
A Proof of Theorem 1
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Proof. Since the prior distribution for CLBayes is
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B Generalized Jeffreys Divergence

Suppose we have
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where d
2
X is the squared Euclidean distance. In the same way, we have
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C Calculation of Probabilistic Bayes Error (PBE)

C.1 An Introduction

Noncentral �2 distribution Let (X1, X2, . . . , Xi, . . . , Xk) be k independent, normally distributed
random variables with means µi and unit variances. Then the random variable
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is distributed according to the noncentral �2 distribution. It has two parameters (k,�): k which
specifies the number of degrees of freedom (i.e., the number of Xi ), and � which is the sum of the
squared mean of the random variables Xi:
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Here the parameters are the weights wi, the degrees of freedom ki and non-centralities �i of the
constituent �2, and the normal parameters m and s.

C.2 Quadratic Function
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Then, the cumulative distribution function (CDF) of Q(xi) can be calculated as follows,
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D A Discussion of (Imbalanced) Prior Distribution

In this section, we provide an open-ended discussion on how the prior distribution (i.e., imbalanced
datasets) will influence the ND of CSBM-H, which can possibly lead to some interesting future
works.
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X = (µ0 � µ1)>(µ0 � µ1), which is the square Euclidean distance between the means of

the two distributions.
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From Figure 8 (b) we can find that, as the size of the low-variation class increases, the LP regime
expands and HP regime shrinks at the low homophily area in terms of DNGJ. This is because in
ENND, the normalization term p0

2�2
1

gets higher weight, making the curve for LP filters move down
and HP filter move up, which leads to the expansion of LP regime.
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(a) PBE (b) DNGJ

(c) ENND (d) Negative Variance Ratio

Figure 8: Comparison of CSBM-H with n0 = 500, n1 = 100.

(a) PBE (b) DNGJ

(c) ENND (d) Negative Variance Ratio

Figure 9: Comparison of CSBM-H with n0 = 100, n1 = 500.
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However, we can also observe that the changes of PBE and DNGJ curves show inconsistent results. As
the size of the low-variation class increases, the LP regime shrinks and HP regime expands in PBE,
while the LP regime expands and HP regime shrinks in DNGJ. In Figure 9, we observe the similar
inconsistency between PBE and DNGJ curves. This discrepancy reminds us that the performance of
LP and HP filters on imbalanced datasets might be under-explored. We do not have a conclusion for
this challenge in this paper and we encourage more researchers to study the connection among the
prior distribution, the performance of LP and HP filters and ND.

E More About CSBM-H

E.1 Directed or Undirected Graphs?

Question Why not generated an undirected graph.

Answer If we impose undirected assumption in CSBM-H, we have to not only discuss the node
degree from intra-class edges, but also discuss degree from inter-class edges and control their relations
with the corresponding homophily level. This will inevitably add more parameters to CSBM-H and
make the model much more complicated. However, we find that this complication does not bring us
extra benefit for understanding the effect of homophily, which deviate the main goal of our paper.
And we guess this might be one of the reasons that the existing work mainly keep the discussion
within the directed setting [38].

Actually, when CSMB-H was firstly designed, we would like to only have one "free parameter" h
in it to make it simple. Because in this way, we are able to show the whole picture of the effect of
homophily from 0 to 1, like the figures in Section 3.4.

E.2 Extend CSBM-H to More General Settings

The CSBM-H can be extended to more general settings: 1. The two-normal setting can be expanded
to multi-class classification problems with different sets of (µ,�2I, d) parameters for each class; 2.
The degrees of nodes can be generalized to different degree distributions; 3. The scalar homophily
parameter h can be generalized to matrix H 2 RC⇥C , where Hc1,c2 represents the probability of
nodes in class C1 connecting to nodes in class C2, which is the compatibility matrix used in [56].
Furthermore, we can also define the local homophily value Hv,c for each node, where Hv,c indicates
the proportion of neighbors of v that connect to nodes from class Cc. To demonstrate and visualize the
effect of homophily intuitively and easily, we use the CSBM-H settings in this paper as stated above.
Although the settings are simple, insightful results can still be obtained. The more complicated
variants will be left for future work.

E.3 Two More Metrics of ND: Negative Squared Wasserstein Distance and Hellinger Distance

Original Definition In general, the Wasserstein distance between two Gaussians is d =
W2 (N (µ0,⌃0) ;N (µ1,⌃1)) and we have [17, 28, 44, 13]
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The squared Hellinger distance between two Gaussians is [45]
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Wasserstein distance is a distance function defined between probability distributions and Hellinger
distance is a type of f -divergence which is used to quantify the similarity between two probability
distributions [48, 24]. These two metrics can be used to study the ND of CSBM-H and we will
introduce them in the following subsection.

Calculation for CSBM-H The negative squared Wasserstein distance (NSWD) for CSBM-H is

NSWD = �kµ0 � µ1k22 � Fh(�0 � �1)
2
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The negative squared Hellinger distance (NSHD) for CSBM-H is
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Although defining the distance in different ways, both NSWD and NSHD indicate that the ND of
CSBM-H depends on both intra- and inter-class ND, which is consistent with our conclusions in
main paper. Besides, NSWD and NSHD provide analytic expressions for ND, which can be good
tools for future research.

F More Figures of CSBM-H

(a) PBE (b) DNGJ

(c) ENND (d) Negative Variance Ratio

Figure 10: Comparison of CSBM-H with �
2
0 = 2.5,�2

1 = 5.

G Proof of Theorem 2

To prove theorem 2, we need the following two lemmas.
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Lemma 1. Let xi = Xi,: and suppose each dimension of xi are independent, then for xi,hi =
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The results for hi,hHP
i can be proved by analogy.

Lemma 2. (Heoffding Lemma) Let X be any real-valued random variable such that a  X  b
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The proof of Theorem 2 will be splitted into three parts for xi,hi and hHP
i , respectively.
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G.1 Proof for Original (Full-pass Filtered) Features

Proof. Since we have
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G.2 Proof for Low-pass Filter

Proof. Part for LP filter:
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With the same steps, we have
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G.3 Theoretical Results for High-pass Filter

Proof. The proof for HP filter is similar to that of LP filter.
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H Detailed Discussion of Performance Metrics and More Experimental
Results

H.1 Hypothesis Testing of ACM-GNNs vs. GNNs

To more comprehensively validate if "intra-class embedding distance is smaller than the inter-class
embedding distance" closely correlates to the superiority of a given model versus another model, we
choose the SOTA model ACM-GNNs and conduct the following hypothesis testing of ACM-GNNs
[35] versus GNNs and ACM-GNNs versus MLPs. From the results in table 3 we can see that the
above statements hold except in ACM-SGC-1 vs. SGC-1 on Squirrel and ACM-GCN vs. GCN on
CiteSeer. This again verifies that the relationship between intra- and inter-class embedding distance
strongly relates to the model performance.

Cornell Wisconsin Texas Film Chameleon Squirrel Cora CiteSeer PubMed

p-value 1.00 1.00 1.00 1.00 0.19 1.00 1.00 1.00 1.00
ACM-SGC-1 ACC ACM-SGC-1 93.77 ± 1.91 93.25 ± 2.92 93.61 ± 1.55 39.33 ± 1.25 63.68 ± 1.62 46.4 ± 1.13 86.63 ± 1.13 80.96 ± 0.93 87.75 ± 0.88

v.s. SGC-1 ACC SGC-1 70.98 ± 8.39 70.38 ± 2.85 83.28 ± 5.43 25.26 ± 1.18 64.86 ± 1.81 47.62 ± 1.27 85.12 ± 1.64 79.66 ± 0.75 85.5 ± 0.76
Diff Acc 22.79 22.87 10.33 14.07 -1.18 -1.22 1.51 1.30 2.25

p-value 1.00 1.00 1.00 1.00 1.00 1.00 0.41 0.00 1.00
ACM-GCN ACC ACM-GCN 94.75 ± 3.8 95.75 ± 2.03 94.92 ± 2.88 41.62 ± 1.15 69.04 ± 1.74 58.02 ± 1.86 88.62 ± 1.22 81.68 ± 0.97 90.66 ± 0.47

v.s. GCN ACC GCN 82.46 ± 3.11 75.5 ± 2.92 83.11 ± 3.2 35.51 ± 0.99 64.18 ± 2.62 44.76 ± 1.39 87.78 ± 0.96 81.39 ± 1.23 88.9 ± 0.32
Diff Acc 12.29 20.25 11.81 6.11 4.86 13.26 0.84 0.29 1.76

p-value 0.10 0.00 0.50 1.00 1.00 1.00 1.00 1.00 0.42
ACM-SGC-1 ACC ACM-SGC-1 93.77 ± 1.91 93.25 ± 2.92 93.61 ± 1.55 39.33 ± 1.25 63.68 ± 1.62 46.4 ± 1.13 86.63 ± 1.13 80.96 ± 0.93 87.75 ± 0.88

v.s. MLP-1 ACC MLP-1 93.77 ± 3.34 93.87 ± 3.33 93.77 ± 3.34 34.53 ± 1.48 45.01 ± 1.58 29.17 ± 1.46 74.3 ± 1.27 75.51 ± 1.35 86.23 ± 0.54
Diff Acc 0.00 -0.62 -0.16 4.80 18.67 17.23 12.33 5.45 1.52

p-value 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ACM-GCN ACC ACM-GCN 94.75 ± 3.8 95.75 ± 2.03 94.92 ± 2.88 41.62 ± 1.15 69.04 ± 1.74 58.02 ± 1.86 88.62 ± 1.22 81.68 ± 0.97 90.66 ± 0.47
v.s. MLP-2 ACC MLP-2 91.30 ± 0.70 93.87 ± 3.33 92.26 ± 0.71 38.58 ± 0.25 46.72 ± 0.46 31.28 ± 0.27 76.44 ± 0.30 76.25 ± 0.28 86.43 ± 0.13

Diff Acc 3.45 1.88 2.66 3.04 22.32 26.74 12.18 5.43 4.23

Table 3: Hypothesis testing results of ACM-GNNs v.s. GNNs: The cells marked by orange are the
cases that the p-values significantly indicate the opposite direction as the trained results (ground
truth).

H.2 Implementation Details of KR and GNB

Classifier-based performance metrics: we measure the quality of aggregated features based on the
performance of a "training-free" classifier. In this paper, we take use of kernel regression and naive
Bayes classifiers.

Kernel Regression Kernel method utilizes a pairwise similarity function K(xi,xj) to measure
how closely related two node embeddings are, without the need for any training process [29, 22, 43].
A higher value of K(xi,xj) indicates a smaller distance between the embeddings of nodes xi and
xj and vice versa.

Algorithm 1 Pseudo code for kernel regression

Require: X, Â, Z,N,NS , Nepochs . N is the number of nodes, NS is the number of samples
for i in Nepochs do

S  sample(N,NS)
Get KX

S ,K
H
S , ZS .K

X
S ,K

H
S are the kernels for X and H for the sampled nodes

Strain, Stest  sample(S, 0.6NS , 0.4NS)

f
X
K  

�
K

X
S [Stest, :][:, Strain]

� �
K

X
S [Strain, :][:, Strain]

��1
ZS [Strain, :]

f
H
K  

�
K

H
S [Stest, :][:, Strain]

� �
K

H
S [Strain, :][:, Strain]

��1
ZS [Strain, :]

Compute ACCX
i ,ACCH

i  Accuracy(fX
K , ZS [Stest, :]), Accuracy(fH

K , ZS [Stest, :])
end for
p-value ttest(ACCX

,ACCH)

To capture the feature-based non-linear node similarity, we use Neural Network Gaussian Process
(NNGP) [30, 2, 16, 41]. Specifically, we consider the activation function �(x) = ReLU(x) and have
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where �̃(x) = arccos(x) is the dual activation function of ReLU. 13

Furthermore, we observe that there exist some datasets where linear G-aware models do not have the
same performance disparities compared to their coupled G-agnostic models as non-linear G-aware
models, e.g., as the results on PubMed shown in table 1, SGC-1 underperforms MLPs while GCN
outperforms MLP-2. This implies that relying on a single non-linear metric to assess whether G-aware
models will surpass their coupled G-agnostic models is not enough, we need a linear metric as well.
Thus, we choose the following linear kernel (inner product) for regression

KL(xi,xj) =
x>
i xj

kxik2kxjk2
.

For Gaussian Naïve Bayes (GNB), we just use the features and aggregated features of the sampled
training nodes to fit two separate classifiers and get the predicted accuracy for the test nodes. Note
that Gaussian Naïve Bayes is just a linear classifier.

Threshold Values Typically, the threshold for homophily and heterophily graphs is set at 0.5
[57, 55, 54, 35] . For classifier-based performance metrics, we establish two benchmark thresholds as
below,

• Normal Threshold 0.5 (NT0.5): Although not indicating statistical significance, we are still
comfortable to set 0.5 as a loose threshold. A value exceeding 0.5 suggests that the G-aware
model is not very likely to underperform their coupled G-agnostic model on the tested graph
and vice versa.

• Statistical Significant Threshold 0.05 (SST0.05): Instead of offering an ambiguous statistical
interpretation, SST0.05 will offer a clear statistical meaning. A value smaller than 0.05
implies that the G-aware model significantly underperforms their coupled G-agnostic model
and a value greater than 0.95 suggests a high likelihood of G-aware model outperforming
their coupled G-agnostic model. Besides, a value ranging from 0.05 to 0.95 indicates no
significant performance distinction between G-aware model and its G-agnostic model.

We show the results of KRL,KRNL and GNB in section H.3 . Cells marked by grey are errors
according to NT0.5 and results marked by red are incorrect according to SST 0.05. The comparisons
with the existing homophily metrics are shown in section H.4. We can see that, no matter on small-
(table 4 6) or large-scale (table 5 7) datasets, the classifier-based performance metrics (CPMs) are
significantly better than the existing homophily metrics on revealing the advantages and disadvantages
of GNNs, decreasing the overall error rate from at least 0.34 to 0.13 (table 8). The running time of
CPM is short (table 9), only taking several minutes 14 even on large-scale datasets such as pokec and
snap-patents, which contains millons of nodes and tens of millions of edges [32].

H.3 Results on Small-scale and Large-scale Datasets

13Note that when �(x) = exp (ix), we have K(xi,xj) = exp (� 1
2 kxi � xjk22), which is closely related

to the Euclidean distance of node embeddings tested in section 4.1, further emphasizing the strong relationship
between embedding distances and kernel similarities.

141 NVIDIA V100 GPU with 16G memory, 8-core CPU with 16G memory
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Cornell Wisconsin Texas Film Chameleon Squirrel Cora CiteSeer PubMed

Hedge 0.5669 0.4480 0.4106 0.3750 0.2795 0.2416 0.8100 0.7362 0.8024
Hnode 0.3855 0.1498 0.0968 0.2210 0.2470 0.2156 0.8252 0.7175 0.7924

Baseline Hclass 0.0468 0.0941 0.0013 0.0110 0.0620 0.0254 0.7657 0.6270 0.6641
Homophily Hagg 0.8032 0.7768 0.6940 0.6822 0.61 0.3566 0.9904 0.9826 0.9432

Metrics HGE 0.31 0.34 0.35 0.16 0.0152 0.0157 0.1700 0.1900 0.27
Hadj 0.1889 0.0826 0.0258 0.1272 0.0663 0.0196 0.8178 0.7588 0.7431
LI 0.0169 0.1311 0.1923 0.0002 0.048 0.0015 0.5904 0.4508 0.4093

Classifier-based KRL 1.39 0.00 0.00 0.7834 1.00 1.00 1.00 1.00 0.8026
Performance Metrics GNB 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.0000

ACC SGC 70.98 ± 8.39 70.38 ± 2.85 83.28 ± 5.43 25.26 ± 1.18 64.86 ± 1.81 47.62 ± 1.27 85.12 ± 1.64 79.66 ± 0.75 85.5 ± 0.76
SGC v.s. MLP1 ACC MLP-1 93.77 ± 3.34 93.87 ± 3.33 93.77 ± 3.34 34.53 ± 1.48 45.01 ± 1.58 29.17 ± 1.46 74.3 ± 1.27 75.51 ± 1.35 86.23 ± 0.54

Diff Acc -22.79 -23.49 -10.49 -9.27 19.85 18.45 10.82 4.15 -0.73

Hedge 0.5669 0.4480 0.4106 0.3750 0.2795 0.2416 0.8100 0.7362 0.8024
Hnode 0.3855 0.1498 0.0968 0.2210 0.2470 0.2156 0.8252 0.7175 0.7924

Baseline Hclass 0.0468 0.0941 0.0013 0.0110 0.0620 0.0254 0.7657 0.6270 0.6641
Homophily Hagg 0.8032 0.7768 0.6940 0.6822 0.61 0.3566 0.9904 0.9826 0.9432

Metrics HGE 0.31 0.34 0.35 0.16 0.0152 0.0157 0.1700 0.1900 0.2700
Hadj 0.1889 0.0826 0.0258 0.1272 0.0663 0.0196 0.8178 0.7588 0.7431
LI 0.0169 0.1311 0.1923 0.0002 0.048 0.0015 0.5904 0.4508 0.4093

Classifier-based KRNL 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00
Performance Metrics GNB 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00

ACC GCN 82.46 ± 3.11 75.5 ± 2.92 83.11 ± 3.2 35.51 ± 0.99 64.18 ± 2.62 44.76 ± 1.39 87.78 ± 0.96 81.39 ± 1.23 88.9 ± 0.32
GCN v.s. MLP2 ACC MLP-2 91.30 ± 0.70 93.87 ± 3.33 92.26 ± 0.71 38.58 ± 0.25 46.72 ± 0.46 31.28 ± 0.27 76.44 ± 0.30 76.25 ± 0.28 86.43 ± 0.13

Diff Acc -8.84 -18.37 -9.15 -3.07 17.46 13.48 11.34 5.14 2.47

Table 4: Comparison on small datasets

Penn94 pokec arXiv-year snap-patents genius twitch-gamers Deezer-Europe

Hedge 0.4700 0.4450 0.2220 0.0730 0.6180 0.5450 0.5250
Hnode 0.4828 0.4283 0.2893 0.2206 0.5087 0.5564 0.5299

Baseline Hclass 0.0460 0.0000 0.2720 0.1000 0.0800 0.0900 0.0300
Homophily Hagg 0.2712 0.0807 0.7066 0.6170 0.7823 0.4172 0.5580

Metrics HGE 0.3734 0.9222 0.8388 0.6064 0.6655 0.2865 0.0378
Hadj 0.0366 -0.1132 0.0729 0.0907 0.1432 0.1010 0.1586
LI 0.0851 0.0172 0.0407 0.0243 0.0025 0.0058 0.0007

Classifier-based KRL 0.00 0.03 0.98 0.19 0.00 0.25 0.00
Performance Metrics GBN 0.00 0.00 1.00 1.00 0.00 1.00 0.00

ACC SGC 67.06 ± 0.19 52.88 ± 0.64 35.58 ± 0.22 29.65 ± 0.04 82.31 ± 0.45 57.9 ± 0.18 61.63 ± 0.25
SGC vs MLP1 ACC MLP-1 73.72 ± 0.5 59.89 ± 0.11 34.11 ± 0.17 30.59 ± 0.02 86.48 ± 0.11 59.45 ± 0.16 63.14 ± 0.41

Diff Acc -6.66 -7.01 1.47 -0.94 -4.17 -1.55 -1.51

Hedge 0.4700 0.4450 0.2220 0.0730 0.6180 0.5450 0.5250
Hnode 0.4828 0.4283 0.2893 0.2206 0.5087 0.5564 0.5299

Baseline Hclass 0.0460 0.0000 0.2720 0.1000 0.0800 0.0900 0.0300
Homophily Hagg 0.2712 0.0807 0.7066 0.6170 0.7823 0.4172 0.5580

Metrics HGE 0.3734 0.9222 0.8388 0.6064 0.6655 0.2865 0.0378
Hadj 0.0366 -0.1132 0.0729 0.0907 0.1432 0.1010 0.1586
LI 0.0851 0.0172 0.0407 0.0243 0.0025 0.0058 0.0007

Classifier-based KRNL 0.00 0.57 1.00 0.4083 0.00 1.00 0.00
Performance Metrics GNB 0.00 0.00 1.00 1.00 0.00 1.00 0.00

ACC GCN 82.08 ± 0.31 70.3 ± 0.1 40 ± 0.26 35.8 ± 0.05 83.26 ± 0.14 62.33 ± 0.23 60.16 ± 0.51
GCN vs MLP2 ACC MLP-2 74.68 ± 0.28 62.13 ± 0.1 36.36 ± 0.23 31.43 ± 0.04 86.62 ± 0.08 60.9 ± 0.11 64.25 ± 0.41

Diff Acc 7.40 8.17 3.64 4.37 -3.36 1.43 -4.09

Table 5: Comparison on large-scale datasets

H.4 Statistics and Comparisons

Discrepancy Between Linear and Non-linear Models From the experimental results on large-
scale datasets reported in Table 5, we observe that, for linear and non-linear G-aware models,
there exists inconsistency between their comparison with their coupled G-agnostics models. For
example, on Penn94, pokec, snap-patents and twitch-gamers, SGC-1 underperforms MLP-1 but GCN
outperforms MLP-2. In fact, PubMed in Table 4 also belongs to this family of datasets. We do not
have a proved theory to explain this phenomenon for now. But there is obviously a synergy between
homophily/heterophily and non-linearity that cause this discrepancy together. And we think, on this
special subset of heterophilic graphs, we should develop theoretical analysis to discuss the interplay
between graph structure and feature non-linearity, and how they affect node distinguishability together.

The current homophily values (including the proposed metrics) are not able to explain the phenomenon
associated with this group of datasets. We keep it as an open question and encourage people from the
GNN community to study it in the future.
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Total Error Error Rate

Hedge 7 0.39
Hnode 5 0.28
Hclass 5 0.28
Hagg 11 0.61
HGE 9 0.50
Hadj 5 0.28
LI 7 0.39

KR (NT0.5) 2 0.11
KR (SST0.05) 1 0.06
GNB (NT0.5) 1 0.06

GNB (SST0.05) 1 0.06

Table 6: Statistics on small-scale datasets

Total Error Error Rate

Hedge 9 0.64
Hnode 9 0.64
Hclass 6 0.43
Hagg 8 0.57
HGE 6 0.43
Hadj 6 0.43
LI 6 0.43

KR (NT0.5) 2 0.14
KR (SST0.05) 5 0.36
GNB (NT0.5) 4 0.29

GNB (SST0.05) 4 0.29

Table 7: Statistics on large-scale datasets

Total Error Error Rate

Hedge 16 0.50
Hnode 14 0.44
Hclass 11 0.34
Hagg 19 0.59
HGE 15 0.47
Hadj 11 0.34
LI 13 0.41

KR (NT0.5) 4 0.13
KR (SST0.05) 6 0.19
GNB (NT0.5) 5 0.16

GNB (SST0.05) 5 0.16

Table 8: Overall statistics on small- and large-scale datasets
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KRL KRNL GNB

Cornell 0.58 0.67 1.39
Wisconsin 0.78 0.87 1.72

Texas 0.59 0.67 1.41
Film 5.29 5.41 2.72

Chameleon 3.97 3.95 3.81
Squirrel 5.39 5.36 4.15

Cora 3.94 4.10 3.08
CiteSeer 4.85 5.05 6.55
PubMed 9.35 9.41 5.27
Penn94 18.57 18.68 12.43
pokec 84.47 86.08 50.03

arXiv-year 7.77 7.82 4.56
snap-patents 304.06 296.21 163.84

genius 8.20 8.12 5.30
twitch-gamers 9.34 9.24 4.17
Deezer-Europe 37.41 39.49 59.84

Table 9: Total running time (seconds/100 samples) of KRL, KRNL and GNB

H.5 Results for Symmetric Renormalized Affinity Matrix

To evaluate if the benefits of classifier-based performance metrics can be maintained for different
aggregation operators, we replace the random walk renormalized affinity matrix with synmmetric
renormalized affinity matrix in SGC-1, GCN, KRL,KRNL and GNB and report the results and
comparisons as belows.

It is observed that the superiority holds on both small- (table 10, 12) and large-scale datasets (table
11, 13), reducing the overall error rate from at least 0.31 to 0.13 (table 14).

Cornell Wisconsin Texas Film Chameleon Squirrel Cora CiteSeer PubMed

Hedge 0.5669 0.4480 0.4106 0.3750 0.2795 0.2416 0.8100 0.7362 0.8024
Hnode 0.3855 0.1498 0.0968 0.2210 0.2470 0.2156 0.8252 0.7175 0.7924

Baseline Hclass 0.0468 0.0941 0.0013 0.0110 0.0620 0.0254 0.7657 0.6270 0.6641
Homophily Hagg 0.8032 0.7768 0.6940 0.6822 0.61 0.3566 0.9904 0.9826 0.9432

Metrics HGE 0.31 0.34 0.35 0.16 0.0152 0.0157 0.1700 0.1900 0.2700
Hadj 0.1889 0.0826 0.0258 0.1272 0.0663 0.0196 0.8178 0.7588 0.7431
LI 0.0169 0.1311 0.1923 0.0002 0.048 0.0015 0.5904 0.4508 0.4093

Classifier-based KRL 0.00 0.00 0.00 0.9304 1.00 1.00 1.00 1.00 0.0003
Performance Metrics GNB 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00

ACC SGC 51.64 ± 12.27 39.63 ± 5.39 30.82 ± 4.96 27.02 ± 1 63.26 ± 1.98 46.03 ± 1.74 84.38 ± 1.5 79.51 ± 1.04 87.24 ± 0.44
SGC vs MLP1 ACC MLP-1 93.77 ± 3.34 93.87 ± 3.33 93.77 ± 3.34 34.53 ± 1.48 45.01 ± 1.58 29.17 ± 1.46 74.3 ± 1.27 75.51 ± 1.35 86.23 ± 0.54

Diff Acc -42.13 -54.24 -62.95 -7.51 18.25 16.86 10.08 4.00 1.01

Hedge 0.5669 0.4480 0.4106 0.3750 0.2795 0.2416 0.8100 0.7362 0.8024
Hnode 0.3855 0.1498 0.0968 0.2210 0.2470 0.2156 0.8252 0.7175 0.7924

Baseline Hclass 0.0468 0.0941 0.0013 0.0110 0.0620 0.0254 0.7657 0.6270 0.6641
Homophily Hagg 0.8032 0.7768 0.6940 0.6822 0.61 0.3566 0.9904 0.9826 0.9432

Metrics HGE 0.31 0.34 0.35 0.16 0.0152 0.0157 0.1700 0.1900 0.2700
Hadj 0.1889 0.0826 0.0258 0.1272 0.0663 0.0196 0.8178 0.7588 0.7431
LI 0.0169 0.1311 0.1923 0.0002 0.048 0.0015 0.5904 0.4508 0.4093

Classifier-based KRNL 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.98
Performance Metrics GNB 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00

ACC GCN 82.62 ± 3.04 70.38 ± 3.16 82.46 ± 2.94 35.79 ± 1.09 68.95 ± 1.09 52.98 ± 0.85 87.87 ± 0.99 81.79 ± 1.09 89.47 ± 0.27
GCN vs MLP2 ACC MLP-2 91.30 ± 0.70 93.87 ± 3.33 92.26 ± 0.71 38.58 ± 0.25 46.72 ± 0.46 31.28 ± 0.27 76.44 ± 0.30 76.25 ± 0.28 86.43 ± 0.13

Diff Acc -8.68 -23.49 -9.80 -2.79 22.23 21.70 11.43 5.54 3.04

Table 10: Results for symmetric renormalized affinity matrix on small-scale datasets
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Penn94 pokec arXiv-year snap-patents genius twitch-gamers Deezer-Europe

Hedge 0.4700 0.4450 0.2220 0.0730 0.6180 0.5450 0.5250
Hnode 0.4828 0.4283 0.2893 0.2206 0.5087 0.5564 0.5299

Baseline Hclass 0.0460 0.0000 0.2720 0.1000 0.0800 0.0900 0.0300
Homophily Hagg 0.2712 0.0807 0.7066 0.6170 0.7823 0.4172 0.5580

Metrics HGE 0.3734 0.9222 0.8388 0.6064 0.6655 0.2865 0.0378
Hadj 0.0366 -0.1132 0.0729 0.0907 0.1432 0.1010 0.1586
LI 0.0851 0.0172 0.0407 0.0243 0.0025 0.0058 0.0007

Classifier-based KRL 0.00 0.02 0.32 0.46 0.00 0.01 0.00
Performance Metrics GNB 0.00 0.03 1.00 1.00 0.00 0.97 0.00

ACC SGC 64.63 ± 0.15 51.97 ± 0.38 35.24 ± 0.14 30.32 ± 0.05 81.66 ± 0.58 58.77 ± 0.18 60.2 ± 0.47
SGC vs MLP1 ACC MLP-1 73.72 ± 0.5 59.89 ± 0.11 34.11 ± 0.17 30.59 ± 0.02 86.48 ± 0.11 59.45 ± 0.16 63.14 ± 0.41

Diff Acc -9.09 -7.92 1.13 -0.27 -4.82 -0.68 -2.94

Hedge 0.4700 0.4450 0.2220 0.0730 0.6180 0.5450 0.5250
Hnode 0.4828 0.4283 0.2893 0.2206 0.5087 0.5564 0.5299

Baseline Hclass 0.0460 0.0000 0.2720 0.1000 0.0800 0.0900 0.0300
Homophily Hagg 0.2712 0.0807 0.7066 0.6170 0.7823 0.4172 0.5580

Metrics HGE 0.3734 0.9222 0.8388 0.6064 0.6655 0.2865 0.0378
Hadj 0.0366 -0.1132 0.0729 0.0907 0.1432 0.1010 0.1586
LI 0.0851 0.0172 0.0407 0.0243 0.0025 0.0058 0.0007

Classifier-based KRNL 0.00 0.32 0.99 0.99 0.00 1.00 0.00
Performance Metrics GNB 0.00 0.29 1.00 1.00 0.00 0.97 0.00

ACC GCN 81.45 ± 0.29 69.55 ± 0.1 40.02 ± 0.19 35.4 ± 0.04 83.02 ± 0.14 62.59 ± 0.14 62.32 ± 0.44
GCN vs MLP2 ACC MLP-2 74.68 ± 0.28 62.13 ± 0.1 36.36 ± 0.23 31.43 ± 0.04 86.62 ± 0.08 60.9 ± 0.11 64.25 ± 0.41

Diff Acc 6.77 7.42 3.66 3.97 -3.60 1.69 -1.93

Table 11: Results for symmetric renormalized affinity matrix on large-scale datasets

Total Error Error Rate

Hedge 6 0.33
Hnode 4 0.22
Hclass 4 0.22
Hagg 10 0.56
HGE 10 0.56
Hadj 4 0.22
LI 8 0.44

KR (NT0.5) 2 0.11
KR (SST0.05) 2 0.11
GNB (NT0.5) 0 0.00

GNB (SST0.05) 0 0.00

Table 12: Statistics for symmetric renormalized affinity matrix on small-scale datasets

Total Error Error Rate

Hedge 10 0.71
Hnode 10 0.71
Hclass 6 0.43
Hagg 8 0.57
HGE 6 0.43
Hadj 6 0.43
LI 6 0.43

KR (NT0.5) 3 0.21
KR (SST0.05) 4 0.29
GNB (NT0.5) 4 0.29

GNB (SST0.05) 4 0.29

Table 13: Statistics for symmetric renormalized affinity matrix on large-scale datasets
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Total Error Error Rate

Hedge 16 0.50
Hnode 14 0.44
Hclass 10 0.31
Hagg 18 0.56
HGE 16 0.50
Hadj 10 0.31
LI 14 0.44

KRNNGP (NT0.5) 5 0.16
KRNNGP (SST0.05) 6 0.19

GNB (NT0.5) 4 0.13
GNB (SST0.05) 4 0.13

Table 14: Overall statistics for symmetric renormalized affinity matrix on small- and large-scale
datasets

H.6 Experiments on Synthetic Graphs

To comprehensively investigate and corroborate the correlation between CPMs and the performance
of G-aware models versus their corresponding G-agnostic models across the entire spectrum of
homophily levels, we conduct experiments with the synthetic graphs. The data generation process is
similar to [35].

Data Generation & Experimental Setup We generated a total of 280 graphs with 28 different
levels of edge homophily, ranging from 0.005 to 0.95, and generated 10 graphs for each homophily
level. Each graph consisted of 5 classes, with 400 nodes in each class. For nodes in each class, we
randomly generated 4000 intra-class edges and [ 4000

Hedge(G) � 4000] inter-class edges, and assigned
features to the nodes using the Cora, CiteSeer, PubMed, Chameleon, Squirrel, Film datasets. We
then randomly split the nodes into train/validation/test sets in a 60%/20%/20% ratio. We trained
GCN, SGC-1, MLP-2, and MLP-1 models on the synthetic graphs with fine-tuned hyperparameters
as [35]. For each edge homophily level Hedge(G), we computed the average test accuracy of the 4
models, as well as KRL,KRNL and other homophily metrics. The comparisons of KRL, KRNL and
the performance of GCN vs. MLP-2, SGC-1 vs. MLP-1 according to edge homophily were shown in
Figure 11.

It can be observed in Figure 11 that the points where KRL intersects NT0.5 or SST0.05 (green) and
the intersections of SGC-1 and MLP-1 performance (red) are perfectly matched and the curve of KRL
share the similar U-shape as SGC-1, so do KRNL curve (blue) and GCN and MLP-2 performance
curves (black) 15. This indicates that the advantages and disadvantages of G-aware models over
G-agnostic models can be better revealed by CPMs at different homophily levels than the baseline
homophily metrics shown in Figure 12.

In Figure 12, we can see that the curves of node homophily (orange), class homophily (pink),
generalized edge homophily (yellow) and adjusted homophily (blue) are almost linear increasing,
which does not reflect the U-shaped performance curve of GNNs’ performance. Although the curves
for aggregation homophily (purple) and label informativeness (grey) have a rebound in low homophily
area, they are unable to provide a suitable threshold value and fails to capture the intersection points.

Since the values of CPMs are either (very close to) 0 or (very close to) 1 and there do not exist enough
intermediate values between 0 and 1, we do not plot the relationship between GNNs performance and
CPMs as Figure 2 in [35].

15We only draw the vertical dot lines for the intersection of KRL and NT0.5 in order to keep the figures clear.
The corresponding x-values for other intersections can be observed from the figures.
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(a) Cora (b) CiteSeer

(c) PubMed (d) Chameleon

(e) Squirrel (f) Film

Figure 11: Results and comparisons of KRL and KRNL on synthetic graphs
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(a) Cora (b) CiteSeer

(c) PubMed (d) Chameleon

(e) Squirrel (f) Film

Figure 12: Results on Synthetic Graphs
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