
Supplementary Material for Learning Energy-based
Model via Dual-MCMC Teaching

Jiali Cui, Tian Han
Department of Computer Science, Stevens Institute of Technology

{jcui7,than6}@stevens.edu

1 Addtional Experiment

We show additional image synthesis in Fig.2. Images are sampled from EBM with the initial point
generated by the generator.

1.1 Parameter Efficiency

To further illustrate the effectiveness of our method, we follow baseline models [5, 8] and recruit
simple convolution networks for the EBM, generator, and inference models. We train our model with
such a simple structure on CIFAR-10 and report the results in Tab.1. It can be seen that even though
using simple network structures, the proposed method can still generate realistic image synthesis.

For reported numbers in main text, we adopt the network structure that contains Residue Blocks
(see implementation details in Tab.5). Such a network structure is commonly used in EBM works
[1, 2, 7, 6]. To shed further light on our method, we increase the hidden features (denoted as nef)
and report the result in Tab.2. We observe that using small nef=256 still shows strong performance,
while increasing from nef=512 to nef=1024 only exhibits minor improvement. This highlights the
effectiveness endowed with the proposed learning scheme.

Table 1: FID for simple network structure.

Cooperative EBM [8] Divergence Triangle [5] No MCMC EBM [4] Ours
FID 33.61 30.10 27.50 19.35

Table 2: FID for increasing nef.

nef=256 nef=512 nef=1024
FID 11.19 9.26 8.45

‘

1.2 Out-of-Distribution Detection

Table 3: AUROC (↑) for OOD detection.

SVHN CIFAR-100 CelebA
Unsupervised Method
Ours 0.94 0.64 0.85
Divergence Triangle [5] 0.68 - 0.56
No MCMC EBM [4] 0.83 0.73 0.33
IGEBM [1] 0.63 0.50 0.70
ImprovedCD EBM [2] 0.91 0.83 -
VAEBM [7] 0.83 0.62 0.77
Supervised Method
JEM [3] 0.67 0.67 0.75
HDGE 0.96 0.91 0.80
OOD EBM 0.91 0.87 0.78
OOD EBM (fine-tuned) 0.99 0.94 1.00

We evaluate our EBM in out-of-distribution (OOD)
detection task. If the EBM is well-learned, it can
be viewed as a generative discriminator and is able
to distinguish the in-distribution data with a lower
energy value and out-of-distribution data by assign-
ing a higher energy value. We follow the protocol
[7] and train our EBM on CIFAR-10. We test with
multiple OOD data and compute the energy value as
the decision function. Tab.3 shows the performance
evaluated by the AUROC score, where our EBM per-
forms well compared to other unsupervised learning
methods and can be competitive even compared with
the supervised (label available) methods.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

1.3 Image Inpainting

We then test our model for the task of image inpainting. We show that our method is capable of
recovering occluded images by progressively involving two MCMC revision processes. Specifically,
we consider the increasingly challenging experiment settings: (1) M20, M30, M40 are denoted for
center block of size 20x20, 30x30, 40x40, (2) R20, R30, R40 are denoted for multiple blocks that
cover 20%, 30%, 40% pixels of the original images. For recovery, we take occluded images as input
for the inference model and feed inferred latent codes through the generator model for recovery. The
performance of recovery should become better after the MCMC revision. As shown in Fig.1, our
model successfully recovers occluded images with MCMC revision processes.

PSNR / SSIM M20 M30 M40
Inf+Gen 21.035 / 0.671 18.375 / 0.568 16.484 / 0.487

Inf+T z
θ +Gen 24.976 (↑) / 0.781 (↑) 23.085 (↑) / 0.747 (↑) 19.733 (↑) / 0.660 (↑)

Inf+T z
θ +Gen+T x

α 25.132 (↑) / 0.797 (↑) 23.276 (↑) / 0.763 (↑) 19.959 (↑) / 0.679 (↑)
PSNR / SSIM R20 R30 R40

Inf+Gen 18.174 / 0.558 17.092 / 0.507 16.348 / 0.472
Inf+T z

θ +Gen 25.273 (↑) / 0.779 (↑) 25.108 (↑) / 0.771 (↑) 24.923 (↑) / 0.769 (↑)
Inf+T z

θ +Gen+T x
α 25.666 (↑) / 0.793 (↑) 25.409 (↑) / 0.788 (↑) 25.171 (↑) / 0.781 (↑)

Figure 1: Visualization of image completion. From top to bottom row: test image, occluded image,
recovery image via (i) Inf+Gen, (ii) Inf+T z

θ +Gen, (iii) Inf+T z
θ +Gen+T x

α . From left to right
column: experiments settings of M20, M30, M40, R20, R30, R40.

2 Theoretical Derivations

2.1 Preliminary

Learning generator model: Recall that the generator model is specified as pθ(x, z) and can be
learned by maximizing its log-likelihood Lp(θ) = log pθ(x). The learning gradient is based on the
simple identity: ∂

∂θ log pθ(x) =
∫

∂
∂θ log pθ(x, z)

pθ(x,z)
pθ(x)

dz = Epθ(z|x)[
∂
∂θ log pθ(x, z)].

Learning energy-based model: For learning the EBM πα(x), the gradient is computed by
maximizing its log-likelihood as ∂

∂α log πα(x) = ∂
∂α [fα(x) − log Z(α)], where ∂

∂α log Z(α) =
1

Z(α)

∫
∂
∂α exp[fα(x)]dx =

∫
πα(x)

∂
∂αfα(x)dx = Eπα(x)[

∂
∂αfα(x)].

2.2 Methodology

Joint desity & Marginal density. Given the KL divergence between two arbitrary joint densities,
i.e., KL(p(x, z)∥q(x, z)), one could obtain the following identity,

KL(p(x, z)∥q(x, z)) =
∫ ∫

p(x, z) log
p(x, z)

q(x, z)
dxdz

=

∫
p(x) log

p(x)

q(x)
dx+

∫ ∫
p(x, z) log

p(z|x)
q(z|x)

dxdz

= KL(p(x)∥q(x)) + Ep(x)[KL(p(z|x)∥q(z|x))]

(1)

which derives the marginal version of KL divergences of Eqn.8, Eqn.11, and Eqn.13 in the main text.

MLE perturbation for EBM. The EBM is learned through the minimization of joint KL divergences
as minα KL(Q̃ϕt,θt(x, z)∥Πα,ϕ(x, z))−KL(P̃θt,αt

(x, z)∥Πα,ϕ(x, z)). With Eqn.1, we could have

min
α

KL(Q̃ϕt,θt(x, z)∥Πα,ϕ(x, z))−KL(P̃θt,αt
(x, z)∥Πα,ϕ(x, z))

=min
α

KL(pd(x)∥πα(x)) + C1 −KL(T x
αt
pθt(x)∥πα(x))− C2

where C1 (= KL(T z
θt
qϕt

(z|x)∥qϕ(z|x))) and C2 (= KL(pθt(z|x)∥qϕ(z|x))) are constant irrelevant
to learning parameters. This is the marginal version of Eqn.8 shown in the main text.

2

2.3 Learning Algorithm

Our probabilistic framework consists of the EBM πα, generator model pθ, and inference model qϕ.
Three models are trained in an alternative and iterative manner based on the current model parameters.
Specifically, recall that the joint KL divergences between revised densities Q̃ϕ,θ(x, z), P̃θ,α(x, z)
and model densities give the gradient:

− ∂

∂α
Dπ(α) = Epd(x)[

∂

∂α
fα(x)]− ET x

αt
pθt (x)

[
∂

∂α
fα(x)] (2)

− ∂

∂θ
Dp(θ) = Epd(x)T z

θt
qϕt (z|x)[

∂

∂θ
log pθ(x, z)] + ET x

αt
pθt (x|z)p(z)[

∂

∂θ
log pθ(x, z)] (3)

− ∂

∂ϕ
Dq(ϕ) = Epd(x)T z

θt
qϕt (z|x)[

∂

∂ϕ
log qϕ(z|x)] + ET x

αt
pθt (x,z)

[
∂

∂ϕ
log qϕ(z|x)] (4)

Each model can then be updated via stochastic gradient ascent with such gradient.

Computing the above gradient needs the MCMC sampling and the MCMC inference as two MCMC
revision processes. We adopt the Langevin dynamics that iterates as

xτ+1 = xτ + s
∂

∂xτ
log πα(xτ) +

√
2sUτ where x0 ∼ pθ(x, z) and z ∼ N (0, Id) (5)

zτ+1 = zτ + s
∂

∂zτ
log pθ(zτ |x) +

√
2sUτ where z0 ∼ qϕ(z|x) and x ∼ pd(x) (6)

Compared to Eqn.3 and Eqn.6 in the main text, Eqn.5 and Eqn.6 start with initial points initialized
by the generator and inference model, respectively. The final xτ and zτ are sampled through the
guidance of EBM and generator model, and they serve as two MCMC-revised samples that teach the
initializer models.

We present the learning algorithm in Alg.1.

Algorithm 1 Learning EBM, generator and inference model and via dual-MCMC teaching

Require:
Batch size B. Training images {xi}Bi=1.
Total learning iterations T . Current learning iterations t.
Network parameters α, θ, ϕ. Fixed parameters αt, θt, ϕt.
Let t← 0.
repeat

Training samples: Let x = {xi}Bi=1.
Prior latent: Let z = {zi}Bi=1, where {zi}Bi=1 ∼ N (0, Id).
MCMC Sampling: Sample x̂ from generator model θt using z. Sample x̃ using Eqn.5 with αt

and x̂ being initial points.
MCMC Inference: Sample ẑ from inference model ϕt using x. Sample z̃ using Eqn.6 with θt
and ẑ being initial points.
Learn πα: Update α using Eqn.2 with x and x̃.
Learn pθ: Update θ using Eqn.3 with x, z̃, x̃, and z.
Learn qϕ: Update ϕ using Eqn.4 with x, z̃, x̃, and z.
Let t← t+ 1.

until t = T

2.4 Computational and Memory Cost

Our learning algorithm belongs to MCMC-based methods and can incur computational overhead
due to its iterative nature compared to variational-based or adversarial methods. We provide further
analysis by computing the wall-clock training time and parameter complexity for our related work
Divergence Triangle [5] (variational and adversarial-based joint training without MCMC) and our
model (see Tab.4), where the proposed work requires more training time but can also render signif-
icantly better performance. Regarding memory cost, it’s important to note that we didn’t observe
further improvement by just increasing parameter complexity (see Sec.1.1). This emphasizes the
effectiveness provided by our learning algorithm.

3

Table 4: Comparison between Divergence Triangle and our model for sample quality, wall-clock
training time (seconds / per-iteration), network parameters (denoted as #). Our method1 uses the same
network as Divergence Triangle, while method2 utilizes more complex residual network structures.

Divergence Triangle[5] Ours1 Ours2

FID 30.10 19.35 9.26
Time (s) 0.092 0.201 1.594
Generator 8M 8M 16M
Inference 5M 5M 15M
EBM 2M 2M 16M
Langevin Steps on x 0 30 30
Langevin Steps on z 0 10 10

Figure 2: Additional results for image synthesis. From top to bottom: CelebA-HQ-256, LSUN-
Church-64, CelebA-64, CIFAR-10.

3 Experiment Detail

We compute FID scores with 30,000 generated images for CelebA-HQ-256 and 50,000 generated
images for other data. All training images are resized and scaled to [-1, 1]. All experiment results run
on one NVIDIA A100 GPU (40-GB).

The network structures of each model are shown in Tab.5.

4

Table 5: Network structures on CIFAR-10. We denote the operation of convolution and transposed
convolution as Conv (input channel, output channel, k=3, s=1, p=1) and ConvT (input channel,
output channel, k=3, s=1, p=1), where k is the kernel size, s is the stride number, and p is padding
value. We conduct Upsample and Downsample via interpolate and avg_pool2d operations.

Generator Block (in_ch, out_ch, upsample)
Input: x

BatchNorm(in_ch), ReLU
Upsample(factor=2) if upsample

ConvT(in_ch, out_ch), BatchNorm(out_ch), ReLU
ConvT(out_ch, out_ch)

output: h
Input: x

Upsample(factor=2), ConvT(in_ch, out_ch) if upsample
output: y

output: h + y
Generator Network (z_dim, ngf)

Input: z
Linear(z_dim, 4∗4∗ngf)

Generator Block (ngf, ngf, upsample=True)
Generator Block (ngf, ngf, upsample=True)
Generator Block (ngf, ngf, upsample=True)

BatchNorm(ngf), ReLU
ConvT(ngf, 3), Tanh

output: h
Hyper-parameters

ngf=512, nef=512, nif=128, z_dim=128, batch size=100
learning rate: (Gen) 3e-4, (EBM) 1e-4, (Inf) 1e-4

EBM Block (in_ch, out_ch, downsample, head)
Input: x

ReLU if head
Conv(in_ch, out_ch), ReLU, Conv(out_ch, out_ch)

Downsample(factor=2) if downsample
output: h
Input: x

Downsample(factor=2) if head
ConvT(in_ch, out_ch) if downsample

Downsample(factor=2) if downsample and not head
output: y

output: h + y
EBM Network (nc=3, nef)

Input: x
EBM Block(nc, nef, downsample=True, head=True)

EBM Block (nef, nef, downsample=True)
EBM Block (nef, nef, downsample=False)
EBM Block (nef, nef, downsample=False)

ReLU, Downsample(factor=8), Linear(nef, 1)
output: h

Inference Network (z_dim, nif)
Input: x

ConvT(3, nif), ReLU
ConvT(nif, nif∗2, 4, 2, 1), ReLU

ConvT(nif∗2, nif∗4, 4, 2, 1), ReLU
ConvT(nif∗4, nif∗8, 4, 2, 1), ReLU

output: ConvT(nif∗8, z_dim, 4, 1, 0), ConvT(nif∗4, z_dim, 4, 1, 0)

References
[1] Yilun Du and Igor Mordatch. Implicit generation and generalization in energy-based models. arXiv preprint

arXiv:1903.08689, 2019. 1

[2] Yilun Du, Shuang Li, Joshua Tenenbaum, and Igor Mordatch. Improved contrastive divergence training of
energy based models. arXiv preprint arXiv:2012.01316, 2020. 1

[3] Will Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen, David Duvenaud, Mohammad Norouzi, and
Kevin Swersky. Your classifier is secretly an energy based model and you should treat it like one. arXiv
preprint arXiv:1912.03263, 2019. 1

[4] Will Sussman Grathwohl, Jacob Jin Kelly, Milad Hashemi, Mohammad Norouzi, Kevin Swersky, and David
Duvenaud. No {mcmc} for me: Amortized sampling for fast and stable training of energy-based models. In
International Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=ixpSxO9flk3. 1

[5] Tian Han, Erik Nijkamp, Xiaolin Fang, Mitch Hill, Song-Chun Zhu, and Ying Nian Wu. Divergence triangle
for joint training of generator model, energy-based model, and inferential model. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 8670–8679, 2019. 1, 3, 4

[6] Mitch Hill, Erik Nijkamp, Jonathan Craig Mitchell, Bo Pang, and Song-Chun Zhu. Learning probabilistic
models from generator latent spaces with hat EBM. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=AluQNIIb_Zy. 1

[7] Zhisheng Xiao, Karsten Kreis, Jan Kautz, and Arash Vahdat. Vaebm: A symbiosis between variational
autoencoders and energy-based models. In International Conference on Learning Representations, 2020. 1

[8] Jianwen Xie, Yang Lu, Ruiqi Gao, Song-Chun Zhu, and Ying Nian Wu. Cooperative training of descriptor
and generator networks. IEEE transactions on pattern analysis and machine intelligence, 42(1):27–45,
2018. 1

5

https://openreview.net/forum?id=ixpSxO9flk3
https://openreview.net/forum?id=ixpSxO9flk3
https://openreview.net/forum?id=AluQNIIb_Zy
https://openreview.net/forum?id=AluQNIIb_Zy

