
A Impossibility results – missing proofs

Hereafter, we report all the proofs omitted from Section 4. We start by proving the following corollary
of Proposition 4.1 on simple fractional HGs.
Corollary 4.2. Given a parameter � there exists a bounded distribution with parameter � such that
in simple fractional HGs no "-core exists for " < �

240(��1)+2n .

Proof. Consider the instance I 0 in the proof of Proposition 4.1. We have shown that there exists a
collection of coalitions F = 2N[{{41, . . . , n}}\{;} of size 240 that always contains a core-blocking
coalition for any possible partition ⇡.

Let D be a bounded distribution of parameter � such that, for some p > 0, PrC⇠D [C ] = p if C 2 F
and p/�, otherwise. For such a distribution the probability of sampling a specific coalition in F is
therefore given by p = �

240(��1)+2n . In conclusion,

Pr
C⇠D

[C core-blocks ⇡ ] � Pr
C⇠D

[C core-blocks ⇡ ^ C 2 F ] � �

240(�� 1) + 2n

and the thesis follows.

In the following, we will prove the results regarding anonymous HGs. The approach is similar to the
one used for fractional HGs, and it is based on a single-peaked instance with an empty core shown
in [6].
Proposition 4.3. There exists a distribution D and an anonymous (single-peaked) HG instance such
that for every "  1/27 there is no "-fractional core w.r.t. D.

Proof. Anonymous hedonic games have been shown to have an empty core even under single-peaked
preferences [6]. Such an example considers an instance I with seven agents whose preferences are
single-peaked with respect to the natural ordering 1 . . . 7. For our purposes, it is not important how
the instance I looks like but only the aforementioned properties it has.

Starting from I, we can define an instance I 0, with N
0 = [n] being the set of agents, which still has

an empty core. Let us denote by N = {1, . . . , 7} the set of the seven agents in I. Their preferences
for coalitions of size 1 to 7 remain the same while any other coalition size is strictly less preferred.
In particular, we can extend their preferences in such a way that the instance is still singled-peaked
with respect to the natural ordering 1 . . . n; namely, if h 2 [7] is the less preferred size according to
agent i 2 N , then, we set h �i 8 �i 9 · · · �i n. For the remaining agents, we assume preferences to
be decreasing for decreasing coalition size, i.e., n �i n� 1 �i · · · �i 1 for i 2 N

0 \N , which are
clearly single-peaked in the natural ordering.

We next show this instance has an empty core and that for any coalition structure ⇡ there exists a core
blocking coalition in 2N [ {{8, . . . , n}} \ {;}.

Given a partition ⇡, any agent i 2 N if not in a coalition of size at most 7 would deviate and form
the singleton coalition. Assume now that in ⇡ agents in N are in coalitions of size at most 7, as a
consequence, agents in N

0 \N = {8, . . . , n} are in a coalition of size at most n� 7; if such agents
are in a coalition of size strictly smaller than n� 7 then the coalition {8, . . . , n} is a core blocking
coalition. Let us finally assume that agents 8, . . . , n form a coalition together of size n� 7 in ⇡. No
matter how the agents of N are partitioned in ⇡ we know that any partition of N can always be core
blocked by a coalition in 2N since I has an empty core. Therefore, the new instance I 0 has an empty
core and it is always possible to find a blocking coalition in 2N [ {{8, . . . , n}} \ {;}.

We are now ready to show our claim. Let D be the uniform distribution over 2N[{{8, . . . , n}}\;. For
any coalition structure ⇡ it holds that PrC⇠D[C blocking for ⇡] > 1/27 completing the proof.

As for fractional HGs, the following corollary focuses specifically on �-bounded distributions.
Corollary 4.4. Given a parameter �, there exists a �-bounded distribution such that for " <

�
27(��1)+2n no "-fractional core-stable solution exists in anonymous single-peaked HGs.
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Proof. Consider the instance I 0 in the proof of Proposition 4.3. We have shown that there exists a
collection of coalitions F = 2N [ {{8, . . . , n}} \ {;} of size 27 that always contains a core-blocking
coalition for any possible partition ⇡.

Let D be a bounded distribution of parameter � such that, for some p > 0, PrC⇠D [C ] = p if C 2 F
and p/�, otherwise. For such a distribution the probability of sampling a specific coalition in F is
therefore given by p = �

27(��1)+2n . In conclusion,

Pr
C⇠D

[C core-blocks ⇡ ] � Pr
C⇠D

[C core-blocks ⇡ ^ C 2 F ] � �

27(�� 1) + 2n

and the thesis follows.

B Simple fractional Hedonic Games – missing proofs

In the following, we will report the proofs of the technical lemmas omitted from Section 5.

The first result concerns the sample complexity of exactly learning agents’ preferences in simple
FHGs.
Lemma 5.2. By sampling m � 16 log n

� + 4n sets from U(2N ) it is possible to learn exactly the
valuation functions v1, . . . , vn with confidence 1� �.

Proof. Let us first focus on a fixed agent i. Every sampled set S 2 S that contains i corresponds to a
linear equation

↵S,1vi({1}) + · · ·+ ↵S,i�1vi({i� 1}) + ↵S,i+1vi({i+ 1}) + · · ·+ ↵S,nvi({n}) = vi(S)/|S|,

where the vi({j})s are the unknowns and

↵S,j =

⇢
1 if j 2 S;
0 otherwise.

Now, let us denote by A
i = [↵Sq,j ]q2[m0],j2N\{i} the m

0 ⇥ (n� 1) binary matrix corresponding to
a sample S = h(S1, v(S1)), . . . , (Sm0 , v(Sm0))i in which every set Sq, q 2 [m0], contains agent i.
Learning the exact valuation function vi can be accomplished when the sets S1, . . . , Sm0 are such
that the matrix A

i has full rank, i.e., rank n� 1.

Let us denote by ↵1, . . . ,↵n�1 the columns of Ai. Having in mind that each entry in A
i is equal

to 0 and 1 with the same probability of 1/2, we can inductively compute the probability that a set
of columns {↵1, . . . ,↵k+1} is linearly independent as a function of m0. In particular, if we denote
by pk the probability that the set {↵1, . . . ,↵k} is linearly independent, then it is easy to see that
pk+1 = pk · (1� 2�(m0�k)) and p1 = 1� 2�m0

. Therefore, pk = ⇧k
i=1

⇣
1� 2�(m0�i+1)

⌘
, so that

pn�1 = ⇧n�1
i=1

✓
1� 1

2m0�i+1

◆
�

✓
1� 1

2m0�n+2

◆n�1

� 1� n� 1

2m0�n+2
.

It follows that pn�1 � 1� �/(2n) when

m
0 = 3 log

n

�
+ n� 1 � 2 log2

n

�
+ n� 1 � log2

2n(n� 1)

�
+ n� 2 .

A sampled set S contains agent i with probability 1/2. Let Ei be the number of sets containing i in a
sample of size m. Then, by the Chernoff’s inequality, taking � = 1� 2m0

/m,

Pr [Ei < m
0 ] = Pr [Ei < (1� �)m/2 ]  e

� (1� 2m0
m )

2 m
2

2 = e
� (m�2m0)2

4m ,

which is less then �/(2n) if and only if (m�2m0)2

4m � log 2n
� . Since (m�2m0)2

4m = m
4 � m

0 + m02

m ,
it suffices to require that m

4 � m
0 � log 2n

� , i.e., m � 4 log 2n
� + 4m0. This holds letting m =

16 log n
� + 4n � 4 log 2n

� + 12 log n
� + 4n� 4 = 4 log 2n

� + 4m0.
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Summarizing, the probability of learning exactly the valuation function vi is at least the probability
that with m examples Ei � m

0 times the probability that Ai has rank n � 1 given m
0 examples

containing i, that is at least (1� �/(2n)) · (1� �/(2n)) � 1� �/n.

By a direct union bound argument, the probability of not learning exactly one of the n valuation
functions v1, . . . , vn is at most �, hence the claim.

Hereafter, we will prove the main technical lemma of the section:

Lemma 5.5. Let � � n1/3

62 and let ⇡ be the partition returned by Algorithm 1 in this case. Then the
following statements hold:

(i) H is never empty when executing line 11 of the while loop of Algorithm 1;

(ii) each agent i 2 Gr is green.

The proof of Lemma 5.5 is quite involved and we will divide it in several parts. Throughout the proof,
Ni will denote the neighborhood of agent i in the graph induced by the game. We start by proving
the first statement i.e. that there is always at least one agent in H in each iteration of the while loop
(line 10).

Lemma B.1. Let � � n1/3

62 . Then, H is never empty when executing line 11 of the while loop of
Algorithm 1.

Proof. Consider an iteration t of the while loop, and assume that in line 11 a given i 2 H is selected.
Then, if in line 13 it results Fi ✓ N \H , in line 16 only agent i is removed from H .

We now show that such a property is guaranteed whenever di � n1/3

15 .

If n1/3

15  di  n
3 , then

⌃
2di

n�di

⌥
= 1. We prove that agent i, in line 13, selects in Fi exactly

one singleton neighbor in N \H . In fact, the number of agents in N \H that have been already
grouped in some coalitions during the previous iterations is less than n1/3

124 , as by the ordering of H
the property |Fj | = 1 holds for all agents j selected in line 11 during the previous iterations. As
a consequence, since H = |n

1/3

62 |, the number of singleton neighbors of i left in N \H is at least

di �
⇣

n1/3

62 + n1/3

124

⌘
� n1/3

15 �
⇣

n1/3

62 + n1/3

124

⌘
� 1.

If di > n
3 , again Fi will contain exactly

⌃
2di

n�di

⌥
singleton neighbors in N \H . In fact, denoted as

Grt the set of agents selected in line 11 in the previous iterations, the number of available singleton
neighbors of i outside H at iteration t is more than

di �
X

j2Grt

⌃ 2dj
n� dj

⌥
� n

1/3

62
� di �

n
1/3

124

⌃ 2di
n� di

⌥
� n

1/3

62

� di �
n
2/3

62 · 31 +
n
1/3

124
� n

1/3

62
> di �

n
2/3

62 · 31 � n
1/3

62

� n

3
� n

2/3

62 · 31 � n
1/3

62
� 3n2/3

10
� 2n1/3

31
� 1

�
⌃ 2di
n� di

⌥
,

where we have used the fact that, being i 2 H , di  n� 31n2/3, so that
⌃ 2di
n� di

⌥
 2(n� 31n2/3)

31n2/3
+ 1 =

2n1/3

31
� 1 .

In order to prove the claim, we finally observe that if di < n1/3

15 , again |Fi| = 1 and in line 13 at
most two agents are removed from H . Therefore, if s is the total number of agents of degree less
than n1/3

15 selected in line 11 during the execution of Algorithm 1, at the beginning of iteration t the
number of agents left in H is at least n1/3

62 � 2s� (t� 1� s) = n1/3

62 � s� t+ 1 � 1, as s  n1/3

124

and t  n1/3

124 .
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To prove the second statement of Lemma 5.5, we will differentiate two cases, based on the degree of
the agent i 2 H picked at a certain iteration. First we will consider agents with degree di � n1/3

15 .

Lemma B.2. Let � � n1/3

62 and ⇡ be the partition returned by Algorithm 1. Then, each agent i 2 Gr

with degree di � n1/3

15 is green.

Proof. As shown in the proof of the previous lemma, if i has degree di � n1/3

15 , then coalition ⇡(i)

will contain agent i and exactly
⌃

2di
n�di

⌥
neighbors of i in N \H . This allows us to determine exactly

the utility of i in ⇡.

In particular, if di  n
3 , being

⌃
2di

n�di

⌥
= 1, vi(⇡) = 1/2, as agent i in her coalition forms a

matching with one neighbor in N \H . Consider then a coalition C sampled according to the uniform
distribution and containing i. We now show that the probability that vi(C) > 1/2 is low enough to
respect the definition of greeness. In fact, the following Chernoff bounds hold:

Pr
C⇠U(2N )


|C \Ni| >

3di
4

�
 e

� di
24  2�n1/3/15·24 ;

Pr
C⇠U(2N )

h
|C| < n

4

i
 e

� n
16 < 2�n1/3/16

.

By applying the union bound, the probability that one of the above two events holds is at most
2�n1/3/15·24 + 2�n1/3/16

< 2�n1/3

. Therefore, with probability at least 1� 2�n1/3

, none of the two
events hold, and recalling that by hypothesis di  n/3, vi(C)  3di

4n <
1
2 , hence i is green.

If di > n
3 , being i in a coalition with exactly

⌃
2di

n�di

⌥
neighbors in N \ H , it is possible to lower

bound vi(⇡) as

vi(⇡) =

⌃
2di

n�di

⌥
⌃

2di
n�di

⌥
+ 1

� 2di
n+ di

.

We now show that the probability that for a sampled coalition C containing i it results vi(C) � 2di
n+di

is again low enough to satisfy the definition of greeness. We will make use of the following Chernoff’s
bounds. Given ↵ and �, positive constants, it holds:

Pr
C⇠U(2N )


|C \Ni| > (1 + ↵)

di

2

�
 e

�↵2di
6 ;

Pr
C⇠U(2N )

h
|C| < (1� �)

n

2

i
 e

� �2n
4 .

Similarly as above, with probability a least 1 � (e�
↵2di

6 + e
� �2n

4 ), it holds that vi(C)  (1+↵)di

(1��)n .
We want to show that, for suitable ↵ and �, this quantity is lower than 2di

n+di
giving us the desired

result. To this aim, choosing � = 1
2n1/3 and ↵ = 1

n1/3

15 �1
,

vi(C)  (1 + ↵)di
(1� �)n

=

✓
1 + 1

n1/3

15 �1

◆
di

�
1� 1

2n1/3

�
n

=
2di

⇣
n1/3

15

⌘

⇣
n1/3

15 � 1
⌘
(2n� n2/3)

=
2di

15
⇣

n1/3

15 � 1
⌘
(2n2/3 � n1/3)

=
2di

2n� 31n2/3 + 15n1/3
 2di

n+ di
.
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It is straightforward to see that:

e
�↵2di

6 + e
��2n

4  e
� 25n1/3

2 + e
�n1/3

16  2 · 2�n1/3

16 = 2�
n1/3

16 +1
.

The following lemma deals with the agents with lowest degrees, that can be regrouped by Algorithm 1.

Lemma B.3. Let � � n1/3

62 and ⇡ be the partition returned by Algorithm 1. Then, each agent i 2 Gr

with degree di <
n1/3

15 is green.

Proof. Differently from the case addressed in the previous lemma, agents i 2 H with degree
di <

n1/3

15 are possibly regrouped by the procedure. This in particular happens when they are not
able to select a singleton neighbor in N \H , and thus they must select a neighbor already included
in some non-singleton coalition formed in the previous iterations. Since the algorithm stops after at
most n1/3

124 steps, the worst possible scenario is when all these agents fall together in a single coalition
of size n1/3

124 + 1, which implies that vi(⇡) � 1
1+n1/3/124

.

Consider an agent i 2 Gr with di <
n1/3

15 . By a Chernoff’s bound it holds that:

Pr
C⇠U(2N )


|C|  n

2

✓
1� 1

n1/3

◆�
 e

�n1/3

4 = 2�⌦(n1/3)
.

Observe that, for |C| > n
2

�
1� 1

n1/3

�
= n�n2/3

2 :

vi(C)  di

|C| 
2n1/3

15
�
n� n2/3

� =
2

15n1/3
�
n1/3 � 1

� <
1

n1/3
<

1

1 + n1/3/124
.

Thus, with probability greater than 1� 2�⌦(n1/3), vi(C) < vi(⇡), which concludes the proof.

C Anonymous Hedonic Games – missing proofs

In the following, we will report the missing proofs of Section 6.

First, we will prove the Chernoff bounds over the size of sampled coalitions from a bounded
distribution:
Lemma 6.3. Let X be the random variable representing the size of C ⇠ D, with D �-bounded, and
let µ := E[X]. Then,

n

�+ 1
 µ  �n

�+ 1
and Pr

D
[ |X � µ| � � · µ ]  "

2
,

where " is such that 0 < " < 1 and � is the quantity
q

3(�+1) log 4
"

n .

Proof. Observe that X can be seen as the sum of n Poisson trials Xi, i 2 N where Xi = 1 if i
belongs to the sampled coalition and 0 otherwise. Let us denote by pi the probability of the event
Xi = 1. From Lemma 3.5, we know that 1

�+1  pi  �
�+1 , as the size of the family of subsets that

we focus on is 2n�1. Since the mean µ of X is equal to
P

i2N pi, by summing the above expression
over i 2 N we obtain exactly:

n

�+ 1
 µ  �n

�+ 1
. (4)

To show the bound instead, we will use Equation 1, i.e., for b 2 (0, 1) being constant:

Pr
D

[ |X � µ| � bµ ]  2e�b2µ/3  2e�b2n/3(�+1)
,

where the last inequality follows by Equation 4. Setting ↵ =
q

3(�+1) log 4
"

n yields e�b2n/3(�+1) = "
4

and concludes the proof.
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The following two results concern the estimation of the interval ID("). First, we will prove that, with
a certain number of samples, it is possible to learn a confidence interval for the mean coalition size µ.

Lemma 6.4. Given any two constants ↵ > 0, � < 1, if m >
n2 log 2/�

2"2 , then:

Pr
S⇠Dm

[ |µ̄� µ| < ↵ ] � 1� � . (3)

Proof. By the Hoeffding bound (see Theorem 4.13 in [23]):

Pr
S⇠Dm

[ |µ̄� µ| � ↵ ]  2e�
2"2m
n2 < � ,

where the last inequality holds by hypothesis on m.

We are now able to prove that ID(") can indeed be learned from samples.

Lemma 6.5. By sampling m = 2�(1+�)n2 logn2/�
" sets from D it is possible to learn exactly the

valuations in ID("), with confidence 1� �.

Proof. Let us start observing that, for any s 2 ID("),
"

2


⇣
1� "

2

⌘


X

t2ID(")

Pr
C⇠D

[ |C| = t ]  � · |ID(")| · Pr
C⇠D

[ |C| = s ] ,

where the second inequality follows by Lemma 6.3 while the third by the definition of �-bounded.
Therefore, PrC⇠D [ |C| = s ] � "

2�n . In order to learn exactly vi(s) for a certain s, it is sufficient
to sample a coalition of size s containing agent i. By the definition of conditional probability we
have PrC⇠D [ |C| = s ^ i 2 C ] = PrC⇠D [ i 2 C | |C| = s ] · PrC⇠D [ |C| = s ] . It is not hard to
see that the conditional probability remains a �-bounded distribution if we restrict the probability
space on coalitions of size s. We can therefore apply Lemma 3.5 and conclude that

Pr
C⇠D

[ |C| = s ^ i 2 C ] � s

s+ �(n� s)
· "

2�n
� "

2�(1 + �)n2
.

As a consequence, the probability that, sampled m coalitions, none of them is of size s and contains i
is upper bounded by: ✓

1� "

2�(1 + �)n2

◆m

 e
� m"

2�(1+�)n2
.

By setting m = 2�(1+�)n2 logn2/�
" , we finally obtain that the probability that we have not learned the

valuation of i for the size s after m samples is less than �/n
2.

In conclusion, applying the union bound twice, the probability that for at least one agent we have not
learned the valuation for some size s 2 ID(") is at most �. This concludes our proof.

We will turn our attention now to single-peaked anonymous HGs. In this case, we are able to show a
different procedure, that refines the result already obtained in the general case.
Theorem 6.2. Given a �-bounded distribution D and a parameter � 2 (0, 1), for any single-peaked
anonymous HG instance and with confidence 1 � �, we can efficiently compute an "-fractional
core-stable partition for every " � 4 · �

2n/4 .

Also in this case, we will have at first a learning phase which is the very same learning phase as
in the previous section. Let us define I as in the proof of Theorem x; therefore we know that with Giovanna

confidence 1� �, ID(") ✓ I . A crucial observation is that if we restrict single-peaked preferences on
I preferences remain single-peaked. Let {s1, . . . , sk} be the sizes in I according to the single-peaked
ordering.

We define pi the peak of i in I , and for each h 2 [k] :

Lh = {i 2 N | pi = s` ^ ` < h}
Eh = {i 2 N | pi = sh}
Gh = {i 2 N | pi = s` ^ ` > h} .
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Let h⇤ 2 [k] be the highest index such that |Lh⇤ |  n/2. For the sake of simplicity, from now on
we will omit h⇤ and use the notation L,E,G in place of Lh⇤ , Eh⇤ , Gh⇤ . Notice that, by definition,
|L|+ |E| � n/2, and hence |G|  n/2.

The computation phase works as follows.

Let s⇤ = sh⇤ and let r = n mod s
⇤. We create (n � r)/s⇤ coalitions of size s

⇤ and a coalition
of size r (if r > 0). In forming coalitions of size s

⇤, we give priority to agents in E, that is, in the
coalition of size r there is an agent of E if and only if any other coalition contains only agents of E.

Let ⇡ be the resulting coalition structure and N
0 = {i 2 N s.t. |⇡(i)| = s

⇤}. We denote by
X

0 = X \N
0 and by x

0 = |X 0| for X 2 {L,G,E}.
Lemma C.1. For any C core-blocking of ⇡, E0 \ C = ;.

Proof. Each agent in E
0 is in the most preferred coalition.

Lemma C.2. For any core-blocking coalition C for ⇡ having size c 2 I ,it must hold L
0 \ C =

; _G
0 \ C = ;.

Proof. Consider i, i0 in L
0 and G

0, respectively. The sizes that are better than s
⇤ for i in I are the

ones that are worse than s
⇤ for i0. Therefore, i and i

0 cannot be both in C.

Proof of Theorem 6.2. First we will show that l0 + e
0 � n/4 _ g

0 + e
0 � n/4 must hold. Indeed,

by definition, l0 + g
0 + e

0 = n� r � n/2. If l0 + e
0  n/4, then g

0 + e
0 � g

0 � n/4; similarly, if
g
0 + e

0  n/4, then l
0 + e

0 � l
0 � n/4.

Let us estimate how many core-blocking coalitions C with sizes c 2 I do exist. By the previous
lemmas, all C of this kind do not contain agents from E

0, and contain agents either from L
0 or from

G
0 but not from both. Therefore, the number of possible core-blocking coalitions with size in I

satisfies:

|{C core-blocks ⇡ ^ c 2 I}|  2n�e0�l0 + 2n�e0�g0

 2 ·max{2n�e0�l0
, 2n�e0�g0

}

 2
3n
4 +1

,

where the last inequality holds by the observation above. Let us set a = 2
3n
4 +1

/2n = 21�
n
4 .

In conclusion, the probability of sampling a core blocking coalition is given by

Pr
C⇠D

[C core-blocks ⇡ ] = Pr
C⇠D

[C core-blocks ⇡ ^ c 2 I ] + Pr
C⇠D

[C core-blocks ⇡ ^ c 62 I ]

 Pr
C⇠D

[C core-blocks ⇡ ^ c 2 I ] + Pr
C⇠D

[ c 62 I ]

 �a

�a+ 1� a
+ "/2  " ,

where the second to last inequality holds true, with confidence 1� �, because of Lemma 3.5 and the
last inequality holds for " � 4 · �

2
n
4
� 4�

2
n
4 +2(��1)

= 2�a
�a+1�a .
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