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1 Appendix

In the supplementary material, we include additional method details, experimental results and analysis,
and visualizations that could not be accommodated in the main text due to space constraints.

1.1 Prompts Generated by GPT-4 and Bard.

Below, we provide the surgical instrument prompts generated by utilizing OpenAI GPT-4 [8] and
Google Bard [2]. They are used in our experiments section.

OpenAI GPT-4 based prompts The input template for OpenAI GPT-4 is defined as: Please
describe the appearance of [class_name] in endoscopic surgery, and change the description to a
phrase with subject, and not use colons. We obtain the following prompts for different surgical
instruments:

• Bipolar forceps. Bipolar forceps have a slim, elongated tweezer-like design with opposing
tips, are silver-colored, made from high-quality metal, and feature an insulated shaft for
controlled energy application.

• Prograsp forceps. Prograsp forceps possess curved scissor-like handles, specialized grasping
tips with interlocking jaws, a ratcheting mechanism, and color-coded markings for easy
identification during surgery.

• Large needle driver. Large needle drivers feature elongated handles, sturdy gripping
surfaces, a curved or straight jaw tip for securely holding needles, and a locking mechanism
to ensure precision and control.

• Vessel sealer. Vessel sealers have elongated handles, scissor-like controls, and specialized
jaws with a combination of sealing and cutting surfaces, designed for securely sealing and
dividing blood vessels and tissue bundles.

• Grasping retractor. Grasping retractors display elongated shafts, curved or straight jaws
with serrated or smooth surfaces for gripping tissues, and a handle mechanism for precise
control and retraction of the target area.

• Monopolar curved scissors. Monopolar curved scissors showcase elongated handles, curved
cutting edges for precise dissection, and an insulated shaft, allowing controlled application
of electrical energy for cutting and coagulation.
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• Ultrasound probe. Ultrasound probes feature a long, slender handle, a small transducer
head for producing ultrasound waves, and a flexible cable connecting the probe to the
ultrasound machine for real-time imaging guidance.

• Suction instrument. Suction instruments appear as elongated tubes with a narrow, hollow tip
for fluid and debris removal, connected to a handle and tubing system for vacuum generation
and precise control during the procedure.

• Clip applier. Clip appliers feature elongated handles, a shaft with a specialized tip for
holding and releasing clips, and a mechanism to advance and deploy the clips precisely for
secure tissue or vessel closure.

Google Bard based prompts The input template for Google Bard is defined as: Please describe
the appearance of [class_name] in endoscopic surgery, and condense it into a short sentence with a
length of about 50 words. We obtain the following prompts for different surgical instruments:

• Bipolar forceps. Bipolar forceps used in endoscopic surgery are insulated stainless steel or
titanium forceps with two metal disks on the tips of the jaws that conduct electrical current
when closed.

• Prograsp forceps. Prograsp forceps are long, thin surgical instruments with two jaws that
are used to grasp tissue during endoscopic surgery.

• Large needle driver. Large needle driver in endoscopic surgery is a long, slender instrument
with serrated jaws for grasping and manipulating needles and sutures.

• Vessel sealer. Vessel sealer in endoscopic surgery is a handheld device that uses heat or
energy to seal and/or cut blood vessels during surgery.

• Grasping retractor. Grasping retractor is a long, thin, and flexible instrument with toothed
jaws that is used to hold tissue in place during endoscopic surgery.

• Monopolar curved scissors. Monopolar curved scissors are a type of surgical scissors used
in minimally invasive procedures to cut tissue.

• Ultrasound probe. Ultrasound probe is a thin, flexible tube with a camera and ultrasound
transducer at the tip.

• Suction instrument. Suction instrument in endoscopic surgery is a thin, tube-like device
used to remove fluids and debris.

• Clip applier. Clip applier is a handheld device with two handles and a shaft that is inserted
into the body through a small incision, which is loaded with titanium clips that are used to
close blood vessels or other openings.

1.2 Experiments on More Datasets

To further validate our method, we conduct experiments on the EndoVis2019 [9] and Cholecseg8k [4]
datasets. Below, we introduce the EndoVis2019 and Cholecseg8k datasets, describe the evaluation
metrics for each dataset, and present the experimental results.

Datasets. EndoVis2019 [9] is derived from 30 minimally invasive surgical procedures, including 10
rectal resection, 10 proctocolectomy, and 10 sigmoid resection procedures. A total of 10,040 images
are extracted from these procedures. The dataset consists of both training and test cases. Each case
contains a 10-second video snippet with 250 endoscopic image frames and a reference annotation for
the last frame. Cholecseg8k [4] contains 80 videos of cholecystectomy surgeries performed by 13
surgeons. Each video is recorded at 25 FPS and has annotations for instruments and operation phases.
Each video clip contributes 80 image frames, and for each of these frames, the dataset includes raw
image data, annotations, and colour masks. In total, the dataset comprises 101 directories with a
collection of 8,080 frames.

Metrics. For EndoVis2019, consistent with the competition’s evaluation protocol [9], we use the
Dice Similarity Coefficient (DSC) and Normalized Surface Dice (NSD) to assess the segmentation
performance. For Cholecseg8k, following the protocols from SP-TCN [3], we split the dataset into
training and testing sets (videos 12, 20, 48 and 55 for testing and others for training) and utilize the
mean Intersection over Union (mean IoU) as the evaluation metric.

2



Results. For EndoVis2019, the results are shown in Tab. 1, our method (input size 448) notably
surpasses the competition’s top performers, with +3% increase in DSC and +2% enhancement in
NSD, which demonstrates the superiority of our method. It’s worth noting that our approach is
designed for multi-class segmentation while is tested for binary class segmentation. Despite this, the
performance improvement by ours over SOTA underscores its efficacy.

For Cholecseg8k, the results are shown in Tab. 2, the mean IoU of our method is 71.03%. It’s
evident that our method surpasses the current SOTA by 1.65% in mean IoU, even though SP-TCN
leverages temporal information from videos to boost the performance, while our method solely
relies on individual image data. It’s worth noting that for the Cholecseg8k, we use the same prompt
generation method described in our paper to obtain prompts for both tissues and instruments. The
result demonstrates that prompts for tissues are appropriately generated following our method, further
attesting to the generalizability of our method.

Table 1: Comparison between our method
and other state-of-the-art methods on the En-
doVis2019 dataset.

Method DSC NSD
haoyun [9] 0.89 0.89
CASIA-SRL [9] 0.78 0.89
Ours (448) 0.92 0.91

Table 2: Comparison between our method and
other state-of-the-art methods on the Cholecseg8k
dataset.

Method mean IoU
Swin base [6] 68.42
Swin base + SP-TCN [3] 69.38
Ours (448) 71.03

1.3 Comparison to SAM.

Whilst we were working on our work, the segment anything model (SAM) [5] was released concur-
rently. SAM possesses the capability to output corresponding object masks through visual or text
prompts. Its officially released implementation however only contains visual prompts (point, box and
mask), lacks text prompting. We thus leverage a community-based solution, lang-segment-anything
[7], which enables this function for SAM. We let SAM use the same set of prompts as we do and
present the results in Tab. 1.3. We found that this SAM variant struggles with medical prompts,
performing significantly inferior than ours. This suggests challenges with medical concepts without
fine-tuning. Additionally, we notice that the text encoder’s output in this unofficial implementation
of SAM might not align well with its visual encoder’s output, potentially leading to decreased
performance.

Table 3: Comparison to SAM on EndoVis2017 and EndoVis2018.
EndoVis2017 EndoVis2018

Method Ch_IoU ISI_IoU mc_IoU Ch_IoU ISI_IoU mc_IoU
SAM-variant [7] 17.77 14.32 10.28 22.08 17.88 12.33
Ours (448) 77.79 76.45 54.78 82.67 81.54 65.48

1.4 Analysis of Hard Instrument Area Reinforcement

We conducted the analysis of the model’s identified hard instrument area aligns with the surgeons’ per-
spective. In Fig. 1, we visualize the hard instrument areas and observe that these areas predominantly
reside at the instrument’s clasper and shaft positions (red rectangles). For the clasper, due to its deep
interaction with the tissue, making the image complex and the segmentation challenging. The shaft,
on the other hand, presents issues because different instruments often have similar shaft appearances,
leading to model misinterpretations. After consulting with surgeons, they agreed that the clasper is
the hard area to identify, aligning with our findings, but they didn’t find the shaft as challenging. The
difference arises because the instrument clasper, influenced by factors like lighting, can more easily
be mistaken for tissue. While for surgeons, the classification of the instrument shaft is inferred from
the clasper, making the shaft a non-challenging area for them. However, for models, grasping the
relationship between the clasper and shaft might not be as intuitive, leading to misclassification. This
observation suggests that future work should focus on modeling the relationship between the clasper
and shaft to enhance segmentation performance across different parts.
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Figure 1: Illustration of the hard area generated in hard instrument area reinforcement. For each of
the two examples (top, bottom), the left side displays the segmentation ground truth, while the right
side is segmentation prediction, the red rectangle is where the hard area is concentrated.

1.5 More Visualization Results

We introduce a mixture of prompts mechanism (MoP) for fusing results from multiple prompts.
Visualization results for various instruments using MoP are given in Figures 2 through 6. Our method
distinguishes instrument categories correctly and demonstrates superior segmentation performance,
particularly at subtle details.

In Figure 7 and Figure 8, we also compare our method with the visualization results of ISINet [1] and
CRIS [10]. Compared with ISINet, our method achieves better classification accuracy for different
instruments. Compared with the CRIS, our method is more accurate on edge segmentation.

Prompts:
• T1: bipolar forceps.
• T2: the surgical instrument area represented by the bipolar forceps.
• T3: bipolar forceps have a slim, elongated tweezer-like design with opposing tips, are silver-colored, made 

from high-quality metal, and feature an insulated shaft for controlled energy application.

Figure 2: Visualization results for bipolar forceps. Top: the prompts signifying bipolar forceps,
namely T1, T2, T3, are concurrently fed into the model. Bottom: the visualizations represent the
outputs derived from these prompts across diverse images.
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Prompts:
• T1: prograsp forceps.
• T2: the surgical instrument area represented by the prograsp forceps.
• T3: prograsp forceps possess curved scissor-like handles, specialized grasping tips with interlocking jaws, a 

ratcheting mechanism, and color-coded markings for easy identification during surgery.

Figure 3: Visualization results for prograsp forceps. Top: the prompts signifying prograsp forceps,
namely T1, T2, T3, are concurrently fed into the model. Bottom: the visualizations represent the
outputs derived from these prompts across diverse images.

Prompts:
• T1: large needle driver.
• T2: the surgical instrument area represented by the large needle driver.
• T3: large needle drivers feature elongated handles, sturdy gripping surfaces, a curved or straight jaw tip for 

securely holding needles, and a locking mechanism to ensure precision and control.

Figure 4: Visualization results for large needle driver. Top: the prompts signifying large needle
driver, namely T1, T2, T3, are concurrently fed into the model. Bottom: the visualizations represent
the outputs derived from these prompts across diverse images.

Prompts:
• T1: vessel sealer.
• T2: the surgical instrument area represented by the vessel sealer.
• T3: vessel sealers have elongated handles, scissor-like controls, and specialized jaws with a combination of 

sealing and cutting surfaces, designed for securely sealing and dividing blood vessels and tissue bundles.

Figure 5: Visualization results for vessel sealer. Top: the prompts signifying vessel sealer, namely
T1, T2, T3, are concurrently fed into the model. Bottom: the visualizations represent the outputs
derived from these prompts across diverse images.
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Prompts:
• T1: monopolar curved scissors.
• T2: the surgical instrument area represented by the monopolar curved scissors.
• T3: monopolar curved scissors showcase elongated handles, curved cutting edges for precise dissection, 

and an insulated shaft, allowing controlled application of electrical energy for cutting and coagulation.

Figure 6: Visualization results for monopolar curved scissors. Top: the prompts signifying monopolar
curved scissors, namely T1, T2, T3, are concurrently fed into the model. Bottom: the visualizations
represent the outputs derived from these prompts across diverse images.

Ground Truth ISINet CRIS Ours

Figure 7: Comparison of visualization results of different methods.
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Figure 8: Comparison of visualization results of different methods.
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