Private Federated Frequency Estimation: Adapting to the Hardness of the Instance

Anonymous Author(s) Affiliation Address email

Abstract

In *federated frequency estimation* (FFE), multiple clients work together to estimate 1 2 the frequency of their local data by communicating with a server, while respecting 3 the security constraints of Secure Summation (SecSum) where the server can only access the sum of client-held vectors. For FFE with a single communication 4 5 round, it is known that *count sketch* is nearly information-theoretically optimal [8]. However, when multiple communication rounds are allowed, we propose a 6 new sketching algorithm that is *provably* more accurate than a naive adaptation 7 of count sketch. Furthermore, we show that both our sketch algorithm and count 8 9 sketch can achieve better accuracy when the problem instance is simpler. Therefore, we propose a two-phase approach to enable the use of a smaller sketch size for 10 simpler problems. Finally, we provide mechanisms to make our proposed algorithm 11 differentially private. We verify the superior performance of our methods through 12 experiments conducted on several largescale datasets. 13

14 **1** Introduction

In many distributed learning applications, a server seeks to compute population information about 15 data that is distributed across multiple clients (users). For example, consider a distributed frequency 16 estimation problem where there are n clients, each holding a local data from a domain of size d, 17 and a server that aims to estimate the frequency of the items from the n clients with a minimum 18 communication cost. This task can be done efficiently by letting each client binary encode their data 19 and send the encoding to the server, at a local communication bandwidth cost of $\log(d)$ bits. Provided 20 with the binary encoding, the server can faithfully decode each local data and compute the global 21 frequency vector (i.e., the normalized histogram vector). 22

However, the local data could be sensitive or private, and the clients may wish to keep it hidden 23 from the server. The above binary encoding communication method, unfortunately, allows the server 24 to observe each individual local data, and therefore may not satisfy the users' privacy concerns. 25 26 Federated Analytics (FA) [16, 18] addresses this issue by developing new methods that enable the server to learn population information about the clients while preventing the server from prying on 27 any individual local data. In particular, a cryptographic multi-party computation protocol, Secure 28 Summation (SecSum) [1], has become a widely adopted solution to provide data minimization 29 guarantees for FA [3]. Specifically, SecSum sets up a communication protocol between clients and 30 the server, which injects carefully designed additive noise to each data that cancels out when all of 31 the local data is summed together, but blurs out (information theoretically) each individual local data 32 otherwise. Under SecSum, the server is able to faithfully obtain the correct summation of the data from 33 all clients but is unable to read a single local data. Federated frequency estimation (FFE) problems 34 refer to the distributed frequency estimation problems under the constraint of SecSum. Clearly, the 35 binary encoding method is not compatible with SecSum, because when the binary encoding is passed 36

to the server through SecSum, the server only gets the summation of the binary encodings of the users' data, which does not provide sufficient information for computing the global frequency vector.

A naive approach to FFE is by employing *one-hot encoding*: each client encodes its local data into 39 a d-dimensional one-hot vector that represents the local frequency vector and sends it to the server 40 through SecSum. Then the server observes the summation of the local frequency vectors using 41 SecSum and scales it by the number of clients to obtain the true frequency vector. However, the 42 one-hot encoding approach costs $\Theta(d \log(n))$ bits of communication bandwidth. This is because 43 SecSum adds noise from a field of size $\Theta(n)$ to each component of the d-dimensional local frequency 44 vector [1]. With a linear dependence on domain size d, the one-hot encoding approach is inefficient 45 for large domain problems, especially when the domain size exceeds the number of clients (d > n). 46 In what follows, we will focus on this regime and assume that d > n. 47

Recently, linear compression methods were applied to mitigate the high communication cost issue 48 for FFE with large domains [7, 8]. The idea is to first *linearly compress* the local frequency 49 vector into a lower dimensional vector before sending it to the server through SecSum; as linear 50 compression operators commute with the summation operator, the server equivalently observes a 51 linearly compressed global frequency vector though SecSum (after rescaling by the number of clients). 52 The server then applies standard decoding methods to approximately recover the global frequency 53 vector from the linearly compressed one. In particular, Chen et al. [8] show that CountSketch [6] 54 (among other sparse recover methods) can be used as a linear compressor for the above purpose, 55 which leads to a communication bandwidth cost of $\mathcal{O}(n \log(d) \log(n))$ bits. Therefore when d > d56 n, CountSketch achieves a saving in local communication bandwidth compared to the one-hot 57 encoding method that requires $\Theta(d \log(n))$ bits. Moreover, Chen et al. [8] show that for FFE with a 58 single communication round, an $\Omega(n \log(d))$ local communication cost is information-theoretically 59 unavoidable for worst-case data distributions, i.e., without making additional assumptions on the 60 global frequency vector. 61

62 Contributions. In this work, we make three notable extensions to CountSketch for FFE problems.

Firstly, we show that the way Chen et al. [8] set up the sketch size (linear in the number of clients
 n) is often *pessimistic* (see Corollary 2.4). In fact, in the streaming literature, the estimation error
 afforded by CountSketch is known to adapt to the tail norm of the global frequency vector [13],
 which is often sub-linear in *n*. Motivated by this, we provide an easy-to-use, two-phase approach
 that allows practitioners to determine the necessary sketch size by automatically adapting to the
 hardness the FFE problem instance.

Secondly, we consider FFE with multiple communication rounds, which better models practical 2 69 deployments of FA where aggregating over (hundreds of) millions of clients in a single round is not 70 possible due to device availability and limited server bandwidth. We propose a new multi-round 71 sketch algorithm called HybridSketch that provably performs better than simple adaptations of 72 73 CountSketch in the multi-round setting, leading to further improvements in the communication cost. Quite surprisingly, we show that HybridSketch adapts to the tail norm of a *heterogeneity* 74 *vector* (see Theorem 3.2). Moreover, the tail of the heterogeneity vector is always no heavier, 75 and could be much lighter, than that of the global frequency vector, explaining the advantage 76 of HybridSketch. For instance, on the C4 dataset [4] with a domain size of d = 150,868 and 77 150,000 users, we show that our method can reduce the sketch size by 83% relative to simple 78 sketching methods. 79

3. Finally, we extend the Gaussian mechanism for CountSketch proposed by Pagh and Thorup [14], Zhao et al. [17] to the multi-round FFE setting to show how our sketching methods can be

[14], Zhao et al. [17] to the multi-round FFE setting to show how our sketching methods can be
 made differentially private [10]. We also characterize the trade-offs between accuracy and privacy
 for our proposed method.

We conclude by verifying the performance of our methods through experiments conducted on several large-scale datasets. All proofs and additional experimental results are differed to the appendices.

⁸⁶ 2 Adapting CountSketch to the Hardness of the Instance

In this part, we focus on single-round FFE and show how CountSketch can achieve better results when the underlying problem is simpler. Motivated by this, we also provide a two-phase method for auto-tuning the hyperparameters of CountSketch, allowing it to automatically adapt to the hardness
 of the instance.

Single-Round FFE. Consider n clients, each holding an item from a discrete domain of size d.

The items are denoted by $x_t \in [d]$ for t = 1, ..., n. Then the frequency of item j is denoted by

$$f_j := \frac{1}{n} \sum_{t=1}^n \mathbb{1} [x_t = j].$$

⁹³ We use \mathbf{x}_t to denote the one-hot representation of x_t , i.e., $\mathbf{x}_t = \mathbf{e}_{x_t}$ where $(\mathbf{e}_t)_{t=1}^d$ refers to the ⁹⁴ canonical basis. Then the frequency vector can be denoted by

$$\mathbf{f} := (f_1, \dots, f_d)^{\top} = \frac{1}{n} \sum_{t=1}^n \mathbf{x}_t \in [0, 1]^d.$$

In single-round FFE, the n clients communicate with a server once under the constraint of SecSum, and aim to estimate the frequency vector **f**. Note that SecSum ensures that the server can only observe

97 the sum of the local data.

Count Sketch. CountSketch is a classic streaming algorithm that dates back to [6]. In the literature of streaming algorithms, CountSketch has been extensively studied and is known to be able to adapt to the hardness of the problem instance. Specifically, CountSketch of a fixed size induces an estimation error adapting to the tail norm of the global frequency vector [13].

A recent work by Chen et al. [8] apply CountSketch to single-round FFE. See Algorithm 2 in 102 Appendix A for details. They show that CountSketch approximately solves single-round FFE 103 with a communication cost of $\mathcal{O}(n \log(d) \log(n))$ bits per client. Moreover, they show $\Omega(n \log(d))$ 104 bits of communication per client is unavoidable for worst-case data distributions (unless additional 105 assumptions are made), confirming its near optimality. However, the results by Chen et al. [8] 106 are *pessimistic* as they ignore the ability of CountSketch to adapt to the hardness of the problem 107 instance. In what follows, we show how the performance of CountSketch can be improved when 108 the underlying problem becomes simpler. 109

We first present a problem-dependent accuracy guarantee for CountSketch of a fixed size, $L \times W$, that gives the sharpest bound to our knowledge. The bound is due to Minton and Price [13] and is restated for our purpose.

Proposition 2.1 (Restated Theorem 4.1 in Minton and Price [13]). Let $(\hat{f}_j)_{j=1}^d$ be estimates produced by CountSketch (see Algorithm 2). Then for each $p \in (0, 1)$, $W \ge 2$ and $L \ge \log(1/p)$, it holds that: for each $j \in [d]$, with probability at least 1 - p,

$$|\hat{f}_j - f_j| < C \cdot \sqrt{\frac{\log(1/p)}{L} \cdot \frac{1}{W} \cdot \sum_{i > W} (f_i^*)^2},$$

where $(f_i^*)_{i\geq 1}$ refers to $(f_i)_{i\geq 1}$ sorted in non-increasing order, and C > 0 is an absolute constant.

117 For the concreteness of discussion, we will focus on ℓ_∞ as a measure of estimation error in the

remainder of the paper. Our discussions can be easily extended to ℓ_2 or other types of error measures.

Proposition 2.1 directly implies the following ℓ_{∞} -error bounds for CountSketch (by an application of union bound).

121 **Corollary 2.2** (ℓ_{∞} -error bounds for CountSketch). Consider Algorithm 2. Then for each $p \in (0, 1)$, 122 $L = \log(d/p)$ and $W \ge 2$, it holds that: with probability at least 1 - p.

22
$$L = \log(a/p)$$
 and $w \ge 2$, it notas that: with probability at least $1 - p$,

$$\|\operatorname{dec}(\cdot) - \mathbf{f}\|_{\infty} < C \cdot \sqrt{\frac{1}{W} \cdot \sum_{i > W} (f_i^*)^2},\tag{1}$$

where C > 0 is an absolute constant. In particular, (1) implies that

$$\|\texttt{dec}(\cdot)-\mathbf{f}\|_\infty < \frac{C}{W}$$

According to Corollary 2.2, the estimation error will be smaller when the underlying frequency vector

¹²⁵ $(f_i^*)_{i\geq 1}$ has a lighter tail. Said differently, CountSketch needs less communication bandwidth when ¹²⁶ the global frequency vector has a lighter tail. Our next Corollary 2.3 precisely characterizes this

the global frequency vector has a lighter tail. Our next Corollary 2.3 precisely characterizes this adaptive property in terms of the required communication bandwidth. To show this, we will need the

following definition on the *probable approximate correctness* of an estimate.

Definition 1 ((τ, p) -correctness). An estimate $\hat{\mathbf{f}} := (\hat{f}_i)_{i=1}^d$ of the global frequency vector $\mathbf{f} :=$ 129 $(f_i)_{i=1}^d$ is (τ, p) -correct if 130

$$\mathbb{P}\Big\{\|\hat{\mathbf{f}} - \mathbf{f}\|_{\infty} := \max_i |\hat{f}_i - f_i| > \tau \Big\} < p.$$

Corollary 2.3 (Oracle sketch size). Fix parameters $\tau, p \in (0, 1)$. Then for CountSketch (see 131 Algorithm 2) to produce an (τ, p) -correct estimate, it suffices to set the sketch size to $L = \log(d/p)$ 132 and 133

$$W = C \cdot \min\left\{ \left(\#\{f_i : f_i \ge \tau\} + \frac{1}{\tau^2} \cdot \sum_{f_i < \tau} f_i^2 \right), \, n \right\},\tag{2}$$

where C > 0 is an absolute constant. In particular, the width W in (2) satisfies 134

$$W \le W_{worst} := C \cdot \min\left\{2/\tau, n\right\}.$$
(3)

Corollary 2.3 suggests that the sketch size can be made smaller if the underlying frequency vector 135 has a lighter tail. When translated to the communication bits per client (that is $\mathcal{O}(L \cdot W \cdot \log(n))$), 136 where $\log(n)$ accounts for the cost of SecSum), Corollary 2.3 implies that CountSketch requires 137

$$\mathcal{O}\Big(\min\left\{\#\{f_i \ge \tau\} + \frac{1}{\tau^2} \sum_{f_i < \tau} f_i^2, n\right\} \log(d) \log(n)\Big) \le \mathcal{O}(\min\{1/\tau, n\} \log(d) \log(n)) \quad (4)$$

bits of communication per client to be (τ, p) -correct. In the worst case where $(f_i)_{i=1}^d$ is $\Theta(n)$ -sparse 138 and $\tau = \mathcal{O}(1/n)$, (4) nearly matches the $\Omega(n \log(d))$ information-theoretic worst-case communica-139 tion cost shown in Chen et al. [8], ignoring the $\log(n)$ factor from SecSum. However, in practice, 140 $(f_i)_{i=1}^d$ has a fast-decaying tail, and (4) suggests that CountSketch can use less communication for solving the problem. We provide the following examples for a better illustration of the sharp contrast 141 142 between the worst and typical cases. 143

Corollary 2.4 (Examples). Fix parameters $\tau, p \in (0, 1)$. Consider Algorithm 2 with sketch length 144 $L = \log(d/p)$. Then in each case for Algorithm 2 to produce an (τ, p) -correct estimate for $\tau > 1/n$: 145

1. When $f_i \propto 2^{-i}$, it suffices to set $W = \Theta(\log(1/\tau))$. 146

2. When $f_i \propto i^{-a}$ for a > 1, it suffices to set $W = \Theta(\tau^{-1/a})$. 147

3. When $f_i \propto i^{-1} \log^{-b}(i)$ for b > 1, it suffices to set $W = \Theta(\tau^{-1} \log^{-b}(1/\tau))$. 4. When $f_i = 10/n$ for $i = 1, \ldots, n/10$, it suffices to set $W = \Theta(1/\tau)$. 148

149

A Two-Phase Method for Hyperparameter Setup. Corollary 2.3 allows to use CountSketch 150 151 with a smaller width for an easier single-round FFE problem, saving communication bandwidth. However, the sketch size formula given by (2) in Corollary 2.3 relies on crucial information of the frequency $(f_i)_{i\geq 1}$, i.e., $\#\{f_i: f_i \geq \tau\}$ and $\sum_{f_i < \tau} f_i^2$, which are unknown to the engineer who sets the sketch size. Thus, it is unclear if and how these gains can be realized in practical deployments. 152 153 154

We resolve this quandary by observing that in practice, the frequency vector often follows Zipf's 155 law [5, 15]. This motives us to conservatively model the global frequency vector by a polynomial 156 with unknown parameters. By doing so, we can first run a small CountSketch to collect data from a 157 (randomly sampled) fraction of the clients for estimating the parameters. Then based on the estimated 158 parameter, we can set up an appropriate sketch size for a CountSketch to solve the FFE problem. 159 160 This two-phase method is formally stated as follows.

We approximate the (sorted) global frequency vector $(f_i^*)_{i=1}^d$ by a polynomial [5] with two parameters 161 $\alpha > 0$ and $\beta > 0$, such that 162

$$f_i^* \approx \operatorname{poly}\left(i; \alpha, \beta\right), \ \operatorname{poly}\left(i; \alpha, \beta\right) := \begin{cases} \beta \cdot i^{-\alpha}, & i \leq i^*; \\ 0, & i > i^*, \end{cases}$$

where $i^* := \max\{i : \sum_{j=1}^i \beta \cdot j^{-\alpha} \le 1\}$ is set such that poly $(i; \alpha, \beta)$ is a valid frequency vector. Here's an executive summary of the proposed approach for setting the sketch size. 163 164

- 1. Randomly select a subset of clients (e.g., 5,000 out of 10^6 .) 165
- 2. Fix a small sketch (e.g., 16×100) and run Algorithm 2 with the subset of clients to obtain an 166 estimate (f_i) . 167
- 3. Use the top-k values (e.g., top 20) from \tilde{f}_i to fit a polynomial with parameter α and β (under 168 squared error). 169
- 4. Solve Equation (4) under the approximation that $f_i^* \approx \beta \cdot i^{\alpha}$ and output W according to the result. 170

Figure 1: Single-round and multi-round FFE simulations. Subfigures (a) and (b) compare different hyperparameter strategies for CountSketch in a single-round FFE problem on the Gowalla dataset [9]. Subfigure (c) compares three sketch methods in a multi-round FFE problem on the Gowalla dataset. Subfigures (d), (e), and (f) are counterparts of subfigures (a), (b), and (c), respectively, but on the C4 [4] dataset.

Experiments. We conduct two sets of experiments to verify our methods. In the first set of 171 experiments, we simulate a single-round FFE problem with the Gowalla dataset [9]. The dataset 172 contains 6, 442, 892 lists of location information. We first construct a domain of size d = 175,000, 173 which corresponds to a grid over the US map. Then we sample n = d/10 = 17,500 lists of 174 the location information (that all belong to the domain created) to represent the data of n clients, 175 uniformly at random. This way, we set up a single-round FFE problem with n = 17,500 clients in 176 a domain of size d = 175,000. In the experiments, we fix the confidence parameter to be p = 0.1177 and the sketch length to be $L = \ln(2d/p) \approx 16$. The targeted ℓ_{∞} -error τ is chosen evenly from 178 $(10^{-3}, 10^{-1})$. We only test $\tau > 20/n$ because it is less important to estimate frequencies over 179 items with small counts (say, 20). For CountSketch, we compute sketch width with three strategies, 180 using (2) (called "instance optimal"), using (3) (called "minimax optimal"), and using the two-phase 181 method. We set all constant factors to be 2. The results are presented in Figures 1(a) and (b). We 182 observe that the "minimax optimal" way of hyperparameter choice is in fact suboptimal in practice, 183 and is improved by the "instance optimal" and the two-phase strategies. 184

In the second set of experiments, we run simulations on the "Colossal Clean Crawled Corpus" (C4) dataset [4], which consists of clean English text scraped from the web. We treat each domain in the dataset as a user and calculate the number of examples each user has. The domain size d = 150,868, which is the maximum example count per user. We randomly sample n = 150,000 users from the dataset. We fix the confidence parameter to be p = 0.1 and the sketch length to be L = 5. Other parameters are the same as the Gowalla dataset. The results are presented in Figures 1(d) and (e), and are consistent with what we have observed in the Gowalla simulations.

¹⁹² 3 Sketch Methods for Multi-Round Federated Frequency Estimation

In practice, having all clients participate in a single communication round is impractical due to the large number of devices, their unpredictable availability, and limited server bandwidth [2]. This motivates us to consider a multi-round FFE setting.

Multi-Round FFE. Consider a FFE problem with M rounds of communication. In each round, *n* clients participate, each holding an item from a universe of size d. The items are denoted by $x_t^{(m)} \in [d]$, where $t \in [n]$ denotes the client index and $m \in [M]$ denotes the round index. For

Figure 2: Shared vs. Hybrid vs. Fresh Sketches. We refer the reader to Section 3 for the definitions of the three methods. We compute the expected ℓ_{∞} -error for shared/hybrid/fresh sketches for a homogeneous, multi-round FFE problem. The domain size is $d = 10^5$. The number of rounds is M = 10. In all setups, the sketch length is fixed to L = 5. In every setting, the ℓ_{∞} error is averaged with 1,000 random repeats for simulating the expectation. In the case when the global frequency vector is a low-degree polynomial, hybrid sketch performs similarly to fresh sketch, and both are better than shared sketch. As long as the global frequency vector is a slightly higher degree polynomial (e.g., with a degree higher than 3), then hybrid sketch is significantly better than both shared and fresh sketches.

simplicity, we assume in each round a new set of clients participate. So in total there are N = Mnclients. Then the frequency of item j is now denoted by

$$f_j := \frac{1}{Mn} \sum_{m=1}^M \sum_{t=1}^n \mathbb{1} \left[x_t^{(m)} = j \right].$$

For the *m*-th round, the local frequency is denoted by $f_j^{(m)} := \frac{1}{n} \sum_{t=1}^n \mathbb{1} \left[x_t^{(m)} = j \right]$. Clearly, we have $f_j = \frac{1}{M} \sum_{m=1}^M f_j^{(m)}$. Similarly, we use $\mathbf{x}_t^{(m)}$ to denote the one-hot representation of $x_t^{(m)}$, i.e., $\mathbf{x}_t^{(m)} = \mathbf{e}_{\mathbf{x}_t^{(m)}}$ where $(\mathbf{e}_t)_{t=1}^d$ refers to the canonical basis. Then the frequency vector can be denoted by $\mathbf{f} := (f_1, \dots, f_d)^\top$. The aim is to estimate the frequency vector \mathbf{f} in a manner that is compatible with SecSum.

Baseline Method 1: Shared Sketch. A multi-round FFE problem can be reduced to a single-round FFE problem with a large communication. Specifically, one can apply the CountSketch with the same randomness for every round; after collecting all the sketches from the M round, one simply averages them. Due to the linearity of the sketching compress method, this is equivalent to a single round setting with N = Mn clients. We refer to this method as *count sketch with shared hash design* (SharedSketch).

Thanks to the reduction idea, we can obtain the error and sketch size bounds for SharedSketch via applying Corollaries 2.2 and 2.3 to SharedSketch by replacing n by N = Mn,

Baseline Method 2: Fresh Sketch. A multi-round FFE problem can also be broken down to Mindependent single-round FFE problems. Specifically, one can apply *independent* CountSketch in each round, and decode M local estimators for the M local frequency vectors. As the CountSketch produces an unbiased estimator, one can show that the average of the M local estimators is an unbiased estimator for the global frequency vector. We call this method *count sketch with fresh hash design* (FreshSketch). We provide the following bound for FreshSketch. The proof of which is motivated by Huang et al. [12].

Theorem 3.1 (Instance-specific bound for FreshSketch). Let $(\hat{f}_j)_{j=1}^d$ be estimates produced by FreshSketch. Then for each $p \in (0, 1)$, $W \ge 1$ and $L \ge \log(1/p)$, it holds that: for each $j \in [d]$, with probability at least 1 - p,

$$|\hat{f}_j - f_j| < C \cdot \sqrt{\frac{\log(1/p)\log(M/p)}{L} \cdot \frac{1}{W} \cdot \sum_{i>W} (F_i^*)^2},$$

where C is an absolute constant, and $(F_i^*)_{i=1}^d$ are defined as in Theorem 3.2.

Algorithm 1 HYBRID SKETCH FOR FEDERATED FREQUENCY ESTIMATION

Require: The number of rounds M. N = Mn clients with local data $x_t^{(m)} \in [d]$ for $m \in [M]$ and $t \in [n]$. Sketch length L and width W.

1: The server prepares independent hash functions and broadcasts them to each client:

$$h_{\ell}: [d] \to [W], \ \sigma_{\ell}^{(m)}: [d] \to \{\pm 1\} \text{ for } \ell \in [L], \ m \in [M].$$

- 2: for Round $m = 1, \ldots, M$ in parallel do
- 3: for Client $t = 1, \ldots, n$ in parallel do
- 4: Client (m, t) encodes the local data $x_t^{(m)}$ to $enc^{(m)}(x_t^{(m)}) \in \mathbb{R}^{L \times W}$ where

$$\left(\mathsf{enc}^{(m)}(x_t^{(m)})\right)_{\ell,k} = \mathbb{1}\left[h_{\ell}(x_t^{(m)}) = k\right] \cdot \sigma_{\ell}^{(m)}(x_t^{(m)}) \text{ for } \ell \in [L], \ k \in [W]$$

5: Client (m, t) sends $enc^{(m)}(x_t^{(m)})$ to SecSum.

- 6: end for
- 7: SecSum receives $\left(\operatorname{enc}^{(m)}(x_t^{(m)})\right)_{t=1}^n$ and reveals the sum $\sum_{t=1}^n \operatorname{enc}^{(m)}(x_t^{(m)})$ to the server. 8: end for
- 9: for Item $j = 1, \ldots, d$ in parallel do
- 10: Server produces $M \times L$ estimators for f_i :

$$\operatorname{dec}(j;m,l) := \sigma_{\ell}^{(m)}(j) \cdot \left(\frac{1}{n} \sum_{t=1}^{n} \operatorname{enc}^{(m)}(x_{t}^{(m)})\right)_{\ell,h_{\ell}(j)} \text{ for } m \in [M], \ell \in [L].$$

11: Server computes the median over $\ell \in [L]$ of the averages over $m \in [M]$ of the estimators:

$$\operatorname{dec}(j) := \operatorname{median} \left\{ \frac{1}{M} \sum_{m=1}^{M} \operatorname{dec}(j;m,l), \ \ell \in [L] \right\}.$$

12: **end for**

13: return $(\operatorname{dec}(j))_{j=1}^d$ as estimate to $(f_j)_{j=1}^d$.

Hybrid Sketch. Both SharedSketch and FreshSketch are reducing a multi-round FFE problem 225 into single-round FFE problem(s). Instead, we show a more comprehensive sketching method, called 226 count sketch with hybrid hash design (HybridSketch), that solves a multi-round FFE problem as 227 a whole. HybridSketch is presented as Algorithm 1. Specifically, HybridSketch generates M228 sketches that share a set of bucket hashes but use independent sets of sign hashes. Then in the 229 *m*-th communication round, participating clients and the server communicate by the CountSketch 230 algorithm based on the m-th sketch, so the server observes the summation of the sketched data 231 through SecSum. After collecting M summations of the sketched local data, the server first computes 232 averages over different rounds for *variance reduction*, then computes the median over different repeats 233 (or sketch rows) for success probability amplification. We provide the following problem-dependent 234 bound for HybridSketch. 235

Theorem 3.2 (Instance-specific bound for HybridSketch). Let $(\hat{f}_j)_{j=1}^d$ be estimates produced by HybridSketch (see Algorithm 1). Define a heterogeneity vector $(F_i)_{i=1}^d$ by

$$F_i := \frac{1}{M} \sqrt{\sum_{m=1}^M (f_i^{(m)})^2}, \quad i = 1, \dots, d.$$

Clearly, it holds that $F_i \leq f_i$ for every $i \in [d]$. Let $(F_i^*)_{i\geq 1}$ be $(F_i)_{i\geq 1}$ sorted in non-increasing order. Then for each $p \in (0, 1)$, $W \geq 1$ and $L \geq \log(1/p)$, it holds that: for each $j \in [d]$, with probability at least 1 - p,

$$|\hat{f}_j - f_j| < C \cdot \sqrt{\frac{\log(1/p)}{L} \cdot \frac{1}{W} \cdot \sum_{i > W} (F_i^*)^2},$$

241 where C is an absolute constant.

Hybrid Sketch vs. Fresh Sketch. By comparing Theorem 3.2 with Theorem 3.1, we see that, with 242 the same sketch size, the estimation error of HybridSketch is smaller than that of FreshSketch 243 by a factor of $\sqrt{\log(M/p)}$. This provides theoretical insights that HybridSketch is superior to 244 245 FreshSketch in terms of adapting to the instance hardness in multi-round FFE settings. This is also verified empirically by Figure 2. 246

Hybrid Sketch vs. Shared Sketch. We now 247 compare the performance of HybridSketch 248 and SharedSketch by comparing Theorem 3.2 249 and Proposition 2.1 (under a revision of replac-250 ing n with N = Mn). Note that 251

$$F_i = \frac{1}{M} \sqrt{\sum_{m=1}^M (f_i^{(m)})^2} \le \frac{1}{M} \sum_{m=1}^M f_i^{(m)} = f_i.$$

So with the same sketch size, HybridSketch 252 achieves an error that is no worse than csc in 253 every case. Moreover, in the homogeneous case 254 where all local frequency vectors are equivalent 255 to the global frequency vector, i.e., $\mathbf{f}^{(m)} \equiv \mathbf{f}$ for 256 all m, then it holds that $F_i = f_i / \sqrt{M}$. So in the 257 homogeneous case, HybridSketch achieves an 258 error that is smaller than that of csc by a factor 259 of $1/\sqrt{M}$. In the general cases, the local fre-260 quency vectors are not perfectly homogeneous, 261 then the improvement of HybridSketch over 262 SharedSketch will depend on the heterogene-263 ity of these local frequency vectors.

264

Figure 3: The number of items with error greater than 0.1/width for Shared, Hybrid, and Fresh Sketches with C4 dataset. HybridSketch with a width of 200 achieves roughly the same error as SharedSketch with a width of 1200 and Fresh sketch with a width of 600.

Experiments. We conduct three sets of experiments to verify our understandings about these 265 sketches methods for multi-round FFE. 266

In the first sets of experiments, we simulate a multi-round FFE problem in homogeneous settings, 267 where in every round the local frequency vectors are exactly the same. More specially, we set a 268 domain size $d = 10^5$, a number of rounds M = 10 and test three different cases, where all the 269 local frequency vectors are the same and (hence also the global frequency vector) are proportional 270 to $(i^{-1.1})_{i=1}^d$, $(i^{-2})_{i=1}^d$ and $(i^{-5})_{i=1}^d$, respectively. In all the settings, we fix the sketch length to 271 L = 5. In each experiment, we measure the expected ℓ_{∞} -error of each method with the averaging 272 over 1,000 independent repeats. The results are plotted in Figure 2. We can observe that: for 273 low-degree polynomials, HybridSketch is nearly as good as FreshSketch and both are better 274 than SharedSketch. But for slightly high degree polynomials (with a degree of 3), HybridSketch 275 already outperforms both FreshSketch and SharedSketch. The numerical results are consistent 276 277 with our theoretical analysis.

In the second sets of experiments, we simulate a multi-round FFE problem with the Gowalla dataset 278 279 [9]. Similar to previously, we construct a domain of size d = 175,000, which corresponds to a grid over the US map. Then we sample N = d = 175,000 lists of the location information (that all 280 belong to the domain created) to represent the data of N clients, uniformly at random. We set the 281 number of rounds to be M = 10. In each round, n = N/M = 17,500 clients participate. The results 282 are presented in Figure 1(c). Here, the frequency and heterogeneity vectors have heavy tails, so 283 HybridSketch and FreshSketch perform similarly and both are better than SharedSketch. This 284 is consistent with our theoretical understanding. 285

In the third sets of experiments, we run simulations on the C4 [4] dataset. Similar to the single 286 round simulation, the domain size d = 150, 868. We randomly sample N = 150, 000 users from the 287 dataset. The number of rounds M = 10, and in each round, n = N/10 = 15,000 clients participate. 288 The results are provided in Figures 1(f) and 3. Here, the frequency and heterogeneity vectors have 289 moderately light tails, and Figure 3 already suggests that HybridSketch produces an estimate that 290 has a better shape than that produced by FreshSketch and SharedSketch, verifying the advantages 291 of HybridSketch. 292

293 4 Differentially Private Sketches

While SecSum provides security guarantees, it does not provide differential privacy guarantees. In this part, we discuss a simple modifications to the sketching algorithms to make them provably differentially private.

Definition 2 ((ϵ , δ)-DP [10]). Let $alg(\cdot)$ be a randomized algorithm that takes a dataset \mathcal{D} as its input. Let \mathbb{P} be its probability measure. $alg(\cdot)$ is (ϵ , δ)-DP if: for every pair of neighboring datasets

299 \mathcal{D} and \mathcal{D}' , it holds that

$$\mathbb{P}\{\mathtt{alg}(\mathcal{D}) \in \mathcal{E}\} < e^{\epsilon} \cdot \mathbb{P}\{\mathtt{alg}(\mathcal{D}') \in \mathcal{E}\} + \delta.$$

In our case, a dataset corresponds to all participated clients (or their data), and two neighboring datasets should be regarded as two sets of clients (local data) that only differ in a single client (local data). The algorithm refers to all procedures before releasing the final frequency estimate, and all the intermediate computation is considered private and is not released.

We focus on HybridSketch as a representative algorithm. The DP mechanism can also be extended to the other sketching algorithms. Specifically, we use a DP mechanism that adds independent Gaussian noise to each entry of the sketching matrix, which is initially proposed for making CountSketch differentially private by Pagh and Thorup [14], Zhao et al. [17].

³⁰⁸ We provide the following theorem characterizing the trade-off between privacy and accuracy.

Theorem 4.1 (DP-hybrid sketch). Consider a modified Algorithm 1, where we add to each entry of the sketching matrix an independent Gaussian noise, $\mathcal{N}(0, c_0 \cdot \sqrt{L \log(1/\delta)}/\epsilon)$, where $c_0 > 0$ is a known constant. Suppose that $L = \log(d/p)$ and $W \ge 2$. Then the final output of the modified Algorithm 1, denoted by $(\hat{f}_j)_{j=1}^d$, is (ϵ, δ) -DP for $\epsilon < 1$ and $\delta < 0.1$. Moreover, with probability at most 1 - p, it holds that

$$\max_{j} |\hat{f}_{j} - f_{j}| < C \cdot \left(\sqrt{\frac{\sum_{i > W} (F_{i}^{*})^{2}}{W}} + \frac{\sqrt{\log(d/p)\log(1/\delta)}}{n\sqrt{M}\epsilon}\right)$$

where C > 0 is an absolute constant and $(F_i^*)_{i=1}^d$ are as defined in Theorem 3.2.

It is worth noting that if the number of clients per round (n) is fixed, then a larger number of rounds M improves both the estimation error and the DP error. However if the total number of clients (N = Mn) is fixed, then a larger number of rounds M improves the estimation error but makes the DP error worse.

When M = 1, Theorem 4.1 recovers the bounds for differentially private CountSketch in Pagh and Thorup [14], Zhao et al. [17] and Theorem 5.1 in Chen et al. [8]. Moreover, Chen et al. [8] shows that in single-round FFE, for any algorithm that achieves an ℓ_{∞} -error smaller than $\tau := \mathcal{O}(\sqrt{\log(d)\log(1/\delta)}/(n\epsilon))$, in the worse case, each client must communicate $\Omega(n \cdot 1/2)$ $\min\{\sqrt{\log(d)/\log(1/\delta)}, \log(d)\})$ bits (see Their Corollary 5.1). In comparison, According to Theorem 4.1 and Corollary 2.3, the differentially private CountSketch can achieve an ℓ_{∞} -error smaller than τ with length $L \approx \log(d)$ and width

$$W = C \cdot \min\left\{ \left(\#\{f_i : f_i \ge \tau\} + \frac{1}{\tau^2} \cdot \sum_{f_i < \tau} f_i^2 \right), \ n \right\} \le C \cdot \min\{2/\tau, n\},$$

resulting in a per-client communication of $\mathcal{O}(WL\log(n))$ bits, which matches the minimax lower bound in Chen et al. [8] ignoring a $\log(n)$ factor, but could be much smaller in non-worst cases where $(f_i)_{i=1}^d$ decays fast.

329 5 Conclusion

We make several novel extensions to the count sketch method for federated frequency estimation with one or more communication rounds. In the single round setting, we show that count sketch can achieve better communication efficiency when the underlying problem is simpler. We provide a two-phase approach to automatically select a sketch size that adapts to the hardness of the problem. In the multiple rounds setting, we show a new sketching method that provably achieves better accuracy than simple adaptions of count sketch. Finally, we adapt the Gaussian mechanism to make the hybrid sketching method differentially private.

337 **References**

- [1] Kallista Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan,
 Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for
 federated learning on user-held data. *arXiv preprint arXiv:1611.04482*, 2016.
- [2] Kallista Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman,
 Vladimir Ivanov, Chloé Kiddon, Jakub Konečný, Stefano Mazzocchi, Brendan McMahan,
 Timon Van Overveldt, David Petrou, Daniel Ramage, and Jason Roselander. Towards federated
 learning at scale: System design. In *MLSys.* mlsys.org, 2019.
- [3] Kallista Bonawitz, Peter Kairouz, Brendan McMahan, and Daniel Ramage. Federated learning
 and privacy: Building privacy-preserving systems for machine learning and data science on
 decentralized data. *Queue*, 19(5):87–114, 2021.
- [4] Samuel R. Bowman, Gabriel Angeli, Siddharth Jain, Jared Kaplan, Prafulla Dhariwal, Saurabh
 Neelakantan, Jonathon Shlens, and Dario Amodei. C4: Colossal clean crawled corpus. *arXiv preprint arXiv:2005.14165*, 2020.
- [5] Volkan Cevher. Learning with compressible priors. *Advances in Neural Information Processing Systems*, 22, 2009.
- [6] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams.
 In *International Colloquium on Automata, Languages, and Programming*, pages 693–703.
 Springer, 2002.
- [7] Wei-Ning Chen, Christopher A Choquette-Choo, and Peter Kairouz. Communication efficient
 federated learning with secure aggregation and differential privacy. In *NeurIPS 2021 Workshop Privacy in Machine Learning*, 2021.
- [8] Wei-Ning Chen, Ayfer Özgür, Graham Cormode, and Akash Bharadwaj. The communication cost of security and privacy in federated frequency estimation. *arXiv preprint arXiv:2211.10041*, 2022.
- [9] Eunjoon Cho, Seth A Myers, and Jure Leskovec. Friendship and mobility: user movement
 in location-based social networks. In *Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 1082–1090, 2011.
- [10] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private data analysis. In *Theory of Cryptography: Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3*, pages 265–284.
 Springer, 2006.
- [11] Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classification using distant supervision. *CS224N Project Report, Stanford*, 1(12), 2009.
- [12] Ziyue Huang, Yuan Qiu, Ke Yi, and Graham Cormode. Frequency estimation under multiparty differential privacy: One-shot and streaming. *arXiv preprint arXiv:2104.01808*, 2021.
- [13] Gregory T Minton and Eric Price. Improved concentration bounds for count-sketch. In
 Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages
 669–686. SIAM, 2014.
- [14] Rasmus Pagh and Mikkel Thorup. Improved utility analysis of private countsketch. *arXiv preprint arXiv:2205.08397*, 2022.
- [15] David M. W. Powers. Applications and explanations of Zipf's law. In New Methods in Language Processing and Computational Natural Language Learning, 1998. URL https: //aclanthology.org/W98-1218.
- [16] Daniek Ramage and Stefano Mazzocchi. Federated analytics: Collaborative data science without data collection. https://ai.googleblog.com/2020/05/
 federated-analytics-collaborative-data.html, 2020.

- [17] Fuheng Zhao, Dan Qiao, Rachel Redberg, Divyakant Agrawal, Amr El Abbadi, and Yu-Xiang
 Wang. Differentially private linear sketches: Efficient implementations and applications. *arXiv preprint arXiv:2205.09873*, 2022.
- [18] Wennan Zhu, Peter Kairouz, Brendan McMahan, Haicheng Sun, and Wei Li. Federated heavy
 hitters discovery with differential privacy. In *International Conference on Artificial Intelligence*
- and Statistics, pages 3837–3847. PMLR, 2020.

A Count Sketch for Federated Frequency Estimation 390

Algorithm 2 COUNT SKETCH FOR FEDERATED FREQUENCY ESTIMATION

Require: n clients with local data $x_t \in [d]$ for t = 1, ..., n. Sketch length L and width W. 1: The server prepares independent hash functions and broadcasts them to each client:

 $h_{\ell}: [d] \to [W], \ \sigma_{\ell}: [d] \to \{\pm 1\}, \ \text{for } \ell \in [L].$

- 2: for Client $t = 1, \ldots, n$ in parallel do
- Client t encodes the local data $x_t \in [d]$ to $enc(x_t) \in \mathbb{R}^{L \times W}$ where 3:

$$\left(\operatorname{enc}(x_t)\right)_{\ell,k} = \mathbb{1}\left[h_\ell(x_t) = k\right] \cdot \sigma_\ell(x_t) \text{ for } \ell \in [L], \ k \in [W].$$

- Client t sends $enc(x_t) \in \mathbb{R}^{L \times W}$ to SecSum. 4:
- 5: end for 6: SecSum receives $(\operatorname{enc}(x_t))_{t=1}^n$ and reveals the summation $\sum_{t=1}^n \operatorname{enc}(x_t)$ to the server. 7: for Item $j = 1, \ldots, d$ in parallel do
- Server produces L estimators for f_j : 8:

$$\operatorname{dec}(j;\ell) := \sigma_{\ell}(j) \cdot \left(\frac{1}{n} \sum_{t=1}^{n} \operatorname{enc}(x_t)\right)_{\ell,h_{\ell}(j)} \text{ for } \ell \in [L].$$

Server computes the median of the *L* estimators: 9:

$$\texttt{dec}(j) := \texttt{median}\{\texttt{dec}(j; \ell): \ \ell \in [L]\}.$$

10: end for

11: **return** $(\operatorname{dec}(j))_{j=1}^d$ as estimate to $(f_j)_{j=1}^d$.

391 B Additional Experiments

Sentiment-140. We also run additional simulations on a Twitter dataset Sentiment-140 [11]. The dataset contains d = 739,972 unique words from N = 659,497 users. We randomly sample one word from each user to construct our experiment dataset. The number of rounds M = 10, and in each round, n = N/10 = 65,949 clients participate. Results are provided in Figure 4.

Figure 4: Single-round and multi-round FFE simulations on the Sentiment-140 dataset.

Additional Plots for Single-Round FFE. Figure 5 provides some additional results in our singleround FFE simulations.

Figure 5: Single-round federated frequency estimation experiments.

398 C Missing Proofs for Section 2

399 C.1 Proof of Proposition 2.1

400 *Proof of Proposition 2.1.* We refer the reader to Theorem 4.1 in Minton and Price [13].

401 C.2 Proof of Corollary 2.2

⁴⁰² *Proof of Corollary 2.2.* From Proposition 1 we know that

for every
$$j \in [d]$$
, $\mathbb{P}\left\{ |\operatorname{dec}(j) - f_j| > C \cdot \sqrt{\frac{\log(1/\delta)}{L} \cdot \frac{1}{W} \cdot \sum_{i > W} (f_i^*)^2} \right\} < \delta$.

403 By union bound we have

$$\mathbb{P}\bigg\{\text{there exists } j \in [d], \; |\texttt{dec}(j) - f_j| > C \cdot \sqrt{\frac{\log(1/\delta)}{L} \cdot \frac{1}{W} \cdot \sum_{i > W} (f_i^*)^2}\bigg\} < d\delta.$$

Replacing δ with δ/d , setting $L = \log(d/\delta)$, and using the definition of ℓ_{∞} -norm, we obtain

$$\mathbb{P}\bigg\{\|\texttt{dec}(\cdot)-\mathbf{f}\|_{\infty} > C \cdot \sqrt{\frac{1}{W} \cdot \sum_{i > W} (f_i^*)^2}\bigg\} < \delta.$$

405 We next show that:

$$\sqrt{\frac{1}{W} \cdot \sum_{i > W} (f_i^*)^2} \le \frac{1}{W}.$$

To this end, we first show that $f_W^* \leq \frac{1}{W}$. If not, we must have for i = 1, ..., W, $f_i^* \geq f_W^* > \frac{1}{W}$, as $(f_i^*)_{i=1}^d$ is sorted in non-increasing order. Then $\sum_i^d f_i^* \geq \sum_{i=1}^W f_i^* > 1$, which contradicts to the fact that $(f_i^*)_{i=1}^d$ is a frequency vector. We have shown that $f_W^* \leq \frac{1}{W}$, and this further implies that for any $i \geq W$, $f_i^* \leq f_W^* \leq \frac{1}{W}$. Then we can obtain

$$\sqrt{\frac{1}{W} \cdot \sum_{i>W} (f_i^*)^2} \le \sqrt{\frac{1}{W^2} \cdot \sum_{i>W} f_i^*} \le \frac{1}{W},$$

since $(f_i^*)_{i=1}^d$ is a frequency vector. We have completed all the proof.

411 C.3 Proof of Corollary 2.3

412 Proof of Corollary 2.3. Define

$$E(W) := \sqrt{\frac{1}{W} \sum_{i > W} (f_i^*)^2}.$$

413 We will show the following:

414 1. If
$$W \ge \# \{ f_i \ge \tau \} + \frac{1}{\tau^2} \sum_{f_i < \tau} f_i^2$$
, then $E(W) \le \tau$.

415 2. Moreover, if
$$E(W) \le \tau$$
, then $W \ge \frac{1}{2} (\#\{f_i \ge \tau\} + \frac{1}{\tau^2} \sum_{f_i < \tau} f_i^2)$.

⁴¹⁶ Then Corollary 2.3 follows by combining Corollary 2.2 with the above claims.

We first show the first part. First note that $W \ge \#\{f_i \ge \tau\}$ and that $(f_i^*)_{i=1}^d$ is sorted in nonincreasing order, so for all $i \ge W$ it holds that $f_i^* < \tau$. Therefore,

$$E(W) := \sqrt{\frac{1}{W} \sum_{i > W} (f_i^*)^2} \le \sqrt{\frac{1}{W} \sum_{f_i < \tau} f_i^2}.$$

419 Moreover, note that $W \ge \frac{1}{\tau^2} \sum_{f_i < \tau} f_i^2$, so we further have $E(W) \le \tau$.

420 To show that second part, we first note that, by definition, $E(W) \leq \tau$ is equivalent to

$$2W \ge W + \frac{1}{\tau^2} \sum_{i > W} (f_i^*)^2.$$

421 Consider the following function

$$F(k) := k + \frac{1}{\tau^2} \sum_{i>k} (f_i^*)^2, \quad k \ge 1,$$

one can directly verify that F(k) is minimized at $k^* := \#\{i : f_i \ge \tau\}$; moreover,

$$F(k^*) = k^* + \frac{1}{\tau^2} \sum_{i > k^*} (f_i^*)^2 = \#\{f_i \ge \tau\} + \frac{1}{\tau^2} \sum_{f_i < \tau} f_i^2.$$

423 Therefore, we have

$$2W \ge F(W) \ge F(k^*) = \#\{f_i \ge \tau\} + \frac{1}{\tau^2} \sum_{f_i < \tau} f_i^2$$

424 This completes our proof.

425 D Missing Proofs for Section 3

426 D.1 Proof of Theorem 3.1

- 427 *Proof of Theorem 3.1.* The proof is motivated by Huang et al. [12].
- 428 Define the following events

$$E_j^{(m)} := \left\{ |\hat{f}_j^{(m)} - f_j^{(m)}| \le C \cdot \sqrt{\frac{\log(1/p)}{L} \cdot \frac{1}{W} \cdot \sum_{i > W} (f_i^{(m)})^2} \right\}, \ m \in [M], j \in [d].$$

429 Then by Proposition 2.1 we have

$$\mathbb{P}\left\{E_j^{(m)}\right\} \ge 1 - p.$$

430 Then by union bound, we have

$$\mathbb{P}\bigg\{\bigcap_{m=1}^{M} E_j^{(m)}\bigg\} \ge 1 - Mp.$$

Conditional on the event of $\bigcap_{m=1}^{M} E_j^{(m)}$, we know that every random variable $\hat{f}_j^{(m)} - f_j^{(m)}$ is bounded within

$$\left(-F^{(m)}, F^{(m)}\right),$$

433 where

$$F^{(m)} := C \cdot \sqrt{\frac{\log(1/p)}{L} \cdot \frac{1}{W} \cdot \sum_{i > W} (f_i^{(m)})^2}.$$

434 So by Hoeffding inequality, we have

$$\mathbb{P}\left\{ \left| \frac{1}{M} \sum_{m=1}^{M} \hat{f}_{j}^{(m)} - \frac{1}{M} \sum_{m=1}^{M} f_{j}^{(m)} \right| \leq \sqrt{\frac{\log(2/p_{1})}{2M^{2}} \sum_{m=1}^{M} \left(F^{(m)}\right)^{2}} \left| \bigcap_{m=1}^{M} E_{j}^{(m)} \right\} \geq 1 - p_{1}$$

435 Then we have

$$\mathbb{P}\left\{ \left| \frac{1}{M} \sum_{m=1}^{M} \hat{f}_{j}^{(m)} - \frac{1}{M} \sum_{m=1}^{M} f_{j}^{(m)} \right| \le \sqrt{\frac{\log(2/p_{1})}{2M^{2}} \sum_{m=1}^{M} \left(F^{(m)}\right)^{2}} \right\} \ge 1 - p_{1} - Mp.$$

436 Note that

$$\frac{\log(2/p_1)}{2M^2} \sum_{m=1}^M \left(F^{(m)}\right)^2 = \frac{\log(2/p_1)}{2M^2} \sum_{m=1}^M C^2 \cdot \frac{\log(1/p)}{L} \cdot \frac{1}{W} \cdot \sum_{i>W} \left(f_i^{(m)}\right)^2$$
$$= C^2 \cdot \frac{\log(2/p_1)\log(1/p)}{2L} \cdot \frac{1}{W} \cdot \sum_{i>W} \left(F_i\right)^2$$

437 So we have

$$\mathbb{P}\left\{ \left| \frac{1}{M} \sum_{m=1}^{M} \hat{f}_{j}^{(m)} - \frac{1}{M} \sum_{m=1}^{M} f_{j}^{(m)} \right| \leq \sqrt{C^{2} \cdot \frac{\log(2/p_{1})\log(1/p)}{2L} \cdot \frac{1}{W} \cdot \sum_{i > W} (F_{i})^{2}} \right\}$$

$$\geq 1 - p_{1} - Mp.$$

438 Note replace $p_1 = p'/2$ and p = p'/(2M), we have that

$$\mathbb{P}\left\{ \left| \frac{1}{M} \sum_{m=1}^{M} \hat{f}_{j}^{(m)} - \frac{1}{M} \sum_{m=1}^{M} f_{j}^{(m)} \right| \leq \sqrt{C' \cdot \frac{\log(1/p')\log(M/p')}{L} \cdot \frac{1}{W} \cdot \sum_{i > W} \left(F_{i}\right)^{2}} \right\} \geq 1 - p'.$$

439

440 D.2 Proof of Theorem 3.2

Proof of Theorem 3.2. Let us consider the hybrid sketch approach in Algorithm 1. Recall that within
a round, clients use the same set of hash functions to construct their sketching matrices. Across
different rounds, clients use the same set of location hashes but a fresh set of sign hashes. Denote the
hash functions by:

$$h_{\ell}: [d] \to [w], \quad \ell = 1, \dots, L;$$

$$\sigma_{\ell}^{(m)}: [d] \to \{+1, -1\}, \quad \ell = 1, \dots, L; \ m = 1 \dots, M.$$

Recall the local frequency in each round is defined by

$$\mathbf{f}^{(m)} := \frac{1}{n} \sum_{t=1}^{n} \mathbf{x}^{(m,t)}, \quad m = 1, \dots, M.$$

446 And the global frequency vector is defined by

$$\mathbf{f} := \frac{1}{M} \sum_{m=1}^{M} \mathbf{f}^{(m)}.$$

Then according to the communication protocol, the server receives M sketching matrices (each corresponds to a summation of clients' sketches within the same round). From the m-th sketch, we can extract L estimators for each index $j \in [d]$, i.e.,

$$\begin{split} \tilde{\mathbf{f}}_{j}^{(m,\ell)} &:= \sum_{i=1}^{a} \mathbbm{1} \left[h_{\ell}(i) = h_{\ell}(j) \right] \cdot \sigma_{\ell}^{(m)}(j) \cdot \sigma_{\ell}^{(m)}(i) \cdot \mathbf{f}_{i}^{(m)}, \qquad j \in [d], \ m \in [M], \ \ell \in [L] \\ &= \mathbf{f}_{j}^{(m)} + \sum_{i \neq j} \mathbbm{1} \left[h_{\ell}(i) = h_{\ell}(j) \right] \cdot \sigma_{\ell}^{(m)}(j) \cdot \sigma_{\ell}^{(m)}(i) \cdot \mathbf{f}_{i}^{(m)}. \end{split}$$

450 For each index, we will first average the estimators from different rounds to reduce the variance,

then take the median over different rows to amplify the success probability. In particular, denote the round-wise averaging by

$$\tilde{\mathbf{f}}_{j}^{(\ell)} := \frac{1}{M} \sum_{m=1}^{M} \tilde{\mathbf{f}}_{j}^{(m,\ell)}, \qquad j \in [d], \ \ell \in [L] \\
= \frac{1}{M} \sum_{m=1}^{M} \mathbf{f}_{j}^{(m)} + \frac{1}{M} \sum_{m=1}^{M} \sum_{i \neq j} \mathbb{1} \left[h_{\ell}(i) = h_{\ell}(j) \right] \cdot \sigma_{\ell}^{(m)}(j) \cdot \sigma_{\ell}^{(m)}(i) \cdot \mathbf{f}_{i}^{(m)} \\
= \underbrace{\mathbf{f}_{j}}_{\text{signal}} + \underbrace{\frac{1}{M} \sum_{i \neq j} \mathbb{1} \left[h_{\ell}(i) = h_{\ell}(j) \right] \cdot \sum_{m=1}^{M} \sigma_{\ell}^{(m)}(j) \cdot \sigma_{\ell}^{(m)}(i) \cdot \mathbf{f}_{i}^{(m)}}_{\text{noise}} \\
= \underbrace{\mathbf{f}_{j}}_{\text{signal}} + \underbrace{\frac{1}{M} \sum_{i \neq j, i \in \mathbb{W}} \mathbb{1} \left[h_{\ell}(i) = h_{\ell}(j) \right] \cdot \sum_{m=1}^{M} \sigma_{\ell}^{(m)}(j) \cdot \sigma_{\ell}^{(m)}(i) \cdot \mathbf{f}_{i}^{(m)}}_{\text{headNoise}} \\
+ \underbrace{\frac{1}{M} \sum_{i \neq j, i \notin \mathbb{W}} \mathbb{1} \left[h_{\ell}(i) = h_{\ell}(j) \right] \cdot \sum_{m=1}^{M} \sigma_{\ell}^{(m)}(j) \cdot \sigma_{\ell}^{(m)}(i) \cdot \mathbf{f}_{i}^{(m)} . \tag{5}$$

453 Then we take the median over these estimators to obtain

$$\widetilde{\mathbf{f}}_j := \mathtt{median}\{\widetilde{\mathbf{f}}_j^{(\ell)}, \ \ell \in [L]\}, \quad j \in [d].$$

Head Noise. The only randomness comes from the algorithm. Note that the head noise contains at most $|\mathbb{W}| \le 0.1W$ independent terms, and each is zero with probability 1 - 1/W. Thus the head noise is zero with probability at least $(1 - 1/W)^{|\mathbb{W}|} \ge (1 - 1/W)^{0.1W} \ge 0.9$ provided that W > 10. 457 **Tail Noise.** Now consider the second noise term in (5). Fixing ℓ and j. Define

$$\begin{split} \xi_i^{(m)} &:= \sigma_\ell^{(m)}(j) \cdot \sigma_\ell^{(m)}(i) \cdot \mathbf{f}_i^{(m)} \\ \xi_i &:= \sum_{m=1}^M \xi_i^{(m)} = \sum_{m=1}^M \sigma_\ell^{(m)}(j) \cdot \sigma_\ell^{(m)}(i) \cdot \mathbf{f}_i^{(m)} \\ \eta_i &:= \mathbbm{1} \left[h(i) = h(j) \right] \\ \texttt{tailNoise} &:= \frac{1}{M} \sum_{i \neq j, i \notin \mathbb{W}} \eta_i \cdot \xi_i. \end{split}$$

First notice that $\left(\xi_i^{(m)}\right)_{m=1}^M$ are independent random variables and

$$\mathbb{E}[\xi_i^{(m)}] = 0, \quad \operatorname{Var}[\xi_i^{(m)}] = \left(\mathbf{f}_i^{(m)}\right)^2.$$

459 These imply that

$$\mathbb{E}[\xi_i] = 0, \quad \operatorname{Var}[\xi_i] = \sum_{m=1}^{M} \left(\mathbf{f}_i^{(m)}\right)^2.$$

460 Moreover, notice that $(\eta_i, \xi_i)_{i \neq j}$ are independent random variables, and

$$\mathbb{E}[\eta_i^2] = \frac{1}{W},$$

461 we then have

$$\mathbb{E}[\eta_i \xi_i] = 0;$$

$$\operatorname{Var}[\eta_i \xi_i] = \mathbb{E}[\eta_i^2] \cdot \operatorname{Var}[\xi_i] + \operatorname{Var}[\eta_i] \cdot \left(\mathbb{E}[\xi_i]\right)^2$$

$$= \frac{1}{W} \cdot \sum_{m=1}^M \left(\mathbf{f}_i^{(m)}\right)^2.$$

462 Therefore we conclude that

$$\begin{split} \mathbb{E}[\texttt{tailNoise}] &= \frac{1}{M} \sum_{i \neq j, i \notin \mathbb{W}} \mathbb{E}[\eta_i \xi_i] = 0; \\ \text{Var}[\texttt{tailNoise}] &= \frac{1}{M^2} \sum_{i \neq j, i \notin \mathbb{W}} \text{Var}[\eta_i \xi_i] \\ &= \frac{1}{M^2 W} \cdot \sum_{i \neq j, i \notin \mathbb{W}} \sum_{m=1}^M \left(\mathbf{f}_i^{(m)}\right)^2 \\ &\leq \frac{1}{M^2 W} \cdot \sum_{i \notin \mathbb{W}} \sum_{m=1}^M \left(\mathbf{f}_i^{(m)}\right)^2. \end{split}$$

⁴⁶³ Then by Chebyshev we see that: for fixed $j \in [d]$ and $\ell \in [L]$ it holds that

$$\mathbb{P}\Big\{|\texttt{tailNoise}| \geq \sqrt{\frac{10}{M^2W} \cdot \sum_{i \notin \mathbb{W}} \sum_{m=1}^{M} \left(\mathbf{f}_i^{(m)}\right)^2} \Big\} < 0.1.$$

⁴⁶⁴ By a union bound we see that: for fixed $j \in [d]$ and $\ell \in [L]$ it holds that

$$\mathbb{P}\left\{ |\tilde{\mathbf{f}}_{j}^{(\ell)} - \mathbf{f}_{j}| < \sqrt{\frac{10}{M^{2}W} \cdot \sum_{i \notin \mathbb{W}} \sum_{m=1}^{M} \left(\mathbf{f}_{i}^{(m)}\right)^{2}} \right\} > 0.8 > 0.5.$$

Probability Amplification. Fixing *j*. Recall that $(\tilde{\mathbf{f}}_{j}^{(\ell)})_{\ell=1}^{L}$ are i.i.d. random variables and that $\tilde{\mathbf{f}}_{j} := \text{median}\{\tilde{\mathbf{f}}_{j}^{(\ell)} : \ell \in [L]\}$. By Chernoff over ℓ and union bound over *j* we see that:

$$\mathbb{P}\bigg\{\text{for each } j \in [d], \quad |\tilde{\mathbf{f}}_j - \mathbf{f}_j| \ge \sqrt{\frac{10}{M^2W} \cdot \sum_{i \notin \mathbb{W}} \sum_{m=1}^M \left(\mathbf{f}_i^{(m)}\right)^2}\bigg\} < 2d \cdot \exp(\Omega(L)).$$

467 By choosing $L = \Theta(\log(2d/\delta))$ we obtain that, with probability at least $1 - \delta$,

for each
$$j \in [d]$$
, $|\tilde{\mathbf{f}}_j - \mathbf{f}_j| \lesssim \sqrt{\frac{10}{M^2 W} \cdot \sum_{i \notin \mathbb{W}} \sum_{m=1}^M (\mathbf{f}_i^{(m)})^2}$.

468

19

Missing Proofs for Section 4 E 469

E.1 Proof of Theorem 4.1 470

Proof of Theorem 4.1. We follow the method of Pagh and Thorup [14], Zhao et al. [17] to add DP noise to all M sketches. Suppose $\mathcal{F} = (\mathbf{f}^{(m)})_{m=1}^{M}$ and $\mathring{\mathcal{F}} = (\mathring{\mathbf{f}}^{(m)})_{m=1}^{M}$ are the sets of local frequencies for two neighboring datasets respectively, then 471 472

473

$$\|\mathcal{F} - \mathring{\mathcal{F}}\|_2 \le \frac{1}{n}$$

Denote the sketches to be released by $S \circ \mathcal{F} := \left(\mathbf{S}^{(m)} \circ \mathbf{f}^{(m)}\right)_{m=1}^{M}$. One can then calculate the 474 ℓ_2 -sensitivity: 475

$$\|\mathcal{S} \circ \mathcal{F} - \mathcal{S} \circ \mathring{\mathcal{F}}\|_2 \le \frac{\sqrt{L}}{n},$$

where $L \approx \log(d/\delta)$ is the sketch length. Therefore the sketching will be (ϵ, δ) -DP by adding 476 Gaussian noise $\mathcal{N}(0, \sigma^2)$ to each bucket of each sketch, where 477

$$\sigma \eqsim \frac{\sqrt{L\log(1/\delta)}}{n\epsilon}$$

- The final released frequency estimator is obtained by post-processing the sketch, so it is also (ϵ, δ)-DP. 478
- We then calculate the error for the noisy sketch matrix. For each row estimator, we have that with 479 probability at least 2/3: 480

$$\begin{split} \tilde{\mathbf{f}_j}^{(\ell)} &- \mathbf{f}_j^{\ell} = \texttt{tailNoise} + \frac{1}{M} \sum_{m=1}^M \texttt{rad}_m \cdot \mathcal{N}(0, \sigma^2) \\ &= \texttt{tailNoise} + \mathcal{N}(0, \sigma^2/M) \\ &\lesssim \sqrt{\frac{1}{M^2 w} \cdot \sum_{i \notin \mathbb{W}} \sum_{m=1}^M \left(\mathbf{f}_i^{(m)}\right)^2} + \frac{\sqrt{L \log(1/\delta)}}{\sqrt{M} n \epsilon} \end{split}$$

By taking median over $L = \log(d/\delta)$ repeats, we see that with probability at least $1 - \delta$, it holds that 481

$$\text{for each } j \in [d], \quad |\hat{\mathbf{f}}_j - \mathbf{f}_j| \lesssim \sqrt{\frac{1}{M^2 w} \cdot \sum_{i \notin \mathbb{W}} \sum_{m=1}^M \left(\mathbf{f}_i^{(m)}\right)^2} + + \frac{\sqrt{\log(d/\delta) \cdot \log(1/\delta)}}{\sqrt{M} n \epsilon}.$$

482