
A Prompt completion algorithm400

Algorithm 2 describes the prompt completion algorithm introduced in Section 2.2. It implicitly401

considers a single action, which takes the next sequence element.402

Algorithm 2 – Prompt completion
Input: Grounded schema {T, C, Erb} with rebound CSCG emission matrix Erb, delimiter token
x∅, prompt x(prompt) = (x1, . . . , xm)
Output: A completed prompt x(prompt completed) = (x1, . . . , xm, xm+1, . . . , xm+p = x∅)

1: Run max-product for MAP inference and return zMAP = (z1, . . . , zm) = argmaxz p(z|x(prompt)).
2: Set ℓ = 0. While xm+ℓ ̸= x∅, increment ℓ← ℓ+ 1 and sample the next most likely observation:

zm+ℓ ∈ argmaxj Tzm+ℓ−1, j and xm+ℓ ∈ argmaxj E
rb
zm+ℓ, j

.

B Rapid binding in CSCGs403

Algorithm 3 is a variant of the rebinding Algorithm 1 that does not use EM. Instead, it first searches404

for “surprising observations”: a surprise has a low probability of being emitted by its decoded clone.405

This decoded clone (and all the clones in its clone set) are then rapidly bound to emit the surprise.406

Algorithm 3 – Rapid binding algorithm

Input: Grounded schema {T, C, E0}, pseudocount ϵ, surprise probability psurprise, prompt x(prompt)

Output: Rapidly bound emission matrix Erb

1: Add the pseudocount ϵ to the initial emission matrix and normalize its rows.
2: Run max-product for MAP inference and return zMAP = argmaxz p(z|x(prompt)).
3: Define the set of surprising observations S =

{
xn : E0

zMAP
n , xn

≤ psurprise

}
.

4: Set Erb = E0. For each surprising observation xn, (rapidly) bind zMAP
n and all the clones in the

clone slot of zMAP
n to emit xn.

That is, ∀ z̃ : C(z̃) = C(zMAP
n ) set Erb

z̃, xn
= 1 and Erb

z̃, j = 0, ∀j ̸= xn.

Initially, for any given clone i, only one entry j of the row E0
i in the emission matrix is set to 1. After407

Step 1, we have E0
i, j =

1
1+Nobsϵ

and E0
i, k = ϵ

1+Nobsϵ
, ∀k ̸= j. We can then use psurprise =

1
2(1+Nobsϵ)

.408

C Additional materials for the GINC dataset409

First, we present two additional plots for the GINC experiment.

0 10 20 30 40 50 60
Num examples

0.30

0.35

0.40

0.45

0.50

In
-c

on
te

xt
 c

on
fid

en
ce

In-context confidence on seen concepts

3
5
8
10

0 10 20 30 40 50 60
Num examples

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

In
-c

on
te

xt
 a

cc
ur

ac
y

In-context accuracy on unseen concepts

k=3
k=5
k=8
k=10

In-context performance on the GINC dataset

Figure 8: [Left] In-context confidence for the CSCG with 50 clones on the GINC test dataset, defined
as the averaged probability of the predictions. For larger values of k, CSCG correctly infers the
context of the aliased observations and is more confident in his predictions. [Right] Similar to the
transformer and LSTM reported in [50], CSCG fails to extrapolate and has a low in-context accuracy
when the test prompts are sampled from five novel concepts, unseen during training.
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410

Second, we present the table of results associated with Fig. 3 for the CSCGs with 10 and 50 clones.

Context length No. of examples CSCG with 10 clones CSCG with 50 clones

3 0 0.509 (0.020) 0.534 (0.020)
1 0.351 (0.019) 0.445 (0.019)
2 0.366 (0.019) 0.453 (0.020)
4 0.356 (0.019) 0.468 (0.020)
8 0.360 (0.019) 0.454 (0.020)
16 0.354 (0.019) 0.460 (0.020)
32 0.354 (0.019) 0.441 (0.0219)
64 0.369 (0.019) 0.468 (0.020)

5 0 0.682 (0.018) 0.927 (0.010)
1 0.640 (0.019) 0.927 (0.012)
2 0.629 (0.019) 0.904 (0.012)
4 0.654 (0.019) 0.883 (0.013)
8 0.627 (0.019) 0.894 (0.012)
16 0.637 (0.019) 0.902 (0.012)
32 0.634 (0.019) 0.901 (0.012)
64 0.637 (0.019) 0.899 (0.012)

8 0 0.696 (0.018) 0.969 (0.007)
1 0.694 (0.018) 0.972 (0.007)
2 0.686 (0.018) 0.972 (0.006)
4 0.681 (0.018) 0.978 (0.006)
8 0.690 (0.018) 0.973 (0.006)
16 0.686 (0.018) 0.975 (0.006)
32 0.676 (0.018) 0.968 (0.006)
64 0.694 (0.018) 0.975 (0.007)

10 0 0.684 (0.018) 0.975 (0.006)
1 0.705 (0.018) 0.977 (0.006)
2 0.674 (0.018) 0.971 (0.006)
4 0.713 (0.018) 0.974 (0.006)
8 0.690 (0.018) 0.977 (0.006)
16 0.689 (0.018) 0.977 (0.006)
32 0.712 (0.018) 0.978 (0.006)
64 0.690 (0.018) 0.978 (0.006)

Table 1: In-context accuracy for a CSCG with 10 clones and a CSCG 50 clones trained on the GINC
dataset, averaged (with 95% confidence intervals) on each each pair (k, n) of context length and
number of examples n of the GINC test set.

411

CSCG performs better on zero-shot prompts than on few-shot prompts: We observe that, for412

short contexts, CSCG in-context accuracy is higher on zero-shot prompts n = 0 than on few-shot413

prompts n = 1, 2, . . .. We hypothesize that the difference between the training and the prompt414

distributions creates a gap that lowers few-shot in-context accuracy. The performance gap disappears415

for larger contexts k ∈ {8, 10} as they “overpower” the train-test distribution divergence. [50] made416

a similar observation for transformers. However, their performance gap was also observable for larger417

contexts.418

D Additional materials for the LIALT dataset419

D.1 Natural language instructions420

Tables 2 and 3 present the natural language instructions respectively used for the nine list algorithms421

and four matrix algorithms of the LIALT dataset. Language instructions are grouped in clusters of422

five: all five instructions within one cluster describe to the same algorithm. As described in the main423

text, each demonstration of the LIALT training and first test set uniformly selects one instruction.424
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“find the element at index zero of the list” “print the element at index one of the list”
“print the first element from the list” “find the second element from the list”
“return the leading element from the list” “retrieve the second element from the list”
“find the head element from the list” “locate the second item from the list”
‘retrieve the starting element from the list” “return the element in second place from the

list”

“print the element at index two of the list” “reverse the list”
“find the third element from the list” “mirror the list”
“locate the third element from the list” “flip the list”
“output the third item from the list” “flip the order of the list”
“return the element in third place from the list” “reverse the order of the items in the list”

“duplicate each list item” “rotate the list elements one place forward”
“replicate every element in the list” “roll the list elements one position to the

right”
“make a copy of each element in the list” “switch the items of the list one position

forward”
“clone each element in the list” “advance the list elements one index forward”
“create a second instance of every element in the
list”

“move the list elements one position forward”

“rotate the list elements one place backward” “print every other member in the list starting
with the first member”

“move the list elements one position to the left” “find alternate elements in the list beginning
with the first element”

“change the items of the list one position
backward”

“print every second item in the list, starting
with the first element”

“displace the elements of the list one index
backward”

“output every second element in the list,
starting from the first element”

“roll the list items one position backward” “output odd indexed elements”

“print every other member in the list starting
with the second member”
“retrieve alternate items in the list starting
with the second item”
“output odd indexed elements”
“retrieve every other entry in the list starting
with the second entry”
“return every other object in the list starting
with the second object”

Table 2: Natural language instructions for the list algorithms used in the LIALT dataset

“return the matrix diagonal” “return the matrix transpose”
“collect the diagonal values of the matrix” “retrieve the transpose of the matrix”
“retrieve the diagonal elements of the matrix” “get the transposed matrix”
“return the diagonal entries of the matrix” “compute the transposed form of the matrix”
“fetch the diagonal items of the matrix” “derive the transpose matrix”

“roll the columns of the matrix to the right” “find the matrix element in the second row and
second column”

“rotate the matrix columns to the right” ‘find the value in the second row and second
column of the matrix”

“move the matrix columns to the right” “fetch the matrix element located in row 2 and
column 2”

“shift the columns of the matrix to the right” “print the value at 2 2 in the matrix”
“spin the matrix columns to the right” “retrieve the matrix element at 2 2”

Table 3: Natural language instructions for the matrix algorithms used in the LIALT dataset

425

15



D.2 Learned CSCG model426

Our next Figure 9 displays the transition graph of the CSCG trained on the LIALT dataset, displayed427

by both (a) stacking clones (b) unrolling them using the Kamada-Kawai algorithm [20].428

Figure 9: A. Transition graph of the learned CSCG model with overallocation ratio 3, visualized with
stacked clones. B. The same transition graph visualized using the Kamada-Kawai algorithm [20]
reveals 13 loosely connected clusters corresponding to the 13 algorithms used in the LIALT dataset.
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D.3 Results on the LIALT dataset429

We present below the tables of results associated with Fig. 5. Our first Table 4 contains the in-context430

accuracies averaged on the entire test set.

Overallocation ratio Instruction-based prompts Example-based prompts

0.1 0.02 (0.03) 0.01 (0.02)
0.3 0.10 (0.06) 0.15 (0.07)
1.0 0.52 (0.10) 0.49 (0.10)
3.0 0.88 (0.06) 0.93 (0.05)

Table 4: Average in-context accuracy of each CSCG model—with 95% confidence intervals—as
a function of CSCG overallocation on both (a) the instruction-based LILAT test set and (b) the
example-based LIALT test set.
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Our second Table 5 contains the in-context accuracies per tasks, on instructions-based prompts.

Overallocation ratio

Task 0.1 0.3 1.0 3.0

list 1st elem. 0.00 (0.00) 0.00 (0.00) 0.86 (0.13) 1.00 (0.00)
list 2nd elem. 0.33 (0.19) 0.50 (0.20) 0.50 (0.20) 1.00 (0.00)
list 3rd elem. 0.00 (0.00) 0.50 (0.20) 0.33 (0.19) 1.00 (0.00)
list reverse 0.00 (0.00) 0.00 (0.00) 0.50 (0.18) 0.62 (0.17)
list repeat twice 0.00 (0.00) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00)
list alt. even 0.00 (0.00) 0.00 (0.00) 0.36 (0.15) 0.91 (0.09)
list alt. odd 0.00 (0.00) 0.00 (0.00) 0.83 (0.15) 1.00 (0.00)
list circ. shift fw. 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.60 (0.22)
list circ. shift bw. 0.00 (0.00) 0.00 (0.00) 0.38 (0.17) 1.00 (0.00)
matrix diagonal 0.00 (0.00) 0.00 (0.00) 0.67 (0.14) 1.00 (0.00)
matrix transpose 0.00 (0.00) 0.00 (0.00) 0.86 (0.13) 1.00 (0.00)
matrix roll columns 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.54 (0.14)
matrix elem. at idx. 0.00 (0.00) 0.50 (0.18) 1.00 (0.00) 1.00 (0.00)

Table 5: Average in-context accuracy by task—with standard errors—as a function of CSCG overal-
location on instruction-based prompts.
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Finally, our last Table 6 contains the in-context accuracies per tasks, on example-based prompts.

Overallocation ratio

Task 0.1 0.3 1.0 3.0

list 1st elem. 0.00 (0.00) 0.29 (0.17) 0.57 (0.19) 1.00 (0.00)
list 2nd elem. 0.00 (0.00) 0.00 (0.00) 0.17 (0.15) 0.83 (0.15)
list 3rd elem. 0.00 (0.00) 0.00 (0.00) 0.33 (0.19) 0.83 (0.15)
list reverse 0.00 (0.00) 0.25 (0.15) 0.62 (0.17) 0.75 (0.15)
list repeat twice 0.00 (0.00) 0.00 (0.00) 0.67 (0.27) 1.00 (0.00)
list alt. even 0.00 (0.00) 0.09 (0.09) 0.45 (0.15) 0.91 (0.09)
list alt. odd 0.00 (0.00) 0.17 (0.15) 0.17 (0.15) 1.00 (0.00)
list circ. shift fw. 0.00 (0.00) 0.20 (0.18) 0.40 (0.22) 1.00 (0.00)
list circ. shift bw. 0.00 (0.00) 0.00 (0.00) 0.38 (0.17) 0.88 (0.12)
matrix diagonal 0.00 (0.00) 0.08 (0.08) 0.42 (0.14) 1.00 (0.00)
matrix transpose 0.00 (0.00) 0.14 (0.13) 0.57 (0.19) 1.00 (0.00)
matrix roll columns 0.08 (0.07) 0.31 (0.13) 0.62 (0.13) 0.92 (0.07)
matrix elem. at idx. 0.00 (0.00) 0.25 (0.15) 0.88 (0.12) 1.00 (0.00)

Table 6: Average in-context accuracy by task—with standard errors—as a function of CSCG overal-
location on example-based prompts.

433
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D.4 Example failures434

Finally, we present a few examples which illustrate the failure modes of our approach. These are435

primarily a consequence of imperfections in the learned CSCG model.436

Each example is presented in the format (prompt, ground truth correct output, actual model response).437

1. For these failures, the instruction circuit has been wired to the wrong algorithm circuit438

(possibly driven by the ambiguity of the forward slash delimiter separating the instruction439

from the example), resulting in the retrieval of the wrong schema.440

• output odd indexed elements / [ U V B Q K I ]441

[ U B K ] /442

[ V Q I ] /443

• flip the list / [ S E J ]444

[ J E S ] /445

[ S S E E J J ]446

• reverse the list / [ R T B ]447

[ B T R ] /448

[ R R T T B B ] /449

• mirror the list / [ B A O T ]450

[ T O A B ] /451

[ B B A A O O T T ] /452

2. For these failures, the schema has been learned incorrectly.453

• switch the items of the list one position forward / [ L N G X M T ]454

[ T L N G X M ] /455

[ T L N G X M T ] [ T L N G X M T ] . . .456

• shift the columns of the matrix to the right / [ [ D Y ] [ V F ] ]457

[ [ Y D ] [ F V ] ] /458

[ [ get459

• / [ Z J B ] [ Z Z J J B B ] / [ B A E F W L ]460

[ B B A A E E F F W W L L ] /461

[ B B A E F F W W L L ] /462

• / [ V P X T ] [ P T ] / [ V F J P E W ]463

[ F P W ] /464

[ F P W ] [ F P W ] . . .465
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