
Self-Supervised Learning with Lie Symmetries for
Partial Differential Equations

Grégoire Mialon†

Meta, FAIR
Quentin Garrido†

Meta, FAIR
Univ Gustave Eiffel, CNRS, LIGM

Hannah Lawrence
Meta, FAIR

MIT

Danyal Rehman
MIT

Yann LeCun
Meta, FAIR

NYU

Bobak T. Kiani∗
MIT

Abstract

Machine learning for differential equations paves the way for computationally
efficient alternatives to numerical solvers, with potentially broad impacts in science
and engineering. Though current algorithms typically require simulated training
data tailored to a given setting, one may instead wish to learn useful information
from heterogeneous sources, or from real dynamical systems observations that are
messy or incomplete. In this work, we learn general-purpose representations of
PDEs from heterogeneous data by implementing joint embedding methods for self-
supervised learning (SSL), a framework for unsupervised representation learning
that has had notable success in computer vision. Our representation outperforms
baseline approaches to invariant tasks, such as regressing the coefficients of a PDE,
while also improving the time-stepping performance of neural solvers. We hope
that our proposed methodology will prove useful in the eventual development of
general-purpose foundation models for PDEs.

1 Introduction

Dynamical systems governed by differential equations are ubiquitous in fluid dynamics, chemistry,
astrophysics, and beyond. Accurately analyzing and predicting the evolution of such systems is
of paramount importance, inspiring decades of innovation in algorithms for numerical methods.
However, high-accuracy solvers are often computationally expensive. Machine learning has recently
arisen as an alternative method for analyzing differential equations at a fraction of the cost [1, 2, 3].
Typically, the neural network for a given equation is trained on simulations of that same equation,
generated by numerical solvers that are high-accuracy but comparatively slow [4]. What if we instead
wish to learn from heterogeneous data, e.g., data with missing information, or gathered from actual
observation of varied physical systems rather than clean simulations?

For example, we may have access to a dataset of instances of time-evolution, stemming from a family
of partial differential equations (PDEs) for which important characteristics of the problem, such as
viscosity or initial conditions, vary or are unknown. In this case, representations learned from such a
large, “unlabeled” dataset could still prove useful in learning to identify unknown characteristics, given
only a small dataset “labeled" with viscosities or reaction constants. Alternatively, the “unlabeled”
dataset may contain evolutions over very short periods of time, or with missing time intervals; possible
goals are then to learn representations that could be useful in filling in these gaps, or regressing other
quantities of interest.

∗Correspondence to: gmialon@meta.com, garridoq@meta.com, and bkiani@mit.edu, † Equal contribution

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

mailto:gmialon@meta.com
mailto:garridoq@meta.com
mailto:bkiani@mit.edu

Unlabeled Data Learned Representation
Map fθ

fθ) r1
r2
⋮
rd

Application to
Downstream Tasks

r1
r2
⋮
rd

“Dog”Images

Self-Supervised Learning
Dog

Augment

PDE
(Burgers’
Equation)

Detection

Classification

=(
Bird

Augment

fθ) r1
r2
⋮
rd

r1
r2
⋮
rd

ν = 0.003

ν = .001
Augment

Time-stepping

Regression

=(
ν = .003

Augment

Figure 1: A high-level overview of the self-supervised learning pipeline, in the conventional setting
of image data (top row) as well as our proposed setting of a PDE (bottom row). Given a large
pool of unlabeled data, self-supervised learning uses augmentations (e.g. color-shifting for images,
or Lie symmetries for PDEs) to train a network fθ to produce useful representations from input
images. Given a smaller set of labeled data, these representations can then be used as inputs to a
supervised learning pipeline, performing tasks such as predicting class labels (images) or regressing
the kinematic viscosity ν (Burgers’ equation). Trainable steps are shown with red arrows; importantly,
the representation function learned via SSL is not altered during application to downstream tasks.

To tackle these broader challenges, we take inspiration from the recent success of self-supervised
learning (SSL) as a tool for learning rich representations from large, unlabeled datasets of text and
images [5, 6]. Building such representations from and for scientific data is a natural next step in the
development of machine learning for science [7]. In the context of PDEs, this corresponds to learning
representations from a large dataset of PDE realizations “unlabeled” with key information (such as
kinematic viscosity for Burgers’ equation), before applying these representations to solve downstream
tasks with a limited amount of data (such as kinematic viscosity regression), as illustrated in Figure 1.

To do so, we leverage the joint embedding framework [8] for self-supervised learning, a popular
paradigm for learning visual representations from unlabeled data [9, 10]. It consists of training an
encoder to enforce similarity between embeddings of two augmented versions of a given sample to
form useful representations. This is guided by the principle that representations suited to downstream
tasks (such as image classification) should preserve the common information between the two
augmented views. For example, changing the color of an image of a dog still preserves its semantic
meaning and we thus want similar embeddings under this augmentation. Hence, the choice of
augmentations is crucial. For visual data, SSL relies on human intuition to build hand-crafted
augmentations (e.g. recoloring and cropping), whereas PDEs are endowed with a group of symmetries
preserving the governing equations of the PDE [11, 12]. These symmetry groups are important
because creating embeddings that are invariant under them would allow to capture the underlying
dynamics of the PDE. For example, solutions to certain PDEs with periodic boundary conditions
remain valid solutions after translations in time and space. There exist more elaborate equation-
specific transformations as well, such as Galilean boosts and dilations (see Appendix E). Symmetry
groups are well-studied for common PDE families, and can be derived systematically or calculated
from computer algebra systems via tools from Lie theory [11, 13, 14].

Contributions: We present a general framework for performing SSL for PDEs using their corre-
sponding symmetry groups. In particular, we show that by exploiting the analytic group transfor-
mations from one PDE solution to another, we can use joint embedding methods to generate useful
representations from large, heterogeneous PDE datasets. We demonstrate the broad utility of these
representations on downstream tasks, including regressing key parameters and time-stepping, on
simulated physically-motivated datasets. Our approach is applicable to any family of PDEs, harnesses
the well-understood mathematical structure of the equations governing PDE data — a luxury not
typically available in non-scientific domains — and demonstrates more broadly the promise of

2

Self-supervised pretraining

Supervised downstream task

Frozen Trained

Representation conditioned time-stepping

Frozen

Trained

Figure 2: Pretraining and evaluation frameworks, illustrated on Burgers’ equation. (Left) Self-
supervised pretraining. We generate augmented solutions x and x′ using Lie symmetries parametrized
by g and g′ before passing them through an encoder fθ, yielding representations y. The represen-
tations are then input to a projection head hθ, yielding embeddings z, on which the SSL loss is
applied. (Right) Evaluation protocols for our pretrained representations y. On new data, we use the
computed representations to either predict characteristics of interest, or to condition a neural network
or operator to improve time-stepping performance.

adapting self-supervision to the physical sciences. We hope this work will serve as a starting point
for developing foundation models on more complex dynamical systems using our framework.

2 Methodology

We now describe our general framework for learning representations from and for diverse sources
of PDE data, which can subsequently be used for a wide range of tasks, ranging from regressing
characteristics of interest of a PDE sample to improving neural solvers. To this end, we adapt a
popular paradigm for representation learning without labels: the joint-embedding self-supervised
learning.

2.1 Self-Supervised Learning (SSL)

Background: In the joint-embedding framework, input data is transformed into two separate
“views", using augmentations that preserve the underlying information in the data. The augmented
views are then fed through a learnable encoder, fθ, producing representations that can be used for
downstream tasks. The SSL loss function is comprised of a similarity loss Lsim between projections
(through a projector hθ, which helps generalization [15]) of the pairs of views, to make their
representations invariant to augmentations, and a regularization loss Lreg, to avoid trivial solutions
(such as mapping all inputs to the same representation). The regularization term can consist of a
repulsive force between points, or regularization on the covariance matrix of the embeddings. Both
function similarly, as shown in [16]. This pretraining procedure is illustrated in Fig. 2 (left) in the
context of Burgers’ equation.

In this work, we choose variance-invariance-covariance regularization (VICReg) as our self-
supervised loss function [9]. Concretely, let Z,Z ′ ∈ RN×D contain the D-dimensional repre-
sentations of two batches of N inputs with D × D centered covariance matrices, Cov(Z) and
Cov(Z ′). Rows Zi,: and Z ′

i,: are two views of a shared input. The loss over this batch includes a
term to enforce similarity (Lsim) and a term to avoid collapse and regularize representations (Lreg) by
pushing elements of the encodings to be statistically identical:

L(Z,Z ′) ≈ λinv

N

N∑
i=1

∥Zi,: −Z ′
i,:∥22︸ ︷︷ ︸

Lsim(Z,Z′)

+
λreg

D

(
∥Cov(Z)− I∥2F + ∥Cov(Z ′)− I∥2F

)︸ ︷︷ ︸
Lreg(Z)+Lreg(Z′)

, (1)

3

<latexit sha1_base64="Gg6JaL99Z+5OReswbX9qEMBFzXE=">AAACw3icfVLbjtMwEHXDbVku24UXJF4sKiQEVZUgbo8rLhIviEWiuyu1VTVxJ1mrjm3ZE7ZVFH6CX+AV/oe/wWkjRHYRI9lzfObYY884tUp6iuNfvejS5StXr+1c371x89btvf7+nSNvSidwLIwy7iQFj0pqHJMkhSfWIRSpwuN0+aaJH39B56XRn2ltcVZArmUmBVCg5v17NLXgSIKar/gT/mdRzvuDeBRvjF8ESQsGrLXD+X7v23RhRFmgJqHA+0kSW5pVzYFCYb07LT1aEEvIcRKghgL9rNo8oeYPA7PgmXFhaOIb9u8dFRTer4s0KAugU38+1pD/ik1Kyl7NKqltSajFNlFWKk6GN/XgC+lQkFoHAMLJcFcuTsGBoFC1TpYzBzaTeechVVEqks6cddnUmCVB6odhKhW41VCAbQoeZG8xVMfhh3DTjxYdkHGPqym4vJC6rlr/PxmstrLgO0k9BYA6Dz9h6AUodKjq0MbkfNMugqOno+TF6PmnZ4OD121Dd9h99oA9Ygl7yQ7Ye3bIxkywr+w7+8F+Ru+iZeQi2kqjXrvnLutYVP8GII3iWQ==</latexit>

t@x + @u

<latexit sha1_base64="k1/W1ZXxuCPqyUoi1QJK0NtyM+k=">AAACs3icfVFNb9NAEN2YAqV8tfTIxSJCqlAU2YhCj5XooRdEkUhbkUTReDN2V9kv7Y7bRFZ+Bb22/4t/wzrxAbcVI+3O05s3O7MzmZXCU5L86USPNh4/ebr5bOv5i5evXm/vvDn1pnQcB9xI484z8CiFxgEJknhuHYLKJJ5ls691/OwSnRdG/6SFxbGCQotccKBA/RpZcCRATuaT7W7ST1YW3wdpA7qssZPJTuf3aGp4qVATl+D9ME0sjav6QS5xuTUqPVrgMyhwGKAGhX5crVpexu8DM41z48LRFK/YfzMqUN4vVBaUCujC343V5EOxYUn5wbgS2paEmq8L5aWMycT1/+OpcMhJLgIA7kToNeYX4IBTmFKrypUDm4ui9ZFKlZKEM1dtNjNmRpD5XrhKCW7e42DrAQfZEYbpOPwWOv1u0QEZ96EagSuU0Muq8f+TwXwtC75V1FMAqIuw+Z7nINGhXIY1pneXdh+cfuynn/v7Pz51D/eahW6yt+wd22Mp+8IO2TE7YQPGmWbX7IbdRvvRMMqi6VoadZqcXdaySP0Fyuzchg==</latexit>

@x

<latexit sha1_base64="RD1pqBrb0mmRl3TX/sC64cyPAg4=">AAACs3icfVFNT9tAEN24tAX6BeXIxSKqhKoosqvS9ohUDlyqUokAahJF483YrLJf2h0XIiu/olzhf/XfdJ34UAPqSLvz9ObNzuxMZqXwlCR/OtGTtafPnq9vbL54+er1m63tt2felI7jgBtp3EUGHqXQOCBBEi+sQ1CZxPNs9rWOn/9C54XRpzS3OFZQaJELDhSonyMLjgTICU22ukk/WVr8EKQN6LLGTibbnd+jqeGlQk1cgvfDNLE0ruoHucTF5qj0aIHPoMBhgBoU+nG1bHkRvwvMNM6NC0dTvGT/zahAeT9XWVAqoEt/P1aTj8WGJeVfxpXQtiTUfFUoL2VMJq7/H0+FQ05yHgBwJ0KvMb8EB5zClFpVrhzYXBStj1SqlCScuWqzmTEzgsz3wlVKcNc9DrYecJAdYZiOw2+h0+8WHZBx76sRuEIJvaga/z8ZXK9kwbeKegoAdRE23/McJDqUi7DG9P7SHoKzD/30U//gx8fu4X6z0HW2y/bYPkvZZ3bIjtkJGzDONLtht+wuOoiGURZNV9Ko0+TssJZF6i/B1NyC</latexit>

@t

Figure 3: One parameter Lie point symmetries for the Kuramoto-Sivashinsky (KS) PDE. The
transformations (left to right) include the un-modified solution (u), temporal shifts (g1), spatial
shifts (g2), and Galilean boosts (g3) with their corresponding infinitesimal transformations in the Lie
algebra placed inside the figure. The shaded red square denotes the original (x, t), while the dotted
line represents the same points after the augmentation is applied.

where ∥ · ∥F denotes the matrix Frobenius norm and λinv, λreg ∈ R+ are hyperparameters to weight
the two terms. In practice, VICReg separates the regularization Lreg(Z) into two components to
handle diagonal and non-diagonal entries Cov(Z) separately. For full details, see Appendix C.

Adapting VICReg to learn from PDE data: Numerical PDE solutions typically come in the
form of a tensor of values, along with corresponding spatial and temporal grids. By treating the
spatial and temporal information as supplementary channels, we can use existing methods developed
for learning image representations. As an illustration, a numerical solution to Burgers consists of
a velocity tensor with shape (t, x): a vector of t time values, and a vector of x spatial values. We
therefore process the sample to obtain a (3, t, x) tensor with the last two channels encoding spatial
and temporal discretization, which can be naturally fed to neural networks tailored for images such
as ResNets [17]. From these, we extract the representation before the classification layer (which
is unused here). It is worth noting that convolutional neural networks have become ubiquitous
in the literature [18, 12]. While the VICReg default hyper-parameters did not require substantial
tuning, tuning was crucial to probe the quality of our learned representations to monitor the quality
of the pre-training step. Indeed, SSL loss values are generally not predictive of the quality of the
representation, and thus must be complemented by an evaluation task. In computer vision, this is
done by freezing the encoder, and using the features to train a linear classifier on ImageNet. In our
framework, we pick regression of a PDE coefficient, or regression of the initial conditions when
there is no coefficient in the equation. The latter, commonly referred to as the inverse problem, has
the advantage of being applicable to any PDE, and is often a challenging problem in the numerical
methods community given the ill-posed nature of the problem [19]. Our approach for a particular
task, kinematic viscosity regression, is schematically illustrated in Fig. 2 (top right). More details on
evaluation tasks are provided in Section 4.

2.2 Augmentations and PDE Symmetry Groups

Background: PDEs formally define a systems of equations which depend on derivatives of input
variables. Given input space Ω and output space U , a PDE ∆ is a system of equations in independent
variables x ∈ Ω, dependent variables u : Ω→ U , and derivatives (ux,uxx, . . .) of u with respect
to x. For example, the Kuramoto–Sivashinsky equation is given by

∆(x, t, u) = ut + uux + uxx + uxxxx = 0. (2)

Informally, a symmetry group of a PDE G 2 acts on the total space via smooth maps G : Ω× U →
Ω×U taking solutions of ∆ to other solutions of ∆. More explicitly, G is contained in the symmetry
group of ∆ if outputs of group operations acting on solutions are still a solution of the PDE:

∆(x,u) = 0 =⇒ ∆ [g · (x,u)] = 0, ∀g ∈ G. (3)
2A group G is a set closed under an associative binary operation containing an identity element e and inverses

(i.e., e ∈ G and ∀g ∈ G : g−1 ∈ G). G : X → X acts on a space X if ∀x ∈ X , ∀g, h ∈ G : ex = x and
(gh)x = g(hx).

4

For PDEs, these symmetry groups can be analytically derived [11] (see also Appendix A for more
formal details). The types of symmetries we consider are so-called Lie point symmetries g : Ω×U →
Ω×U , which act smoothly at any given point in the total space Ω×U . For the Kuramoto-Sivashinsky
PDE, these symmetries take the form depicted in Fig. 3:

Temporal Shift: g1(ϵ) :(x, t, u) 7→ (x, t+ ϵ, u)

Spatial Shift: g2(ϵ) :(x, t, u) 7→ (x+ ϵ, t, u)

Galilean Boost: g3(ϵ) :(x, t, u) 7→ (x+ ϵt, t, u+ ϵ)

(4)

As in this example, every Lie point transformation can be written as a one parameter transform of
ϵ ∈ R where the transformation at ϵ = 0 recovers the identity map and the magnitude of ϵ corresponds
to the “strength" of the corresponding augmentation.3 Taking the derivative of the transformation at
ϵ = 0 with respect to the set of all group transformations recovers the Lie algebra of the group (see
Appendix A). Lie algebras are vector spaces with elegant properties (e.g., smooth transformations
can be uniquely and exhaustively implemented), so we parameterize augmentations in the Lie algebra
and implement the corresponding group operation via the exponential map from the algebra to the
group. Details are contained in Appendix B.

PDE symmetry groups as SSL augmentations, and associated challenges: Symmetry groups of
PDEs offer a technically sound basis for the implementation of augmentations; nevertheless, without
proper considerations and careful tuning, SSL can fail to work successfully [20]. Although we find
the marriage of these PDE symmetries with SSL quite natural, there are several subtleties to the
problem that make this task challenging. Consistent with the image setting, we find that, among
the list of possible augmentations, crops are typically the most effective of the augmentations in
building useful representations [21]. Selecting a sensible subset of PDE symmetries requires some
care; for example, if one has a particular invariant task in mind (such as regressing viscosity), the Lie
symmetries used should neither depend on viscosity nor change the viscosity of the output solution.
Morever, there is no guarantee as to which Lie symmetries are the most “natural", i.e. most likely
to produce solutions that are close to the original data distribution; this is also likely a confounding
factor when evaluating their performance. Finally, precise derivations of Lie point symmetries require
knowing the governing equation, though a subset of symmetries can usually be derived without
knowing the exact form of the equation, as certain families of PDEs share Lie point symmetries and
many symmetries arise from physical principles and conservation laws.

Sampling symmetries: We parameterize and sample from Lie point symmetries in the Lie algebra
of the group, to ensure smoothness and universality of resulting maps in some small region around
the identity. We use Trotter approximations of the exponential map, which are efficiently tunable
to small errors, to apply the corresponding group operation to an element in the Lie algebra (see
Appendix B) [22, 23]. In our experiments, we find that Lie point augmentations applied at relatively
small strengths perform the best (see Appendix E), as they are enough to create informative distortions
of the input when combined. Finally, boundary conditions further complicate the simplified picture
of PDE symmetries, and from a practical perspective, many of the symmetry groups (such as the
Galilean Boost in Fig. 3) require a careful rediscretization back to a regular grid of sampled points.

3 Related Work

In this section, we provide a concise summary of research related to our work, reserving Appendix D
for more details. Our study derives inspiration from applications of Self-Supervised Learning (SSL)
in building pre-trained foundational models [24]. For physical data, models pre-trained with SSL
have been implemented in areas such as weather and climate prediction [7] and protein tasks [25, 26],
but none have previously used the Lie symmetries of the underlying system. The SSL techniques we
use are inspired by similar techniques used in image and video analysis [9, 20], with the hopes of
learning rich representations that can be used for diverse downstream tasks.

Symmetry groups of PDEs have a rich history of study [11, 13]. Most related to our work, [12] used
Lie point symmetries of PDEs as a tool for augmenting PDE datasets in supervised tasks. For some
PDEs, previous works have explicitly enforced symmetries or conservation laws by for example
constructing networks equivariant to symmetries of the Navier Stokes equation [27], parameterizing

3Technically, ϵ is the magnitude and direction of the transformation vector for the basis element of the
corresponding generator in the Lie algebra.

5

networks to satisfy a continuity equation [28], or enforcing physical constraints in dynamic mode
decomposition [29]. For Hamiltonian systems, various works have designed algorithms that respect
the symplectic structure or conservation laws of the Hamiltonian [30, 31].

4 Experiments

Equations considered: We focus on flow-related equations here as a testing ground for our
methodology. In our experiments, we consider the four equations below, which are 1D evolution
equations apart from the Navier-Stokes equation, which we consider in its 2D spatial form. For the
1D flow-related equations, we impose periodic boundary conditions with Ω = [0, L]× [0, T]. For
Navier-Stokes, boundary conditions are Dirichlet (v = 0) as in [18]. Symmetries for all equations are
listed in Appendix E.

1. The viscous Burgers’ Equation, written in its “standard" form, is a nonlinear model of
dissipative flow given by

ut + uux − νuxx = 0, (5)
where u(x, t) is the velocity and ν ∈ R+ is the kinematic viscosity.

2. The Korteweg-de Vries (KdV) equation models waves on shallow water surfaces as

ut + uux + uxxx = 0, (6)

where u(x, t) represents the wave amplitude.
3. The Kuramoto-Sivashinsky (KS) equation is a model of chaotic flow given by

ut + uux + uxx + uxxxx = 0, (7)

where u(x, t) is the dependent variable. The equation often shows up in reaction-diffusion
systems, as well as flame propagation problems.

4. The incompressible Navier-Stokes equation in two spatial dimensions is given by

ut = −u · ∇u−
1

ρ
∇p+ ν∇2u+ f , ∇u = 0, (8)

where u(x, t) is the velocity vector, p(x, t) is the pressure, ρ is the fluid density, ν is the
kinematic viscosity, and f is an external added force (buoyancy force) that we aim to regress
in our experiments.

Solution realizations are generated from analytical solutions in the case of Burgers’ equation or
pseudo-spectral methods used to generate PDE learning benchmarking data (see Appendix F) [12, 18,
32]. Burgers’, KdV and KS’s solutions are generated following the process of [12] while for Navier
Stokes we use the conditioning dataset from [18]. The respective characteristics of our datasets can
be found in Table 1.

Pretraining: For each equation, we pretrain a ResNet18 with our SSL framework for 100 epochs
using AdamW [33], a batch size of 32 (64 for Navier-Stokes) and a learning rate of 3e-4. We then
freeze its weights. To evaluate the resulting representation, we (i) train a linear head on top of our
features and on a new set of labeled realizations, and (ii) condition neural networks for time-stepping
on our representation. Note that our encoder learns from heterogeneous data in the sense that for a
given equation, we grouped time evolutions with different parameters and initial conditions.

4.1 Equation parameter regression

We consider the task of regressing equation-related coefficients in Burgers’ equation and the Navier-
Stokes’ equation from solutions to those PDEs. For KS and KdV we consider the inverse probem of
regressing initial conditions. We train a linear model on top of the pretrained representation for the
downstream regression task. For the baseline supervised model, we train the same architecture, i.e. a
ResNet18, using the MSE loss on downstream labels. Unless stated otherwise, we train the linear
model for 30 epochs using Adam. Further details are in Appendix F.

Kinematic viscosity regression (Burgers): We pretrain a ResNet18 on 10, 000 unlabeled realizations
of Burgers’ equation, and use the resulting features to train a linear model on a smaller, labeled

6

Table 1: Downstream evaluation of our learned representations for four classical PDEs (averaged
over three runs, the lower the better (↓)). The normalized mean squared error (NMSE) over a batch
of N outputs ûk and targets uk is equal to NMSE = 1

N

∑N
k=1 ∥ûk − uk∥22/∥ûk∥22. Relative error

is similarly defined as RE = 1
N

∑N
k=1 ∥ûk − uk∥1/∥ûk∥1 For regression tasks, the reported errors

with supervised methods are the best performance across runs with Lie symmetry augmentations
applied. For timestepping, we report NMSE for KdV, KS and Burgers as in [12], and MSE for
Navier-Stokes for comparison with [18].

Equation KdV KS Burgers Navier-Stokes

SSL dataset size 10,000 10,000 10,000 26,624

Sample format (t, x, (y)) 256×128 256×128 448×224 56×128×128

Characteristic of interest Init. coeffs Init. coeffs Kinematic viscosity Buoyancy
Regression metric NMSE (↓) NMSE (↓) Relative error %(↓) MSE (↓)

Supervised 0.102 ± 0.007 0.117 ± 0.009 1.18 ± 0.07 0.0078 ± 0.0018
SSL repr. + linear head 0.033 ± 0.004 0.042 ± 0.002 0.97 ± 0.04 0.0038 ± 0.0001
Timestepping metric NMSE (↓) NMSE (↓) NMSE (↓) MSE ×10−3(↓)

Baseline 0.508 ± 0.102 0.549 ± 0.095 0.110 ± 0.008 2.37 ± 0.01
+ SSL repr. conditioning 0.330 ± 0.081 0.381 ± 0.097 0.108 ± 0.011 2.35 ± 0.03

dataset of only 2000 samples. We compare to the same supervised model (encoder and linear head)
trained on the same labeled dataset. The viscosities used range between 0.001 and 0.007 and are
sampled uniformly. We can see in Table 1 that we are able to improve over the supervised baseline by
leveraging our learned representations. This remains true even when also using Lie Point symmetries
for the supervised baselines or when using comparable dataset sizes, as in Figure 4. We also clearly
see the ability of our self-supervised approach to leverage larger dataset sizes, whereas we did not see
any gain when going to bigger datasets in the supervised setting.

Initial condition regression (inverse problem): For the KS and KdV PDEs, we aim to solve the
inverse problem by regressing initial condition parameters from a snapshot of future time evolutions
of the solution. Following [34, 12], for a domain Ω = [0, L], a truncated Fourier series, parameterized
by Ak, ωk, ϕk, is used to generate initial conditions:

u0(x) =

N∑
k=1

Ak sin

(
2πωkx

L
+ ϕk

)
. (9)

Our task is to regress the set of 2N coefficients {Ak, ωk : k ∈ {1, . . . , N}} from a snapshot of
the solution starting at t = 20 to t = T . This way, the initial conditions and first-time steps
are never seen during training, making the problem non-trivial. For all conducted tests, N = 10,
Ak ∼ U(−0.5, 0.5), and ωk ∼ U(−0.4, 0.4). By neglecting phase shifts, ϕk, the inverse problem is
invariant to Galilean boosts and spatial translations, which we use as augmentations for training our
SSL method (see Appendix E). The datasets used for KdV and KS contains 10,000 training samples
and 2,500 test samples. As shown in Table 1, the SSL trained network reduces NMSE by a factor of
almost three compared to the supervised baseline. This demonstrates how pre-training via SSL can
help to extract the underlying dynamics from a snapshot of a solution.

Buoyancy magnitude regression: Following [18], our dataset consists of solutions of Navier Stokes
(Equation (8)) where the external buoyancy force, f = (cx, cy)

⊤, is constant in the two spatial
directions over the course of a given evolution, and our aim is to regress the magnitude of this force√
c2x + c2y given a solution to the PDE. We reuse the dataset generated in [18], where cx = 0 and

cy ∼ U(0.2, 0.5). In practice this gives us 26,624 training samples that we used as our “unlabeled”
dataset, 3,328 to train the downstream task on, and 6,592 to evaluate the models. As observed in
Table 1, the self-supervised approach is able to significantly outperform the supervised baseline. Even
when looking at the best supervised performance (over 60 runs), or in similar data regimes as the
supervised baseline illustrated in Fig. 4, the self-supervised baseline consistently performs better and
improves further when given larger unlabeled datasets.

7

Table 2: One-step validation MSE (rescaled by 1e3) for time-stepping on Navier-Stokes with varying
buoyancies for different combinations of architectures and conditioning methods. Architectures are
taken from [18] with the same choice of hyper-parameters. Results with ground truth buoyancies are
an upper-bound on the performance a representation containing information on the buoyancy.

Architecture UNetmod64 UNetmod64 FNO128modes16 UF1Netmodes16

Conditioning method Addition [18] AdaGN [35] Spatial-Spectral [18] Addition [18]

Time conditioning only 2.60 ± 0.05 2.37 ± 0.01 13.4 ± 0.5 3.31 ± 0.06
Time + SSL repr. cond. 2.47 ± 0.02 2.35 ± 0.03 13.0 ± 1.0 2.37 ± 0.05

Time + true buoyancy cond. 2.08 ± 0.02 2.01 ± 0.02 11.4 ± 0.8 2.87 ± 0.03

4.2 Time-stepping
To explore whether learned representations improve time-stepping, we study neural networks that
use a sequence of time steps (the “history”) of a PDE to predict a future sequence of steps. For
each equation we consider different conditioning schemes, to fit within the data modality and be
comparable to previous work.

Burgers, Korteweg-de Vries, and Kuramoto-Sivashinsky: We time-step on 2000 unseen samples
for each PDE. To do so, we compute a representation of 20 first input time steps using our frozen
encoder, and add it as a new channel. The resulting input is fed to a CNN as in [12] to predict the next
20 time steps (illustrated in Fig. 4 (bottom right) in the context of Burgers’ equation). As shown in
Table 1, conditioning the neural network or operator with pre-trained representations slightly reduces
the error. Such conditioning noticeably improves performance for KdV and KS, while the results are
mixed for Burgers’. A potential explanation is that KdV and KS feature more chaotic behavior than
Burgers, leaving room for improvement.

Navier-Stokes’ equation: As pointed out in [18], conditioning a neural network or neural operator
on the buoyancy helps generalization accross different values of this parameter. This is done by
embedding the buoyancy before mixing the resulting vector either via addition to the neural operator’s
hidden activations (denoted in [18] as “Addition”), or alternatively for UNets by affine transformation
of group normalization layers (denoted as “AdaGN” and originally proposed in [35]). For our main
experiment, we use the same modified UNet with 64 channels as in [18] for our neural operator, since
it yields the best performance on the Navier-Stokes dataset. To condition the UNet, we compute our
representation on the 16 first frames (that are therefore excluded from the training), and pass the
representation through a two layer MLP with a bottleneck of size 1, in order to exploit the ability of
our representation to recover the buoyancy with only one linear layer. The resulting output is then
added to the conditioning embedding as in [18]. Finally, we choose AdaGN as our conditioning
method, since it provides the best results in [18]. We follow a similar training and evaluation protocol
to [18], except that we perform 20 epochs with cosine annealing schedule on 1,664 trajectories instead
of 50 epochs, as we did not observe significant difference in terms of results, and this allowed to
explore other architectures and conditioning methods. Additional details are provided in Appendix F.
As a baseline, we use the same model without buoyancy conditioning. Both models are conditioned
on time. We report the one-step validation MSE on the same time horizons as [18]. Conditioning on
our representation outperforms the baseline without conditioning.

We also report results for different architectures and conditioning methods for Navier-Stokes in Table 2
and Burgers in Table 8 (Appendix F.1) validating the potential of conditioning on SSL representations
for different models. FNO [36] does not perform as well as other models, partly due to the relatively
low number of samples used and the low-resolution nature of the benchmarks. For Navier-Stokes,
we also report results obtained when conditioning on both time and ground truth buoyancy, which
serves as an upper-bound on the performance of our method. We conjecture these results can be
improved by further increasing the quality of the learned representation, e.g by training on more
samples or through further augmentation tuning. Indeed, the MSE on buoyancy regression obtained
by SSL features, albeit significantly lower than the supervised baseline, is often still too imprecise to
distinguish consecutive buoyancy values in our data.

4.3 Analysis

Self-supervised learning outperforms supervised learning for PDEs: While the superiority of self-
supervised over supervised representation learning is still an open question in computer vision [37, 38],

8

1000 2000 3000 4000 5000 6000 7000 8000 9000
Unlabeled dataset size

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

R
el

at
iv

e
er

ro
r

1e 2 Viscosity regression
Supervised
SSL w/ LPS

2000 4000 6000 8000 10000 12000 14000 16000 18000
Unlabeled dataset size

4.5

5.0

5.5

6.0

6.5

7.0

7.5

M
ea

n
Sq

ua
re

d
E

rr
or

1e 3 Buoyancy regression

Average supervised
Best supervised
SSL w/ LPS

Figure 4: Influence of dataset size on regression tasks. (Left) Kinematic regression on Burger’s
equation. When using Lie point symmetries (LPS) during pretraining, we are able to improve
performance over the supervised baselines, even when using an unlabled dataset size that is half the
size of the labeled one. As we increase the amount of unlabeled data that we use, the performance
improves, further reinforcing the usefulness of self-supervised representations. (Right) Buoyancy
regression on Navier-Stokes’ equation. We notice a similar trend as in Burgers but found that
the supervised approach was less stable than the self-supervised one. As such, SSL brings better
performance as well as more stability here.

the former outperforms the latter in the PDE domain we consider. A possible explanation is that
enforcing similar representations for two different views of the same solution forces the network to
learn the underlying dynamics, while the supervised objectives (such as regressing the buoyancy) may
not be as informative of a signal to the network. Moreover, Fig. 4 illustrates how more pretraining
data benefits our SSL setup, whereas in our experiments it did not help the supervised baselines.

Cropping: Cropping is a natural, effective, and popular augmentation in computer vision [21, 39, 40].
In the context of PDE samples, unless specified otherwise, we crop both in temporal and spatial
domains finding such a procedure is necessary for the encoder to learn from the PDE data. Cropping
also offers a typically weaker means of enforcing analogous space and time translation invariance.
The exact size of the crops is generally domain dependent and requires tuning. We quantify its effect
in Fig. 5 in the context of Navier-Stokes; here, crops must contain as much information as possible
while making sure that pairs of crops have as little overlap as possible (to discourage the network
from relying on spurious correlations). This explains the two modes appearing in Fig. 5. We make a
similar observation for Burgers, while KdV and KS are less sensitive. Finally, crops help bias the
network to learn features that are invariant to whether the input was taken near a boundary or not,
thus alleviating the issue of boundary condition preservation during augmentations.

Selecting Lie point augmentations: Whereas cropping alone yields satisfactory representations,
Lie point augmentations can enhance performance but require careful tuning. In order to choose
which symmetries to include in our SSL pipeline and at what strengths to apply them, we study
the effectiveness of each Lie augmentation separately. More precisely, given an equation and each
possible Lie point augmentation, we train a SSL representation using this augmentation only and
cropping. Then, we couple all Lie augmentations improving the representation over simply using
crops. In order for this composition to stay in the stability/convergence radius of the Lie Symmetries,
we reduce each augmentation’s optimal strength by an order of magnitude. Fig. 5 illustrates this
process in the context of Navier-Stokes.

5 Discussion

This work leverages Lie point symmetries for self-supervised representation learning from PDE
data. Our preliminary experiments with the Burgers’, KdV, KS, and Navier-Stokes equations
demonstrate the usefulness of the resulting representation for sample or compute efficient estimation
of characteristics and time-stepping. Nevertheless, a number of limitations are present in this work,
which we hope can be addressed in the future. The methodology and experiments in this study were
confined to a particular set of PDEs, but we believe they can be expanded beyond our setting.

9

Augmentation Best strength Buoyancy MSE

Crop N.A 0.0051 ± 0.0001

single Lie transform
+ t translate g1 0.1 0.0052 ± 0.0001
+ x translate g2 10.0 0.0041 ± 0.0002
+ scaling g4 1.0 0.0050 ± 0.0003
+ rotation g5 1.0 0.0049 ± 0.0001
+ boost g6 ∗ 0.1 0.0047 ± 0.0002
+ boost g8 ∗∗ 0.1 0.0046 ± 0.0001

combined
+ {g2, g5, g6, g8} best / 10 0.0038 ± 0.0001
∗ linear boost applied in x direction (see Table 7)
∗∗ quadratic boost applied in x direction (see Table 7)

16 32 48 56
Temporal crop

32
64

96
12

8
Sp

at
ia

l c
ro

p

0.75 0.76 0.70 0.51

0.61 0.68 0.70 0.50

0.49 0.69 0.73 0.75

0.41 0.62 0.61 0.75

Buoyancy regresssion MSE x 102

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Figure 5: (Left) Isolating effective augmentations for Navier-Stokes. Note that we do not study g3,
g7 and g9, which are respectively counterparts of g2, g6 and g8 applied in y instead of x. (Right)
Influence of the crop size on performance. We see that performance is maximized when the crops are
as large as possible with as little overlap as possible when generating pairs of them.

Learning equivariant representations: Another interesting direction is to expand our SSL frame-
work to learning explicitly equivariant features [41, 42]. Learning equivariant representations with
SSL could be helpful for time-stepping, perhaps directly in the learned representation space.

Preserving boundary conditions and leveraging other symmetries: Theoretical insights can also
help improve the results contained here. Symmetries are generally derived with respect to systems
with infinite domain or periodic boundaries. Since boundary conditions violate such symmetries,
we observed in our work that we are only able to implement group operations with small strengths.
Finding ways to preserve boundary conditions during augmentation, even approximately, would
help expand the scope of symmetries available for learning tasks. Moreover, the available symmetry
group operations of a given PDE are not solely comprised of Lie point symmetries. Other types of
symmetries, such as nonlocal symmetries or approximate symmetries like Lie-Backlund symmetries,
may also be implemented as potential augmentations [13].

Towards foundation models for PDEs: A natural next step for our framework is to train a common
representation on a mixture of data from different PDEs, such as Burgers, KdV and KS, that are
all models of chaotic flow sharing many Lie point symmetries. Our preliminary experiments are
encouraging yet suggest that work beyond the scope of this paper is needed to deal with the different
time and length scales between PDEs.

Extension to other scientific data: In our study, utilizing the structure of PDE solutions as “exact”
SSL augmentations for representation learning has shown significant efficacy over supervised methods.
This approach’s potential extends beyond the PDEs we study as many problems in mathematics,
physics, and chemistry present inherent symmetries that can be harnessed for SSL. Future directions
could include implementations of SSL for learning stochastic PDEs, or Hamiltonian systems. In
the latter, the rich study of Noether’s symmetries in relation to Poisson brackets could be a useful
setting to study [11]. Real-world data, as opposed to simulated data, may offer a nice application to
the SSL setting we study. Here, the exact form of the equation may not be known and symmetries of
the equations would have to be garnered from basic physical principles (e.g., flow equations have
translational symmetries), derived from conservation laws, or potentially learned from data.

Acknowledgements

The authors thank Aaron Lou, Johannes Brandstetter, and Daniel Worrall for helpful feedback and
discussions. HL is supported by the Fannie and John Hertz Foundation and the NSF Graduate
Fellowship under Grant No. 1745302.

10

References
[1] Mazier Raissi, Paris Perdikaris, and George E. Karniadakis. Physics-informed neural networks:

A deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational Physics, 378:686–707, 2019. ISSN
0021-9991. URL https://doi.org/10.1016/j.jcp.2018.10.045.

[2] George E. Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu
Yang. Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021. URL
https://doi.org/10.1038/s42254-021-00314-5.

[3] Samuel H Rudy, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Data-driven discovery
of partial differential equations. Science advances, 3(4):e1602614, 2017.

[4] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. Proceedings of the National
Academy of Sciences, 113(15):3932–3937, 2016. URL https://doi.org/10.1073/pnas.
1517384113.

[5] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In arXiv preprint arXiv:2103.00020, 2021.

[6] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 9650–9660, 2021.

[7] Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover.
ClimaX: A foundation model for weather and climate. arXiv preprint arXiv:2301.10343, 2023.

[8] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. Signature
verification using a" siamese" time delay neural network. Advances in neural information
processing systems, 6, 1993.

[9] Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regular-
ization for self-supervised learning. arXiv preprint arXiv:2105.04906, 2021.

[10] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. NeurIPS, 2020.

[11] Peter J. Olver. Symmetry groups and group invariant solutions of partial differential equations.
Journal of Differential Geometry, 14:497–542, 1979.

[12] Johannes Brandstetter, Max Welling, and Daniel E Worrall. Lie point symmetry data augmen-
tation for neural pde solvers. arXiv preprint arXiv:2202.07643, 2022.

[13] Nail H Ibragimov. CRC handbook of Lie group analysis of differential equations, volume 3.
CRC press, 1995.

[14] Gerd Baumann. Symmetry analysis of differential equations with Mathematica®. Springer
Science & Business Media, 2000.

[15] Florian Bordes, Randall Balestriero, Quentin Garrido, Adrien Bardes, and Pascal Vincent.
Guillotine regularization: Improving deep networks generalization by removing their head.
arXiv preprint arXiv:2206.13378, 2022.

[16] Quentin Garrido, Yubei Chen, Adrien Bardes, Laurent Najman, and Yann Lecun. On the
duality between contrastive and non-contrastive self-supervised learning. arXiv preprint
arXiv:2206.02574, 2022.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

11

https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1073/pnas.1517384113

[18] Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized
pde modeling. TMLR, 2022.

[19] Victor Isakov. Inverse problems for partial differential equations, volume 127. Springer, 2006.

[20] Randall Balestriero, Mark Ibrahim, Vlad Sobal, Ari Morcos, Shashank Shekhar, Tom Goldstein,
Florian Bordes, Adrien Bardes, Gregoire Mialon, Yuandong Tian, et al. A cookbook of self-
supervised learning. arXiv preprint arXiv:2304.12210, 2023.

[21] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International conference on machine
learning, pages 1597–1607. PMLR, 2020.

[22] Hale F Trotter. On the product of semi-groups of operators. Proceedings of the American
Mathematical Society, 10(4):545–551, 1959.

[23] Andrew M Childs, Yuan Su, Minh C Tran, Nathan Wiebe, and Shuchen Zhu. Theory of trotter
error with commutator scaling. Physical Review X, 11(1):011020, 2021.

[24] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von
Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the
opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

[25] Nadav Brandes, Dan Ofer, Yam Peleg, Nadav Rappoport, and Michal Linial. Proteinbert:
a universal deep-learning model of protein sequence and function. Bioinformatics, 38(8):
2102–2110, 2022.

[26] Jianyi Yang, Ivan Anishchenko, Hahnbeom Park, Zhenling Peng, Sergey Ovchinnikov, and
David Baker. Improved protein structure prediction using predicted interresidue orientations.
Proceedings of the National Academy of Sciences, 117(3):1496–1503, 2020.

[27] Rui Wang, Robin Walters, and Rose Yu. Incorporating symmetry into deep dynamics models
for improved generalization. arXiv preprint arXiv:2002.03061, 2020.

[28] Jack Richter-Powell, Yaron Lipman, and Ricky TQ Chen. Neural conservation laws: A
divergence-free perspective. arXiv preprint arXiv:2210.01741, 2022.

[29] Peter J. Baddoo, Benjamin Herrmann, Beverley J. McKeon, J. Nathan Kutz, and Steven L.
Brunton. Physics-informed dynamic mode decomposition (pidmd), 2021. URL https:
//arxiv.org/abs/2112.04307.

[30] Marc Finzi, Ke Alexander Wang, and Andrew G Wilson. Simplifying hamiltonian and
lagrangian neural networks via explicit constraints. Advances in neural information processing
systems, 33:13880–13889, 2020.

[31] Yuhan Chen, Takashi Matsubara, and Takaharu Yaguchi. Neural symplectic form: learn-
ing hamiltonian equations on general coordinate systems. Advances in Neural Information
Processing Systems, 34:16659–16670, 2021.

[32] Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani,
Dirk Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine
learning. Advances in Neural Information Processing Systems, 35:1596–1611, 2022.

[33] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[34] Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P. Brenner. Learning data-
driven discretizations for partial differential equations. Proceedings of the National
Academy of Sciences, 116(31):15344–15349, 2019. URL https://doi.org/10.1073/
pnas.1814058116.

[35] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic
models. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pages 8162–8171. PMLR, 18–24 Jul 2021.

12

https://arxiv.org/abs/2112.04307
https://arxiv.org/abs/2112.04307
https://doi.org/10.1073/pnas.1814058116
https://doi.org/10.1073/pnas.1814058116

[36] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations, 2021.

[37] Mert Bulent Sariyildiz, Yannis Kalantidis, Karteek Alahari, and Diane Larlus. No reason for
no supervision: Improved generalization in supervised models. In International Conference
on Learning Representations, 2023.

[38] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2:
Learning robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

[39] Adrien Bardes, Jean Ponce, and Yann LeCun. VICRegl: Self-supervised learning of local visual
features. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,
Advances in Neural Information Processing Systems, 2022. URL https://openreview.
net/forum?id=ePZsWeGJXyp.

[40] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In CVPR,
2020.

[41] Robin Winter, Marco Bertolini, Tuan Le, Frank Noe, and Djork-Arné Clevert. Unsuper-
vised learning of group invariant and equivariant representations. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural In-
formation Processing Systems, volume 35, pages 31942–31956. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
cf3d7d8e79703fe947deffb587a83639-Paper-Conference.pdf.

[42] Quentin Garrido, Laurent Najman, and Yann Lecun. Self-supervised learning of split invariant
equivariant representations. arXiv preprint arXiv:2302.10283, 2023.

[43] Janpou Nee and Jinqiao Duan. Limit set of trajectories of the coupled viscous burgers’
equations. Applied mathematics letters, 11(1):57–61, 1998.

[44] Peter J Olver. Symmetry groups and group invariant solutions of partial differential equations.
Journal of Differential Geometry, 14(4):497–542, 1979.

[45] Andrew Baker. Matrix groups: An introduction to Lie group theory. Springer Science &
Business Media, 2003.

[46] John D Dollard, Charles N Friedman, and Pesi Rustom Masani. Product integration with
applications to differential equations, volume 10. Westview Press, 1979.

[47] Masuo Suzuki. General theory of fractal path integrals with applications to many-body theories
and statistical physics. Journal of Mathematical Physics, 32(2):400–407, 1991.

[48] Robert I McLachlan and G Reinout W Quispel. Splitting methods. Acta Numerica, 11:
341–434, 2002.

[49] Stéphane Descombes and Mechthild Thalhammer. An exact local error representation of
exponential operator splitting methods for evolutionary problems and applications to linear
schrödinger equations in the semi-classical regime. BIT Numerical Mathematics, 50(4):
729–749, 2010.

[50] Klaus-Jochen Engel, Rainer Nagel, and Simon Brendle. One-parameter semigroups for linear
evolution equations, volume 194. Springer, 2000.

[51] Claudia Canzi and Graziano Guerra. A simple counterexample related to the lie–trotter product
formula. In Semigroup Forum, volume 84, pages 499–504. Springer, 2012.

[52] Mahdi Ramezanizadeh, Mohammad Hossein Ahmadi, Mohammad Alhuyi Nazari, Milad
Sadeghzadeh, and Lingen Chen. A review on the utilized machine learning approaches for
modeling the dynamic viscosity of nanofluids. Renewable and Sustainable Energy Reviews,
114:109345, 2019.

13

https://openreview.net/forum?id=ePZsWeGJXyp
https://openreview.net/forum?id=ePZsWeGJXyp
https://proceedings.neurips.cc/paper_files/paper/2022/file/cf3d7d8e79703fe947deffb587a83639-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/cf3d7d8e79703fe947deffb587a83639-Paper-Conference.pdf

[53] William D Fries, Xiaolong He, and Youngsoo Choi. Lasdi: Parametric latent space dynamics
identification. Computer Methods in Applied Mechanics and Engineering, 399:115436, 2022.

[54] Xiaolong He, Youngsoo Choi, William D Fries, Jon Belof, and Jiun-Shyan Chen. glasdi:
Parametric physics-informed greedy latent space dynamics identification. arXiv preprint
arXiv:2204.12005, 2022.

[55] Rahmad Syah, Naeim Ahmadian, Marischa Elveny, SM Alizadeh, Meysam Hosseini, and
Afrasyab Khan. Implementation of artificial intelligence and support vector machine learning
to estimate the drilling fluid density in high-pressure high-temperature wells. Energy Reports,
7:4106–4113, 2021.

[56] Ricardo Vinuesa and Steven L Brunton. Enhancing computational fluid dynamics with machine
learning. Nature Computational Science, 2(6):358–366, 2022.

[57] Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics:
Learning velocity and pressure fields from flow visualizations. Science, 367(6481):1026–1030,
2020.

[58] Ehsan Adeli, Luning Sun, Jianxun Wang, and Alexandros A Taflanidis. An advanced spatio-
temporal convolutional recurrent neural network for storm surge predictions. arXiv preprint
arXiv:2204.09501, 2022.

[59] Pin Wu, Feng Qiu, Weibing Feng, Fangxing Fang, and Christopher Pain. A non-intrusive
reduced order model with transformer neural network and its application. Physics of Fluids,
34(11):115130, 2022.

[60] Léonard Equer, T. Konstantin Rusch, and Siddhartha Mishra. Multi-scale message passing
neural pde solvers, 2023. URL https://arxiv.org/abs/2302.03580.

[61] Byungsoo Kim, Vinicius C Azevedo, Nils Thuerey, Theodore Kim, Markus Gross, and
Barbara Solenthaler. Deep fluids: A generative network for parameterized fluid simulations.
In Computer graphics forum, volume 38(2), pages 59–70. Wiley Online Library, 2019.

[62] Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear
embeddings of nonlinear dynamics. Nature communications, 9(1):4950, 2018.

[63] Peter J Schmid. Dynamic mode decomposition of numerical and experimental data. Journal
of fluid mechanics, 656:5–28, 2010.

[64] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 9729–9738, 2020.

[65] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

[66] Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised
vision transformers. In ICCV, 2021.

[67] Chun-Hsiao Yeh, Cheng-Yao Hong, Yen-Chi Hsu, Tyng-Luh Liu, Yubei Chen, and Yann
LeCun. Decoupled contrastive learning. arXiv preprint arXiv:2110.06848, 2021.

[68] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[69] Jeff Z HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees for self-
supervised deep learning with spectral contrastive loss. NeurIPS, 34, 2021.

[70] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for
unsupervised learning. In ECCV, 2018.

[71] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. In NeurIPS, 2020.

14

https://arxiv.org/abs/2302.03580

[72] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-
supervised learning via redundancy reduction. In ICML, pages 12310–12320. PMLR, 2021.

[73] Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto, and Nicu Sebe. Whitening for
self-supervised representation learning, 2021.

[74] Zengyi Li, Yubei Chen, Yann LeCun, and Friedrich T Sommer. Neural manifold clustering
and embedding. arXiv preprint arXiv:2201.10000, 2022.

[75] Vivien Cabannes, Bobak T Kiani, Randall Balestriero, Yann LeCun, and Alberto Bietti. The ssl
interplay: Augmentations, inductive bias, and generalization. arXiv preprint arXiv:2302.02774,
2023.

[76] Grégoire Mialon, Randall Balestriero, and Yann Lecun. Variance-covariance regulariza-
tion enforces pairwise independence in self-supervised representations. arXiv preprint
arXiv:2209.14905, 2022.

[77] Lars Schmarje, Monty Santarossa, Simon-Martin Schröder, and Reinhard Koch. A survey on
semi-, self-and unsupervised learning for image classification. IEEE Access, 9:82146–82168,
2021.

[78] Olmo Cerri, Thong Q Nguyen, Maurizio Pierini, Maria Spiropulu, and Jean-Roch Vlimant.
Variational autoencoders for new physics mining at the large hadron collider. Journal of High
Energy Physics, 2019(5):1–29, 2019.

[79] Carl Edward Rasmussen and Hannes Nickisch. Gaussian processes for machine learning
(gpml) toolbox. The Journal of Machine Learning Research, 11:3011–3015, 2010.

[80] Mahmut Kaya and Hasan Şakir Bilge. Deep metric learning: A survey. Symmetry, 11(9):1066,
2019.

[81] Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning pdes from data. In
International conference on machine learning, pages 3208–3216. PMLR, 2018.

[82] M Giselle Fernández-Godino, Chanyoung Park, Nam-Ho Kim, and Raphael T Haftka. Review
of multi-fidelity models. arXiv preprint arXiv:1609.07196, 2016.

[83] Alexander IJ Forrester, András Sóbester, and Andy J Keane. Multi-fidelity optimization
via surrogate modelling. Proceedings of the royal society a: mathematical, physical and
engineering sciences, 463(2088):3251–3269, 2007.

[84] Leo Wai-Tsun Ng and Michael Eldred. Multifidelity uncertainty quantification using non-
intrusive polynomial chaos and stochastic collocation. In 53rd aiaa/asme/asce/ahs/asc struc-
tures, structural dynamics and materials conference 20th aiaa/asme/ahs adaptive structures
conference 14th aiaa, page 1852, 2012.

[85] Paris Perdikaris, Maziar Raissi, Andreas Damianou, Neil D Lawrence, and George Em Karni-
adakis. Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473
(2198):20160751, 2017.

[86] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

[87] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. Advances in neural information processing systems, 30,
2017.

[88] Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution in
neural networks to the action of compact groups. In International Conference on Machine
Learning, pages 2747–2755. PMLR, 2018.

[89] Taco Cohen and Max Welling. Group equivariant convolutional networks. In International
conference on machine learning, pages 2990–2999. PMLR, 2016.

15

[90] Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural
networks. In International conference on machine learning, pages 9323–9332. PMLR, 2021.

[91] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

[92] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point
clouds. arXiv preprint arXiv:1802.08219, 2018.

[93] James Kirkpatrick, Brendan McMorrow, David HP Turban, Alexander L Gaunt, James S
Spencer, Alexander GDG Matthews, Annette Obika, Louis Thiry, Meire Fortunato, David
Pfau, et al. Pushing the frontiers of density functionals by solving the fractional electron
problem. Science, 374(6573):1385–1389, 2021.

[94] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and
applications. AI open, 1:57–81, 2020.

[95] Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst. Geodesic con-
volutional neural networks on riemannian manifolds. In Proceedings of the IEEE international
conference on computer vision workshops, pages 37–45, 2015.

[96] Jun Li, Li Fuxin, and Sinisa Todorovic. Efficient riemannian optimization on the stiefel
manifold via the cayley transform. arXiv preprint arXiv:2002.01113, 2020.

[97] Bobak Kiani, Randall Balestriero, Yann Lecun, and Seth Lloyd. projunn: efficient method for
training deep networks with unitary matrices. arXiv preprint arXiv:2203.05483, 2022.

[98] Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, and Léon Bottou. Symplectic recurrent
neural networks. arXiv preprint arXiv:1909.13334, 2019.

[99] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks.
In International conference on machine learning, pages 1120–1128. PMLR, 2016.

[100] Turgut Öziş and İSMAİL Aslan. Similarity solutions to burgers’ equation in terms of special
functions of mathematical physics. Acta Physica Polonica B, 2017.

[101] SP Lloyd. The infinitesimal group of the navier-stokes equations. Acta Mechanica, 38(1-2):
85–98, 1981.

[102] Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks.
arXiv preprint arXiv:1708.03888, 2017.

16

Appendix

Table of Contents

A PDE Symmetry Groups and Deriving Generators 18

A.1 Symmetry Groups and Infinitesimal Invariance 19

A.2 Deriving Generators of the Symmetry Group of a PDE 20

A.3 Example: Burgers’ Equation . 21

B Exponential map and its approximations 22

B.1 Approximations to the exponential map . 23

C VICReg Loss 24

D Expanded related work 25

E Details on Augmentations 26

E.1 Burgers’ equation . 26

E.2 KdV . 27

E.3 KS . 28

E.4 Navier Stokes . 28

F Experimental details 28

F.1 Experiments on Burgers’ Equation . 28

F.2 Experiments on KdV and KS . 30

F.3 Experiments on Navier-Stokes . 31

17

A PDE Symmetry Groups and Deriving Generators

Symmetry augmentations encourage invariance of the representations to known symmetry groups of
the data. The guiding principle is that inputs that can be obtained from one another via transformations
of the symmetry group should share a common representation. In images, such symmetries are known
a priori and correspond to flips, resizing, or rotations of the input. In PDEs, these symmetry groups
can be derived as Lie groups, commonly denoted as Lie point symmetries, and have been categorized
for many common PDEs [11]. An example of the form of such augmentations is given in Figure 6
for a simple PDE that rotates a point in 2-D space. In this example, the PDE exhibits both rotational
symmetry and scaling symmetry of the radius of rotation. For arbitrary PDEs, such symmetries can
be derived, as explained in more detail below.

𝑡 = 0
𝑡 = 1

𝑡 = 2

Example: symmetries and invariances of
𝜕𝑦
𝜕𝑡 = 𝛼𝑥

𝜕𝑥
𝜕𝑡 = −𝛼𝑦

rotational symmetry

scaling
symmetry

rotation speed
(invariant quantity)

Figure 6: Illustration of the PDE symmetry group and invariances of a simple PDE, which rotates
a point in 2-D space. The PDE symmetry group here corresponds to scalings of the radius of the
rotation and fixed rotations of all the points over time. A sample invariant quantity is the rate of
rotation (related to the parameter α in the PDE), which is fixed for any solution to this PDE.

The Lie point symmetry groups of differential equations form a Lie group structure, where elements
of the groups are smooth and differentiable transformations. It is typically easier to derive the
symmetries of a system of differential equations via the infinitesimal generators of the symmetries,
(i.e., at the level of the derivatives of the one parameter transforms). By using these infinitesimal
generators, one can replace nonlinear conditions for the invariance of a function under the group
transformation, with an equivalent linear condition of infinitesimal invariance under the respective
generator of the group action [11].

In what follows, we give an informal overview to the derivation of Lie point symmetries. Full details
and formal rigor can be obtained in Olver [11], Ibragimov [13], among others.

In the setting we consider, a differential equation has a set of p independent variables x =
(x1, x2, . . . , xp) ∈ Rp and q dependent variables u = (u1, u2, . . . , uq) ∈ Rq. The solutions
take the form u = f(x), where uα = fα(x) for α ∈ {1, . . . , q}. Solutions form a graph over a
domain Ω ⊂ Rp:

Γf = {(x, f(x)) : x ∈ Ω} ⊂ Rp × Rq. (10)

In other words, a given solution Γf forms a p-dimensional submanifold of the space Rp × Rq .

The n-th prolongation of a given smooth function Γf expands or “prolongs" the graph of the solution
into a larger space to include derivatives up to the n-th order. More precisely, if U = Rq is the
solution space of a given function and f : Rp → U , then we introduce the Cartesian product space of
the prolongation:

U (n) = U × U1 × U2 × · · · × Un, (11)

where Uk = Rdim(k) and dim(k) =
(
p+k−1

k

)
is the dimension of the so-called jet space consisting

of all k-th order derivatives. Given any solution f : Rp → U , the prolongation can be calculated by
simply calculating the corresponding derivatives up to order n (e.g., via a Taylor expansion at each
point). For a given function u = f(x), the n-th prolongation is denoted as u(n) = pr(n) f(x). As a
simple example, for the case of p = 2 with independent variables x and y and q = 1 with a single

18

dependent variable f , the second prolongation is

u(2) = pr(2) f(x, y) = (u;ux, uy;uxx, uxy, uyy)

=

(
f ;

∂f

∂x
,
∂f

∂y
;
∂2f

∂x2
,
∂2f

∂x∂y
,
∂2f

∂y2

)
∈ R1 × R2 × R3,

(12)

which is evaluated at a given point (x, y) in the domain. The complete space Rp × U (n) is often
called the n-th order jet space [11].

A system of differential equations is a set of l differential equations ∆ : Rp × U (n) → Rl of the
independent and dependent variables with dependence on the derivatives up to a maximum order of
n:

∆ν(x,u
(n)) = 0, ν = 1, . . . , l. (13)

A smooth solution is thus a function f such that for all points in the domain of x:

∆ν(x,pr
(n) f(x)) = 0, ν = 1, . . . , l. (14)

In geometric terms, the system of differential equations states where the given map ∆ vanishes on
the jet space, and forms a subvariety

Z∆ = {(x,u(n)) : ∆(x,u(n)) = 0} ⊂ Rp × U (n). (15)

Therefore to check if a solution is valid, one can check if the prolongation of the solution falls within
the subvariety Z∆. As an example, consider the one dimensional heat equation

∆ = ut − cuxx = 0. (16)

We can check that f(x, t) = sin(x)e−ct is a solution by forming its prolongation and checking if it
falls withing the subvariety given by the above equation:

pr(2) f(x, t) =
(
sin(x)e−ct; cos(x)e−ct,−c sin(x)e−ct;− sin(x)e−ct,−c cos(x)e−ct, c2 sin(x)e−ct

)
,

∆(x, t,u(n)) = −c sin(x)e−ct + c sin(x)e−ct = 0.
(17)

A.1 Symmetry Groups and Infinitesimal Invariance

A symmetry group G for a system of differential equations is a set of local transformations to
the function which transform one solution of the system of differential equations to another. The
group takes the form of a Lie group, where group operations can be expressed as a composition of
one-parameter transforms. More rigorously, given the graph of a solution Γf as defined in Eq. (10), a
group operation g ∈ G maps this graph to a new graph

g · Γf = {(x̃, ũ) = g · (x,u) : (x,u) ∈ Γf}, (18)

where (x̃, ũ) label the new coordinates of the solution in the set g · Γf . For example, if x = (x, t),
u = u(x, t), and g acts on (x, u) via

(x, t, u) 7→ (x+ ϵt, t, u+ ϵ),

then ũ(x̃, t̃) = u(x, t) + ϵ = u(x̃− ϵt̃, t̃) + ϵ, where (x̃, t̃) = (x+ ϵt, t).

Note, that the set g · Γf may not necessarily be a graph of a new x-valued function; however, since
all transformations are local and smooth, one can ensure transformations are valid in some region
near the identity of the group.

As an example, consider the following transformations which are members of the symmetry group of
the differential equation uxx = 0. g1(t) translates a single spatial coordinate x by an amount t and g2
scales the output coordinate u by an amount er:

g1(t) · (x, u) = (x+ t, u),

g2(r) · (x, u) = (x, er · u). (19)

It is easy to verify that both of these operations are local and smooth around a region of the identity,
as sending r, t→ 0 recovers the identity operation. Lie theory allows one to equivalently describe

19

the potentially nonlinear group operations above with corresponding infinitesimal generators of the
group action, corresponding to the Lie algebra of the group. Infinitesimal generators form a vector
field over the total space Ω × U , and the group operations correspond to integral flows over that
vector field. To map from a single parameter Lie group operation to its corresponding infinitesimal
generator, we take the derivative of the single parameter operation at the identity:

vg|(x,u) =
d

dt
g(t) · (x, u)

∣∣∣∣
t=0

, (20)

where g(0) · (x, u) = (x, u).

To map from the infinitesimal generator back to the corresponding group operation, one can apply
the exponential map

exp(tv) · (x,u) = g(t) · (x,u), (21)
where exp : g → G. Here, exp (·) maps from the Lie algebra, g, to the corresponding Lie group,
G. This exponential map can be evaluated using various methods, as detailed in Appendix B and
Appendix E.

Returning to the example earlier from Equation (19), the corresponding Lie algebra elements are

vg1 = ∂x ←→ g1(t) · (x, u) = (x+ t, u),

vg2 = u∂u ←→ g2(r) · (x, u) = (x, er · u). (22)

Informally, Lie algebras help simplify notions of invariance as it allows one to check whether
functions or differential equations are invariant to a group by needing only to check it at the level
of the derivative of that group. In other words, for any vector field corresponding to a Lie algebra
element, a given function is invariant to that vector field if the action of the vector field on the given
function evaluates to zero everywhere. Thus, given a symmetry group, one can determine a set
of invariants using the vector fields corresponding to the infinitesimal generators of the group. To
determine whether a differential equation is in such a set of invariants, we extend the definition of a
prolongation to act on vector fields as

pr(n) v
∣∣
(x,u(n))

=
d

dϵ

∣∣∣∣
ϵ=0

pr(n) [exp(ϵv)] (x,u(n)). (23)

A given vector field v is therefore an infinitesimal generator of a symmetry group G of a system
of differential equations ∆ν indexed by ν ∈ {1, . . . , l} if the prolonged vector field of any given
solution is still a solution:

pr(n) v[∆ν(x,u
(n))] = 0, ν = 1, . . . , l, whenever ∆(x,u(n)) = 0. (24)

For sake of convenience and brevity, we leave out many of the formal definitions behind these
concepts and refer the reader to [11] for complete details.

A.2 Deriving Generators of the Symmetry Group of a PDE

Since symmetries of differential equations correspond to smooth maps, it is typically easier to derive
the particular symmetries of a differential equation via their infinitesimal generators. To derive such
generators, we first show how to perform the prolongation of a vector field. As before, assume we
have p independent variables x1, . . . , xp and l dependent variables u1, . . . , ul, which are a function
of the dependent variables. Note that we use superscripts to denote a particular variable. Derivatives
with respect to a given variable are denoted via subscripts corresponding to the indices. For example,
the variable u1

112 denotes the third order derivative of u1 taken twice with respect to the variable x1

and once with respect to x2. As stated earlier, the prolongation of a vector field is defined as the
operation

pr(n) v
∣∣
(x,u(n))

=
d

dϵ

∣∣∣∣
ϵ=0

pr(n) [exp(ϵv)] (x,u(n)). (25)

To calculate the above, we can evaluate the formula on a vector field written in a generalized form.
I.e., any vector field corresponding to the infinitesimal generator of a symmetry takes the general
form

v =

p∑
i=1

ξi(x,u)
∂

∂xi
+

q∑
α=1

ϕα(x,u)
∂

∂uα
. (26)

20

Throughout, we will use Greek letter indices for dependent variables and standard letter indices for
independent variables. Then, we have that

pr(n) v = v +

q∑
α=1

∑
J

ϕJ
α(x,u

(n))
∂

∂uα
J

, (27)

where J is a tuple of dependent variables indicating which variables are in the derivative of ∂
∂uα

J
.

Each ϕJ
α(x,u

(n)) is calculated as

ϕJ
α(x,u

(n)) =
∏
i∈J

Di

(
ϕa −

p∑
i=1

ξiuα
i

)
+

p∑
i=1

ξiuα
J,i, (28)

where uα
J,i = ∂uα

J/∂x
i and Di is the total derivative operator with respect to variable i defined as

DiP (x, u(n)) =
∂P

∂xi
+

q∑
i=1

∑
J

uα
J,i

∂P

∂uα
J

. (29)

After evaluating the coefficients, ϕJ
α(x, u

(n)), we can substitute these values into the definition of
the vector field’s prolongation in Equation (27). This fully describes the infinitesimal generator of
the given PDE, which can be used to evaluate the necessary symmetries of the system of differential
equations. An example for Burgers’ equation, a canonical PDE, is presented in the following.

A.3 Example: Burgers’ Equation

Burgers’ equation is a PDE used to describe convection-diffusion phenomena commonly observed
in fluid mechanics, traffic flow, and acoustics [43]. The PDE can be written in either its “potential“
form or its “viscous” form. The potential form is

ut = uxx + u2
x. (30)

Cautionary note: We derive here the symmetries of Burgers’ equation in its potential form since this
form is more convenient and simpler to study for the sake of an example. The equation we consider
in our experiments is the more commonly studied Burgers’ equation in its standard form which does
not have the same Lie symmetry group (see Table 4). Similar derivations for Burgers’ equation in its
standard form can be found in example 6.1 of [44].

Following the notation from the previous section, p = 2 and q = 1. Consequently, the symmetry
group of Burgers’ equation will be generated by vector fields of the following form

v = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ ϕ(x, t, u)

∂

∂u
, (31)

where we wish to determine all possible coefficient functions, ξ(t, x, u), τ(x, t, u), and ϕ(x, t, u)
such that the resulting one-parameter sub-group exp (εv) is a symmetry group of Burgers’ equation.

To evaluate these coefficients, we need to prolong the vector field up to 2nd order, given
that the highest-degree derivative present in the governing PDE is of order 2. The 2nd prolongation
of the vector field can be expressed as

pr(2) v = v + ϕx ∂

∂ux
+ ϕt ∂

∂ut
+ ϕxx ∂

∂uxx
+ ϕxt ∂

∂uxt
+ ϕtt ∂

∂utt
. (32)

Applying this prolonged vector field to the differential equation in Equation (30), we get the infinites-
imal symmetry criteria that

pr(2) v[∆(x, t,u(2))] = ϕt − ϕxx + 2uxϕ
x = 0. (33)

To evaluate the individual coefficients, we apply Equation (28). Next, we substitute every instance
of ut with u2

x + uxx, and equate the coefficients of each monomial in the first and second-order

21

Table 3: Monomial coefficients in vector field prolongation for Burgers’ equation.

Monomial Coefficient

1 ϕt = ϕxx

ux 2ϕx + 2(ϕxu − ξxx) = −ξt
u2
x 2(ϕu − ξx)− τxx + (ϕuu − 2ξxu) = ϕu − τt

u3
x −2τx − 2ξu − 2τxu − ξuu = −ξu

u4
x −2τu − τuu = −τu

uxx −τxx + (ϕu − 2ξx) = ϕu − τt
uxuxx −2τx − 2τxu − 3ξu = −ξu
u2
xuxx −2τu − τuu − τu = −2τu
u2
xx −τu = −τu

uxt −2τx = 0
uxuxt −2τu = 0

derivatives of u to find the pertinent symmetry groups. Table 3 below lists the relevant monomials as
well as their respective coefficients.

Using these relations, we can solve for the coefficient functions. For the case of Burgers’ equation,
the most general infinitesimal symmetries have coefficient functions of the following form:

ξ(t, x) = k1 + k4x+ 2k5t+ 4k6xt (34)

τ(t) = k2 + 2k4t+ 4k6t
2 (35)

ϕ(t, x, u) = (k3 − k5x− 2k6t− k6x
2)u+ γ(x, t) (36)

where k1, . . . , k6 ∈ R and γ(x, t) is an arbitrary solution to Burgers’ equation. These coefficient
functions can be used to generate the infinitesimal symmetries. These symmetries are spanned by the
six vector fields below:

v1 = ∂x (37)

v2 = ∂t (38)

v3 = ∂u (39)

v4 = x∂x + 2t∂t (40)

v5 = 2t∂x − x∂u (41)

v6 = 4xt∂x + 4t2∂t − (x2 + 2t)∂u (42)

as well as the infinite-dimensional subalgebra: vγ = γ(x, t)e−u∂u. Here, γ(x, t) is any arbitrary
solution to the heat equation. The relationship between the Heat equation and Burgers’ equation can
be seen, whereby if u is replaced by w = eu, the Cole–Hopf transformation is recovered.

B Exponential map and its approximations

As observed in the previous section, symmetry groups are generally derived in the Lie algebra of
the group. The exponential map can then be applied, taking elements of this Lie algebra to the
corresponding group operations. Working within the Lie algebra of a group provides several benefits.
First, a Lie algebra is a vector space, so elements of the Lie algebra can be added and subtracted
to yield new elements of the Lie algebra (and the group, via the exponential map). Second, when
generators of the Lie algebra are closed under the Lie bracket of the Lie algebra (i.e., the generators
form a basis for the structure constants of the Lie algebra), any arbitrary Lie point symmetry can be
obtained via an element of the Lie algebra (i.e. the exponential map is surjective onto the connected
component of the identity) [11]. In contrast, composing group operations in an arbitrary, fixed
sequence is not guaranteed to be able to generate any element of the group. Lastly, although not
extensively detailed here, the "strength," or magnitude, of Lie algebra elements can be measured
using an appropriately selected norm. For instance, the operator norm of a matrix could be used for
matrix Lie algebras.

22

In certain cases, especially when the element v in the Lie algebra consists of a single basis element,
the exponential map exp(v) applied to that element of the Lie algebra can be calculated explicitly.
Here, applying the group operation to a tuple of independent and dependent variables results in the so-
called Lie point transformation, since it is applied at a given point exp(ϵv) · (x, f(x)) 7→ (x′, f(x)′).
Consider the concrete example below from Burger’s equation.
Example B.1 (Exponential map on symmetry generator of Burger’s equation). The Burger’s equation
contains the Lie point symmetry vγ = γ(x, t)e−u∂u with corresponding group transformation
exp(ϵvγ) · (x, t, u) = (x, t, log (eu + ϵγ)).

Proof. This transformation only changes the u component. Here, we have

exp
(
ϵγe−u∂u

)
u = u+

n∑
k=1

(
ϵγe−u∂u

)k · u
= u+ ϵγe−u − 1

2
ϵ2γ2e−2u +

1

3
ϵ3γ3e−3u + · · ·

(43)

Applying the series expansion log(1 + x) = x− x2

2 + x3

3 − · · · , we get

exp
(
ϵγe−u∂u

)
u = u+ log

(
1 + ϵγe−u

)
= log (eu) + log

(
1 + ϵγe−u

)
= log (eu + ϵγ) .

(44)

In general, the output of the exponential map cannot be easily calculated as we did above, especially
if the vector field v is a weighted sum of various generators. In these cases, we can still apply the
exponential map to a desired accuracy using efficient approximation methods, which we discuss next.

B.1 Approximations to the exponential map

For arbitrary Lie groups, computing the exact exponential map is often not feasible due to the
complex nature of the group and its associated Lie algebra. Hence, it is necessary to approximate the
exponential map to obtain useful results. Two common methods for approximating the exponential
map are the truncation of Taylor series and Lie-Trotter approximations.

Taylor series approximation Given a vector field v in the Lie algebra of the group, the exponential
map can be approximated by truncating the Taylor series expansion of exp(v). The Taylor series
expansion of the exponential map is given by:

exp(v) = Id+v +
1

2
v · v + · · · =

∞∑
n=0

vn

n!
. (45)

To approximate the exponential map, we retain a finite number of terms in the series:

exp(v) =

k∑
n=0

vn

n!
+ o(∥v∥k), (46)

where k is the order of the truncation. The accuracy of the approximation depends on the number
of terms retained in the truncated series and the operator norm ∥v∥. For matrix Lie groups, where
v is also a matrix, this operator norm is equivalent to the largest magnitude of the eigenvalues of
the matrix [45]. The error associated with truncating the Taylor series after k terms thus decays
exponentially with the order of the approximation.

Two drawbacks exist when using the Taylor approximation. First, for a given vector field v, applying
v · f to a given function f requires algebraic computation of derivatives. Alternatively, derivatives
can also be approximated through finite difference schemes, but this would add an additional source
of error. Second, when using the Taylor series to apply a symmetry transformation of a PDE to a
starting solution of that PDE, the Taylor series truncation will result in a new function, which is not
necessarily a solution of the PDE anymore (although it can be made arbitrarily close to a solution by
increasing the truncation order). Lie-Trotter approximations, which we study next, approximate the
exponential map by a composition of symmetry operations, thus avoiding these two drawbacks.

23

Lie-Trotter series approximations The Lie-Trotter approximation is an alternative method for
approximating the exponential map, particularly useful when one has access to group elements
directly, i.e. the closed-form output of the exponential map on each Lie algebra generator), but they
are non-commutative. To provide motivation for this method, consider two elements X and Y in the
Lie algebra. The Lie-Trotter formula (or Lie product formula) approximates the exponential of their
sum [22, 46].

exp(X + Y) = lim
n→∞

[
exp

(
X

n

)
exp

(
Y

n

)]n
≈
[
exp

(
X

k

)
exp

(
Y

k

)]k
, (47)

where k is a positive integer controlling the level of approximation.

The first-order approximation above can be extended to higher orders, referred to as the Lie-Trotter-
Suzuki approximations.Though various different such approximations exist, we particularly use the
following recursive approximation scheme [47, 23] for a given Lie algebra component v =

∑p
i=1 vi.

T2(v) = exp
(v1

2

)
· exp

(v2

2

)
· · · exp

(vp

2

)
exp

(vp

2

)
· exp

(vp−1

2

)
· · · exp

(v1

2

)
,

T2k(v) = T2k−2(ukv)
2 · T2k−2((1− 4uk)v) · T2k−2(ukv)

2,

uk =
1

4− 41/(2k−1)
.

(48)

To apply the above formula, we tune the order parameter p and split the time evolution into r segments
to apply the approximation exp(v) ≈

∏r
i=1 Tp(v/r). For the p-th order, the number of stages in

the Suzuki formula above is equal to 2 · 5p/2−1, so the total number of stages applied is equal to
2r · 5p/2−1.

These methods are especially useful in the context of PDEs, as they allow for the approximation of
the exponential map while preserving the structure of the Lie algebra and group. Similar techniques
are used in the design of splitting methods for numerically solving PDEs [48, 49]. Crucially, these
approximations will always provide valid solutions to the PDEs, since each individual group operation
in the composition above is itself a symmetry of the PDE. This is in contrast with approximations via
Taylor series truncation, which only provide approximate solutions.

As with the Taylor series approximation, the p-th order approximation above is accurate to o(∥v∥p)
with suitably selected values of r and p [23]. As a cautionary note, the approximations here may fail
to converge when applied to unbounded operators [50, 51]. In practice, we tested a range of bounds
to the augmentations and tuned augmentations accordingly (see Appendix E).

C VICReg Loss

In our implementations, we use the VICReg loss as our choice of SSL loss [9]. This loss contains
three different terms: a variance term that ensures representations do not collapse to a single point,
a covariance term that ensures different dimensions of the representation encode different data,
and an invariance term to enforce similarity of the representations for pairs of inputs related by an
augmentation. We go through each term in more detail below. Given a distribution T from which to
draw augmentations and a set of inputs xi, the precise algorithm to calculate the VICReg loss for a
batch of data is also given in Algorithm 1.

Formally, define our embedding matrices as Z,Z ′ ∈ RN×D. Next, we define the similarity criterion,
Lsim, as

Lsim(u,v) = ∥u− v∥22,
which we use to match our embeddings, and to make them invariant to the transformations. To avoid
a collapse of the representations, we use the original variance and covariance criteria to define our
regularisation loss, Lreg, as

Lreg(Z) = λcov C(Z) + λvar V (Z), with

C(Z) =
1

D

∑
i ̸=j

Cov(Z)2i,j and

V (Z) =
1

D

D∑
j=1

max

(
0, 1−

√
Var(Z:,j)

)
.

24

Algorithm 1 VICReg Loss Evaluation

Hyperparameters: λvar, λcov, λinv, γ ∈ R
Input: N inputs in a batch {xi ∈ RDin , i = 1, . . . , N}
VICRegLoss(N , xi, λvar, λcov , λinv , γ):

1: Apply augmentations t, t′ ∼ T to form embedding matrices Z,Z ′ ∈ RN×D:

Zi,: = hθ (fθ (t · xi)) and Z ′
i,: = hθ (fθ (t

′ · xi))

2: Form covariance matrices Cov(Z),Cov(Z ′) ∈ RD×D:

Cov(Z) =
1

N − 1

N∑
i=1

(
Zi,: −Zi,:

) (
Zi,: −Zi,:

)⊤
, Zi,: =

1

N

N∑
i=1

Zi,:

3: Evaluate loss: L(Z,Z ′) = λvarLvar(Z,Z ′) + λcovLcov(Z,Z ′) + λinvLinv(Z,Z ′)

Lvar(Z,Z ′) =
1

D

N∑
i=1

max(0, γ −
√

Cov(Z)ii) + max(0, γ −
√
Cov(Z ′)ii),

Lcov(Z,Z ′) =
1

D

N∑
i,j=1,i̸=j

[Cov(Z)ij]
2 + [Cov(Z ′)ij]

2,

Linv(Z,Z ′) =
1

N

N∑
i=1

∥Zi,: −Zi′,:∥2

4: Return: L(Z,Z ′)

The variance criterion, V (Z), ensures that all dimensions in the representations are used, while also
serving as a normalization of the dimensions. The goal of the covariance criterion is to decorrelate
the different dimensions, and thus, spread out information across the embeddings.

The final criterion is

LVICReg(Z,Z ′) = λinv
1

N

N∑
i=1

Lsim(Zi,inv,Z
′
i,inv) + Lreg(Z

′) + Lreg(Z).

Hyperparameters λvar, λcov, λinv, γ ∈ R weight the contributions of different terms in the loss. For
all studies conducted in this work, we use the default values of λvar = λinv = 25 and λcov = 1,
unless specified. In our experience, these default settings perform generally well.

D Expanded related work

Machine Learning for PDEs Recent work on machine learning for PDEs has considered both
invariant prediction tasks [52] and time-series modelling [53, 54]. In the fluid mechanics setting,
models learn dynamic viscosities, fluid densities, and/or pressure fields from both simulation and
real-world experimental data [55, 56, 57]. For time-dependent PDEs, prior work has investigated the
efficacy of convolutional neural networks (CNNs), recurrent neural networks (RNNs), graph neural
networks (GNNs), and transformers in learning to evolve the PDE forward in time [34, 58, 59, 60].
This has invoked interest in the development of reduced order models and learned representations for
time integration that decrease computational expense, while attempting to maintain solution accuracy.
Learning representations of the governing PDE can enable time-stepping in a latent space, where the
computational expense is substantially reduced [61]. Recently, for example, Lusch et al. have studied
learning the infinite-dimensional Koopman operator to globally linearize latent space dynamics [62].
Kim et al. have employed the Sparse Identification of Nonlinear Dynamics (SINDy) framework to
parameterize latent space trajectories and combine them with classical ODE solvers to integrate latent
space coordinates to arbitrary points in time [53]. Nguyen et al. have looked at the development of
foundation models for climate sciences using transformers pre-trained on well-established climate

25

datasets [7]. Other methods like dynamic mode decomposition (DMD) are entirely data-driven, and
find the best operator to estimate temporal dynamics [63]. Recent extensions of this work have also
considered learning equivalent operators, where physical constraints like energy conservation or the
periodicity of the boundary conditions are enforced [29].

Self-supervised learning All joint embedding self-supervised learning methods have a similar
objective: forming representations across a given domain of inputs that are invariant to a certain set of
transformations. Contrastive and non-contrastive methods are both used. Contrastive methods [21, 64,
65, 66, 67] push away unrelated pairs of augmented datapoints, and frequently rely on the InfoNCE
criterion [68], although in some cases, squared similarities between the embeddings have been
employed [69]. Clustering-based methods have also recently emerged [70, 71, 6], where instead
of contrasting pairs of samples, samples are contrasted with cluster centroids. Non-contrastive
methods [10, 40, 9, 72, 73, 74, 39] aim to bring together embeddings of positive samples. However,
the primary difference between contrastive and non-contrastive methods lies in how they prevent
representational collapse. In the former, contrasting pairs of examples are explicitly pushed away to
avoid collapse. In the latter, the criterion considers the set of embeddings as a whole, encouraging
information content maximization to avoid collapse. For example, this can be achieved by regularizing
the empirical covariance matrix of the embeddings. While there can be differences in practice, both
families have been shown to lead to very similar representations [16, 75]. An intriguing feature in
many SSL frameworks is the use of a projector neural network after the encoder, on top of which the
SSL loss is applied. The projector was introduced in [21]. Whereas the projector is not necessary for
these methods to learn a satisfactory representation, it is responsible for an important performance
increase. Its exact role is an object of study [76, 15].

We should note that there exists a myriad of techniques, including metric learning, kernel design,
autoencoders, and others [77, 78, 79, 80, 81] to build feature spaces and perform unsupervised
learning. Many of these works share a similar goal to ours, and we opted for SSL due to its proven
efficacy in fields like computer vision and the direct analogy offered by data augmentations. One
particular methodology that deserves mention is that of multi-fidelity modeling, which can reduce
dependency on extensive training data for learning physical tasks [82, 83, 84]. The goals of multi-
fidelity modeling include training with data of different fidelity [82] or enhancing the accuracy of
models by incorporating high quality data into models [85]. In contrast, SSL aims to harness salient
features from diverse data sources without being tailored to specific applications. The techniques
we employ capitalize on the inherent structure in a dataset, especially through augmentations and
invariances.

Equivariant networks and geometric deep learning In the past several years, an extensive set
of literature has explored questions in the so-called realm of geometric deep learning tying together
aspects of group theory, geometry, and deep learning [86]. In one line of work, networks have
been designed to explicitly encode symmetries into the network via equivariant layers or explicitly
symmetric parameterizations [87, 88, 89, 90]. These techniques have notably found particular
application in chemistry and biology related problems [91, 92, 93] as well as learning on graphs
[94]. Another line of work considers optimization over layers or networks that are parameterized
over a Lie group [95, 96, 97, 98, 99]. Our work does not explicitly encode invariances or structurally
parameterize Lie groups into architectures as in many of these works, but instead tries to learn
representations that are approximately symmetric and invariant to these group structures via the SSL.
As mentioned in the main text, perhaps more relevant for future work are techniques for learning
equivariant features and maps [41, 42].

E Details on Augmentations

The generators of the Lie point symmetries of the various equations we study are listed below. For
symmetry augmentations which distort the periodic grid in space and time, we provide inputs x and t
to the network which contain the new spatial and time coordinates after augmentation.

E.1 Burgers’ equation

As a reminder, the Burgers’ equation takes the form
ut + uux − νuxx = 0. (49)

26

Lie point symmetries of the Burgers’ equation are listed in Table 4. There are five generators. As we
will see, the first three generators corresponding to translations and Galilean boosts are consistent
with the other equations we study (KS, KdV, and Navier Stokes) as these are all flow equations.

Table 4: Generators of the Lie point symmetry group of the Burgers’ equation in its standard form
[44, 100].

Lie algebra generator
Group operation

(x, t, u) 7→
g1 (space translation) ϵ∂x (x+ ϵ , t, u)

g2 (time translation) ϵ∂t (x, t+ ϵ , u)

g3 (Galilean boost) ϵ(t∂x + ∂u) (x+ ϵt , t, u+ ϵ)

g4 (scaling) ϵ(x∂x + 2t∂t − u∂u) (eϵx , e2ϵt , e−ϵu)

g5 (projective) ϵ(xt∂x + t2∂t + (x− tu)∂u)

(
x

1− ϵt
,

t

1− ϵt
, u+ ϵ(x− tu)

)

Comments regarding error in [12] As a cautionary note, the symmetry group given in Table 1 of
[12] for Burgers’ equation is incorrectly labeled for Burgers’ equation in its standard form. Instead,
these augmentations are those for Burgers’ equation in its potential form, which is given as:

ut +
1

2
u2
x − νuxx = 0. (50)

Burgers’ equation in its standard form is vt + vvx − νvxx = 0, which can be obtained from the
transformation v = ux. The Lie point symmetry group of the equation in its potential form contains
more generators than that of the standard form. To apply these generators to the standard form
of Burgers’ equation, one can convert them via the Cole-Hopf transformation, but this conversion
loses the smoothness and locality of some of these transformations (i.e., some are no longer Lie
point transformations, although they do still describe valid transformations between solutions of the
equation’s corresponding form).

Note that this discrepancy does not carry through in their experiments: [12] only consider input
data as solutions to Heat equation, which they subsequently transform into solutions of Burgers’
equation via a Cole-Hopf transform. Therefore, in their code, they apply augmentations using the
Heat equation, for which they have the correct symmetry group. We opted only to work with solutions
to Burgers’ equations itself for a slightly fairer comparison to real-world settings, where a convenient
transform to a linear PDE such as the Cole-Hopf transform is generally not available.

E.2 KdV

Lie point symmetries of the KdV equation are listed in Table 5. Though all the operations listed are
valid generators of the symmetry group, only g1 and g3 are invariant to the downstream task of the
inverse problem. (Notably, these parameters are independent of any spatial shift). Consequently,
during SSL pre-training for the inverse problem, only g1 and g3 were used for learning representations.
In contrast, for time-stepping, all listed symmetry groups were used.

Table 5: Generators of the Lie point symmetry group of the KdV equation. The only symmetries used
in the inverse task of predicting initial conditions are g1 and g3 since the other two are not invariant
to the downstream task.

Lie algebra generator
Group operation

(x, t, u) 7→
g1 (space translation) ϵ∂x (x+ ϵ , t, u)

g2 (time translation) ϵ∂t (x, t+ ϵ , u)

g3 (Galilean boost) ϵ(t∂x + ∂u) (x+ ϵt , t, u+ ϵ)

g4 (scaling) ϵ(x∂x + 3t∂t − 2u∂u) (eϵx , e3ϵt , e−2ϵu)

27

E.3 KS

Lie point symmetries of the KS equation are listed in Table 6. All of these symmetry generators are
shared with the KdV equation listed in Table 4. Similar to KdV, only g1 and g3 are invariant to the
downstream regression task of predicting the initial conditions. In addition, for time-stepping, all
symmetry groups were used in learning meaningful representations.

Table 6: Generators of the Lie point symmetry group of the KS equation. The only symmetries
used in the inverse task of predicting initial conditions are g1 and g3 since g2 is not invariant to the
downstream task.

Lie algebra generator
Group operation

(x, t, u) 7→
g1 (space translation) ϵ∂x (x+ ϵ , t, u)

g2 (time translation) ϵ∂t (x, t+ ϵ , u)

g3 (Galilean boost) ϵ(t∂x + ∂u) (x+ ϵt , t, u+ ϵ)

E.4 Navier Stokes

Lie point symmetries of the incompressible Navier Stokes equation are listed in Table 7 [101].
As pressure is not given as an input to any of our networks, the symmetry gq was not included
in our implementations. For augmentations gEx

and gEy
, we restricted attention only to linear

Ex(t) = Ey(t) = t or quadratic Ex(t) = Ey(t) = t2 functions. This restriction was made to
maintain invariance to the downstream task of buoyancy force prediction in the linear case or easily
calculable perturbations to the buoyancy by an amount 2ϵ to the magnitude in the quadratic case.
Finally, we fix both order and steps parameters in our Lie-Trotter approximation implementation to 2
for computationnal efficiency.

F Experimental details

Whereas we implemented our own pretraining and evaluation (kinematic viscosity, initial conditions
and buoyancy) pipelines, we used the data generation and time-stepping code provided on Github
by [12] for Burgers’, KS and KdV, and in [18] for Navier-Stokes (MIT License), with slight modifica-
tion to condition the neural operators on our representation. All our code relies relies on Pytorch.
Note that the time-stepping code for Navier-Stokes uses Pytorch Lightning. We report the details
of the training cost and hyperparameters for pretraining and timestepping in Table 9 and Table 10
respectively.

F.1 Experiments on Burgers’ Equation

Solutions realizations of Burgers’ equation were generated using the analytical solution [32] obtained
from the Heat equation and the Cole-Hopf transform. During generation, kinematic viscosities, ν,
and initial conditions were varied.

Representation pretraining We pretrain a representation on subsets of our full dataset containing
10, 000 1D time evolutions from Burgers equation with various kinematic viscosities, ν, sampled
uniformly in the range [0.001, 0.007], and initial conditions using a similar procedure to [12]. We
generate solutions of size 224× 448 in the spatial and temporal dimensions respectively, using the
default parameters from [12]. We train a ResNet18 [17] encoder using the VICReg [9] approach to
joint embedding SSL, with a smaller projector (width 512) since we use a smaller ResNet than in the
original paper. We keep the same variance, invariance and covariance parameters as in [9]. We use
the following augmentations and strengths:

• Crop of size (128, 256), respectively, in the spatial and temporal dimension.
• Uniform sampling in [−2, 2] for the coefficient associated to g1.
• Uniform sampling in [0, 2] for the coefficient associated to g2.
• Uniform sampling in [−0.2, 0.2] for the coefficient associated to g3.

28

Table 7: Generators of the Lie point symmetry group of the incompressible Navier Stokes equation.
Here, u, v correspond to the velocity of the fluid in the x, y direction respectively and p corresponds
to the pressure. The last three augmentations correspond to infinite dimensional Lie subgroups
with choice of functions Ex(t), Ey(t), q(t) that depend on t only. For invariant tasks, we only used
settings where Ex(t), Ey(t) = t (linear) or Ex(t), Ey(t) = t2 (quadratic) to ensure invariance to the
downstream task or predictable changes in the outputs of the downstream task. These augmentations
are listed as numbers 6 to 9.

Lie algebra generator
Group operation
(x, y, t, u, v, p) 7→

g1 (time translation) ϵ∂t (x, y, t+ ϵ , u, v, p)

g2 (x translation) ϵ∂x (x+ ϵ , y, t, u, v, p)

g3 (y translation) ϵ∂y (x, y + ϵ , t, u, v, p)

g4 (scaling)
ϵ(2t∂t + x∂x + y∂y
− u∂u − v∂v − 2p∂p)

(eϵx , eϵy , e2ϵt , e−ϵu , e−ϵv , e−2ϵp)

g5 (rotation) ϵ(x∂y − y∂x + u∂v − v∂u)
(x cos ϵ− y sin ϵ , x sin ϵ+ y cos ϵ , t,

u cos ϵ− v sin ϵ , u sin ϵ+ v cos ϵ , p)

g6 (x linear boost)1 ϵ(t∂x + ∂u) (x+ ϵt , y, t, u+ ϵ , v, p)

g7 (y linear boost)1 ϵ(t∂y + ∂v) (x, y + ϵt , t, u, v + ϵ , p)

g8 (x quadratic boost)2 ϵ(t2∂x + 2t∂u − 2x∂p) (x+ ϵt2 , y, t, u+ 2ϵt , v, p− 2x)

g9 (y quadratic boost)2 ϵ(t2∂y + 2t∂v − 2y∂p) (x, y + ϵt2 , t, u, v + 2ϵt , p− 2y)

gEx
(x general boost)3

ϵ(Ex(t)∂x + E′
x(t)∂u

− xE′′
x(t)∂p)

(x+ ϵEx(t) , y, t,

u+ ϵE′
x(t) , v, p− E′′x(t)x)

gEy (y general boost)3
ϵ(Ey(t)∂y + E′y(t)∂v

− yE′′y(t)∂p)

(x, y + ϵEy(t) , t,

u, v + ϵE′y(t) , p− E′′y(t)y)

gq (additive pressure)3 ϵq(t)∂p (x, y, t, u, v, p+ q(t))
1 case of gEx

or gEy
where Ex(t) = Ey(t) = t (linear function of t)

2 case of gEx
or gEy

where Ex(t) = Ey(t) = t2 (quadratic function of t)
3 Ex(t), Ey(t), q(t) can be any given smooth function that only depends on t

• Uniform sampling in [−1, 1] for the coefficient associated to g4.

We pretrain for 100 epochs using AdamW [33] and a batch size of 32. Crucially, we assess the quality
of the learned representation via linear probing for kinematic viscosity regression, which we detail
below.

Kinematic viscosity regression We evaluate the learned representation as follows: the ResNet18 is
frozen and used as an encoder to produce features from the training dataset. The features are passed
through a linear layer, followed by a sigmoid to constrain the output within [νmin, νmax]. The learned
model is evaluated against our validation dataset, which is comprised of 2, 000 samples.

Time-stepping We use a 1D CNN solver from [12] as our baseline. This neural solver takes Tp

previous time steps as input, to predict the next Tf future ones. Each channel (or spatial axis, if we
view the input as a 2D image with one channel) is composed of the realization values, u, at Tp times,
with spatial step size dx, and time step size dt. The dimension of the input is therefore (Tp + 2, 224),
where the extra two dimensions are simply to capture the scalars dx and dt. We augment this input
with our representation. More precisely, we select the encoder that allows for the most accurate
linear regression of ν with our validation dataset, feed it with the CNN operator input and reduce the
resulting representation dimension to d with a learned projection before adding it as supplementary
channels to the input, which is now (Tp + 2 + d, 224).

We set Tp = 20, Tf = 20, and nsamples = 2, 000. We train both models for 20 epochs fol-

29

Table 8: One-step validation NMSE for time-stepping on Burgers for different architectures.
Architecture ResNet1d FNO1d

Baseline (no conditioning) 0.110 ± 0.008 0.184 ± 0.002
Representation conditioning 0.108 ± 0.011 0.173 ± 0.002

lowing the setup from [12]. In addition, we use AdamW with a decaying learning rate and different
configurations of 3 runs each:

• Batch size ∈ {16, 64}.
• Learning rate ∈ {0.0001, 0.00005}.

F.2 Experiments on KdV and KS

To obtain realizations of both the KdV and KS PDEs, we apply the method of lines, and compute
spatial derivatives using a pseudo-spectral method, in line with the approach taken by [12].

Representation pretraining To train on realizations of KdV, we use the following VICReg param-
eters: λvar = 25, λinv = 25, and λcov = 4. For the KS PDE, the λvar and λinv remain unchanged,
with λcov = 6. The pre-training is performed on a dataset comprised of 10, 000 1D time evolutions of
each PDE, each generated from initial conditions described in the main text. Generated solutions were
of size 128× 256 in the spatial and temporal dimensions, respectively. Similar to Burgers’ equation,
a ResNet18 encoder in conjunction with a projector of width 512 was used for SSL pre-training. The
following augmentations and strengths were applied:

• Crop of size (32, 256), respectively, in the spatial and temporal dimension.

• Uniform sampling in [−0.2, 0.2] for the coefficient associated to g3.

Initial condition regression The quality of the learned representations is evaluated by freezing the
ResNet18 encoder, training a separate regression head to predict values of Ak and ωk, and comparing
the NMSE to a supervised baseline. The regression head was a fully-connected network, where
the output dimension is commensurate with the number of initial conditions used. In addition, a
range-constrained sigmoid was added to bound the output between [−0.5, 2π], where the bounds
were informed by the minimum and maximum range of the sampled initial conditions. Lastly, similar
to Burgers’ equation, the validation dataset is comprised of 2, 000 labeled samples.

Time-stepping The same 1D CNN solver used for Burgers’ equation serves as the baseline for
time-stepping the KdV and KS PDEs. We select the ResNet18 encoder based on the one that
provides the most accurate predictions of the initial conditions with our validation set. Here, the
input dimension is now (Tp + 2, 128) to agree with the size of the generated input data. Similarly
to Burgers’ equation, Tp = 20, Tf = 20, and nsamples = 2, 000. Lastly, AdamW with the same
learning rate and batch size configurations as those seen for Burgers’ equation were used across 3
time-stepping runs each.

A sample visualization with predicted instances of the KdV PDE is provided in Fig. 7 be-
low:

Ground Truth Predicted (SSL pre-training) Predicted (CNN baseline)

Figure 7: Illustration of the 20 predicted time steps for the KdV PDE. (Left) Ground truth data from
PDE solver; (Middle) Predicted u(x, t) using learned representations; (Right) Predicted output from
using the CNN baseline.

30

Table 9: List of model hyperparameters and training details for the invariant tasks. Training time
includes periodic evaluations during the pretraining.

Equation Burgers’ KdV KS Navier Stokes
Network:

Model ResNet18 ResNet18 ResNet18 ResNet18
Embedding Dim. 512 512 512 512

Optimization:
Optimizer LARS [102] AdamW AdamW AdamW
Learning Rate 0.6 0.3 0.3 3e-4
Batch Size 32 64 64 64
Epochs 100 100 100 100
Nb of exps ∼ 300 ∼ 30 ∼ 30 ∼ 300

Hardware:
GPU used Nvidia V100 Nvidia M4000 Nvidia M4000 Nvidia V100
Training time ∼ 5h ∼ 11h ∼ 12h ∼ 48h

F.3 Experiments on Navier-Stokes

We use the Conditioning dataset for Navier Stokes-2D proposed in [18], consisting of 26,624 2D
time evolutions with 56 time steps and various buoyancies ranging approximately uniformly from 0.2
to 0.5.

Representation pretraining We train a ResNet18 for 100 epochs with AdamW, a batch size of 64
and a learning rate of 3e-4. We use the same VICReg hyperparameters as for Burgers’ Equation. We
use the following augmentations and strengths (augmentations whose strength is not specified here
are not used):

• Crop of size (16, 128, 128), respectively in temporal, x and y dimensions.
• Uniform sampling in [−1, 1] for the coefficients associated to g2 and g3 (applied respectively

in x and y).
• Uniform sampling in [−0.1, 0.1] for the coefficients associated to g5.
• Uniform sampling in [−0.01, 0.01] for the coefficients associated to g6 and g7 (applied

respectively in x and y).
• Uniform sampling in [−0.01, 0.01] for the coefficients associated to g8 and g9 (applied

respectively in x and y).

Buoyancy regression We evaluate the learned representation as follows: the ResNet18 is frozen
and used as an encoder to produce features from the training dataset. The features are passed through
a linear layer, followed by a sigmoid to constrain the output within [Buoyancymin,Buoyancymax].
Both the fully supervised baseline (ResNet18 + linear head) and our (frozen ResNet18 + linear head)
model are trained on 3, 328 unseen samples and evaluated against 6, 592 unseen samples.

Time-stepping We mainly depart from [18] by using 20 epochs to learn from 1,664 trajectories as
we observe the results to be similar, and allowing to explore more combinations of architectures and
conditioning methods.

Time-stepping results In addition to results on 1,664 trajectories, we also perform experiments
with bigger train dataset (6,656) as in [18], using 20 epochs instead of 50 for computational reasons.
We also report results for the two different conditioning methods described in [18], Addition and
AdaGN. The results can be found in Table 11. As in [18], AdaGN outperforms Addition. Note that
AdaGN is needed for our representation conditioning to significantly improve over no conditioning.
Finally, we found a very small bottleneck in the MLP that process the representation to also be crucial
for performance, with a size of 1 giving the best results.

31

Table 10: List of model hyperparameters and training details for the timestepping tasks.
Equation Burgers’ KdV KS Navier Stokes
Neural Operator:

Model CNN [12] CNN [12] CNN [12] Modified U-Net-64 [18]
Optimization:

Optimizer AdamW AdamW AdamW Adam
Learning Rate 1e-4 1e-4 1e-4 2e-4
Batch Size 16 16 16 32
Epochs 20 20 20 20

Hardware:
GPU used Nvidia V100 Nvidia M4000 Nvidia M4000 Nvidia V100 (16)
Training time ∼ 1d ∼ 2d ∼ 2d ∼ 1.5d

Table 11: One-step validation MSE ×1e−3 (↓) for Navier-Stokes for different baselines and condi-
tioning methods, with UNetmod64 [18] as base model.

Dataset size 1,664 6,656
Methods without ground truth buoyancy:
Time conditioned, Addition 2.60 ± 0.05 1.18 ± 0.03
Time + Rep. conditioned, Addition (ours) 2.47 ± 0.02 1.17 ± 0.04
Time conditioned, AdaGN 2.37 ± 0.01 1.12 ± 0.02
Time + Rep. conditioned, AdaGN (ours) 2.35 ± 0.03 1.11 ± 0.01
Methods with ground truth buoyancy:
Time + Buoyancy conditioned, Addition 2.08 ± 0.02 1.10 ± 0.01
Time + Buoyancy conditioned, AdaGN 2.01 ± 0.02 1.06 ± 0.04

32

	Introduction
	Methodology
	Self-Supervised Learning (SSL)
	Augmentations and PDE Symmetry Groups

	Related Work
	Experiments
	Equation parameter regression
	Time-stepping
	Analysis

	Discussion
	PDE Symmetry Groups and Deriving Generators
	Symmetry Groups and Infinitesimal Invariance
	Deriving Generators of the Symmetry Group of a PDE
	Example: Burgers' Equation

	Exponential map and its approximations
	Approximations to the exponential map

	VICReg Loss
	Expanded related work
	Details on Augmentations
	Burgers' equation
	KdV
	KS
	Navier Stokes

	Experimental details
	Experiments on Burgers' Equation
	Experiments on KdV and KS
	Experiments on Navier-Stokes

