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Abstract

Semi-Supervised Domain Generalization (SSDG) aims to learn a model that is
generalizable to an unseen target domain with only a few labels, and most ex-
isting SSDG methods assume that unlabeled training and testing samples are all
known classes. However, a more realistic scenario is that known classes may
be mixed with some unknown classes in unlabeled training and testing data. To
deal with such a scenario, we propose the Class-Wise Adaptive Exploration and
Exploitation (CWAEE) method. In particular, we explore unlabeled training data
by using one-vs-rest classifiers and class-wise adaptive thresholds to detect known
and unknown classes, and exploit them by adopting consistency regularization
on augmented samples based on Fourier Transformation to improve the unseen
domain generalization. The experiments conducted on real-world datasets verify
the effectiveness and superiority of our method.
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Figure 1: Semi-supervised domain generalization with known
and unknown classes. Labeled samples on source domains (Art,
Cartoon and Photo) are known classes (green box). Known
classes (green box) and seen unknown classes (blue box) are
mixed in unlabeled samples on source domains, while known
classes (green box), seen unknown classes (blue box) and
unseen unknown classes (red box) are mixed in testing samples
on target domain (Sketch).

The machine learning community
has witnessed the great progress
of deep learning models and their
applications, e.g., computer vision
[1, 2], natural language processing
[3, 4]. Such a huge success is mostly
based on the i.i.d. assumption, i.e.,
the training data and testing data are
identically and independently dis-
tributed. However, when these pop-
ular models are evaluated on new
testing data, whose distribution is
slightly different from the training
data, a significant drop in perfor-
mance will be observed [5, 6].

In order to improve the general-
ization of the model under distri-
bution shifts, Domain Adaptation
(DA) [7, 8, 9] and Domain General-
ization (DG) [10, 11, 12] have been
widely studied. The goal of DA is
to transfer the knowledge learned
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from label-rich source domains to the unlabeled or partially labeled target domain. However, the
accessibility of the target domain may not always be satisfied in some applications, e.g., autonomous
driving and medical diagnosis, since we are not able to anticipate the domain that deployed systems
will encounter. To this end, DG is introduced to develop domain-generalizable models on unseen
target domain by using multiple different and labeled source domains.

To reduce the expensive cost of the labeling process [13], Semi-Supervised Domain Generalization
(SSDG) [14, 15, 16, 17] is proposed recently. In SSDG, each source domain consists of a few labeled
samples and a large number of unlabeled samples. The goal is to learn a domain-generalizable
model from the partially labeled samples. However, in a more realistic scenario, known classes are
probably mixed with some unknown classes in unlabeled training and testing data (Figure 1). In
such a scenario, when deployed on an unseen target domain, the learned model is not only required
to classify known classes, but also to recognize unknown classes. In this paper, we propose the
Class-Wise Adaptive Exploration and Exploitation (CWAEE) method for semi-supervised domain
generalization when known and unknown classes are mixed in unlabeled data. The intuition is to first
explore unlabeled training data by detecting known and unknown classes, and then exploit them in
different ways to improve the generalization of the model. In particular, we use one-vs-rest classifiers
and class-wise adaptive thresholds to detect known and unknown classes in unlabeled training data,
and adopt consistency regularization on augmented samples based on Fourier Transformation to
improve the unseen domain generalization. The experiments on real-world datasets verify that our
CWAEE method can achieve better performance than compared methods.

2 Related Work

Domain Generalization (DG) aims to help the model generalize to an unseen target domain by utilizing
one or several related domains. Most existing DG methods can be classified into three different
categories: domain-invariant representation learning, meta-learning and data augmentation. Motivated
by the learning theory of domain adaptation [18], domain-invariant representation learning methods
attempt to learn a representation space where the discrepancy between different source domains
is as small as possible. For example, Muandet et al. [11] proposed a kernel-based optimization
algorithm for Support Vector Machine that learns an invariant transformation by minimizing the
distribution discrepancy across domains. After the domain-adversarial neural network was proposed
for domain adaptation [8], domain-adversarial training is widely used for DG [19, 20]. Following
Model-Agnostic Meta-Learning (MAML) [21], Li et al. [22] applied meta-learning strategy to DG
through dividing the training data from multiple source domains into meta-train and meta-test sets to
simulate domain shifts. The meta-optimization objective was designed to minimize the loss not only
on meta-train domains but also on the meta-test domain. Shu et al. [23] conducted meta-learning
over augmented domains to learn open-domain generalizable representations for Open Domain
Generalization (OpenDG) problem. Compared to domain-invariant representation learning and meta-
learning, data augmentation methods have shown better performance on various DG benchmarks
recently. Zhou et al. [24] mixed feature statistics extracted by bottom layers of Convolutional Neural
Networks (CNNs) between instances of different domains to synthesize instances in novel domains
for training. Xu et al. [25] applied MixUp [26] in amplitude spectrums of two images to augment
training data while preserving high-level semantics of the original images in phase spectrums. To
reduce the labeling cost of DG, Semi-Supervised Domain Generalization (SSDG) [14, 15, 16, 17]
receives much attention recently. Sharifi-Noghabi et al. [14] proposed the first SSDG method which
combines the pseudo-label method and meta-learning strategy. Zhou et al. [16] adopted stochastic
classifier and multi-view consistency to improve the quality of pseudo-labels and generalization of
model respectively. However, they assumed that both unlabeled training and testing data have the
same label space with labeled training data while we consider a more realistic scenario that the label
space of labeled data is a subset of unlabeled training and testing data, i.e., both unlabeled training
and testing data are a mixture of known and unknown classes.

Out-of-Distribution (OOD) detection aims to detect test samples whose labels are not contained in
the label space of training data [27]. Hendrycks and Gimpel [28] proposed the first effective baseline
that uses the maximum softmax probability to identify OOD samples. Post-hoc methods attract
much attention because they can be implemented without modifying the training procedure and
objective. For example, Liang et al. [29] used temperature scaling and input perturbations to make
In-Distribution (ID) and OOD samples more separable. Liu et al. [30] proposed to replace softmax
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confidence scores with energy scores to detect OOD samples, and considered samples with higher
energy to be OOD samples. Hendrycks et al. [31] maximized the entropy of the model’s predictions
on enormous unlabeled OOD samples to improve OOD detection. Yang et al. [32] proposed the
Unsupervised Dual Grouping (UDG) method that adopts two classification heads to dynamically
separate ID and OOD samples in the unlabeled data and optimizes the model with different learning
objectives. Since the commonly-used OOD detection benchmarks [28, 29, 31] are based on dataset
splitting setup, i.e., one dataset as ID and all the others as OOD, the existing OOD detection methods
overfit to low-level dataset statistics instead of learning semantics, which leads to that even the same
class from another dataset will be detected as OOD samples [32].

Semi-Supervised Learning (SSL) is an active research area in the last decade, whose goal is to
leverage both labeled and unlabeled data to improve the performance of models and reduce the label
cost. The most popular methods include consistency regularization [33, 34] and entropy minimization
[35, 36]. The basic idea behind consistency regularization is that the model’s outputs of similar
samples should be similar. Sajjadi et al. [33] proposed the Π model that minimizes consistency
loss over two random augmentations of one sample to regularize the model. Tarvainen et al. [34]
proposed the Mean Teacher method that averages Student model weights using Exponential Moving
Average (EMA) over training steps as Teacher model to provide more stable targets for the consistency
loss optimization of the Student model. Entropy minimization methods encourage models to make
low entropy predictions on unlabeled data, so that the learned decision boundary passes through
a low-density region rather than a high-density area. Lee [36] proposed the Pseudo-label method
that sets the maximum confidence prediction of unlabeled samples as pseudo-labels, and then trains
the model in a supervised way with labeled and pseudo-labeled data. Sohn et al. [37] proposed the
FixMatch method that combines consistency regularization and entropy minimization. It generates
highly confident pseudo-labels on weakly-augmented unlabeled samples, and trains the model to
predict the pseudo-labels for the strongly-augmented version of the same samples. OpenMatch [38]
extended FixMatch with OVANet [39] and open-set soft-consistency regularization to detect outliers
in unlabeled data for Open-set Semi-Supervised Learning (OSSL).

3 Method

We have multiple source domains D1,D2, . . . ,Ds available for training, and each Dk∈{1,2,...,s} has

one labeled set Dl
k = {(x(k)

i , y
(k)
i )}n

l
k

i=1 and one unlabeled set Du
k = {(u(k)

i )}n
u
k

i=1, i.e., Dk = Dl
k∪Du

k .
Generally, the size of Du

k may be much larger than that of Dl
k, i.e., nu

k ≫ nl
k. The total size of labeled

dataset is denoted as nl and the total size of unlabeled dataset is denoted as nu, i.e., nl =
∑s

k=1 n
l
k,

and nu =
∑s

k=1 n
u
k . The model is evaluated on an unseen target domain Dt = {(x(t)

i , y
(t)
i )}nt

i=1.
Cl is the label set of labeled data Dl = Dl

1 ∪ Dl
2 ∪ · · · ∪ Dl

s, Cu is the label set of unlabeled data
Du = Du

1 ∪ Du
2 ∪ · · · ∪ Du

s , and Ct is the label set of target domain Dt. Due to the existence of
unknown classes in unlabeled data and target domain, we have Cl ⊂ Cu ⊂ Ct. The classes in Cl are
called known classes, the classes in Cu\Cl are called seen unknown classes since they are seen in
unlabeled data during the training process and the classes in Ct\Cu are called unseen unknown classes
since they are unseen during the training process. The goal is to learn the model f∗ that generalizes
well on target domain Dt for both known and unknown classes, i.e., for each (x

(t)
i , y

(t)
i ) ∈ Dt, if

y
(t)
i ∈ Cl, then f∗(x

(t)
i ) = y

(t)
i , else f∗(x

(t)
i ) = unknown.

To effectively utilize unlabeled data to improve the generalization and robustness of the model, we
should carefully exploit known and unknown classes in them. If known classes are treated as unknown
ones, the generalization of the model may decrease significantly; if unknown classes are treated as
known ones, the robustness of the model may degrade.

3.1 Detecting Known and Unknown Classes

In order to explore unlabeled data and detect known and unknown classes in them, we rely on the
outputs of the deep neural networks and the intuition is that known classes will have higher scores
than unknown classes [28]. The deep neural network model fΘ = hω ◦ gθ contains two parts, a
feature extractor gθ and a |Cl|-way linear classifier hω = [h1

ω; . . . ;h
|Cl|
ω ]. The model maps each

sample xi into a |Cl|-dimensional logits zi = hω ◦ gθ(xi), and then feeds zi into a softmax function
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Procedure 1 Calculating Thresholds

Input: Score queues q1:|C
l|, feature extractor gθ, linear classifiers h

1:|Cl|
ω , validation dataset Dv,

number of known classes |Cl|.
Output: Temperatures τ1:|C

l|, thresholds δ1:|C
l|

knw and δ
1:|Cl|
unk .

1: for c = 1 to |Cl| do
2: Calculate temperature τ c to calibrate gθ, hc

ω on Dv with Eq.1;
3: Fit a two-component beta mixture model αc

1:2, βc
1:2 on queue qc with EM algorithm;

4: Calculate known and unknown classes thresholds δcknw =
αc

1

αc
1+βc

1
, δcunk =

αc
2

αc
2+βc

2
.

5: end for

S to produce the estimated posterior probability p̂i (a.k.a. score) of each class, i.e., p̂i = S (fΘ(xi)).
The training is to minimize the cross-entropy loss LCE(Θ) between p̂i and one-hot label yi over
labeled data, i.e., Θ∗ = argminΘ LCE(Θ) = argminΘ − 1

nl

∑nl

i=1

∑|Cl|
c=1 y

c
i log p̂

c
i , where nl is the

size of labeled data. The gradient of cross-entropy loss w.r.t. linear classifier hω corresponding to
class c is ∂LCE(Θ)

∂hc
ω

= 1
nl

∑nl

i=1(p̂
c
i − yc

i )gθ (xi). Due to the relative normalization of the softmax
function, the score of xi on class c, i.e., p̂c

i , not only depends on the logit zci , but also depends on other
logits zji , j ̸= c. Thus, the update of hc

ω is affected by the predictions of other classifiers hj
ω, j ̸= c.

When the logit of xi on target class yi is large, the scores of xi on non-target class, i.e., p̂c
i , c ̸= yi,

will be small. Since the p̂c
i − yc

i is small, the gradient of the non-target classifiers may converge to
zero. The parameters of the neural network are updated with the stochastic gradient descent (SGD)
algorithm, so, the logits of samples on non-target classifiers induced by hj

ω, j ̸= c will not decrease.

In order to update the logits on non-target classifiers induced by hj
ω, j ̸= c, we replace the softmax

function S with the sigmoid function σ. In this way, we obtain an individual score on each way to
indicate the probability that one sample belongs to each class, i.e., p̂c

i = σ(zci ), c ∈ Cl, and we get
|Cl| one-vs-rest classifiers. With these one-vs-rest classifiers, we can detect known and unknown
classes. A straightforward way is to set a fixed threshold δ = 0.5 [39, 38]. Let j = argmaxc (p̂

c
i ),

if p̂j
i ≥ δ, it means that it belongs to class j; if p̂j

i < δ, it means that it is an unknown classes
sample. Due to the overconfidence of modern neural networks [40], it is not proper to use such a fixed
threshold of 0.5 for all classes. A more reasonable way is to use the class-wise adaptive threshold
[41, 42] for each class. To get well-calibrated scores, we first calibrate the classifiers on validation
data Dv with temperature scaling [40]:

τ c = argmin−
∑

(xi,yi)∈Dv

I (yi = c) log (σ(zci/τ
c)) + I (yi ̸= c) log (1− σ(zci/τ

c)) , (1)

where I(·) is an indicator function and τ c is the temperature for class c ∈ Cl. Note that the validation
dataset Dv only contains samples of known classes from source domains. And then, we use a
two-component beta mixture model to model the score distributions of known classes and unknown
classes in an unsupervised way, since it is a more flexible approximator than the Gaussian mixture
model [43]. The adaptive thresholds for known classes δjknw (the large one) and unknown classes
δjunk (the small one) can be set as the mean values of two fitted beta distributions. Thus, for an
unlabeled sample ui ∈ Du, let p̃j

i = σ(zji/τ
j) be the scaled score, if p̃j

i > δjknw, we consider it
belongs to known class j, i.e. ŷi = j; if p̃j

i < δjunk, we consider it belongs to unknown classes, i.e.
ŷi = unknown; if δjunk ≤ p̃j

i ≤ δjknw, it is difficult to determine its label, hence we set its prediction
as null, i.e. ŷi = null. Since the model is updated in a mini-batch way, the scores predicted by the
model many steps ago are less useful for modeling the score distributions. Hence, we utilize the most
recent scores predicted by the model for the fitting of the beta mixture model. In particular, for each
class j we maintain a queue qj with fixed length to record the most recent scaled maximum score of
unlabeled sample ui if its maximum score belongs to class j, i.e., argmaxc (p̃

c
i ) = j. The overall

procedure is summarized in Procedure 1.
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3.2 Improving Target Domain Generalization

For labeled training data, we use the following supervised loss,

Ll = − 1

nl

nl∑
i=1

|Cl|∑
c=1

I(yi = c) ln(p̂c
i ) +

1

|Cl| − 1
I(yi ̸= c) ln(1− p̂c

i ). (2)

For unlabeled training data, we should exploit them carefully to improve the unseen target domain
generalization after having detected known and unknown classes. We construct the weakly and
strongly augmented version of each sample following FixMatch [37], and calculate the model’s scaled
confidence score on its weakly augmented version, i.e., p̃c

i,weak = σ (fΘ (Tweak(ui)) /τ
c) , c ∈ Cl.

Then, we assign pseudo-label ŷi to it according to Section 3.1, and force the model’s prediction on
the strongly augmented version p̂c

i,strong = σ (fΘ (Tstrong(ui))) , c ∈ Cl to match the pseudo-label.
For unlabeled training data predicted as known classes (i.e., ŷi ∈ Cl), the loss is defined as

Lu
knw = − 1

nu
knw

nu
knw∑
i=1

|Cl|∑
c=1

I(ŷi = c) ln(p̂c
i,strong) +

1

|Cl| − 1
I(ŷi ̸= c) ln(1− p̂c

i,strong), (3)

where nu
knw is the number of samples predicted as known classes. For unlabeled training data

predicted as unknown classes (i.e., ŷi = unknown), the loss is defined as

Lu
unk = − 1

nu
unk

nu
unk∑
i=1

|Cl|∑
c=1

ln(1− p̂c
i,strong), (4)

where nu
unk is the number of samples predicted as unknown classes.

Besides known and unknown classes, there are some unlabeled samples that are predicted as null. In
order to fully exploit these data and improve the generalization of the model on the unseen target
domain, we adopt Fourier Transformation to disentangle the semantics and styles of the sample
[25, 44], and then MixUp [26] the styles of two randomly sampled samples to augment training data
for regularizing the model. Specifically, for each x, its Fourier Transformation F(x) is formulated as:

F(x)(u, v) =

H−1∑
h=0

W−1∑
w=0

x(h,w)e−J2π( h
H u+ w

W v), (5)

where H,W are the height and width of the sample, and J2 = −1. The amplitude component A(x)
and phase component P(x) are then respectively expressed as

A(x)(u, v) =
[
R2(x)(u, v) + I2(x)(u, v)

]1/2
,P(x)(u, v) = arctan

[
I(x)(u, v)

R(x)(u, v)

]
, (6)

where R(x) and I(x) represent the real and imaginary part of F(x). It is well-known that, the phase
component of the Fourier spectrum preserves high-level semantics of the original signal, while the
amplitude component contains low-level statistics. Therefore, we could mix up amplitude components
of two samples of the same batch while keeping the phase components to generate the augmented
samples x̃ [25, 44], i.e.,

Ã(xi) = (1− λ)A(xi) + λA(xi′), x̃i = F−1
(
Ã(xi) ∗ e−J∗P(xi)

)
, (7)

where F−1(x) is the inverse Fourier Transformation, λ ∼ U(0, 1), and U is the uniform distribution.

To avoid overfitting on domain-related low-level statistics, we minimize the consistency regularization
loss between the original unlabeled samples and the augmented ones to push the model to pay attention
to the high-level semantics of the samples, defined as

Lu
con =

1

nu

nu∑
i=1

|Cl|∑
c=1

|p̂c
i (xi)− p̂c

i (x̃i)|2, (8)

where nu is the number of unlabeled data. The overall loss of the training process is formulated as:
L = Ll + λ1Lu

knw + λ2Lu
unk + λ3Lu

con, (9)
where λ1, λ2 and λ3 are hyper-parameters to balance each loss. During the warm-up process, the
model is trained only with labeled data, i.e., λ1 = λ2 = λ3 = 0. The whole process is summarized
in Algorithm 1 (the framework figure can be found in Appendix A of the supplementary material),
where the domain index is omitted for brevity.
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Algorithm 1 Class-Wise Adaptive Exploration and Exploitation (CWAEE)
Input: Labeled dataset Dl, unlabeled dataset Du, validation dataset Dv , training epoch T , number of
known classes |Cl|.
Output: Feature extractor gθ, linear classifiers h1:|Cl|

ω .

1: Initialize gθ, h1:|Cl|
ω , score queues q1:|C

l|, temperatures τ1:|C
l|, thresholds δ1:|C

l|
knw , δ1:|C

l|
unk ;

2: for t = 1 to T do
3: for i = 1 to max_iteration do
4: Draw a batch of labeled samples Bl and unlabeled samples Bu from Dl and Du;
5: Calculate loss Ll on Bl with Eq.2;
6: Predict on Bu with τ1:|C

l| to get scaled confidence scores P̃u;
7: Split Bu into known classes Bu

knw, unknown classes Bu
unk and null Bu

null with P̃u and

δ
1:|Cl|
knw , δ1:|C

l|
unk ;

8: Calculate loss Lu
knw and Lu

unk on Bu
knw and Bu

unk with Eqs.3 and 4 respectively;
9: Conduct data augmentation within Bu to get B̃u with Eqs.5-7;

10: Calculate loss Lu
con on Bu and B̃u with Eq.8 and get total loss L with Eq.9;

11: Backward loss L and update gθ, h1:|Cl|
ω with SGD;

12: Update q1:|C
l| with P̃u;

13: Update τ1:|C
l|, δ1:|C

l|
knw and δ

1:|Cl|
unk with Procedure 1.

14: end for
15: end for

4 Experiment

4.1 Datasets

We use PACS [45], Office-Home [46] and miniDomainNet [47] datasets in the experiments. PACS
[45] consists of four domains corresponding to four different image styles, including Photo (P), Art
painting (A), Cartoon (C) and Sketch (S), and the four domains have the same label set of 7 classes,
and contain 9,991 images in total; OfficeHome [46] consists of images from four different domains:
Artistic (A), Clipart (C), Product (P) and Real-World (R), and has a large domain gap and around
15,500 images of 65 classes; miniDomainNet [47] is a subset of DomainNet [48] and has four
domains including 18,703 images of Clipart (C), 31,202 images of Painting (P), 65,609 images of
Real (R) and 24,492 images of Sketch (S), and it has 126 classes and maintains the complexity of the
original DomainNet.

We adopt the common leave-one-domain-out protocol [12, 16]: three domains are used as the source
domains and the remaining one as the target domain. Similar to [23, 38] we split the classes into
known and unknown classes, specifically we split the original label set into 3:2:2, 25:20:20 and
42:42:42 (known classes, seen unknown classes and unseen unknown classes) in PACS [45], Office-
Home [46] and miniDomainNet [47] respectively in alphabetical order of the class name. On each
source domain, 10 labeled samples of each known class are randomly sampled to construct the labeled
data, and the remaining samples of known classes and seen unknown classes construct the unlabeled
data. All samples on the target domain are used for evaluation.

4.2 Compared Methods

We compare our method with various DG methods, OOD detection methods and SSL methods.
DeepAll naively puts labeled data from all source domains together, and trains the model with
Empirical Risk Minimization (ERM); DAML [23] conducts meta-learning over augmented domains
to learn open-domain generalizable representations for OpenDG problem; UDG [32] adopts two
classification heads to dynamically separate ID and OOD samples in the unlabeled data and optimizes
the model with different learning objectives; FixMatch [37] generates highly confident pseudo-labels
on weakly-augmented unlabeled samples, and trains the model to predict the pseudo-labels for the
strongly-augmented version of the same samples; OpenMatch[38] extends FixMatch with OVANet
[39] and open-set soft-consistency regularization to detect outliers in unlabeled data for OSSL;
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Table 1: Leave-one-domain-out results of known classes accuracy (left of the slash) and unknown
classes AUROC (right of the slash) on PACS, OfficeHome and miniDomainNet.

PACS
Target Domain Art Cartoon Photo Sketch Average

DeepAll 62.96 / 60.06 53.41 / 58.15 79.17 / 71.26 48.60 / 50.16 61.03 / 59.91
UDG [32] 42.98 / 49.83 46.92 / 48.52 58.75 / 57.28 38.82 / 45.21 46.87 / 50.21
DAML [23] 42.07 / 50.27 57.74 / 54.80 42.87 / 54.00 45.29 / 47.20 46.99 / 51.57
FixMatch [37] 81.32 / 68.67 61.85 / 56.34 85.63 / 64.87 76.39 / 48.01 76.30 / 59.47
OpenMatch [38] 83.28 / 68.97 75.39 / 66.60 91.45 / 68.37 58.05 / 47.42 77.04 / 62.84
StyleMatch [16] 82.66 / 63.35 71.95 / 56.86 90.81 / 67.40 77.34 / 43.33 80.69 / 57.73

CWAEE 87.08 / 81.21 76.65 / 72.88 93.19 / 80.30 79.87 / 82.46 84.20 / 79.21
OfficeHome

Target Domain Art Clipart Product Real-World Average

DeepAll 61.95 / 69.97 50.80 / 60.96 75.23 / 71.38 84.55 / 76.63 68.13 / 69.73
UDG [32] 52.25 / 60.71 41.97 / 55.58 63.64 / 64.74 72.24 / 65.90 57.52 / 61.73
DAML [23] 45.73 / 62.96 43.98 / 55.46 58.50 / 67.09 64.46 / 67.75 53.17 / 63.31
FixMatch [37] 65.25 / 67.60 59.32 / 62.18 73.31 / 67.72 82.35 / 73.16 70.06 / 67.67
OpenMatch [38] 64.95 / 69.27 55.82 / 61.60 75.20 / 72.93 81.76 / 75.71 69.43 / 69.90
StyleMatch [16] 67.83 / 67.40 63.02 / 60.15 75.46 / 69.16 84.79 / 74.44 72.77 / 67.79

CWAEE 70.55 / 75.85 64.00 / 66.57 76.22 / 76.56 86.60 / 81.82 74.34 / 75.20
miniDomainNet

Target Domain Clipart Painting Real Sketch Average

DeepAll 52.58 / 66.31 52.13 / 62.96 66.10 / 73.17 44.15 / 64.90 53.74 / 66.83
UDG [32] 56.30 / 68.49 49.51 / 61.47 61.70 / 70.21 36.99 / 57.25 51.12 / 64.36
DAML [23] 56.16 / 67.16 50.32 / 65.62 57.23 / 69.14 46.52 / 65.15 52.55 / 66.77
FixMatch [37] 59.71 / 62.83 59.71 / 62.37 65.63 / 63.58 64.78 / 64.90 62.01 / 63.42
OpenMatch [38] 64.53 / 72.70 61.55 / 69.80 70.61 / 74.87 61.40 / 71.30 64.52 / 72.17
StyleMatch [16] 62.42 / 63.63 61.23 / 62.21 66.02 / 62.58 65.44 / 63.46 63.77 / 62.97

CWAEE 66.68 / 73.38 65.65 / 73.07 69.86 / 75.98 66.36 / 74.96 67.14 / 74.35

StyleMatch [16] extends FixMatch with stochastic classifier and multi-view consistency to improve
the quality of pseudo-labels and generalization of model respectively for SSDG.

4.3 Setup

Table 2: Leave-one-domain-out average AUROC of seen (left
of the slash) and unseen unknown classes (right of the slash)
on PACS, OfficeHome and miniDomainNet.

Dataset PACS OfficeHome miniDomainNet

DeepAll 58.28 / 60.89 68.48 / 71.04 69.21 / 67.89
UDG 50.73 / 49.08 63.35 / 60.07 64.26 / 64.33
DAML 50.45 / 52.94 62.21 / 64.46 67.20 / 66.36
FixMatch 53.84 / 67.87 64.05 / 71.39 58.56 / 67.45
OpenMatch 55.61 / 73.73 68.12 / 71.72 72.86 / 71.55
StyleMatch 49.77 / 68.91 63.46 / 72.27 56.57 / 68.31

CWAEE 84.09 / 74.53 74.57 / 75.87 76.81 / 72.31

Most hyper-parameters follow the
setting in [16] for a fair comparison.
The ImageNet-pretrained ResNet-
18 [2] is used as the CNN backbone,
and the linear classifiers is imple-
mented with stochastic classifiers.
The initial learning rate of SGD op-
timizer is set to 0.003 for the pre-
trained backbone and 0.01 for the
randomly initialized stochastic clas-
sifier, both decaying following the
cosine annealing rule. The running
epochs are 40, 20 and 20 for PACS,
OfficeHome and miniDomainNet re-
spectively. For each mini-batch, we
randomly sample 16 labeled samples and 16 unlabeled samples from each source domain. We set
λ1 = 1.0 on PACS, λ1 = 0.4 on OfficeHome and λ1 = 0.1 on miniDomainNet. We set λ2 = 0.4
and λ3 = 1.0 for all three datasets. We evaluate the accuracy on known classes and AUROC on
unknown classes of the methods with 3 different random seeds, and report the average results. More
implementation details can be found in Appendix B of the supplementary material.
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4.4 Results

The results are summarized in Table 1 (the results with standard deviations can be found in Tables 6
and 7 in Appendix C of the supplementary material). From the results, it can be found that our method
consistently outperforms the compared methods on all datasets. Although the UDG and DAML
methods are developed for unknown class detection on the unseen target domain, their performance
is much worse than ours. FixMatch has poor classification performance when evaluated on an unseen
target domain, due to not considering the domain shifts problem. The performance of our method is
much better than that of OpenMatch in most cases since it depends on the fixed thresholds to detect
unknown classes in unlabeled data. StyleMatch has a worse performance than ours since it treats all
unlabeled samples as one of the known classes. In order to evaluate the detection performance of
methods on seen and unseen unknown classes respectively, we also report the AUROC of seen and
unseen unknown classes on the target domain in Table 2 (the results with standard deviations can be
found in Table 8 in Appendix C of the supplementary material). It can be found that our method has
better detection performance on both seen and unseen unknown classes.

4.5 Ablation Study

In order to provide additional insight into what makes our method successful, we conduct ablation
experiments on OfficeHome.

4.5.1 Effectiveness of Used Modules Table 3: Ablation study on the used modules.

Ablation Accuracy / AUROC

Supervised loss 68.13±0.88 / 69.73±1.01
+ Unsupervised loss on known classes
with fixed thresholds 72.30±0.18 / 64.47±0.60

+ Unsupervised loss on unknown classes
with fixed thresholds 72.38±0.16 / 65.16±0.43

+ Class-wise adaptive thresholds 73.70±0.39 / 74.44±0.92
+ Consistency regularization loss 74.34±0.35 / 75.20±0.74

Our method contains several mod-
ules, including supervised loss
(Eq.2), unsupervised loss on known
classes (Eq.3), unsupervised loss on
unknown classes (Eq.4), class-wise
adaptive thresholds (Procedure 1)
and consistency regularization loss
(Eq.8). The results with standard
deviations are presented in Table
3. With the supervised loss, our
method trains the model only with labeled samples. After detecting known and unknown classes with
the fixed thresholds (i.e., δ1:|C

l|
knw = δ

1:|Cl|
unk = 0.5) and trained with the unsupervised loss on known and

unknown classes, the performance can be improved with these detected samples. By replacing the
fixed thresholds with class-wise adaptive thresholds, the performance can be further boosted. With
all the used modules, we can get the best performance.
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Figure 2: The accuracy of pseudo-labels on unla-
beled samples.

To better show the effectiveness of the class-
wise adaptive thresholds, we compare the quality
of pseudo-labels when trained with fixed thresh-
olds and the class-wise adaptive thresholds. The
results are depicted in Figure 2. It can be found
that the accuracy of pseudo-labels assigned by
our method is higher than that of compared
method on known classes and unknown classes
in all 4 domains, which means that our method
has better performance on known classes classi-
fication and unknown classes detection.

4.5.2 Sensitivity to Number of Seen
Unknown Classes
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Figure 3: The results with various numbers of seen
unknown classes.

In order to study the sensitivity of our method to
the number of seen unknown classes, we com-
pare our method with existing SSL methods un-
der different numbers of seen unknown classes
(|Cu\Cl| varies from 0 to 30), and the results are
depicted in Figure 3. It can be found that our
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method outperforms the compared methods. With the increase in the number of seen unknown classes,
the AUROC on unknown classes obtained by our method increases while the accuracy on known
classes is maintained.

4.5.3 Sensitivity to Number of Labeled Samples

Table 4: Average accuracy / AUROC on OfficeHome with
different numbers of labeled samples.

# Labels 5 10 20

DeepAll 62.87 / 67.77 68.13 / 69.73 72.17 / 70.83
UDG 47.02 / 55.68 57.52 / 61.73 65.31 / 67.66
DAML 52.67 / 64.15 53.17 / 63.31 50.95 / 63.07
FixMatch 66.90 / 64.29 70.06 / 67.67 71.92 / 70.21
OpenMatch 66.24 / 69.81 69.43 / 69.90 70.14 / 69.81
StyleMatch 70.16 / 63.57 72.77 / 67.79 75.36 / 70.45

CWAEE 71.24 / 73.23 74.34 / 75.20 76.09 / 73.96

In order to study the sensitivity of our
method to the number of labeled sam-
ples, we compare our method with ex-
isting methods under different num-
bers of labeled samples (5, 10 and 20
labels of each known class on each
domain) and the results are summa-
rized in Table 4 (the results with stan-
dard deviations can be found in Table
9 in Appendix C of the supplemen-
tary material). It can be found that our
method outperforms compared meth-
ods under different numbers of la-
beled samples. The performance of
our method under extremely few labels (i.e., 5 labels of each class on each domain) is promising,
since it can exploit known and unknown classes in unlabeled data in a more reasonable way.

4.5.4 Histograms of Confidence Scores
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(b) Class 0 in epoch 20
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(c) Class 1 in epoch 1
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Figure 4: The empirical p.d.f. of the confidence scores
of unlabeled data.

The empirical probability density function
of confidence scores of unlabeled data in
different queues and different epochs are de-
picted in Figure 4. Here, we report class 0
and class 1 in different epochs as examples,
i.e., Figure 4a vs 4b, Figure 4c vs 4d, which
shows that the confidence scores have dif-
ferent distributions in the different training
epochs. It can be found that our method
CWAEE can find the adaptive thresholds for
known and unknown classes.

5 Conclusion

In this paper, we focus on a more realistic semi-supervised domain generalization scenario, where
known classes and seen unknown classes are mixed in unlabeled training data while known classes,
seen unknown classes and unseen unknown classes are mixed in testing data. In order to utilize
unlabeled training data, we detect known and unknown classes in them with the class-wise adaptive
thresholds based on one-vs-rest classifiers. We adopt consistency regularization on augmented
training samples based on Fourier Transformation to improve the generalization on the unseen target
domain. The experimental results conducted on different real-world datasets show that our method
outperforms the existing state-of-the-art methods.

Broader Impacts

Our work provides an effective method for semi-supervised domain generalization with known and
unknown classes. We believe our work will be beneficial for domain generalization projects with few
labeled data and many unlabeled data, and does not have negative societal impacts.
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