

Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/877

cf3d7d8e79703fe947deffb587a83639-Paper-Conference.pdf.878

[40] Quentin Garrido, Laurent Najman, and Yann Lecun. Self-supervised learning of split invariant879

equivariant representations. arXiv preprint arXiv:2302.10283, 2023.880

[41] Janpou Nee and Jinqiao Duan. Limit set of trajectories of the coupled viscous burgers’ equations.881

Applied mathematics letters, 11(1):57–61, 1998.882

[42] Peter J Olver. Symmetry groups and group invariant solutions of partial differential equations.883

Journal of Differential Geometry, 14(4):497–542, 1979.884

[43] Andrew Baker. Matrix groups: An introduction to Lie group theory. Springer Science &885

Business Media, 2003.886

[44] John D Dollard, Charles N Friedman, and Pesi Rustom Masani. Product integration with887

applications to differential equations, volume 10. Westview Press, 1979.888

[45] Masuo Suzuki. General theory of fractal path integrals with applications to many-body theories889

and statistical physics. Journal of Mathematical Physics, 32(2):400–407, 1991.890

[46] Robert I McLachlan and G Reinout W Quispel. Splitting methods. Acta Numerica, 11:341–434,891

2002.892

[47] Stéphane Descombes and Mechthild Thalhammer. An exact local error representation of893

exponential operator splitting methods for evolutionary problems and applications to linear894

schrödinger equations in the semi-classical regime. BIT Numerical Mathematics, 50(4):729–749,895

2010.896

[48] Klaus-Jochen Engel, Rainer Nagel, and Simon Brendle. One-parameter semigroups for linear897

evolution equations, volume 194. Springer, 2000.898

[49] Claudia Canzi and Graziano Guerra. A simple counterexample related to the lie–trotter product899

formula. In Semigroup Forum, volume 84, pages 499–504. Springer, 2012.900

[50] Mahdi Ramezanizadeh, Mohammad Hossein Ahmadi, Mohammad Alhuyi Nazari, Milad901

Sadeghzadeh, and Lingen Chen. A review on the utilized machine learning approaches for902

modeling the dynamic viscosity of nanofluids. Renewable and Sustainable Energy Reviews,903

114:109345, 2019.904

[51] William D Fries, Xiaolong He, and Youngsoo Choi. Lasdi: Parametric latent space dynamics905

identification. Computer Methods in Applied Mechanics and Engineering, 399:115436, 2022.906

19

https://openreview.net/forum?id=ePZsWeGJXyp
https://openreview.net/forum?id=ePZsWeGJXyp
https://openreview.net/forum?id=ePZsWeGJXyp
https://proceedings.neurips.cc/paper_files/paper/2022/file/cf3d7d8e79703fe947deffb587a83639-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/cf3d7d8e79703fe947deffb587a83639-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/cf3d7d8e79703fe947deffb587a83639-Paper-Conference.pdf

[52] Xiaolong He, Youngsoo Choi, William D Fries, Jon Belof, and Jiun-Shyan Chen. glasdi:907

Parametric physics-informed greedy latent space dynamics identification. arXiv preprint908

arXiv:2204.12005, 2022.909

[53] Rahmad Syah, Naeim Ahmadian, Marischa Elveny, SM Alizadeh, Meysam Hosseini, and910

Afrasyab Khan. Implementation of artificial intelligence and support vector machine learning911

to estimate the drilling fluid density in high-pressure high-temperature wells. Energy Reports,912

7:4106–4113, 2021.913

[54] Ricardo Vinuesa and Steven L Brunton. Enhancing computational fluid dynamics with machine914

learning. Nature Computational Science, 2(6):358–366, 2022.915

[55] Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics: Learning916

velocity and pressure fields from flow visualizations. Science, 367(6481):1026–1030, 2020.917

[56] Ehsan Adeli, Luning Sun, Jianxun Wang, and Alexandros A Taflanidis. An advanced spatio-918

temporal convolutional recurrent neural network for storm surge predictions. arXiv preprint919

arXiv:2204.09501, 2022.920

[57] Pin Wu, Feng Qiu, Weibing Feng, Fangxing Fang, and Christopher Pain. A non-intrusive921

reduced order model with transformer neural network and its application. Physics of Fluids, 34922

(11):115130, 2022.923

[58] Léonard Equer, T. Konstantin Rusch, and Siddhartha Mishra. Multi-scale message passing924

neural pde solvers, 2023. URL https://arxiv.org/abs/2302.03580.925

[59] Byungsoo Kim, Vinicius C Azevedo, Nils Thuerey, Theodore Kim, Markus Gross, and Barbara926

Solenthaler. Deep fluids: A generative network for parameterized fluid simulations. In Computer927

graphics forum, volume 38(2), pages 59–70. Wiley Online Library, 2019.928

[60] Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear929

embeddings of nonlinear dynamics. Nature communications, 9(1):4950, 2018.930

[61] Peter J Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of931

fluid mechanics, 656:5–28, 2010.932

[62] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for933

unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on934

computer vision and pattern recognition, pages 9729–9738, 2020.935

[63] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum936

contrastive learning. arXiv preprint arXiv:2003.04297, 2020.937

[64] Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised938

vision transformers. In ICCV, 2021.939

[65] Chun-Hsiao Yeh, Cheng-Yao Hong, Yen-Chi Hsu, Tyng-Luh Liu, Yubei Chen, and Yann LeCun.940

Decoupled contrastive learning. arXiv preprint arXiv:2110.06848, 2021.941

[66] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive942

predictive coding. arXiv preprint arXiv:1807.03748, 2018.943

[67] Jeff Z HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees for self-944

supervised deep learning with spectral contrastive loss. NeurIPS, 34, 2021.945

[68] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for946

unsupervised learning. In ECCV, 2018.947

[69] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.948

Unsupervised learning of visual features by contrasting cluster assignments. In NeurIPS, 2020.949

[70] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-950

supervised learning via redundancy reduction. In ICML, pages 12310–12320. PMLR, 2021.951

20

https://arxiv.org/abs/2302.03580

[71] Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto, and Nicu Sebe. Whitening for952

self-supervised representation learning, 2021.953

[72] Zengyi Li, Yubei Chen, Yann LeCun, and Friedrich T Sommer. Neural manifold clustering and954

embedding. arXiv preprint arXiv:2201.10000, 2022.955

[73] Vivien Cabannes, Bobak T Kiani, Randall Balestriero, Yann LeCun, and Alberto Bietti. The ssl956

interplay: Augmentations, inductive bias, and generalization. arXiv preprint arXiv:2302.02774,957

2023.958

[74] Grégoire Mialon, Randall Balestriero, and Yann Lecun. Variance-covariance regulariza-959

tion enforces pairwise independence in self-supervised representations. arXiv preprint960

arXiv:2209.14905, 2022.961

[75] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:962

Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.963

[76] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,964

and Alexander J Smola. Deep sets. Advances in neural information processing systems, 30,965

2017.966

[77] Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution967

in neural networks to the action of compact groups. In International Conference on Machine968

Learning, pages 2747–2755. PMLR, 2018.969

[78] Taco Cohen and Max Welling. Group equivariant convolutional networks. In International970

conference on machine learning, pages 2990–2999. PMLR, 2016.971

[79] Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural972

networks. In International conference on machine learning, pages 9323–9332. PMLR, 2021.973

[80] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-974

neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.975

Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.976

[81] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick977

Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point978

clouds. arXiv preprint arXiv:1802.08219, 2018.979

[82] James Kirkpatrick, Brendan McMorrow, David HP Turban, Alexander L Gaunt, James S980

Spencer, Alexander GDG Matthews, Annette Obika, Louis Thiry, Meire Fortunato, David Pfau,981

et al. Pushing the frontiers of density functionals by solving the fractional electron problem.982

Science, 374(6573):1385–1389, 2021.983

[83] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng984

Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and985

applications. AI open, 1:57–81, 2020.986

[84] Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst. Geodesic con-987

volutional neural networks on riemannian manifolds. In Proceedings of the IEEE international988

conference on computer vision workshops, pages 37–45, 2015.989

[85] Jun Li, Li Fuxin, and Sinisa Todorovic. Efficient riemannian optimization on the stiefel manifold990

via the cayley transform. arXiv preprint arXiv:2002.01113, 2020.991

[86] Bobak Kiani, Randall Balestriero, Yann Lecun, and Seth Lloyd. projunn: efficient method for992

training deep networks with unitary matrices. arXiv preprint arXiv:2203.05483, 2022.993

[87] Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, and Léon Bottou. Symplectic recurrent neural994

networks. arXiv preprint arXiv:1909.13334, 2019.995

[88] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks.996

In International conference on machine learning, pages 1120–1128. PMLR, 2016.997

21

[89] Turgut Öziş and İSMAİL Aslan. Similarity solutions to burgers’ equation in terms of special998

functions of mathematical physics. Acta Physica Polonica B, 2017.999

[90] SP Lloyd. The infinitesimal group of the navier-stokes equations. Acta Mechanica, 38(1-2):1000

85–98, 1981.1001

[91] Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks.1002

arXiv preprint arXiv:1708.03888, 2017.1003

22

	PDE Symmetry Groups and Deriving Generators
	Symmetry Groups and Infinitesimal Invariance
	Deriving Generators of the Symmetry Group of a PDE
	Example: Burgers' Equation

	Exponential map and its approximations
	Approximations to the exponential map

	VICReg Loss
	Expanded related works
	Details on Augmentations
	Burgers' equation
	KdV
	KS
	Navier Stokes

	Experimental details
	Experiments on Burgers' Equation
	Experiments on KdV and KS
	Experiments on Navier-Stokes

