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Abstract

In federated frequency estimation (FFE), multiple clients work together to estimate1

the frequency of their local data by communicating with a server, while respecting2

the security constraints of Secure Summation (SecSum) where the server can only3

access the sum of client-held vectors. For FFE with a single communication4

round, it is known that count sketch is nearly information-theoretically optimal5

[8]. However, when multiple communication rounds are allowed, we propose a6

new sketching algorithm that is provably more accurate than a naive adaptation7

of count sketch. Furthermore, we show that both our sketch algorithm and count8

sketch can achieve better accuracy when the problem instance is simpler. Therefore,9

we propose a two-phase approach to enable the use of a smaller sketch size for10

simpler problems. Finally, we provide mechanisms to make our proposed algorithm11

differentially private. We verify the superior performance of our methods through12

experiments conducted on several largescale datasets.13

1 Introduction14

In many distributed learning applications, a server seeks to compute population information about15

data that is distributed across multiple clients (users). For example, consider a distributed frequency16

estimation problem where there are n clients, each holding a local data from a domain of size d,17

and a server that aims to estimate the frequency of the items from the n clients with a minimum18

communication cost. This task can be done efficiently by letting each client binary encode their data19

and send the encoding to the server, at a local communication bandwidth cost of log(d) bits. Provided20

with the binary encoding, the server can faithfully decode each local data and compute the global21

frequency vector (i.e., the normalized histogram vector).22

However, the local data could be sensitive or private, and the clients may wish to keep it hidden23

from the server. The above binary encoding communication method, unfortunately, allows the server24

to observe each individual local data, and therefore may not satisfy the users’ privacy concerns.25

Federated Analytics (FA) [16, 18] addresses this issue by developing new methods that enable the26

server to learn population information about the clients while preventing the server from prying on27

any individual local data. In particular, a cryptographic multi-party computation protocol, Secure28

Summation (SecSum) [1], has become a widely adopted solution to provide data minimization29

guarantees for FA [3]. Specifically, SecSum sets up a communication protocol between clients and30

the server, which injects carefully designed additive noise to each data that cancels out when all of31

the local data is summed together, but blurs out (information theoretically) each individual local data32

otherwise. Under SecSum, the server is able to faithfully obtain the correct summation of the data from33

all clients but is unable to read a single local data. Federated frequency estimation (FFE) problems34

refer to the distributed frequency estimation problems under the constraint of SecSum. Clearly, the35

binary encoding method is not compatible with SecSum, because when the binary encoding is passed36
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to the server through SecSum, the server only gets the summation of the binary encodings of the37

users’ data, which does not provide sufficient information for computing the global frequency vector.38

A naive approach to FFE is by employing one-hot encoding: each client encodes its local data into39

a d-dimensional one-hot vector that represents the local frequency vector and sends it to the server40

through SecSum. Then the server observes the summation of the local frequency vectors using41

SecSum and scales it by the number of clients to obtain the true frequency vector. However, the42

one-hot encoding approach costs Θ(d log(n)) bits of communication bandwidth. This is because43

SecSum adds noise from a field of size Θ(n) to each component of the d-dimensional local frequency44

vector [1]. With a linear dependence on domain size d, the one-hot encoding approach is inefficient45

for large domain problems, especially when the domain size exceeds the number of clients (d > n).46

In what follows, we will focus on this regime and assume that d > n.47

Recently, linear compression methods were applied to mitigate the high communication cost issue48

for FFE with large domains [7, 8]. The idea is to first linearly compress the local frequency49

vector into a lower dimensional vector before sending it to the server through SecSum; as linear50

compression operators commute with the summation operator, the server equivalently observes a51

linearly compressed global frequency vector though SecSum (after rescaling by the number of clients).52

The server then applies standard decoding methods to approximately recover the global frequency53

vector from the linearly compressed one. In particular, Chen et al. [8] show that CountSketch [6]54

(among other sparse recover methods) can be used as a linear compressor for the above purpose,55

which leads to a communication bandwidth cost of O(n log(d) log(n)) bits. Therefore when d >56

n, CountSketch achieves a saving in local communication bandwidth compared to the one-hot57

encoding method that requires Θ(d log(n)) bits. Moreover, Chen et al. [8] show that for FFE with a58

single communication round, an Ω(n log(d)) local communication cost is information-theoretically59

unavoidable for worst-case data distributions, i.e., without making additional assumptions on the60

global frequency vector.61

Contributions. In this work, we make three notable extensions to CountSketch for FFE problems.62

1. Firstly, we show that the way Chen et al. [8] set up the sketch size (linear in the number of clients63

n) is often pessimistic (see Corollary 2.4). In fact, in the streaming literature, the estimation error64

afforded by CountSketch is known to adapt to the tail norm of the global frequency vector [13],65

which is often sub-linear in n. Motivated by this, we provide an easy-to-use, two-phase approach66

that allows practitioners to determine the necessary sketch size by automatically adapting to the67

hardness the FFE problem instance.68

2. Secondly, we consider FFE with multiple communication rounds, which better models practical69

deployments of FA where aggregating over (hundreds of) millions of clients in a single round is not70

possible due to device availability and limited server bandwidth. We propose a new multi-round71

sketch algorithm called HybridSketch that provably performs better than simple adaptations of72

CountSketch in the multi-round setting, leading to further improvements in the communication73

cost. Quite surprisingly, we show that HybridSketch adapts to the tail norm of a heterogeneity74

vector (see Theorem 3.2). Moreover, the tail of the heterogeneity vector is always no heavier,75

and could be much lighter, than that of the global frequency vector, explaining the advantage76

of HybridSketch. For instance, on the C4 dataset [4] with a domain size of d = 150, 868 and77

150, 000 users, we show that our method can reduce the sketch size by 83% relative to simple78

sketching methods.79

3. Finally, we extend the Gaussian mechanism for CountSketch proposed by Pagh and Thorup80

[14], Zhao et al. [17] to the multi-round FFE setting to show how our sketching methods can be81

made differentially private [10]. We also characterize the trade-offs between accuracy and privacy82

for our proposed method.83

We conclude by verifying the performance of our methods through experiments conducted on several84

large-scale datasets. All proofs and additional experimental results are differed to the appendices.85

2 Adapting CountSketch to the Hardness of the Instance86

In this part, we focus on single-round FFE and show how CountSketch can achieve better results87

when the underlying problem is simpler. Motivated by this, we also provide a two-phase method for88
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auto-tuning the hyperparameters of CountSketch, allowing it to automatically adapt to the hardness89

of the instance.90

Single-Round FFE. Consider n clients, each holding an item from a discrete domain of size d.91

The items are denoted by xt ∈ [d] for t = 1, . . . , n. Then the frequency of item j is denoted by92

fj := 1
n

∑n
t=1 1 [xt = j] .

We use xt to denote the one-hot representation of xt, i.e., xt = ext
where (et)

d
t=1 refers to the93

canonical basis. Then the frequency vector can be denoted by94

f := (f1, . . . , fd)
> = 1

n

∑n
t=1 xt ∈ [0, 1]d.

In single-round FFE, the n clients communicate with a server once under the constraint of SecSum,95

and aim to estimate the frequency vector f . Note that SecSum ensures that the server can only observe96

the sum of the local data.97

Count Sketch. CountSketch is a classic streaming algorithm that dates back to [6]. In the98

literature of streaming algorithms, CountSketch has been extensively studied and is known to be99

able to adapt to the hardness of the problem instance. Specifically, CountSketch of a fixed size100

induces an estimation error adapting to the tail norm of the global frequency vector [13].101

A recent work by Chen et al. [8] apply CountSketch to single-round FFE. See Algorithm 2 in102

Appendix A for details. They show that CountSketch approximately solves single-round FFE103

with a communication cost of O(n log(d) log(n)) bits per client. Moreover, they show Ω(n log(d))104

bits of communication per client is unavoidable for worst-case data distributions (unless additional105

assumptions are made), confirming its near optimality. However, the results by Chen et al. [8]106

are pessimistic as they ignore the ability of CountSketch to adapt to the hardness of the problem107

instance. In what follows, we show how the performance of CountSketch can be improved when108

the underlying problem becomes simpler.109

We first present a problem-dependent accuracy guarantee for CountSketch of a fixed size, L×W ,110

that gives the sharpest bound to our knowledge. The bound is due to Minton and Price [13] and is111

restated for our purpose.112

Proposition 2.1 (Restated Theorem 4.1 in Minton and Price [13]). Let (f̂j)
d
j=1 be estimates produced113

by CountSketch (see Algorithm 2). Then for each p ∈ (0, 1), W ≥ 2 and L ≥ log(1/p), it holds114

that: for each j ∈ [d], with probability at least 1− p,115

|f̂j − fj | < C ·
√

log(1/p)

L
· 1

W
·
∑
i>W

(f∗i )2,

where (f∗i )i≥1 refers to (fi)i≥1 sorted in non-increasing order, and C > 0 is an absolute constant.116

For the concreteness of discussion, we will focus on `∞ as a measure of estimation error in the117

remainder of the paper. Our discussions can be easily extended to `2 or other types of error measures.118

Proposition 2.1 directly implies the following `∞-error bounds for CountSketch (by an application119

of union bound).120

Corollary 2.2 (`∞-error bounds for CountSketch). Consider Algorithm 2. Then for each p ∈ (0, 1),121

L = log(d/p) and W ≥ 2, it holds that: with probability at least 1− p,122

‖dec(·)− f‖∞ < C ·
√

1

W
·
∑
i>W

(f∗i )2, (1)

where C > 0 is an absolute constant. In particular, (1) implies that123

‖dec(·)− f‖∞ <
C

W
.

According to Corollary 2.2, the estimation error will be smaller when the underlying frequency vector124

(f∗i )i≥1 has a lighter tail. Said differently, CountSketch needs less communication bandwidth when125

the global frequency vector has a lighter tail. Our next Corollary 2.3 precisely characterizes this126

adaptive property in terms of the required communication bandwidth. To show this, we will need the127

following definition on the probable approximate correctness of an estimate.128
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Definition 1 ((τ, p)-correctness). An estimate f̂ := (f̂i)
d
i=1 of the global frequency vector f :=129

(fi)
d
i=1 is (τ, p)-correct if130

P
{
‖f̂ − f‖∞ := maxi |f̂i − fi| > τ

}
< p.

Corollary 2.3 (Oracle sketch size). Fix parameters τ, p ∈ (0, 1). Then for CountSketch (see131

Algorithm 2) to produce an (τ, p)-correct estimate, it suffices to set the sketch size to L = log(d/p)132

and133

W = C ·min

{(
#{fi : fi ≥ τ}+ 1

τ2 ·
∑
fi<τ

f2i

)
, n

}
, (2)

where C > 0 is an absolute constant. In particular, the width W in (2) satisfies134

W ≤Wworst := C ·min
{

2/τ, n
}
. (3)

Corollary 2.3 suggests that the sketch size can be made smaller if the underlying frequency vector135

has a lighter tail. When translated to the communication bits per client (that is O(L ·W · log(n)),136

where log(n) accounts for the cost of SecSum), Corollary 2.3 implies that CountSketch requires137

O
(

min
{

#{fi ≥ τ}+ 1
τ2

∑
fi<τ

f2i , n
}

log(d) log(n)
)
≤ O(min{1/τ, n} log(d) log(n)) (4)

bits of communication per client to be (τ, p)-correct. In the worst case where (fi)
d
i=1 is Θ(n)-sparse138

and τ = O(1/n), (4) nearly matches the Ω(n log(d)) information-theoretic worst-case communica-139

tion cost shown in Chen et al. [8], ignoring the log(n) factor from SecSum. However, in practice,140

(fi)
d
i=1 has a fast-decaying tail, and (4) suggests that CountSketch can use less communication for141

solving the problem. We provide the following examples for a better illustration of the sharp contrast142

between the worst and typical cases.143

Corollary 2.4 (Examples). Fix parameters τ, p ∈ (0, 1). Consider Algorithm 2 with sketch length144

L = log(d/p). Then in each case for Algorithm 2 to produce an (τ, p)-correct estimate for τ > 1/n:145

1. When fi ∝ 2−i, it suffices to set W = Θ(log(1/τ)).146

2. When fi ∝ i−a for a > 1, it suffices to set W = Θ(τ−1/a).147

3. When fi ∝ i−1 log−b(i) for b > 1, it suffices to set W = Θ(τ−1 log−b(1/τ)).148

4. When fi = 10/n for i = 1, . . . , n/10, it suffices to set W = Θ(1/τ).149

A Two-Phase Method for Hyperparameter Setup. Corollary 2.3 allows to use CountSketch150

with a smaller width for an easier single-round FFE problem, saving communication bandwidth.151

However, the sketch size formula given by (2) in Corollary 2.3 relies on crucial information of the152

frequency (fi)i≥1, i.e., #{fi : fi ≥ τ} and
∑
fi<τ

f2i , which are unknown to the engineer who sets153

the sketch size. Thus, it is unclear if and how these gains can be realized in practical deployments.154

We resolve this quandary by observing that in practice, the frequency vector often follows Zipf’s155

law [5, 15]. This motives us to conservatively model the global frequency vector by a polynomial156

with unknown parameters. By doing so, we can first run a small CountSketch to collect data from a157

(randomly sampled) fraction of the clients for estimating the parameters. Then based on the estimated158

parameter, we can set up an appropriate sketch size for a CountSketch to solve the FFE problem.159

This two-phase method is formally stated as follows.160

We approximate the (sorted) global frequency vector (f∗i )di=1 by a polynomial [5] with two parameters161

α > 0 and β > 0, such that162

f∗i ≈ poly (i;α, β) , poly (i;α, β) :=

{
β · i−α, i ≤ i∗;
0, i > i∗,

where i∗ := max{i :
∑i
j=1 β · j−α ≤ 1} is set such that poly (i;α, β) is a valid frequency vector.163

Here’s an executive summary of the proposed approach for setting the sketch size.164

1. Randomly select a subset of clients (e.g., 5, 000 out of 106.)165

2. Fix a small sketch (e.g., 16 × 100) and run Algorithm 2 with the subset of clients to obtain an166

estimate (f̃i).167

3. Use the top-k values (e.g., top 20) from f̃i to fit a polynomial with parameter α and β (under168

squared error).169

4. Solve Equation (4) under the approximation that f∗i ≈ β · iα and output W according to the result.170
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(d) C4, single round
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Figure 1: Single-round and multi-round FFE simulations. Subfigures (a) and (b) compare different hyperpa-
rameter strategies for CountSketch in a single-round FFE problem on the Gowalla dataset [9]. Subfigure (c)
compares three sketch methods in a multi-round FFE problem on the Gowalla dataset. Subfigures (d), (e), and
(f) are counterparts of subfigures (a), (b), and (c), respectively, but on the C4 [4] dataset.

Experiments. We conduct two sets of experiments to verify our methods. In the first set of171

experiments, we simulate a single-round FFE problem with the Gowalla dataset [9]. The dataset172

contains 6, 442, 892 lists of location information. We first construct a domain of size d = 175, 000,173

which corresponds to a grid over the US map. Then we sample n = d/10 = 17, 500 lists of174

the location information (that all belong to the domain created) to represent the data of n clients,175

uniformly at random. This way, we set up a single-round FFE problem with n = 17, 500 clients in176

a domain of size d = 175, 000. In the experiments, we fix the confidence parameter to be p = 0.1177

and the sketch length to be L = ln(2d/p) ≈ 16. The targeted `∞-error τ is chosen evenly from178

(10−3, 10−1). We only test τ > 20/n because it is less important to estimate frequencies over179

items with small counts (say, 20). For CountSketch, we compute sketch width with three strategies,180

using (2) (called “instance optimal”), using (3) (called “minimax optimal”), and using the two-phase181

method. We set all constant factors to be 2. The results are presented in Figures 1(a) and (b). We182

observe that the “minimax optimal” way of hyperparameter choice is in fact suboptimal in practice,183

and is improved by the “instance optimal” and the two-phase strategies.184

In the second set of experiments, we run simulations on the “Colossal Clean Crawled Corpus” (C4)185

dataset [4], which consists of clean English text scraped from the web. We treat each domain in the186

dataset as a user and calculate the number of examples each user has. The domain size d = 150, 868,187

which is the maximum example count per user. We randomly sample n = 150, 000 users from the188

dataset. We fix the confidence parameter to be p = 0.1 and the sketch length to be L = 5. Other189

parameters are the same as the Gowalla dataset. The results are presented in Figures 1(d) and (e), and190

are consistent with what we have observed in the Gowalla simulations.191

3 Sketch Methods for Multi-Round Federated Frequency Estimation192

In practice, having all clients participate in a single communication round is impractical due to the193

large number of devices, their unpredictable availability, and limited server bandwidth [2]. This194

motivates us to consider a multi-round FFE setting.195

Multi-Round FFE. Consider a FFE problem with M rounds of communication. In each round,196

n clients participate, each holding an item from a universe of size d. The items are denoted by197

x
(m)
t ∈ [d], where t ∈ [n] denotes the client index and m ∈ [M ] denotes the round index. For198
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(c) fi ∝ i−5

Figure 2: Shared vs. Hybrid vs. Fresh Sketches. We refer the reader to Section 3 for the definitions of the three
methods. We compute the expected `∞-error for shared/hybrid/fresh sketches for a homogeneous, multi-round
FFE problem. The domain size is d = 105. The number of rounds is M = 10. In all setups, the sketch length
is fixed to L = 5. In every setting, the `∞ error is averaged with 1, 000 random repeats for simulating the
expectation. In the case when the global frequency vector is a low-degree polynomial, hybrid sketch performs
similarly to fresh sketch, and both are better than shared sketch. As long as the global frequency vector is a
slightly higher degree polynomial (e.g., with a degree higher than 3), then hybrid sketch is significantly better
than both shared and fresh sketches.

simplicity, we assume in each round a new set of clients participate. So in total there are N = Mn199

clients. Then the frequency of item j is now denoted by200

fj :=
1

Mn

M∑
m=1

n∑
t=1

1
[
x
(m)
t = j

]
.

For the m-th round, the local frequency is denoted by f (m)
j := 1

n

∑n
t=1 1

[
x
(m)
t = j

]
. Clearly, we201

have fj = 1
M

∑M
m=1 f

(m)
j . Similarly, we use x

(m)
t to denote the one-hot representation of x(m)

t , i.e.,202

x
(m)
t = e

x
(m)
t

where (et)
d
t=1 refers to the canonical basis. Then the frequency vector can be denoted203

by f := (f1, . . . , fd)
>. The aim is to estimate the frequency vector f in a manner that is compatible204

with SecSum.205

Baseline Method 1: Shared Sketch. A multi-round FFE problem can be reduced to a single-round206

FFE problem with a large communication. Specifically, one can apply the CountSketch with the207

same randomness for every round; after collecting all the sketches from the M round, one simply208

averages them. Due to the linearity of the sketching compress method, this is equivalent to a single209

round setting with N = Mn clients. We refer to this method as count sketch with shared hash design210

(SharedSketch).211

Thanks to the reduction idea, we can obtain the error and sketch size bounds for SharedSketch via212

applying Corollaries 2.2 and 2.3 to SharedSketch by replacing n by N = Mn,213

Baseline Method 2: Fresh Sketch. A multi-round FFE problem can also be broken down to M214

independent single-round FFE problems. Specifically, one can apply independent CountSketch in215

each round, and decode M local estimators for the M local frequency vectors. As the CountSketch216

produces an unbiased estimator, one can show that the average of the M local estimators is an217

unbiased estimator for the global frequency vector. We call this method count sketch with fresh hash218

design (FreshSketch). We provide the following bound for FreshSketch. The proof of which is219

motivated by Huang et al. [12].220

Theorem 3.1 (Instance-specific bound for FreshSketch). Let (f̂j)
d
j=1 be estimates produced by221

FreshSketch. Then for each p ∈ (0, 1), W ≥ 1 and L ≥ log(1/p), it holds that: for each j ∈ [d],222

with probability at least 1− p,223

|f̂j − fj | < C ·
√

log(1/p) log(M/p)

L
· 1

W
·
∑
i>W

(F ∗i )2,

where C is an absolute constant, and (F ∗i )di=1 are defined as in Theorem 3.2.224
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Algorithm 1 HYBRID SKETCH FOR FEDERATED FREQUENCY ESTIMATION

Require: The number of rounds M . N = Mn clients with local data x(m)
t ∈ [d] for m ∈ [M ] and

t ∈ [n]. Sketch length L and width W .
1: The server prepares independent hash functions and broadcasts them to each client:

h` : [d]→ [W ], σ
(m)
` : [d]→ {±1} for ` ∈ [L], m ∈ [M ].

2: for Round m = 1, . . . ,M in parallel do
3: for Client t = 1, . . . , n in parallel do
4: Client (m, t) encodes the local data x(m)

t to enc(m)
(
x
(m)
t

)
∈ RL×W where(

enc(m)
(
x
(m)
t

))
`,k

= 1
[
h`(x

(m)
t ) = k

]
· σ(m)

` (x
(m)
t ) for ` ∈ [L], k ∈ [W ].

5: Client (m, t) sends enc(m)
(
x
(m)
t

)
to SecSum.

6: end for
7: SecSum receives

(
enc(m)(x

(m)
t )

)n
t=1

and reveals the sum
∑n
t=1 enc

(m)
(
x
(m)
t

)
to the server.

8: end for
9: for Item j = 1, . . . , d in parallel do

10: Server produces M × L estimators for fj :

dec(j;m, l) := σ
(m)
` (j) ·

(
1
n

∑n
t=1 enc

(m)
(
x
(m)
t

))
`,h`(j)

for m ∈ [M ], ` ∈ [L].

11: Server computes the median over ` ∈ [L] of the averages over m ∈ [M ] of the estimators:

dec(j) := median
{

1
M

∑M
m=1 dec(j;m, l), ` ∈ [L]

}
.

12: end for
13: return

(
dec(j)

)d
j=1

as estimate to (fj)
d
j=1.

Hybrid Sketch. Both SharedSketch and FreshSketch are reducing a multi-round FFE problem225

into single-round FFE problem(s). Instead, we show a more comprehensive sketching method, called226

count sketch with hybrid hash design (HybridSketch), that solves a multi-round FFE problem as227

a whole. HybridSketch is presented as Algorithm 1. Specifically, HybridSketch generates M228

sketches that share a set of bucket hashes but use independent sets of sign hashes. Then in the229

m-th communication round, participating clients and the server communicate by the CountSketch230

algorithm based on the m-th sketch, so the server observes the summation of the sketched data231

through SecSum. After collecting M summations of the sketched local data, the server first computes232

averages over different rounds for variance reduction, then computes the median over different repeats233

(or sketch rows) for success probability amplification. We provide the following problem-dependent234

bound for HybridSketch.235

Theorem 3.2 (Instance-specific bound for HybridSketch). Let (f̂j)
d
j=1 be estimates produced by236

HybridSketch (see Algorithm 1). Define a heterogeneity vector (Fi)
d
i=1 by237

Fi :=
1

M

√√√√ M∑
m=1

(
f
(m)
i

)2
, i = 1, . . . , d.

Clearly, it holds that Fi ≤ fi for every i ∈ [d]. Let (F ∗i )i≥1 be (Fi)i≥1 sorted in non-increasing238

order. Then for each p ∈ (0, 1), W ≥ 1 and L ≥ log(1/p), it holds that: for each j ∈ [d], with239

probability at least 1− p,240

|f̂j − fj | < C ·
√

log(1/p)

L
· 1

W
·
∑
i>W

(F ∗i )2,

where C is an absolute constant.241
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Hybrid Sketch vs. Fresh Sketch. By comparing Theorem 3.2 with Theorem 3.1, we see that, with242

the same sketch size, the estimation error of HybridSketch is smaller than that of FreshSketch243

by a factor of
√

log(M/p). This provides theoretical insights that HybridSketch is superior to244

FreshSketch in terms of adapting to the instance hardness in multi-round FFE settings. This is also245

verified empirically by Figure 2.246
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Figure 3: The number of items with error greater than
0.1/width for Shared, Hybrid, and Fresh Sketches with
C4 dataset. HybridSketch with a width of 200 achieves
roughly the same error as SharedSketch with a width of
1200 and Fresh sketch with a width of 600.

Hybrid Sketch vs. Shared Sketch. We now247

compare the performance of HybridSketch248

and SharedSketch by comparing Theorem 3.2249

and Proposition 2.1 (under a revision of replac-250

ing n with N = Mn). Note that251

Fi =
1

M

√√√√ M∑
m=1

(
f
(m)
i

)2 ≤ 1

M

M∑
m=1

f
(m)
i = fi.

So with the same sketch size, HybridSketch252

achieves an error that is no worse than csc in253

every case. Moreover, in the homogeneous case254

where all local frequency vectors are equivalent255

to the global frequency vector, i.e., f (m) ≡ f for256

all m, then it holds that Fi = fi/
√
M. So in the257

homogeneous case, HybridSketch achieves an258

error that is smaller than that of csc by a factor259

of 1/
√
M . In the general cases, the local fre-260

quency vectors are not perfectly homogeneous,261

then the improvement of HybridSketch over262

SharedSketch will depend on the heterogene-263

ity of these local frequency vectors.264

Experiments. We conduct three sets of experiments to verify our understandings about these265

sketches methods for multi-round FFE.266

In the first sets of experiments, we simulate a multi-round FFE problem in homogeneous settings,267

where in every round the local frequency vectors are exactly the same. More specially, we set a268

domain size d = 105, a number of rounds M = 10 and test three different cases, where all the269

local frequency vectors are the same and (hence also the global frequency vector) are proportional270

to (i−1.1)di=1, (i−2)di=1 and (i−5)di=1, respectively. In all the settings, we fix the sketch length to271

L = 5. In each experiment, we measure the expected `∞-error of each method with the averaging272

over 1, 000 independent repeats. The results are plotted in Figure 2. We can observe that: for273

low-degree polynomials, HybridSketch is nearly as good as FreshSketch and both are better274

than SharedSketch. But for slightly high degree polynomials (with a degree of 3), HybridSketch275

already outperforms both FreshSketch and SharedSketch. The numerical results are consistent276

with our theoretical analysis.277

In the second sets of experiments, we simulate a multi-round FFE problem with the Gowalla dataset278

[9]. Similar to previously, we construct a domain of size d = 175, 000, which corresponds to a grid279

over the US map. Then we sample N = d = 175, 000 lists of the location information (that all280

belong to the domain created) to represent the data of N clients, uniformly at random. We set the281

number of rounds to be M = 10. In each round, n = N/M = 17, 500 clients participate. The results282

are presented in Figure 1(c). Here, the frequency and heterogeneity vectors have heavy tails, so283

HybridSketch and FreshSketch perform similarly and both are better than SharedSketch. This284

is consistent with our theoretical understanding.285

In the third sets of experiments, we run simulations on the C4 [4] dataset. Similar to the single286

round simulation, the domain size d = 150, 868. We randomly sample N = 150, 000 users from the287

dataset. The number of rounds M = 10, and in each round, n = N/10 = 15, 000 clients participate.288

The results are provided in Figures 1(f) and 3. Here, the frequency and heterogeneity vectors have289

moderately light tails, and Figure 3 already suggests that HybridSketch produces an estimate that290

has a better shape than that produced by FreshSketch and SharedSketch, verifying the advantages291

of HybridSketch.292
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4 Differentially Private Sketches293

While SecSum provides security guarantees, it does not provide differential privacy guarantees. In294

this part, we discuss a simple modifications to the sketching algorithms to make them provably295

differentially private.296

Definition 2 ((ε, δ)-DP [10]). Let alg(·) be a randomized algorithm that takes a dataset D as its297

input. Let P be its probability measure. alg(·) is (ε, δ)-DP if: for every pair of neighboring datasets298

D and D′, it holds that299

P{alg(D) ∈ E} < eε · P{alg(D′) ∈ E}+ δ.

In our case, a dataset corresponds to all participated clients (or their data), and two neighboring300

datasets should be regarded as two sets of clients (local data) that only differ in a single client (local301

data). The algorithm refers to all procedures before releasing the final frequency estimate, and all the302

intermediate computation is considered private and is not released.303

We focus on HybridSketch as a representative algorithm. The DP mechanism can also be extended to304

the other sketching algorithms. Specifically, we use a DP mechanism that adds independent Gaussian305

noise to each entry of the sketching matrix, which is initially proposed for making CountSketch306

differentially private by Pagh and Thorup [14], Zhao et al. [17].307

We provide the following theorem characterizing the trade-off between privacy and accuracy.308

Theorem 4.1 (DP-hybrid sketch). Consider a modified Algorithm 1, where we add to each entry of309

the sketching matrix an independent Gaussian noise, N (0, c0 ·
√
L log(1/δ)/ε), where c0 > 0 is310

a known constant. Suppose that L = log(d/p) and W ≥ 2. Then the final output of the modified311

Algorithm 1, denoted by (f̂j)
d
j=1, is (ε, δ)-DP for ε < 1 and δ < 0.1. Moreover, with probability at312

most 1− p, it holds that313

max
j
|f̂j − fj | < C ·

(√∑
i>W (F ∗i )2

W
+

√
log(d/p) log(1/δ)

n
√
Mε

)
,

where C > 0 is an absolute constant and (F ∗i )di=1 are as defined in Theorem 3.2.314

It is worth noting that if the number of clients per round (n) is fixed, then a larger number of rounds315

M improves both the estimation error and the DP error. However if the total number of clients316

(N = Mn) is fixed, then a larger number of rounds M improves the estimation error but makes the317

DP error worse.318

When M = 1, Theorem 4.1 recovers the bounds for differentially private CountSketch in319

Pagh and Thorup [14], Zhao et al. [17] and Theorem 5.1 in Chen et al. [8]. Moreover, Chen320

et al. [8] shows that in single-round FFE, for any algorithm that achieves an `∞-error smaller321

than τ := O(
√

log(d) log(1/δ)/(nε)), in the worse case, each client must communicate Ω(n ·322

min{
√

log(d)/ log(1/δ), log(d)}) bits (see Their Corollary 5.1). In comparison, According to Theo-323

rem 4.1 and Corollary 2.3, the differentially private CountSketch can achieve an `∞-error smaller324

than τ with length L h log(d) and width325

W = C ·min

{(
#{fi : fi ≥ τ}+

1

τ2
·
∑
fi<τ

f2i

)
, n

}
≤ C ·min{2/τ, n},

resulting in a per-client communication of O(WL log(n)) bits, which matches the minimax lower326

bound in Chen et al. [8] ignoring a log(n) factor, but could be much smaller in non-worst cases where327

(fi)
d
i=1 decays fast.328

5 Conclusion329

We make several novel extensions to the count sketch method for federated frequency estimation330

with one or more communication rounds. In the single round setting, we show that count sketch331

can achieve better communication efficiency when the underlying problem is simpler. We provide a332

two-phase approach to automatically select a sketch size that adapts to the hardness of the problem. In333

the multiple rounds setting, we show a new sketching method that provably achieves better accuracy334

than simple adaptions of count sketch. Finally, we adapt the Gaussian mechanism to make the hybrid335

sketching method differentially private.336
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A Count Sketch for Federated Frequency Estimation390

Algorithm 2 COUNT SKETCH FOR FEDERATED FREQUENCY ESTIMATION

Require: n clients with local data xt ∈ [d] for t = 1, . . . , n. Sketch length L and width W .
1: The server prepares independent hash functions and broadcasts them to each client:

h` : [d]→ [W ], σ` : [d]→ {±1}, for ` ∈ [L].

2: for Client t = 1, . . . , n in parallel do
3: Client t encodes the local data xt ∈ [d] to enc(xt) ∈ RL×W where(

enc(xt)
)
`,k

= 1 [h`(xt) = k] · σ`(xt) for ` ∈ [L], k ∈ [W ].

4: Client t sends enc(xt) ∈ RL×W to SecSum.
5: end for
6: SecSum receives

(
enc(xt)

)n
t=1

and reveals the summation
∑n
t=1 enc(xt) to the server.

7: for Item j = 1, . . . , d in parallel do
8: Server produces L estimators for fj :

dec(j; `) := σ`(j) ·
(
1
n

∑n
t=1 enc(xt)

)
`,h`(j)

for ` ∈ [L].

9: Server computes the median of the L estimators:

dec(j) := median{dec(j; `) : ` ∈ [L]}.

10: end for
11: return (dec(j))dj=1 as estimate to (fj)

d
j=1.
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B Additional Experiments391

Sentiment-140. We also run additional simulations on a Twitter dataset Sentiment-140 [11]. The392

dataset contains d = 739, 972 unique words from N = 659, 497 users. We randomly sample one393

word from each user to construct our experiment dataset. The number of rounds M = 10, and in394

each round, n = N/10 = 65, 949 clients participate. Results are provided in Figure 4.395
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Figure 4: Single-round and multi-round FFE simulations on the Sentiment-140 dataset.

Additional Plots for Single-Round FFE. Figure 5 provides some additional results in our single-396

round FFE simulations.397
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Figure 5: Single-round federated frequency estimation experiments.
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C Missing Proofs for Section 2398

C.1 Proof of Proposition 2.1399

Proof of Proposition 2.1. We refer the reader to Theorem 4.1 in Minton and Price [13].400

C.2 Proof of Corollary 2.2401

Proof of Corollary 2.2. From Proposition 1 we know that402

for every j ∈ [d], P
{
|dec(j)− fj | > C ·

√
log(1/δ)

L
· 1

W
·
∑
i>W

(f∗i )2
}
< δ.

By union bound we have403

P
{

there exists j ∈ [d], |dec(j)− fj | > C ·
√

log(1/δ)

L
· 1

W
·
∑
i>W

(f∗i )2
}
< dδ.

Replacing δ with δ/d, setting L = log(d/δ), and using the definition of `∞-norm, we obtain404

P
{
‖dec(·)− f‖∞ > C ·

√
1

W
·
∑
i>W

(f∗i )2
}
< δ.

We next show that:405 √
1

W
·
∑
i>W

(f∗i )2 ≤ 1

W
.

To this end, we first show that f∗W ≤ 1
W . If not, we must have for i = 1, . . . ,W , f∗i ≥ f∗W > 1

W ,406

as (f∗i )di=1 is sorted in non-increasing order. Then
∑d
i f
∗
i ≥

∑W
i=1 f

∗
i > 1, which contradicts to the407

fact that (f∗i )di=1 is a frequency vector. We have shown that f∗W ≤ 1
W , and this further implies that408

for any i ≥W , f∗i ≤ f∗W ≤ 1
W . Then we can obtain409 √

1

W
·
∑
i>W

(f∗i )2 ≤
√

1

W 2
·
∑
i>W

f∗i ≤
1

W
,

since (f∗i )di=1 is a frequency vector. We have completed all the proof.410

C.3 Proof of Corollary 2.3411

Proof of Corollary 2.3. Define412

E(W ) :=

√
1

W

∑
i>W

(f∗i )2.

We will show the following:413

1. If W ≥ #{fi ≥ τ}+ 1
τ2

∑
fi<τ

f2i , then E(W ) ≤ τ .414

2. Moreover, if E(W ) ≤ τ , then W ≥ 1
2

(
#{fi ≥ τ}+ 1

τ2

∑
fi<τ

f2i
)
.415

Then Corollary 2.3 follows by combining Corollary 2.2 with the above claims.416

We first show the first part. First note that W ≥ #{fi ≥ τ} and that (f∗i )di=1 is sorted in non-417

increasing order, so for all i ≥W it holds that f∗i < τ . Therefore,418

E(W ) :=

√
1

W

∑
i>W

(f∗i )2 ≤
√

1

W

∑
fi<τ

f2i .

Moreover, note that W ≥ 1
τ2

∑
fi<τ

f2i , so we further have E(W ) ≤ τ .419
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To show that second part, we first note that, by definition, E(W ) ≤ τ is equivalent to420

2W ≥W +
1

τ2

∑
i>W

(f∗i )2.

Consider the following function421

F (k) := k +
1

τ2

∑
i>k

(f∗i )2, k ≥ 1,

one can directly verify that F (k) is minimized at k∗ := #{i : fi ≥ τ}; moreover,422

F (k∗) = k∗ +
1

τ2

∑
i>k∗

(f∗i )2 = #{fi ≥ τ}+
1

τ2

∑
fi<τ

f2i .

Therefore, we have423

2W ≥ F (W ) ≥ F (k∗) = #{fi ≥ τ}+
1

τ2

∑
fi<τ

f2i .

This completes our proof.424
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D Missing Proofs for Section 3425

D.1 Proof of Theorem 3.1426

Proof of Theorem 3.1. The proof is motivated by Huang et al. [12].427

Define the following events428

E
(m)
j :=

{
|f̂ (m)
j − f (m)

j | ≤ C ·
√

log(1/p)

L
· 1

W
·
∑
i>W

(
f
(m)
i

)2}
, m ∈ [M ], j ∈ [d].

Then by Proposition 2.1 we have429

P
{
E

(m)
j

}
≥ 1− p.

Then by union bound, we have430

P
{ M⋂
m=1

E
(m)
j

}
≥ 1−Mp.

Conditional on the event of
⋂M
m=1E

(m)
j , we know that every random variable f̂ (m)

j −f (m)
j is bounded431

within432 (
− F (m), F (m)

)
,

where433

F (m) := C ·
√

log(1/p)

L
· 1

W
·
∑
i>W

(
f
(m)
i

)2
.

So by Hoeffding inequality, we have434

P

{∣∣∣∣ 1

M

M∑
m=1

f̂
(m)
j − 1

M

M∑
m=1

f
(m)
j

∣∣∣∣ ≤
√√√√ log(2/p1)

2M2

M∑
m=1

(
F (m)

)2 ∣∣∣∣∣
M⋂
m=1

E
(m)
j

}
≥ 1− p1

Then we have435

P

{∣∣∣∣ 1

M

M∑
m=1

f̂
(m)
j − 1

M

M∑
m=1

f
(m)
j

∣∣∣∣ ≤
√√√√ log(2/p1)

2M2

M∑
m=1

(
F (m)

)2} ≥ 1− p1 −Mp.

Note that436

log(2/p1)

2M2

M∑
m=1

(
F (m)

)2
=

log(2/p1)

2M2

M∑
m=1

C2 · log(1/p)

L
· 1

W
·
∑
i>W

(
f
(m)
i

)2
= C2 · log(2/p1) log(1/p)

2L
· 1

W
·
∑
i>W

(
Fi
)2

So we have437

P

{∣∣∣∣ 1

M

M∑
m=1

f̂
(m)
j − 1

M

M∑
m=1

f
(m)
j

∣∣∣∣ ≤
√
C2 · log(2/p1) log(1/p)

2L
· 1

W
·
∑
i>W

(
Fi
)2}

≥ 1− p1 −Mp.

Note replace p1 = p′/2 and p = p′/(2M), we have that438

P

{∣∣∣∣ 1

M

M∑
m=1

f̂
(m)
j − 1

M

M∑
m=1

f
(m)
j

∣∣∣∣ ≤
√
C ′ · log(1/p′) log(M/p′)

L
· 1

W
·
∑
i>W

(
Fi
)2} ≥ 1− p′.

439
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D.2 Proof of Theorem 3.2440

Proof of Theorem 3.2. Let us consider the hybrid sketch approach in Algorithm 1. Recall that within441

a round, clients use the same set of hash functions to construct their sketching matrices. Across442

different rounds, clients use the same set of location hashes but a fresh set of sign hashes. Denote the443

hash functions by:444

h` : [d]→ [w], ` = 1, . . . , L;

σ
(m)
` : [d]→ {+1,−1}, ` = 1, . . . , L; m = 1 . . . ,M.

Recall the local frequency in each round is defined by445

f (m) :=
1

n

n∑
t=1

x(m,t), m = 1, . . . ,M.

And the global frequency vector is defined by446

f :=
1

M

M∑
m=1

f (m).

Then according to the communication protocol, the server receives M sketching matrices (each447

corresponds to a summation of clients’ sketches within the same round). From the m-th sketch, we448

can extract L estimators for each index j ∈ [d], i.e.,449

f̃
(m,`)
j :=

d∑
i=1

1 [h`(i) = h`(j)] · σ(m)
` (j) · σ(m)

` (i) · f (m)
i , j ∈ [d], m ∈ [M ], ` ∈ [L]

= f
(m)
j +

∑
i 6=j

1 [h`(i) = h`(j)] · σ(m)
` (j) · σ(m)

` (i) · f (m)
i .

For each index, we will first average the estimators from different rounds to reduce the variance,450

then take the median over different rows to amplify the success probability. In particular, denote the451

round-wise averaging by452

f̃
(`)
j :=

1

M

M∑
m=1

f̃
(m,`)
j , j ∈ [d], ` ∈ [L]

=
1

M

M∑
m=1

f
(m)
j +

1

M

M∑
m=1

∑
i 6=j

1 [h`(i) = h`(j)] · σ(m)
` (j) · σ(m)

` (i) · f (m)
i

= fj︸︷︷︸
signal

+
1

M

∑
i 6=j

1 [h`(i) = h`(j)] ·
M∑
m=1

σ
(m)
` (j) · σ(m)

` (i) · f (m)
i︸ ︷︷ ︸

noise

= fj︸︷︷︸
signal

+
1

M

∑
i 6=j,i∈W

1 [h`(i) = h`(j)] ·
M∑
m=1

σ
(m)
` (j) · σ(m)

` (i) · f (m)
i︸ ︷︷ ︸

headNoise

+
1

M

∑
i 6=j,i/∈W

1 [h`(i) = h`(j)] ·
M∑
m=1

σ
(m)
` (j) · σ(m)

` (i) · f (m)
i︸ ︷︷ ︸

tailNoise

. (5)

Then we take the median over these estimators to obtain453

f̃j := median{f̃ (`)j , ` ∈ [L]}, j ∈ [d].

Head Noise. The only randomness comes from the algorithm. Note that the head noise contains at454

most |W| ≤ 0.1W independent terms, and each is zero with probability 1 − 1/W . Thus the head455

noise is zero with probability at least (1− 1/W )|W| ≥ (1− 1/W )0.1W ≥ 0.9 provided that W > 10.456
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Tail Noise. Now consider the second noise term in (5). Fixing ` and j. Define457

ξ
(m)
i := σ

(m)
` (j) · σ(m)

` (i) · f (m)
i

ξi :=

M∑
m=1

ξ
(m)
i =

M∑
m=1

σ
(m)
` (j) · σ(m)

` (i) · f (m)
i

ηi := 1 [h(i) = h(j)]

tailNoise :=
1

M

∑
i 6=j,i/∈W

ηi · ξi.

First notice that
(
ξ
(m)
i

)M
m=1

are independent random variables and458

E[ξ
(m)
i ] = 0, Var[ξ

(m)
i ] =

(
f
(m)
i

)2
.

These imply that459

E[ξi] = 0, Var[ξi] =
M∑
m=1

(
f
(m)
i

)2
.

Moreover, notice that (ηi, ξi)i6=j are independent random variables, and460

E[η2i ] =
1

W
,

we then have461

E[ηiξi] = 0;

Var[ηiξi] = E[η2i ] ·Var[ξi] + Var[ηi] ·
(
E[ξi]

)2
=

1

W
·
M∑
m=1

(
f
(m)
i

)2
.

Therefore we conclude that462

E[tailNoise] =
1

M

∑
i 6=j,i/∈W

E[ηiξi] = 0;

Var[tailNoise] =
1

M2

∑
i6=j,i/∈W

Var[ηiξi]

=
1

M2W
·
∑

i 6=j,i/∈W

M∑
m=1

(
f
(m)
i

)2
≤ 1

M2W
·
∑
i/∈W

M∑
m=1

(
f
(m)
i

)2
.

Then by Chebyshev we see that: for fixed j ∈ [d] and ` ∈ [L] it holds that463

P
{
|tailNoise| ≥

√√√√ 10

M2W
·
∑
i/∈W

M∑
m=1

(
f
(m)
i

)2}
< 0.1.

By a union bound we see that: for fixed j ∈ [d] and ` ∈ [L] it holds that464

P
{
|f̃ (`)j − fj | <

√√√√ 10

M2W
·
∑
i/∈W

M∑
m=1

(
f
(m)
i

)2}
> 0.8 > 0.5.
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Probability Amplification. Fixing j. Recall that (f̃
(`)
j )L`=1 are i.i.d. random variables and that465

f̃j := median{f̃ (`)j : ` ∈ [L]}. By Chernoff over ` and union bound over j we see that:466

P
{

for each j ∈ [d], |f̃j − fj | ≥

√√√√ 10

M2W
·
∑
i/∈W

M∑
m=1

(
f
(m)
i

)2}
< 2d · exp(Ω(L)).

By choosing L = Θ(log(2d/δ)) we obtain that, with probability at least 1− δ,467

for each j ∈ [d], |f̃j − fj | .

√√√√ 10

M2W
·
∑
i/∈W

M∑
m=1

(
f
(m)
i

)2
.

468
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E Missing Proofs for Section 4469

E.1 Proof of Theorem 4.1470

Proof of Theorem 4.1. We follow the method of Pagh and Thorup [14], Zhao et al. [17] to add DP471

noise to all M sketches. Suppose F =
(
f (m)

)M
m=1

and F̊ =
(̊
f (m)

)M
m=1

are the sets of local472

frequencies for two neighboring datasets respectively, then473

‖F − F̊‖2 ≤
1

n
.

Denote the sketches to be released by S ◦ F :=
(
S(m) ◦ f (m)

)M
m=1

. One can then calculate the474

`2-sensitivity:475

‖S ◦ F − S ◦ F̊‖2 ≤
√
L

n
,

where L h log(d/δ) is the sketch length. Therefore the sketching will be (ε, δ)-DP by adding476

Gaussian noise N (0, σ2) to each bucket of each sketch, where477

σ h
√
L log(1/δ)

nε
.

The final released frequency estimator is obtained by post-processing the sketch, so it is also (ε, δ)-DP.478

We then calculate the error for the noisy sketch matrix. For each row estimator, we have that with479

probability at least 2/3:480

f̃j
(`)
− f `j = tailNoise +

1

M

M∑
m=1

radm · N (0, σ2)

= tailNoise +N (0, σ2/M)

.

√√√√ 1

M2w
·
∑
i/∈W

M∑
m=1

(
f
(m)
i

)2
+

√
L log(1/δ)√
Mnε

.

By taking median over L h log(d/δ) repeats, we see that with probability at least 1− δ, it holds that481

for each j ∈ [d], |f̂j − fj | .

√√√√ 1

M2w
·
∑
i/∈W

M∑
m=1

(
f
(m)
i

)2
+ +

√
log(d/δ) · log(1/δ)√

Mnε
.

482
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