
A Details on GCL Methods, Benchmarks and Experiment Settings482

A.1 Brief Introduction of GCL methods483

Methods for the node classification task.484

• GRACE [61]. GRACE generates two graph views by corruption and learns node represen-485

tations by maximizing the agreement of node representations in these two views. To provide486

diverse node contexts for the contrastive objective, GRACE proposes a hybrid scheme for487

generating graph views on both structure and attribute levels.488

• GCA [63]. GCA proposes adaptive augmentation that incorporates various priors for topo-489

logical and semantic aspects of the graph. On the topology level, GCA designs augmentation490

schemes based on node centrality measures, while on the node attribute level, GCA corrupts491

node features by adding more noise to unimportant node features.492

• ProGCL [49]. ProGCL observes limited benefits when adopting existing hard negative493

mining techniques of other domains in graph contrastive learning. ProGCL proposes an494

effective method to estimate the probability of a negative being true one, and devises two495

schemes to boost the performance of GCL.496

• DGI [45]. DGI relies on maximizing mutual information between patch representations497

and corresponding high-level summaries of graphs—both derived using established graph498

convolutional network architectures. The learnt patch representations summarize subgraphs499

centered around nodes of interest, and can thus be reused for downstream node-wise learning500

tasks.501

• MVGRL [13]. MVGRL introduces a self-supervised approach for learning node and502

graph level representations by contrasting structural views of graphs. MVGRL shows that503

unlike visual representation learning, increasing the number of views to more than two or504

contrasting multi-scale encodings does not improve performance, and the best performance505

is achieved by contrasting encodings from first-order neighbors and graph diffusion.506

Methods for the graph classification task.507

• GraphCL [53]. GraphCL designs four types of graph augmentations to incorporate various508

priors, and learns graph-level representations by maximizing the global representations of509

two views for a graph.510

• ADGCL [41]. ADGCL proposes a novel principle, adversarial GCL, which enables GNNs511

to avoid capturing redundant information during training by optimizing adversarial graph512

augmentation strategies used in GCL.513

• JOAO [54]. JOAO proposes a unified bi-level optimization framework to automatically,514

adaptively and dynamically select data augmentations when performing GraphCL on specific515

graph data. JOAO is instantiated as min-max optimization.516

• InfoGraph [38]. InfoGraph maximizes the mutual information between the graph-level517

representation and the representations of substructures of different scales (e.g., nodes, edges,518

triangles). By doing so, the graph-level representations encode aspects of the data that are519

shared across different scales of substructures.520

A.2 Introduction of Graph Benchmarks521

Node classification benchmarks. 1) Citation Networks [34, 29]. Cora, CiteSeer and PubMed are522

three popular citation graph datasets. In these graphs, nodes represent papers and edges correspond523

to the citation relationship between two papers. Nodes are classified according to academic topics.524

2) Amazon Co-purchase Networks [35]. Photo and Computers are collected by crawling Amazon525

websites. Goods are represented as nodes and the co-purchase relationships are denoted as edges.526

Node features are the bag-of-words representation of product reviews. Each node is labeled with the527

category of goods. 3) Wikipedia Networks [33]. Squirrel and Chameleon was collected from the528

English Wikipedia, representing page-page networks on specific topics. Nodes represent articles and529

edges are mutual links between them.530

Graph Classification benchmarks. 1) Molecules. MUTAG [7] is a dataset of nitroaromatic531

compounds and the goal is to predict their mutagenicity on Salmonella typhimurium. PTC-MR [16] is532
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a collection of 344 chemical compounds represented as graphs that report carcinogenicity for male or533

female rats. 2) Bioinformatics. PROTEINS [3] is a dataset of proteins that are classified as enzymes534

or non-enzymes. Nodes represent the amino acids and two nodes are connected by an edge if they are535

less than 6 Angstroms apart. 3) Social Networks. IMDB-BINARY and IMDB-MULTI [51] are movie536

collaboration datasets consisting of a network of 1,000 actors/actresses who played roles in movies in537

IMDB. In each graph, nodes represent actors/actresses, and corresponding nodes are connected if538

they appear in the same movie. REDDIT-BINARY [51] consists of graphs corresponding to online539

discussions on Reddit. In each graph, nodes represent users, and there is an edge between them if at540

least one of them responds to the other’s comment.541

Statistics of datasets are shown in Table 8.542

Table 8: Statistics of classification benchmarks. We report average numbers of nodes, edges, and
features across graphs in graph classification datasets. For datasets lacking feature attributes, we use
all-one vectors as pseudo attributes in practice.

Task Category Dataset #Graphs # Nodes # Edges # Features # Classes

Node

Citation
Cora 1 2,708 5,278 1,433 7
CiteSeer 1 3,327 4,552 3,703 6
PubMed 1 19,717 44,338 500 3

Co-purchase Photo 1 7,650 119,081 745 8
Computers 1 13,752 245,861 767 10

Wikipedia Chameleon 1 2,277 36,101 500 6
Squirrel 1 5,201 217,073 2,089 4

Graph

Protein MUTAG 188 17.9 39.6 7 2
PTC-MR 344 14.3 29.4 18 2

Bioinformatics PROTEINS 1113 39.1 145.6 0 2

Social Networks
IMDB-BINARY 1000 19.8 193.1 0 2
IMDB-MULTI 1500 13.0 131.9 0 3
REDDIT-BINARY 2000 429.6 995.5 0 2

A.3 Experimental Details543

For the node classification task, following Zhu et al. [61], Velickovic et al. [45], Hassani and544

Khasahmadi [13], we use linear evaluation protocol, where the model is trained in an unsupervised545

manner and feeds the learned representation into a linear logistic regression classifier. In the training546

procedure, a 2-layer Graph Convolutional Network (GCN) [22] is adopted as the encoder. We547

adopt the default settings of Zhu et al. [61]. Specifically, we use removing edges and masking548

node features as data augmentations. We grid search augmentation ratios in {0.0, 0.1, 0.2, 0.3, 0.4}.549

All experiments are trained with Adam SGD optimizer [21] with the learning rate selected from550

{0.01, 0.001, 0.0005}. The epoch number is selected from {200, 1000, 2000}. The other parameters551

are fixed for all datasets. In the evaluation procedure, we randomly split each dataset with a training552

ratio of 0.8 and a test ratio of 0.1, and hyperparameters are fixed as the same for all the experiments.553

Each experiment is repeated ten times with mean and standard derivation of accuracy score.554

For the graph classification task, in the training procedure, a Graph Isomorphism Network (GIN) [50]555

is adopted as the encoder whose layer number is chosen from {4, 8, 12} and hidden dimension chosen556

from {32, 512}. We use Adam SGD optimizer with the learning rate selected in {10−3, 10−4, 10−5}557

and the number of epochs in {20, 100}. Following Sun et al. [38], You et al. [53], we feed the gener-558

ated graph embeddings into a linear Support Vector Machine (SVM) classifier, and the parameters of559

the downstream classifier are independently tuned by cross-validation. The C parameter is tuned in560

{10−3, 10−2, · · · , 102, 103}. We report the mean 10-fold cross-validation accuracy with standard561

deviation. All experiments are conducted on a single 24GB NVIDIA GeForce RTX 3090.562

B Visualization of VCL and GCL via T-SNE563

To further illustrate the difference between VCL and GCL, we visualize the representations learned564

with contrastive loss and uniformity loss using T-SNE [43]. The results are shown in Figure 2. For565
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VCL, the representations learned by uniformity loss distribute more randomly without clear decision566

boundaries, compared to those learned by InfoNCE loss. However, for GCL, the representations567

learned by the two losses both achieve good clustering effects.568

(a) VCL-InfoNCE (b) VCL-Uniformity (c) GCL-InfoNCE (d) GCL-Uniformity

Figure 2: T-SNE visualization of representations learned by VCL and GCL, with InfoNCE loss and
uniformity loss. Figure 2(a) and 2(b) are conducted with SimCLR on CIFAR10. Figure 2(c) and 2(d)
are conducted with GRACE on Amazon-Photo dataset.

C Results of Extensive benchmarks569

In our paper, we have chosen commonly estimated benchmarks (Cora, CiteSeer, PubMed, Amazon-570

Computers, and Amazon Photo) following the original papers (GRACE [61], GCA [63], and so571

on). Here, we also provide results and discussions about extensive benchmarks including heteophily572

benchmarks and large benchmarks.573

Heteophily benchmarks. We conduct experiments on two heterophilic datasets Wikipedia-574

Chameleon and Wikipedia-Squirrel [33] with the GRACE method. As observed in Table 9, training575

with only negative samples (NO Pos) also gains benefits compared with randomly initialized models576

(NO Training). However, the gap between using uniformity loss (NO Pos) and using contrastive loss577

(Contrast) is larger than that of homophilic datasets. In conclusion, the positive-free property of GCL578

is more applicable to homophilic graphs. It agrees with our theoretical analysis in Section 4.2 which579

assumes neighbors as positive samples.580

Table 9: Test accuracy (%) on the homophily and heteophily datasets with the GRACE methods.
We compare the performances of models trained the InfoNCE loss (Contrast), uniformity loss (NO
Pos), alignment loss (NO Neg), and no optimization objective (NO Training). Mean accuracy with
standard derivation is reported after 10 runs. Average accuracy across datasets is reported. We
conduct significance testing using Wilcoxon Signed Rank Test [48], comparing the contrastive loss
with other loss types. The p-value is averaged across datasets. A value below 0.05 denotes significant
accuracy difference ( red ), while a value above 0.05 indicates insignificance ( green ).

Homophily Heteophily

Cora CiteSeer PubMed Avg Avg p-value Chameleon Squirrel Avg Avg p-value

GRACE

Contrast 84.67 ± 1.39 73.47 ± 2.32 85.80 ± 0.16 81.31 - 48.12 ± 2.35 33.63 ± 1.86 40.88 -
NO Training 69.12 ± 4.18 60.60 ± 2.59 80.65 ± 0.80 70.12 0.0020 32.23 ± 1.82 25.34 ± 1.22 28.79 0.0020
NO Pos 82.65 ± 1.18 73.50 ± 2.41 85.28 ± 0.79 80.48 0.1934 42.97 ± 2.11 30.48 ± 2.25 36.73 0.0254
NO Neg 29.85 ± 1.45 20.42 ± 2.26 39.63 ± 0.81 29.97 0.0020 20.61 ± 2.38 19.58 ± 1.36 20.10 0.0020

GCA

Contrast 84.04 ± 1.55 72.63 ± 2.68 85.92 ± 0.69 80.86 - 46.64 ± 2.85 35.24 ± 1.57 40.94 -
NO Training 71.25 ± 2.32 58.50 ± 1.32 80.07 ± 0.47 69.94 0.0020 33.36 ± 2.04 25.76 ± 2.39 29.56 0.0020
NO Pos 83.09 ± 2.03 70.42 ± 3.07 84.68 ± 0.63 79.40 0.1322 40.17 ± 3.93 28.60 ± 1.05 34.39 0.0107
NO Neg 31.40 ± 3.61 22.16 ± 3.01 39.58 ± 0.83 31.05 0.0020 21.92 ± 4.15 20.19 ± 0.55 21.10 0.0020

ProGCL

Contrast 85.42 ± 3.41 72.85 ± 2.99 OOM 79.14 - 48.38 ± 3.65 33.47 ± 1.93 40.93 -
NO Training 79.41 ± 0.90 58.08 ± 1.27 83.54 ± 0.83 73.68 0.0026 34.21 ± 1.15 25.26 ± 2.24 29.74 0.0020
NO Pos 86.76 ± 0.52 70.76 ± 1.63 OOM 78.76 0.2266 46.44 ± 4.14 30.98 ± 4.32 38.71 0.1064
NO Neg 30.15 ± 2.70 21.08 ± 1.45 21.13 ± 1.20 24.12 0.0020 20.09 ± 1.63 20.46 ± 1.57 20.28 0.0020

Large benchmarks. Here, we further consider a larger node classification benchmark OGB-arxiv581

[18] with 169,343 nodes and 1,166,243 edges, using the GRACE method. A node-wise similarity582

matrix is needed when computing the contrastive loss, but its time complexity and space usage are583

intolerable for large datasets. The scalability problem is one of the reasons why larger datasets are584

not reported in many original papers. To solve this problem, we randomly sample N=5000 nodes585

when computing the similarity matrix, and send the resulting matrix to the objective function. For586

each iteration, we repeat such sampling 5 times and use the mean loss. The random sampling strategy587

is simple and straightforward, and more complicated strategies will be considered in the future.588
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As shown in Table 10, the performance only using negative samples is on par with that using589

contrastive objectives. And only using positive samples on the node classification task also results in590

collapse. These observations are consistent with our findings.591

Table 10: Test accuracy (%) on the OGB-arxiv benchmark using GRACE method with the sampled
InfoNCE loss (Contrast), uniformity loss (NO Pos), and alignment loss (NO Neg).

Contrast NO Pos NO Neg

OGB-arxiv 65.97 ± 0.23 65.49 ± 0.32 23.88 ± 0.46

D Feature Collapse in Negative-free GCL for Node Classification592

In Table 2, we find that the absence of negative samples in GCL leads to a significant performance593

drop for the node classification task. Numerous factors may be responsible for the suboptimal594

performance. Here we visualize the training process with alignment loss and InfoNCE loss to show595

that feature collapse is the underlying cause.596

Specifically, we show the tendency of loss, average similarities of node representations H = f(X)597

and Z = g(H), and L2 norms of weight matrices in Figure 3. From Figure 3(a), we can find that598

when trained with the alignment loss, the training loss steeply converges to −1 (optimal for the599

alignment loss) after the start of training. However, the similarities among node representations H600

and Z both unite towards one. It indicates that once the training starts, the model quickly learns601

the short-cut where most node representations are identical to meet the alignment loss. We also602

delineate L2 norms of the weight matrices, which consistently converge to zero during training. As603

a comparison, we show the training process with InfoNCE loss in Figure 3(b). When trained with604

InfoNCE loss, the average similarities of node representations are relatively low and norms of weights605

are non-zero, showing that the collapse issue does not occur in the training process.
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(a) Alignment Loss
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(b) InfoNCE Loss

Figure 3: Tendency of loss, average similarities of node representations H and Z, and L2 norms of
weight matrices. We choose weight matrices of the first and the second convolutional layer (Convs-
W1 and Convs-W2), and the first linear layer of the projection head (Linear-W3). Experiments are
conducted on Cora with GRACE.

606

E Why No-negative GCL Not Collapse in the Graph Classification607

In Section 5, we observe different phenomena in the graph classification and node classification.608

Specifically, in the graph classification task, GCL methods achieve decent performance in the609

no-negative setting, while the representations collapse in the node classification task. From the610

architecture perspective, we find in the graph classification task, the representations learned by the611

projector tend to be identity, while the representations learned by the encoder escape from collapse.612

We suspect that learning a collapsed solution is relatively easier for the global graph representation,613

which can be achieved solely by the projection head.614

Here, we provide some empirical insights into these conjectures. Instead of researching how to615

make representations not collapse in the node classification, we choose to explore when no-negative616

GCL collapses in the graph classification. A straightforward method is stacking more layers within617

the encoder. The well-known over-smoothing issue in GNNs states that when the layer number618

increases, the representations will become identical and lose expressiveness [25]. This is exactly619
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what the alignment loss needs. Taking the MUTAG dataset as an illustrated example, we indeed find620

an increase in the similarities of representation H and Z, and a drop in the performance (Figure 4(a)).621

Another choice is removing the projection head and exposing the encoder. Additionally, we increase622

the learning rate, whose motivation is enforcing the encoder to iterate to the collapsed solution more623

quickly. In Figure 4(b), we find that after removing the projection head, the encoder also collapses624

when the learning rate is raised to 0.01. Besides the above two extreme cases, here we propose a625

more convincing method. Imitating the node-wise loss in the node classification, we transform the626

loss in GraphCL to an L-L version. Formally, the L-L align loss for the graph classification is:627

L̂align = − 1

M

M∑
i=1

1

Ni

∑
u∈Gi

s(u,v), (11)

where M denotes the number of graphs, Ni denotes the number of nodes in the graph Gi, and the628

positive sample v is the corresponding node of u in the augmented graph. Using this alignment loss,629

we train the modified GraphCL method and get a terrible test accuracy of 68.18% compared to the630

original performance of 86.36%. Figure 4(c) shows that the similarities of H and Z both converge631

close to one during training under this loss. These observations further validate our conjecture.632
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Figure 4: Experiments for the collapse of no-negative GCL in the graph classification. As the layer
number of encoder increases, the similarity of representations H converges close to one and the
performance degrades greatly (Figure 4(a)). A similar phenomenon is observed when removing the
projection head and training the encoder with a relatively high learning rate (Figure 4(b)). Additionally,
by modifying the graph-level alignment loss to a local node-wise version, we also observe a collapse
in the encoder (Figure 4(c)). Experiments are conducted on MUTAG with GraphCL.

F Proof of Theorems633

F.1 Derivation of Theorem 4.1634

Proof. It is easy to see that under the definition of the positive samples, the alignment loss can be635

written equivalently as636

L̃align(H) = −Ex,x+∼PG(x,x+)[h
⊤
x hx+ ] (12)

= −
∑
x,x+

PG(x, x
+)[h⊤

x hx+ ] (13)

= −
∑
x,x+

[Âx,x+h⊤
x hx+ ]/

∑
x,x+

[Âx,x+ ] (14)

= −tr
(
HÂH⊤

)
/c, (15)

where c =
∑

x,x+ [Âx,x+ ] is a constant.637

Here, to maintain the feature scale, we further consider a regularization term on the norm of node638

features:639

ˆ̃Lalign(H) = L̃align(H) + ∥H∥2/c. (16)
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Therefore, the gradient update of the alignment objective (Eq 6) gives the following update rule of640

node features H:641

Hnew = H− α∇H
ˆ̃Lalign(H) (17)

= H− α/c(−2AH+ 2H) (18)
= (1− 2α/c)H+ 2α/c ·AH, (19)

where α is the step size. When we choose a specific learning rate α = c/2, we recover the graph642

convolution operation in GCN [22]:643

Hnew = AH, (20)
which completes the proof.644

F.2 Derivation of Theorem 5.1645

Proof. Denote c =
∑

x,x+ [Âx,x+ ] as a constant. Calculating the gradient of the uniformity loss646

w.r.t. each node feature hx gives the following rule647

∇hx
L̃uniform = 2/cPG(x)

∑
x′

Ax,x′hx′ . (21)

In a matrix form, we have648

∇HL̃uniform = 2/cDAH, (22)
where D is the diagonal matrix containing P(x) =

∑
x′ Ax,x′ ,∀x ∈ V .649

Therefore, the gradient descent update of the defined uniformity loss gives650

Hnew = H− α∇HL̃uniform = H− 2/cDAH, (23)

where α is the step size. It is easy to see its equivalence to the ContraNorm update.651

F.3 Derivation of Theorem 5.2652

Proof. Combining Theorem 4.1 and Theorem 5.1, we can directly obtain Theorem 5.2 as a corollary.653

654

G Discussion on More GCL Methods655

The contrastive mode has three mainstreams: local-to-local (L-L), global-to-global (G-G), and656

global-to-local (G-L) [62]. For the local-to-local perspective, the corresponding nodes in the two657

augmented views of a graph are seen as positive pairs while all the other node pairs are negative ones.658

Global-to-global mode is often used when there are multiple graphs, and contrastive objects are the659

global representations of augmented views. In this mode, augmented views of the same graph are660

positives and all the other graph pairs are negatives. For the global-to-local perspective, positive pairs661

are taken as the global representation and nodes of augmented views for the corresponding graph,662

and negative pairs are the global representation and nodes of augmented views for other graphs.663

In previous sections, we investigate the GCL methods with L-L or G-G modes, and the G-L mode on664

the graph classification (like InfoGraph). In this section, we discuss two methods of the G-L mode on665

node classification task: DGI [45] and MVGRL [13]. For experiments, we use the same settings as in666

Section 4. As seen from Table 11, there is an obvious degeneration in accuracy when no positive667

samples or negative samples are used, which is close to the no training setting. Recall that we find668

the positive samples are not needed in Section 4, and the observations on DGI and MVGRL seem to669

contradict our arguments. Here we attribute the inconsistency to the flaw in the methods themselves.670

We start with an intriguing finding on DGI. Here we disorder the contrastive correspondence with a671

wrong view as global representations. Specifically, we take the local representation of the graph and672

its global representation as negatives, while local representations and global representations of the673

corrupted view are seen as positives. Note that the corruption operation in DGI is used to generate674

negative samples by shuffling rows of node attributes. See Figure 5 for illustration. We compare675

the disordered version with the original DGI in Table 12, and find using a wrong view as global676

representations does not affect performance. It implies that global representations lose efficacy in677
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this framework. Inspired by Zheng et al. [60], we compare the two global representations and find678

they are nearly identical with every dimension being about 0.5. Extensive experiments also show the679

global representation is a constant vector for inappropriate usage of the Sigmoid function in both680

DGI and MVGRL [60].681

This finding explains why the loss without positive samples does not work. Trained with such682

loss, node representations are only enforced to be far away from a constant vector, which gives683

no semantic guarantee. However, after adding positive samples to loss, the model learns to pull684

positive samples near a constant vector, while pushing negative samples away from such vector. It685

intrinsically achieves the goal of contrastive learning by gathering positives and repulsing negatives686

simultaneously. Thus the model trained with both positive and negative samples can obtain satisfying687

performance, explaining why DGI works with constant global representations.688

Table 11: Test accuracy (%) of node classification benchmarks using DGI and MVGRL methods.
We compare the performances of models trained with JSD loss (Contrast), loss part only involving
negative pairs (NO Pos), loss only involving positive pairs (NO Neg), and no optimization objective
(NO Training). Mean accuracy with standard derivation is reported after 10 runs. We conduct
significance testing using Wilcoxon Signed Rank Test [48], comparing the contrastive loss with other
loss types. The p-value is averaged across datasets. A value below 0.05 denotes significant accuracy
difference ( red ), while a value above 0.05 indicates insignificance ( green ).

Method Loss Cora CiteSeer PubMed Photo Computers Chameleon Squirrel Avg Avg p-value

DGI

Contrast 83.38 ± 2.67 72.07 ± 2.37 84.77 ± 0.71 88.10 ± 1.81 83.35 ± 0.71 39.56 ± 2.86 34.55 ± 0.88 69.40 -

NO Training 69.78 ± 3.39 55.15 ± 2.09 79.56 ± 1.35 69.08 ± 3.30 56.03 ± 1.97 31.44 ± 1.70 24.57 ± 1.22 55.09 0.0020

NO Pos 66.84 ± 3.54 54.79 ± 3.33 78.25 ± 0.99 58.34 ± 3.92 71.98 ± 1.38 35.81 ± 2.34 26.99 ± 0.20 56.14 0.0020

NO Neg 67.35 ± 4.61 58.17 ± 2.57 77.23 ± 1.05 62.75 ± 3.75 72.66 ± 1.48 31.62 ± 4.06 27.75 ± 1.85 56.79 0.0022

MVGRL

Contrast 84.41 ± 1.44 75.27 ± 0.79 85.62 ± 0.63 89.23 ± 1.52 79.58 ± 0.15 42.45 ± 2.43 33.97 ± 2.54 70.08 -

NO Training 77.94 ± 2.23 58.92 ± 2.88 82.13 ± 0.63 81.15 ± 3.25 69.07 ± 0.40 32.23 ± 1.94 24.41 ± 1.10 60.84 0.0022

NO Pos 75.44 ± 1.42 61.08 ± 2.48 81.26 ± 1.30 36.03 ± 1.57 38.36 ± 0.55 36.86 ± 2.56 29.98 ± 1.52 51.29 0.0020

NO Neg 54.93 ± 4.67 35.03 ± 5.20 56.26 ± 1.91 36.47 ± 2.37 38.36 ± 0.56 29.34 ± 2.04 28.06 ± 1.66 39.78 0.0020

Figure 5: Illustration for disordering contrastive correspondence of views on DGI.

Table 12: Test accuracy (%) of DGI in standard contrastive correspondence (Std) and disordered
correspondence (Dis).

Method Contrast Cora CiteSeer PubMed

DGI Std. 83.38 ± 2.68 72.07 ± 2.37 84.77 ± 0.71
Dis. 83.35 ± 2.68 72.04 ± 2.17 84.70 ± 0.68

H Results of the Fine-tuning Protocol689

In this section, we provide the fine-tuning protocol results of main experiments of our paper. Specifi-690

cally, we add a linear classification head after the encoder. In the fine-tuning phase, we fine-tune the691

whole networks according to downstream tasks, with the learning rate selected from [0.01, 0.001]692

and the number of epochs selected from [100, 200, 500]. In Table 13 and Table 14, we report the693

fine-tuning results for the node classification task with GRACE and DGI methods, and for the graph694

classification tasks with GraphCL method, respectively. Sharing the same conclusion as the linear695

probing protocol, only using negative samples achieves comparable performance as that using con-696

trastive objectives. On the other hand, for the node classification task, only using positive samples697
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escapes severe collapse. We think the guidance of true labels in the fine-tuning helps the networks698

relearn parameters and thus prevents collapse.699

Furthermore, we report the fine-tuning results about augmentations in Table 15. For the default700

augmentations (FM+PE), we set the ratio of each augmentation to 0.2 to save engineering effort. For701

a fair comparison, the standard deviation σ of the random Gaussian noise is fixed to 1e-4. Other702

hyperparameters are the same across the three augmentation settings (FM+PE, Gaussian, and NO703

Aug). As seen from the table, in the fine-tuning evaluation setting, random noise augmentation is on704

average the best for each loss type. It further justifies our analysis that domain-agnostic augmentations705

are enough for GCL.706

Table 13: Fine-tuning accuracy (%) of node classification benchmarks using GCL methods. We
compare the performances of models trained with InfoNCE loss (Contrast), uniformity loss (NO
Pos), alignment loss (NO Neg), and no optimization objective (NO Training). Mean accuracy with
standard derivation is reported after 10 runs. Average accuracy across datasets is reported. We
conduct significance testing using Wilcoxon Signed Rank Test [48], comparing the contrastive loss
and other loss types. The p-value is averaged across datasets. A value below 0.05 denotes significant
accuracy difference ( red ), while a value above 0.05 denotes insignificance ( green ).

Method Loss Cora CiteSeer PubMed Photo Computers Chameleon Squirrel Avg Avg p-value

GRACE

Contrast 85.15 ± 3.07 74.19 ± 3.66 84.64 ± 2.47 92.89 ± 0.56 88.92 ± 1.27 39.56 ± 3.76 33.13 ± 4.33 71.21 -

NO Pos 84.49 ± 3.50 74.07 ± 3.92 82.38 ± 2.36 92.84 ± 0.51 89.45 ± 1.14 38.60 ± 3.99 31.40 ± 3.76 70.46 0.3139

NO Neg 81.62 ± 4.05 69.52 ± 4.46 83.87 ± 2.65 92.05 ± 0.89 89.07 ± 1.03 35.98 ± 5.13 30.48 ± 2.54 68.94 0.1398

DGI

Contrast 85.66 ± 2.39 74.55 ± 1.68 85.69 ± 0.26 92.94 ± 0.88 90.03 ± 0.79 42.01 ± 6.07 32.74 ± 5.49 71.95 -

NO Pos 86.91 ± 2.16 74.79 ± 0.92 85.49 ± 0.25 92.73 ± 0.69 89.45 ± 0.65 42.01 ± 6.05 31.98 ± 5.73 71.91 0.4395

NO Neg 85.00 ± 2.39 74.97 ± 1.08 85.44 ± 0.38 92.73 ± 0.67 90.13 ± 0.66 42.97 ± 6.52 32.13 ± 5.24 71.91 0.3672

Table 14: Fine-tuning accuracy (%) of graph classification benchmarks using GCL methods. We
compare the performances of models trained with InfoNCE loss (Contrast), uniformity loss (NO
Pos), alignment loss (NO Neg), and no optimization objective (NO Training). Mean accuracy with
standard derivation is reported after 10 runs. Average accuracy across datasets is reported. We
conduct significance testing using Wilcoxon Signed Rank Test [48], comparing the contrastive loss
and other loss types. The p-value is averaged across datasets. A value below 0.05 denotes significant
accuracy difference ( red ), while a value above 0.05 denotes insignificance ( green ).

Method Loss MUTAG PTC-MR PROTEINS IMDB-BINARY IMDB-MULTI REDDIT-BINARY Avg Avg p-value

GraphCL

Contrast 93.48 ± 2.52 80.64 ± 4.09 79.88 ± 0.43 64.53 ± 1.32 43.64 ± 0.63 79.67 ± 1.82 73.64 -

NO Pos 93.12 ± 0.74 80.45 ± 4.85 79.34 ± 3.10 63.13 ± 1.55 42.24 ± 0.31 76.73 ± 4.23 72.50 0.1966

NO Neg 93.11 ± 1.14 80.36 ± 3.64 79.01 ± 3.69 62.37 ± 2.81 41.60 ± 0.47 76.75 ± 2.90 72.20 0.1400

Table 15: Fine-tuning accuracy (%) of node classification benchmarks using GRACE method with
different augmentations under three loss settings. We compare no augmentations (NO Aug), domain-
agnostic augmentations (Gaussian), and default domain-specific augmentations (FM+EP). Average
accuracy and p-value are reported. We conduct significance testing using Wilcoxon Signed Rank Test
[48], comparing the default augmentation with other settings. The p-value is averaged across datasets.
A value below 0.05 denotes significant accuracy difference ( red ), while a value above 0.05 indicates
insignificance ( green ).

Loss Aug Cora CiteSeer PubMed Photo Computers Chameleon Squirrel Avg Avg p-value

Contrast
FM+EP 85.15 ± 3.07 74.19 ± 3.66 84.64 ± 2.47 92.89 ± 0.56 88.92 ± 1.27 39.56 ± 3.76 33.13 ± 4.33 71.21 -
Gaussian 86.69 ± 2.39 74.91 ± 2.98 84.52 ± 2.05 92.94 ± 1.02 88.94 ± 1.14 42.62 ± 6.55 31.55 ± 4.64 71.74 0.2829
NO Aug 85.00 ± 3.20 74.07 ± 3.92 82.64 ± 2.69 93.10 ± 0.42 89.58 ± 1.20 37.03 ± 4.28 31.59 ± 4.49 70.43 0.2531

NO Pos
FM+EP 84.49 ± 3.50 74.07 ± 3.92 82.38 ± 2.36 92.84 ± 0.51 89.45 ± 1.14 38.60 ± 3.99 31.40 ± 3.76 70.46 -
Gaussian 86.40 ± 2.84 74.67 ± 3.90 83.95 ± 1.72 92.73 ± 1.52 88.72 ± 1.18 40.79 ± 6.03 30.17 ± 4.73 71.06 0.2609
NO Aug 85.00 ± 3.20 74.07 ± 3.92 82.42 ± 2.57 92.97 ± 0.58 89.49 ± 1.10 38.43 ± 3.88 31.59 ± 4.48 70.57 0.3859

NO Neg
FM+EP 81.62 ± 4.05 69.52 ± 4.46 83.87 ± 2.65 92.05 ± 0.89 89.07 ± 1.03 35.98 ± 5.13 30.48 ± 2.54 68.94 -
Gaussian 84.26 ± 2.80 72.46 ± 4.75 84.49 ± 1.97 91.56 ± 1.75 88.37 ± 1.73 38.25 ± 2.54 28.25 ± 2.81 69.66 0.3273
NO Aug 80.96 ± 5.24 71.38 ± 5.59 82.45 ± 2.69 92.03 ± 2.12 86.16 ± 5.95 33.97 ± 4.41 26.76 ± 2.49 67.67 0.2854
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I Extensive Experiments of ContraNorm in GCL methods707

In Table 5, we show that by simply incorporating the normalization layer into the encoder, the collapse708

issue can be rooted out for the GRACE method. In this section, we incorporate ContraNorm into709

multiple GCL methods under the no-negative setting. The results are shown in Table 16. It is obvious710

that for these GCL methods, applying ContraNorm when there are no negative samples achieves711

comparable performance with models trained with the contrastive loss (both positive and negative712

samples). The extensive experiments validate the effectiveness of ContraNorm across different GCL713

methods.714

Table 16: Test accuracy (%) of node classification benchmarks using GCL methods. We compare
the performances of models trained with InfoNCE loss (Contrast), alignment loss (NO Neg), and
alignment loss with ContraNorm in encoders (GCN+CN). Mean accuracy with standard derivation
is reported after 10 runs. Average accuracy across datasets is reported. We conduct significance
testing using Wilcoxon Signed Rank Test [48], comparing the default setting (first line) with others.
The p-value is averaged across datasets. A value below 0.05 denotes significant accuracy difference
( red ), while a value above 0.05 indicates insignificance ( green ). OOM denotes out of memory.

Method Loss Encoder Cora CiteSeer PubMed Photo Computers Avg Avg p-value

GRACE

Contrast GCN 84.67 ± 1.39 73.47 ± 2.32 85.80 ± 0.16 91.42 ± 1.27 89.01 ± 0.60 84.87 -

NO Neg GCN 29.85 ± 1.45 20.42 ± 2.26 39.63 ± 0.81 25.10 ± 1.74 36.84 ± 1.30 30.37 0.0020

NO Neg GCN + CN 82.35 ± 2.28 72.25 ± 1.86 83.30 ± 0.63 92.43 ± 0.82 84.48 ± 1.01 82.96 0.1520

GCA

Contrast GCN 84.04 ± 1.55 72.63 ± 2.68 85.92 ± 0.69 93.07 ± 0.66 86.58 ± 0.75 84.45 -

NO Neg GCN 31.40 ± 3.61 22.16 ± 3.01 39.58 ± 0.83 28.13 ± 1.14 37.34 ± 0.95 31.72 0.0020

NO Neg GCN + CN 82.21 ± 1.29 72.87 ± 0.98 82.40 ± 0.78 92.47 ± 0.96 86.15 ± 0.58 83.22 0.2125

ProGCL

Contrast GCN 85.42 ± 3.41 72.85 ± 2.99 OOM 93.81 ± 0.48 86.35 ± 1.28 84.61 -

NO Neg GCN 30.15 ± 2.70 21.08 ± 1.45 21.13 ± 1.20 4.88 ± 0.33 3.11 ± 0.65 16.07 0.0020

NO Neg GCN + CN 80.00 ± 1.75 73.35 ± 1.17 84.02 ± 0.91 93.59 ± 0.38 85.67 ± 0.43 83.33 0.2336

J Gaussian Augmentations under Different Loss Settings715

In Section 6, we perform experiments using the GRACE method with different augmentations under716

the InfoNCE loss. Here, we further report results under different losses in Table 17. For loss717

without negative samples, the average performance gap between domain-specific augmentations and718

noise augmentations is only 0.74%. When no augmentations, the performance drops 4.88%. We719

conjecture that when no negative samples exist, the application of augmentations brings diversity in720

representations, thus making collapse more difficult. For contrastive loss and loss without positive721

samples, the gap between domain-specific augmentations and noise augmentations is also narrow.722

Table 17: Test accuracy (%) of node classification benchmarks using GRACE method with different
augmentations under three loss settings. We compare no augmentations (NO Aug), domain-agnostic
augmentations (Gaussian), and default domain-specific augmentations (FM+EP). Average accuracy
and p-value are reported. We conduct significance testing using Wilcoxon Signed Rank Test [48],
comparing the default augmentation with other settings. The p-value is averaged across datasets. A
value below 0.05 denotes significant accuracy difference ( red ), while a value above 0.05 indicates
insignificance ( green ).

Loss Encoder Aug Cora CiteSeer PubMed Photo Computers Avg Avg p-value

Contrast GCN
FM+EP 84.67 ± 1.39 73.47 ± 2.32 85.80 ± 0.16 91.42 ± 1.27 89.01 ± 0.60 84.87 -
Gaussian 82.72 ± 2.38 72.60 ± 1.21 85.24 ± 0.61 91.32 ± 1.37 82.77 ± 1.09 82.93 0.1816
NO Aug 79.56 ± 2.18 71.83 ± 1.83 84.68 ± 0.58 90.99 ± 1.26 82.83 ± 0.86 81.98 0.1008

NO Pos GCN
FM+EP 82.65 ± 1.18 73.50 ± 2.41 85.28 ± 0.79 91.32 ± 0.10 84.40 ± 0.43 83.43 -
Gaussian 80.04 ± 1.93 70.84 ± 1.85 84.88 ± 0.89 91.33 ± 1.18 83.26 ± 1.24 82.07 0.1840
NO Aug 79.37 ± 2.30 71.80 ± 1.84 84.69 ± 0.63 90.92 ± 1.21 82.49 ± 0.87 81.85 0.1176

NO Neg GCN + CN
FM+EP 82.35 ± 2.28 72.25 ± 1.86 83.30 ± 0.63 92.43 ± 0.82 84.48 ± 1.01 82.96 -
Gaussian 79.08 ± 2.47 72.43 ± 1.32 83.55 ± 0.22 91.59 ± 1.19 84.48 ± 1.07 82.23 0.2750
NO Aug 75.59 ± 3.45 66.98 ± 3.40 82.14 ± 1.28 81.91 ± 1.42 83.79 ± 1.14 78.08 0.0688
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