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Abstract

Unconstrained and natural behavior consists of dynamics that are complex and
unpredictable, especially when trying to predict what will happen multiple steps
into the future. While some success has been found in building representations
of animal behavior under constrained or simplified task-based conditions, many
of these models cannot be applied to free and naturalistic settings where behavior
becomes increasingly hard to model. In this work, we develop a multi-task repre-
sentation learning model for animal behavior that combines two novel components:
(i) an action-prediction objective that aims to predict the distribution of actions
over future timesteps, and (ii) a multi-scale architecture that builds separate latent
spaces to accommodate short- and long-term dynamics. After demonstrating the
ability of the method to build representations of both local and global dynamics in
robots in varying environments and terrains, we apply our method to the MABe
2022 Multi-Agent Behavior challenge, where our model ranks first overall on both
mice and fly benchmarks. In all of these cases, we show that our model can build
representations that capture the many different factors that drive behavior and solve
a wide range of downstream tasks.

1 Introduction

Behavior is shaped by various factors operating across different timescales. Immediate motivations
can drive moment-to-moment interactions, while long-term experiences or even the time of day
can influence behavior on broader scales. Analyzing these dynamics, particularly in complex and
naturalistic contexts (34; 28), has now become a critical component in many modern studies in
neuroscience (28), cognitive science, and in social behavior and decision making (38; 52; 56; 5).
Additionally, monitoring and tracking systems now allow for modeling of multi-agent interactions
(27; 11; 16) and social behaviors (52; 1), providing valuable insights into dynamics across many
individuals.

In order to learn latent factors that may influence behavioral patterns, a promising solution is to
build models of behavior in a unsupervised manner (25; 68). Unsupervised models are of particular
interest in this domain as it becomes hard to identify complex behaviors which can be composed of
many “syllables” of movement (65), and are thus hard and tedious to annotate. Recent work in this
direction build such representations using generative modeling and reconstruction-based objectives,
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Figure 1: Overview of our approach. Bootstrap Across Multiple Scales (BAMS) uses two temporal convolu-
tional networks with two latent spaces, each with their own receptive field sizes. The model is trained on a novel
learning objective that consists in predicting future action distributions instead of future action sequences. In this
figure, we use sample data from the MABe dataset, only a subset of the channels are shown.

typically by performing open loop (58; 13; 10) or closed loop (13) prediction of observations or
actions multiple timesteps into the future.

However, when using a reconstruction or prediction objective to analyze behavior, future actions
become hard to predict and models can start to become myopic, focusing only on short-range
interactions in the data (65). To circumvent this overly local learning of dynamics, there have been a
number of efforts to build models of long-term behavioral style (41; 6), where instance-level learning
methods are used to extract a single representation for an entire sequence. However, these models
then lose their ability to provide time-varying representations that capture the dynamic nature of
different behaviors. It is still an outstanding challenge to build representations that can capture both
short-term behavioral dynamics along with longer-term trends and global structure.

In this work, we develop a new self-supervised approach for learning multiscale representations of
behavior. Our method consists of two core innovations: (i) a novel action-prediction approach that
aims to predict the distribution of actions over future timesteps, without modeling exactly when
each action is taken, and (ii) a novel multi-scale architecture that builds separate latent spaces to
accommodate short- and long-term dynamics. We combine both of these innovations and show that
our approach can capture both long-term and short-term attributes of behavior and work flexibly to
solve a variety of different downstream tasks.

To test our approach, we utilize behavioral datasets that contain multiple tasks that vary in complexity
and contain distinct multi-timescale dynamics. Using NVIDIA’s Isaac Gym (37), we generate
a synthetic dataset of the multi-limb kinematics from quadruped robots by varying the robot’s
morphological properties and the environment’s terrain type and difficulty. Using this robot behavior
data, we demonstrate that our method can effectively build dynamical models of behavior that
accurately elicit both the robot and environment properties, without any explicit training signal
encouraging the learning of this information.

Having established that our approach can successfully predict the complex behavior of an artificial
creature, we apply it to two multi-agent behavior benchmarks (61) and challenges with multiple
tasks that vary in their frame-level (local) vs. sequence-level (global) labels and properties. On the
mouse triplet benchmark, we rank first overall on the leaderboard 1 (averaged across 13 tasks), first
on all of the 4 global tasks, and are in the top-3 on all the 9 frame-level local subtasks. In one of the
global tasks (decoding the strain of the mouse), we achieve impressive performance over the other
methods, with a 10% gap over the next best performing method. On the fruit fly groups benchmark,
we also rank first overall 2 (averaged across 50 tasks), and outperform other methods on both average
frame-level and sequence-level subtasks. Our results demonstrate that our approach can provide
representations that can be used to decode meaningful information from behavior that spans many
timescales (longer approach interactions, grooming, etc.) as well as global attributes like the time of
day or the strain of the mouse.

1aicrowd.com/challenges/multi-agent-behavior-challenge-2022/problems/mabe-2022-mouse-triplets/leaderboards?post_challenge=true
2aicrowd.com/challenges/multi-agent-behavior-challenge-2022/problems/mabe-2022-fruit-fly-groups/leaderboards?post_challenge=true

2

https://www.aicrowd.com/challenges/multi-agent-behavior-challenge-2022/problems/mabe-2022-mouse-triplets/leaderboards?post_challenge=true
https://www.aicrowd.com/challenges/multi-agent-behavior-challenge-2022/problems/mabe-2022-fruit-fly-groups/leaderboards?post_challenge=true


The contributions of this work include:

• A self-supervised framework that learns representations in two separate long-term and short-
term embedding spaces. Bootstrapping is performed within each timescale, using a latent
predictive loss across positive views only, and hence can process much longer sequences than
contrastive methods that require negative views.

• A novel prediction task for behavioral analysis and cloning called HoA (histogram of actions),
which aims to predict the future distribution of keypoints instead of the precise ordering of
future states. We use an efficient implementation of the 2-Wasserstein divergence as a measure
of distributional fit between the true movement distribution and the predicted movements.

• New state-of-the-art performance: When applied to the Multi-agent (MABe) Benchmark, our
model is ranked #1 overall and achieves top scores on all of the sequence-level (global) tasks. In
aggregate, we achieve the top rank on the leaderboard.

• A procedurally generated dataset of walking quadruped robots with ground truth annotations
and multiple frame- and sequence-level tasks. We believe that this dataset can provide a robust
benchmark for future work in this direction.

2 Method

Our approach addresses two critical challenges of modeling naturalistic behavior (Figure 1). In
Section 2.2, we introduce a novel distributional-relaxation of the reconstruction-based learning
objective. In Section 2.3, we introduce an architecture and self-supervised learning objectives that
support the learning of behavior at different levels of temporal granularity.

2.1 Problem setup

We assume a fixed dataset of D trajectories, each comprised of a sequence of observations xt and/or
actions yt. Where actions are not explicitly provided, in many cases we can infer actions based on
the difference between consecutive observations. Our goal is to learn, for each timestep, behavioral
representations zt that capture both global-information such as the strain of the mouse or the time of
day, as well as temporally-localised representations such as the activity each mouse is engaged in at a
given point in time. As obtaining labeled datasets for realistically-useful scales of agent population
and diversity of behavior is impractical, we aim to learn representations in an unsupervised manner.

2.2 Histogram of Actions (HoA): A novel objective for predicting future

Modeling behavior dynamics can be done by training a model to predict future actions. This
reconstruction-based objective becomes challenging when behavior is complex and non-stereotyped.
Let us consider the example of a mouse scanning the room, rotating its head from one side to the
other. It is possible to extrapolate the trajectory of the head over a few milliseconds, but prediction
quickly becomes impossible, not because this particular behavior is complex but because any temporal
misalignment in the prediction leads to increasing errors.

We propose to predict the distribution of future actions rather than their sequence. The motivation
behind this distributional-relaxation of the reconstruction objective lies in blurring the exact temporal
unfolding of the actions while preserving their behavioral fingerprint.

Predicting histograms of future actions. Let yt ∈ RN be the action vector at time t. Each feature
in the action vector can, for example, represent the linear velocity of a joint or the angular velocity of
the head. Given observations [x0, . . . ,xt] of the behavior at timesteps 0 through t, the objective is
to predict the distribution of future actions over the next L timesteps. For each i-th element of the
action vector, we compute a one-dimensional normalized histogram of the values it takes between
timesteps t+ 1 and t+ L. We pre-partition the space of action values into K equally spaced bins,
resulting in a K-dimensional histogram that we denotes as ht,i, for all keypoints 1 ≤ i ≤ N .

We introduce a predictor g that, given the extracted representation zt, predicts all feature-wise
histograms of future actions. The predictor is a multi-layer perceptron (MLP) with an output space in
RN×K . The output is split into N vectors, which are normalized using the softmax operator. We
obtain [ĥt,1, . . . , ĥt,n], each estimating the histogram of the i-th action feature following timestep t.
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EMD2 loss for histograms. To measure the loss between the predicted and target histograms,
we use the Discrete Wasserstein distance, also known as the Earth Mover’s Distance (EMD). This
distance is obtained by solving an optimal transport problem that consists in moving mass from one
distribution to the other while incurring the lowest transport cost. In our case, the cost of moving
mass from one bin to another is equal to the number of steps between the two bins.

Because our histogram has equally-sized bins, the EMD is equivalent to the Mallows distance which
has a closed-form solution (31; 20). In particular we use EMD2 which has been shown to be easier to
optimize and converge faster (53). The loss is defined as follows:

DEMD2(ht,i, ĥt,i) =

K∑
k=1

(CDFk(ht,i)− CDFk(ĥt,i))
2, (1)

where CDFk(h) is the k-th element of the cumulative distribution function of h.

The total loss is obtained by summing over all features of the action vector, which leaves us with the
following loss at time t:

Lt =

N∑
i=1

DEMD2(ht,i, ĥt,i). (2)

2.3 Multi-timescale bootstrapping in a temporally-diverse architecture

In order to form richer and multi-scale representations of behavior, we use a self-supervised learning
objective. We introduce a new approach using latent predictive losses to build representations across
different scales while preserving the granularity in each. We achieve this by explicitly separating the
short-term and long-term representations, then bootstrapping within each representation space. This
approach enables us to learn from otherwise incompatible representation learning objectives (55; 62).

2.3.1 Two latent spaces are better than one

Our goal is to capture and separate short-term and long-term dynamics in two different spaces. We
use the Temporal Convolutional Network (TCN) (4) as our building block. The TCN produces a
representation at time t that only depends on the past observations (46).

We design an architecture that separates the different timescales by using two TCN encoders: A
short-term encoder, fs, that captures short-term dynamics and targets momentary behaviors such
as drinking, running or chasing; A long-term encoder, fl, that captures long-term dynamics and
targets longstanding factors that modulate behavior (strain of mouse, time of day). Architecturally,
the difference between the two is that we increase the number of layers and use larger dilation rates
(8) for the long-term encoder, thus effectively covering a larger receptive field (more history) in the
input sequence. All feature embeddings extracted by the TCNs are concatenated, to produce the final
embedding, zt = concat[zst , z

l
t].

2.3.2 Bootstrapping Across Multiple Scales

positive range

positive range

Figure 2: Visualization of the
short-term and long-term windows
used to build multi-scale similar-
ity. Positives are selected within a
window. The window is small for
short-term embeddings and can be
as large as the entire sequence for
long-term embeddings.

We draw inspiration from recent work (17; 50; 18) that uses latent
bootstrapping to learn a latent space where “positive” views are
mapped close to each other. Unlike other contrastive methods (69),
bootstrapping does not require negative examples.

In the context of temporal representation learning, a common as-
sumption is that points that are nearby in time are positive views of
each other and can be constrained to lie nearby in the latent space
(69; 3). In our case, we can bootstrap and find positive views at
both the short-term and also at a more long-term scale, as illustrated
in Figure 2.

Bootstrapping short-term representations. We randomly select
samples, both future or past, that are within a small window ∆ of
the current timestep t. In other words, δ ∈ [−∆,∆]. Bootstrapping
involves using a shallow network to predict the representation of one view from the other (17). We
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use a predictor qs that takes in the short-term embedding zst and learns to regress zst+δ using the loss:

Lr,short =

∥∥∥∥ qs(z
s
t )

∥qs(zst )∥2
− sg

[
zst+δ

∥zst+δ∥2

]∥∥∥∥2
2

, (3)

where sg[·] denotes the stop gradient operator. Unlike (17), we do not use an exponential moving
average of the model, but simply increase the learning rate of the predictor as in (50).

Bootstrapping long-term representations. For long-term behavior embeddings which should be
stable at the level of a sequence, we sample any other time point in the same sequence, i.e. t′ ∈ [0, T ].
We use a similar setup for the long-term behavior embedding, where predictor ql is trained over
longer time periods or in the limit, over the entire sequence.

Lr,long =

∥∥∥∥ ql(z
l
t)

∥ql(zlt)∥2
− sg

[
zlt′

∥zlt′∥2

]∥∥∥∥2
2

(4)

2.4 Putting it all together

Finally, we optimize the proposed multi-task architecture with a combined loss:
L = Lt + α(Lr,short + Lr,long) (5)

where α is a scalar that is used to weigh the contribution of the short- and long-term contrastive
losses. In practice, we find that we simply need to choose α that re-scales the contrastive losses to the
same order of magnitude as the HoA prediction loss.

3 Experiments

3.1 Simulated Quadrupeds Experiment

3.1.1 A synthetic dataset of simulated legged robots

To test our model’s ability to separate behavioral factors that vary in complexity and contain distinct
multi-timescale dynamics, we introduce a new dataset generated from a heterogeneous population of
quadrupeds traversing different terrains. Simulation enables access to information that is generally
inaccessible or hard to acquire in a real-world setting and provides ground-truth information about
the agent and the world state.

Agents. We use advanced robotic systems (33) that imitates 4-legged creatures capable of various
locomotion skills. These robots are trained to walk on challenging terrains using reinforcement
learning (51). We use two robots that differ by their morphology, ANYmal B and ANYmal C. To
create heterogeneity in the population, we randomize the body mass of the robot as well as the target
traversal velocity. We track a set of 24 proprioceptive features including linear and angular velocities
of the robots’ joints.

Procedurally generated environments. Using NVIDIA’s Isaac Gym (33) simulation environment,
we procedurally generate maps composed of multiple segments of different terrains types (Figure 3).
We consider five different terrains including flat surfaces, pits, hills, ascending and descending stairs.
We also vary the roughness and slope of the terrain to control the difficulty of terrain traversal.

Future prediction 

Robot Type Robot Velocity

increasing 
velocity

Anymal B

Anymal C

A B

�������� ��������

������ �������� ������

���

��
�

Figure 3: Quadrupeds walking on procedurally generated map. (A) Illustration showing the two robots
(ANYmal B and ANYmal C) walking on the procedurally generated map, with segments of different terrain types.
As the robots traverse different terrains, the velocity of their joints is tracked and visualized. (B) Long-term
embeddings learned by BAMS. On the left, we overlay the labels for the type of robot and on the right we overlay
the velocity of the robot; we observe a clear organization of the latents in terms of their velocity and robot type.
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Sequence-level Tasks Frame-level Tasks
Model Robot Type* (↑) Linear velocity (↓) Terrain type* (↑) Terrain slope (↓) Terrain difficulty (↓)
PCA 99.72 0.069 08.83 0.037 0.790
TCN 99.93 0.102 33.03 0.037 0.080
BAMS 99.96 0.038 39.89 0.033 0.078↰

short-term 100.0 0.094 34.86 0.036 0.079↰

long-term 99.88 0.020 32.39 0.036 0.078

Table 1: Linear readouts of robot behavior. For each task, we report the linear decoding performance on
sequence-level and frame-level tasks. Tasks marked with * are classification tasks for which the F1-score is
reported, for the remaining tasks, we report the mean-squared error.

Experimental setup. We collect 5182 trajectories of robots walking through terrains. We record for
3 minutes at a frequency of 50Hz. For evaluation, we split the dataset into train and test sets (80/20
split) and use multi-task probes that correspond to different long-term and short-term behavioral
factors. More details can be found in Appendix A.

3.1.2 Results

Results in Table 1 suggest that our model performs well on these diverse prediction tasks. A major
advantage of our method is the separation of the short-term and long-term dynamics, which enables
us to more clearly identify the multi-scale factors. While some of the tasks are represented best in
the mixed model, we find that the linear velocity is more decodable in the long-term embedding,
while terrain type is more decodable in the short-term embedding. We further analyze the formed
representations by visualizing the embeddings in the different spaces. In Figure 3-B, we visualize the
long-term embedding space and find that our model is able to capture the main factors of variance in
the dataset, corresponding to the robot type and the velocity at which the robots are moving. This
suggest that in the absence of labels, the learned embedding can provide valuable insights into how
the recorded population is distributed without the need for annotations. In Appendix A, we visualize
the extracted embeddings of a single sequence over time. We find that the long-term embedding is
more stable and smooth, while the short term embeddings reveal different blocks of behavior that
change more frequently.

3.2 Experiments on Mouse Triplet Dataset

3.2.1 Experimental Setup and Tasks ����������������������

Strain

Time of day

Chasing

A B

Figure 4: Multi-Agent Behavior (MABe) - Mouse
Triplets Challenge. (A) Keypoint tracking approaches
are used to extract keypoints from many positions on
the mouse body in a video. (B) Methods are evaluated
across 13 different tasks.

Dataset description. The mouse triplet
dataset (61) is part of the Multi-Agent Behavior
Challenge (MABe 2022), hosted at CVPR
2022. This large-scale dataset was introduced
to address the lack of standardized benchmarks
for representation learning of animal behavior.
It consists of a set of trajectories from three
mice interacting in an open-field arena. A total
of 5336 one-minute clips, recorded from a
top-view camera, were curated and processed
to track twelve anatomically defined keypoints
on each mouse, as shown in Figure 4.

As part of this benchmark, a set of 13 common behavior analysis tasks were identified, and are used
to evaluate the performance of representation learning methods. Over the course of these sequences,
the mice might exhibit individual and social behaviors. Some might unfold at the frame level, like
chasing or being chased, others at the sequence level, like light cycles affecting the behavior of the
mice or mouse strains that inherently differentiate behavior.

Integrating features across multiple animals. We process the trajectory data to extract 36 features
characterizing each mouse individually, including head orientation, body velocity and joint angles.
We construct the short-term TCN and long-term TCN encoders to have representation of size 32 each,
and receptive fields approximated to be 60 and 1200 frames respectively. We compute the histogram
of actions over 1 second, i.e. L = 30 and use K = 32 bins. We build representations for each mouse
independently, which means that at time t, and for each frame t, we produce embeddings zt,1, zt,2
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Sequence-level subtasks Frame-level subtasks
Model Day (↓) Time (↓) Strain Lights Approach Chase Close Contact Huddle O/E O/G O/O Watching
PCA 0.09416 0.09445 51.60 54.65 0.86 0.14 49.27 37.87 12.71 0.21 0.60 0.53 6.65
TVAE 0.09403 0.09442 52.98 56.80 1.07 0.45 59.33 44.77 21.96 0.27 0.83 0.62 10.20
T-BYOL 0.09362 0.09373 60.95 65.05 1.68 0.72 62.48 48.19 18.52 0.35 0.96 0.82 17.77
T-BERT 0.09262 0.09276 78.63 68.84 1.80 0.87 70.22 55.84 30.24 0.51 1.40 1.12 17.27
TS2Vec 0.09380 0.09422 57.12 65.60 1.29 0.66 59.53 46.13 24.74 0.35 1.09 0.74 12.37
T-Perceiver 0.09322 0.09323 69.81 69.68 1.57 1.27 60.84 47.81 28.32 0.41 1.16 0.86 16.42
T-GPT 0.09269 0.09384 64.45 65.39 1.73 0.64 69.05 55.78 23.80 0.46 1.12 1.05 17.86
T-PointNet 0.09275 0.09320 66.01 67.15 2.56 4.57 70.68 55.96 21.23 0.84 2.79 2.32 15.61
BAMS 0.09094 0.08989 88.23 72.00 2.74 1.89 67.22 53.43 31.43 0.59 1.61 1.57 18.15↰

short-term 0.09288 0.09294 61.33 66.34 1.80 1.15 66.58 52.60 25.34 0.39 1.09 0.98 16.74↰

long-term 0.09174 0.09037 86.49 70.91 2.10 1.06 61.99 49.12 29.09 0.45 1.32 1.08 13.98

Table 2: Linear readouts of mouse behavior. We report the BAMS against the top performing models in the
MABe 2022 challenge. All numbers are reported in (59) except for TS2Vec and T-BYOL, which we produce.
The scores show the performance of the linear readouts across 13 different tasks. Mean-squared error (MSE) is
used in the case of tasks 1 and 2, since they are continuously labeled. In the rest of the subtasks, which are binary
(yes/no), F1-scores are used. The best-performing models are those with low MSE scores and high F1-scores,
are highlighted in bold.

and zt,3, for each mouse respectively and concatentate the embeddings for all three individuals to
build a joint embedding for evaluation. The model is trained for 500 epochs using the Adam optimizer
with a learning rate of 10−3. More details can be found in Appendix B.

Interaction loss. To learn additional features that are useful in predicting animal interactions for
multi-agent settings, we introduce a simple auxiliary loss to predict the distances between the trio at
time t. Our input features do not include any information about the global position of the mice in the
arena, so the model can only rely on the inherent behavior and movement of each individual mouse
to draw conclusions about their proximity. Thus, we build a network h that takes in the embeddings
of two mice i and j and predicts the distance di,j between them as follows,

Laux = ∥h(zt,i, zt,j)− di,j∥22. (6)

This penalty is added to the loss in Equation 5 to encourage learning of shared features across the
different individual embeddings.

Evaluation protocol. To evaluate the performance of the model in detecting frame- and sequence-
level behaviors, we compute representations zt,1, zt,2 and zt,3 for each mouse respectively, which we
then aggregate into a single mouse triplet embedding using two different pooling strategies. First, we
apply average pooling to get zt,avg. Second, we apply max pooling and min pooling, then compute
the difference to get zt,minmax = zt,max − zt,min. Both aggregated embeddings are concatenated
into a 128-dim embedding for each frame in the sequence. Evaluation of each one of the 13 tasks, is
performed by training a linear layer on top of the frozen representations, producing a final F1 score
or a mean squared error depending on the task.

3.2.2 Results

We compare our model against PCA, trajectory VAE (TVAE) (13), TS2Vec (69), BYOL (17), and
the top performing models in the MABe2022 challenge (61) which are adapted respectively from
Perceiver (23), GPT (7), PointNet (49) and BERT (14). All methods are trained using some form of
reconstruction-based objective, with both T-Perceiver and T-BERT using masked modeling. Both
T-BERT and T-PointNet also supplement their training with a contrastive learning objective using
positives from the same sequence. It is also important to note that the training set labels from two
tasks (Lights and Chase) are made publicly available, and are used as additional supervision in the
T-Perceiver and T-BERT models. We do not use any supervision for BAMS.

Our model achieves a new state-of-the-art result on the MABe Multi-Agent Behavior 2022 - Mouse
Triplets Challenge, as can be seen in Table 2. We rank first overall based upon our performance on all
tasks, and show impressive boosts in performance on global sequence-level tasks where we find a
22% improvement in the Strain task and 5% improvement in the Light task. In the frame-level tasks,
we remain competitive with other approaches, and rank 1st on 3 out of 9 of the frame-level subtasks;
this is in contrast to the other top performing model that explicitly models the interaction between
mice by introducing hand-crafted pairwise features. This is outside the scope of this work, as we do
not focus on social interactions beyond predicting the distance between mice.
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We observe that our proposed method results in significant gaps on sequence-level tasks. In particular,
we observe a marked improvement on the prediction of strain over the second-place model at 78.63%,
with BAMS yielding a 10% improvement in accuracy at 88.23%. These big improvements suggest
that we might have identified and addressed a critical problem in behavior modeling. In the next
section, we conduct a series of ablations to further dissect our model’s performance.

Multi-timescale embedding separation also enables us to probe our model for timescale-specific
features. In Table 2, we report the decoding performance with short-term embeddings and long-term
embeddings respectively. We find that sequence-level behavioral factors are better revealed in the
long-term space, while the frame-level factors are more distinct in the short-term space. That being
said, decoding performance is still best when using both timescales.

By default, BAMS is pre-trained with all available trajectory data. We also test BAMS in the inductive
setting, where we only pre-train using the training split (only 1800 out of 5336) of the dataset. Results
are reported in Appendix B.5. We find that the performance drop is modest, and that BAMS trained
in this setting still beats all other methods.

3.2.3 Ablations
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✓ ✓ ✓ 0.090415 80.12 19.85

✓ ✓ 0.093100 68.30 19.46
✓ ✓ 0.090717 78.11 19.45
✓ ✓ 0.092483 73.37 19.52

Table 3: Ablations on the Mouse Triplet Dataset.
We report the average sequence-level MSE and F1-
score, and the average frame-level F1-score.

To understand the role of the different proposed com-
ponents in enabling us to achieve state-of-the-art per-
formance, we conduct a series of ablations on the
MABe benchmark that we report in Table 3. First,
we compare the performance of BAMS when trained
with the traditional reconstruction-based objective
(multi-step sequential prediction). BAMS without
the HoA prediction objective, performs comparably
with many of the top-entries, though performance is
ultimately improved when using this novel learning
objective. We note that we had to reduce the number
of prediction frames to 10, as the training fails if we
go beyond. With our HoA objective, we can use 30
frames, which strongly suggests that this loss can be stably applied over longer time horizons when
compared to other losses.

Next, we analyze the role of the multi-timescale bootstrapping in improving the quality of the
representation. When removing the bootstrapping objective, we find a 2% drop in the sequence-level
averaged F1-score, as well as modest drops in frame-level performance. This suggests that this
learning objective may help to resolve global and intermediate-scale features. We also ablate the
multi-timescale component, i.e. we perform bootstrapping but in the same space, by using a single
TCN that spans the receptive field of the two used originally. This results in sub-optimal performance,
which emphasizes the idea that having different objectives in different spaces is critical to prevent
interference and provide ideal performance. We report additional ablations in Appendix B.4, including
an ablation of the interaction module where we find that it is not critical for good performance.

3.3 Experiments on Fruit Fly Groups Dataset

3.3.1 Experimental Setup and Tasks

Figure 5: Sample
frame from the Fruit
Fly Groups Dataset.

The fruit fly groups dataset is the second dataset in the MABe benchmark. It
consists of tracking data of a group of 9 to 11 flies interacting in a small dish
(Figure 5). Tracking data consists of 19 keypoints on each fly body and wings,
and is recorded at a much higher frame rate compared to the mice (150 vs. 30
fps). Precise neural activity manipulations are performed on certain neurons
which, when activated, induce certain types of behavior including courtship,
avoidance and female aggression (61). Additionally, the groups of flies are
differentiated by various genetic mutations and tagged by sex. This along with
other behavioral factors provide us with 50 different subtasks, both frame-level
and sequence-level, that can be use to evaluate the learned representations.

In this set of experiments, we are interested in testing whether our proposed method generalizes
to a dataset from another organism, and whether it can work out-of-the-box with minimal expert
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intervention. In particular we chose to not extract any features manually and only use the provided
data, we use the default hyperparameters found in the previous experiment and do not perform
hyperparameter tuning, and finally we do not use an interaction module. Note that we follow the
same evaluation procedure established previously.

3.3.2 Results

Model All F1 Seq F1 Frame F1
PCA 42.5 23.0 45.2
TVAE 37.0 22.2 39.0
T-Perceiver 44.8 19.7 48.2
T-GPT 45.8 24.5 48.7
BAMS 48.2 25.4 51.1

Table 4: Linear readouts of fly behavior. We
report the average performance of various models
on both frame-level, and sequence-level subtasks.

We compare our model against PCA, TVAE, TS2Vec,
and the top performing models in the fly challenge:
T-GPT, and T-Perceiver. Our model achieves state-
of-the-art performance on the fly dataset, as seen in
Table 4. BAMS outperforms other models on both
frame-level and sequence-level sub-tasks, and we
note a significant boost in the average frame-level F1
score. This result further demonstrates the generaliz-
ability of our approach to new datasets and scaling to
an even larger numbers of animals.

4 Related Work

4.1 Animal behavior analysis

Pose estimation and animal tracking. Recently, there has been a recent democratization of
automated methods for pose estimation and animal tracking that has made it possible to conduct
large scale behavioral studies in many scientific domains. These tools abstract behavior trajectories
from video recordings, and facilitate the modeling of behavioral dynamics. Most pipelines for
analyzing animal behavior consist of three key steps (36): (1) pose estimation (60; 67; 15; 48; 40),
(2) spatial-temporal feature extraction (35; 10), and (3) quantification and phenotyping of behavior
(43; 39; 66). In our work, we consider the analysis of behavior after pose estimation is performed.
However, one could imagine using our multi-timescale bootstrapping approach for representation
learning in video analysis, where self-supervised losses have been proposed recently for keypoint
discovery (60; 64; 24).

Disentanglement of animal behavior in videos. In recent work (54; 32; 63), two distinct disentangled
behaviorial embeddings are learned from video, separating non-behavioral features (context, recording
condition, etc.) from the dynamic behavioral factors (pose). This has even been applied to situations
with multiple individuals, performing disentanglement on each individual (21). This is performed by
training two encoders, typically variational autoencoders (VAEs) (29), on either multi-view dynamic
information or a single image. These encoders create explicitly separated embeddings of behavioral
and context features. In comparison to this work, rather than seperating behavior from context, our
model considers the explicit separation of behavioral embeddings across multiple timescales, and
considers the construction of a global embedding that is consistent over long timescales.

Modeling social behavior. For social and multi-animal datasets, there are a number of other
challenges that arise. Simba (45) and MARS (52) have similar overall workflows for detecting
keypoints and pose of many animals and classifying social behaviors. More recently, a semi-
supervised approach TREBA has been introduced (59) for building behavior embeddings using task
programming. TREBA is built on top of the trajectory VAE (13), a variational generative model
for learning representations of physical trajectories in space. In our work, we do not consider a
reconstruction objective but a future prediction objective, in addition to bootstrapping the behavior
representations at different timescales.

4.2 Representation learning for sequential data

The self-supervised learning (SSL) framework has gained a lot of popularity recently due to its
impressive performance in many domains (14; 9; 12). Many SSL methods are built based on the
concept of instance-specific alignment loss: Different views of each datapoint are created based on
pre-selected augmentations, and the views that are produced from the same datapoint are treated as
positive examples; while the views that are produced from different datapoints are treated as negative
examples. While contrastive methods like SimCLR (9) utilize both positive examples and negative
examples to guide the learning, BYOL (17) proposes a framework in which augmentations of a
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sample are brought closer together in the representation space through a predictive regression loss.
Recent work (18; 50; 44; 2) applies BYOL to learn representations of sequential data. In such cases,
neighboring samples in time are considered to be positive examples of each other, assuming temporal
smoothness of the semantics underlying the sequence. The model is trained such that neighboring
samples in time are mapped close to each other in the representation space. However, these methods
use a single scale to define similarities unlike our method.

Recently, self-supervised methods such as TS2vec (69) learn self-supervised representations for
sequential data by generating positive sub-sequence views through more complex temporal augmenta-
tions that can be integrated at instance or local level. Positive sub-sequences are temporally contrasted
with other representations within the same sequence as well as contrasted with representations of
other available sequences. However, unlike our method, the same space of representations are used for
learning these multi-scale representations. We learn a separate space of representations for different
time scales to encourage disentanglement.

The idea of using multi-scale feature extractors can be found in representation learning. In (50),
a video representation learning framework, two different encoders process a narrow view and a
broad view respectively. The narrow view corresponds to a video clip of a few seconds, while the
broad view spans a larger timescale. The objective, however, is different to ours, as the narrow
and broad representations are brought closer to each other, in the goal of encoding their mutual
information. This strategy is also used in graph representation learning where a local-neighborhood
of node is compared to its global neighborhood (19; 22). Our method differs in that we bootstrap
the embeddings at different timescales separately, this is important to maintain the fine granularity
specific to each timescale, thus revealing richer information about behavioral dynamics.

5 Conclusion

Behavior is likely to be driven by a number of factors that can unfold over different timescales. Thus,
having ways to model behavior and discover differences in behavioral repertoires or actions at many
scales could provide insights into individual differences, and help, for example, detect signatures of
cognitive impairment (66). We make steps towards addressing these needs by proposing BAMS, a
novel self-supervised approach that learns representations for behavioral data at different timescales.

Our analysis on realworld datasets centers on two different datasets in a multi-agent benchmark, both
with very different dimensionalities and variable tasks. Despite this, our approach is designed to
model a wide range of behaviors, whether it’s individual, social, structured or naturalistic. More
multi-scale and multi-task benchmarks like MABe are needed in order properly evaluate and guide
the development of tools for general behavior analysis.

Currently, our model has a relatively simple way of (optionally) modeling interactions between
animals in the multi-agent setting. Despite this, we show really competitive performance in multi-
agent analysis without using handcrafted interaction features like T-PointNet or T-BERT (61). Moving
forward, it would be interesting to develop new ways to learn features of multi-animal interactions,
especially in open environments where animals might come in and out of frame or get occluded.

Our experiments highlight the truly multi-scale nature of BAMS and show that our method can learn
to distinguish global as well as temporally local behaviors. Currently, we seperate short-term from
long-term dynamics through a contrastive loss and separation of the information into two latent spaces
for each scale. Although this approach appears to be effective, we don’t modify the loss explicitly to
disentangle the two latent spaces. By providing additional incentives for the model to separate short
from long-term dynamics we hope to improve the interpretability of the model.

When extending our model from mice to flies, we found that it was possible to use the same overall
model architecture and hyperparameters, despite the major differences in datasets and underlying
tasks. Thus, given the robustness of the method, we imagine that it can be utilized in the analysis of
other species and even more diverse types of behavior (42; 26). By combining our modeling approach
with methods for self-supervised video keypoint discovery (57), we could further extend BAMS to
raw video data without needing the intermediate step of pose estimation. We also look forward to
the opportunities provided by simultaneous recordings of the brain and behavior (30; 47) and other
multi-modal sources of input that could be leveraged to further study how behavior unfolds across
different timescales.
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A Experimental details: Simulated Quadrupeds

A.1 Data generation

Simulation details. We record a total of 5182 trajectories. 2756 were generated for robots of type
ANYmal B and 2426 sequences were generated for robots of type ANYmal C. These are quadruped
robots, which means that they have four legs. Each leg has 3 degrees of freedoms - hip, shank and
thigh. The position and velocities of these degrees of freedom for all 4 legs were recorded. This
results in 24 features for each robot. Robots are generated while traversing an procedurally generated
environment with different terrain types and traversal difficulty, as show in Figure 6. We only keep
trajectories that correspond to a successful traversal.

Figure 6: Visualization of different simulated environments. (A) Screenshots from the simulator showing a
robot walking down some stairs, and a view of the terrain landscape. (B) Visualization of the different terrain
sections, characterized by a terrain type and different levels of difficulty. Terrain are made more difficult to
traverse by either making them more rough or have steeper slopes.

Tasks. To evaluate the representation quality of our model, we use multi-task probes that correspond
to different long-term and short-term behavioral factors.

• Robot type: the robot can either be of type "ANYmal B" or "ANYmal C". These robots
have the same degrees of freedom and tracked joints but differ by their morphology. This is
a sequence-level task.

• Linear velocity: the command of the robot is a constant velocity vector. The amplitude
of the velocity dictates how fast the robot is commanded to traverse the environment. A
higher velocity would translate into more clumpsy and more risk-taking behavior. This is a
sequence-level task.

• Terrain type: the environment is generated with multiple segments of five terrain types
that are categorized as: flat surfaces, pits, hills, ascending and descending stairs. This is a
frame-level task.

• Terrain slope: the slope of the surface the robot is walking on. This is a frame-level task.

• Terrain difficulty: the different terrain segments have different difficulty levels based on
terrain roughness or steepness of the surface. This is a frame-level task.

Why this dataset. Simulation-based data collection enables access to information that is generally
inaccessible or hard to acquire in a real-world setting. Unlike noisy measurements coming from the
camera-based feature extractor in the case of the mouse dataset, physics engines do not suffer from
the problem of noise. Instead, they provide accurate ground-truth information about the creature and
the world state free of charge. Access to such information is at times critical for scrutinizing the
capabilities of the learning algorithms.

A.2 Visualizing differences between short-term and long-term embeddings

In Figure 7, we visualize how the short-term and long-term embeddings evolve over time, for a
single sample sequence. We note a clear difference in the smoothness in the two timescales. In the
short-term embeddings, we note a clear block structure corresponding to different blocks of behavior
that span a few seconds, while in the long-term embeddings the representation is more stable over
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time. This suggests that, as expected, the bootstrapping objectives are forming representations with
different levels of granularity.

Figure 7: Visualization of the short-term and long-term embeddings. We visualize for a single sequence how
the short-term and long-term embeddings evolve over time.

B Experimental details: Mouse Triplet

B.1 Feature extraction

Each mouse in the arena is tracked using 12 anatomically defined keypoints. We process these
keypoints to extract 36 different features characterizing each mouse individually, similar to (52). We
separate the keypoints into two different areas, the head and the body, for each we extract different
measures of displacement, that we express in the frame of the mouse, i.e. these features are invariant
to the pose of the mouse relative to the arena. These features include:

• Head linear velocity vector that we express using polar coordinates.
• Head angular velocity denoting the change in the heading direction in the arena.
• Body linear velocity vector that we express using polar coordinates.
• Body angular velocity denoting the change in the direction of the body with respect to the

arena.
• Angular and linear velocities of the fore paws and the hind paws.
• Spine length change, depicting the expansion and contraction of the mouse’s body.
• Angles formed by the tail with respect to the body.

We normalize all features before training. We also use cosine and sinus of the angles instead of the
angles. During training, we did not use any form of augmentation.

Noise in the data. Because of errors in pose estimation and tracking, there are sometimes errors
in the tracking data, notably some identity swap issues (61). To address this, we simply zero out
all of the corresponding features and flag the frame as invalid. A binary feature is also add to the
input features indicating whether or not the frame is valid. When predicting future actions, we only
compute the error over windows in which at least 80% of the frames are valid.

B.2 Difference between Histogram of Actions and previous objectives

Our novel objective consists in predicting the future histogram of actions instead of predicting the
future sequence of actions. In Figure 8, we show what the target is for a sample from the MABe
Mouse Triplet dataset. Note that the time dimension is collapsed, blurring the exact unrolling of the
future events, but preserving the set of values that these actions will sweep. Note that the loss (EMD)
is applied for each action feature.

We show that by relaxing our future prediction loss to a HoA loss, we benefit in terms of the
representations that are learned by the model, especially for sequence-level (global tasks). Thus, in
many ways, we show that directly forecasting, which is what many previous approaches have used
for representation learning, can actually lead to representations that capture less of the task structure.
While the model doesn’t predict future timesteps directly, we can visualize the histogram prediction
for the model and ground truth (Figure 9).

B.3 Training details

Architecture. We use two TCNs (4). Each TCN is built using multiple residual blocks, each
residual block is composed of two convolutional layers, and use PReLU activation, dropout and
weight normalization. All convolutions are dilated with a rate r, that increases after each residual
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Figure 8: Prediction target for a sample of the MABe Mouse Triplet dataset.

block. The formula is ri where i is the index of the residual block. The first TCN is the short-term
encoder, which uses 4 blocks with output sizes [64, 64, 32, 32] and a dilation rate r = 2. The second
TCN is the long-term encoder, which uses 5 blocks with output size [64, 64, 64, 32, 32] and a dilation
rate r = 4. The output of both encoders are concatenated to form a 64d embedding. The predictor is
a multi-layer perceptron (MLP) that has 4 hidden layers.

Training. We train the model for 500 epochs using the Adam optimizer with a learning rate of
10−3 and weight decay 4 · 10−5, we decrease the learning rate to 10−4 after 100 epochs. We use
a batch size of 96, and compute the future histogram of action prediction error for each timestep t
starting at 5 seconds after the start of each sequence, in order to allow the model to aggregate enough
context. We set the learning rate of the predictors used for bootstrapping to be 10 times higher than
the learning rate used for the rest of the weights.

Evaluation. During the development of the model (Figure 10), we test our model on the public test
splits, and only look at the performance on the private set after finishing any hyperparameter tuning.
We repeat the training and evaluation 5 times and report the average performance

B.4 Additional ablations

In addition to those mentioned in the main text, we perform two additional ablations to BAMS
(Table 5). In our first experiment, we removed the interaction loss from the model, meaning that the

Figure 9: Visualization of histograms of future actions, for two random action features. For a
timestamp t on the time axis, we show the 32 dimensional histogram of future actions, which is the
target of prediction for BAMS.
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Figure 10: Linear evaluation protocol. The model is frozen, and for each task, a single linear layer is
trained to predict the corresponding labels.

dynamics of each mouse are modeled completely independently from each other. The ablated model
sees a small drop in performance, but continues to outperform all other methods on average.

B.5 BAMS in the inductive setting

The mouse triplet dataset (5336 sequences) has three different sets, a training set (1800 sequences), a
private test set and a public test set. During training of the representation learning model, we can
either pre-train on all of the available data (transductive setting) or on the training set only (inductive
setting). During linear evaluation, the different linear layers are trained using labels from the training
set and the performance is reported on the public test set (during the challenge) and then on the
private test set (to rank models).

We train BAMS in the inductive setting and report the performance in Table 5. We find that even when
BAMS is trained with approximately one third of the data, the drop in performance is modest. More
importantly, BAMS preserves its ranking compared to other methods, and still achieves state-of-the-art
performance.

Table 5: Linear readouts of mouse behavior. The best-performing models are those with low MSE
scores and high F1-scores.

Sequence-level subtasks Frame-level subtasks
Model Day (↓) Time (↓) Strain Lights Approach Chase Close Contact Huddle O/E O/G O/O Watching
PCA 0.09416 0.09445 51.60 54.65 0.86 0.14 49.27 37.87 12.71 0.21 0.60 0.53 6.65
TVAE 0.09403 0.09442 52.98 56.80 1.07 0.45 59.33 44.77 21.96 0.27 0.83 0.62 10.20
T-BERT 0.09262 0.09276 78.63 68.84 1.80 0.87 70.22 55.84 30.24 0.51 1.40 1.12 17.27
TS2Vec 0.09380 0.09422 57.12 65.60 1.29 0.66 59.53 46.13 24.74 0.35 1.09 0.74 12.37
T-Perceiver 0.09322 0.09323 69.81 69.68 1.57 1.27 60.84 47.81 28.32 0.41 1.16 0.86 16.42
T-GPT 0.09269 0.09384 64.45 65.39 1.73 0.64 69.05 55.78 23.80 0.46 1.12 1.05 17.86
T-PointNet 0.09275 0.09320 66.01 67.15 2.56 4.57 70.68 55.96 21.23 0.84 2.79 2.32 15.61
BAMS - no interaction 0.09164 0.09154 83.47 71.23 2.55 2.03 63.63 50.97 31.15 0.58 1.47 1.37 15.10
BAMS - inductive 0.09112 0.09132 83.44 70.39 2.62 1.40 65.98 52.39 31.08 0.60 1.54 1.40 18.14
BAMS - transductive 0.09094 0.08989 88.23 72.00 2.74 1.89 67.22 53.43 31.43 0.59 1.61 1.57 18.15

Table 6: TS2Vec Linear readouts of mouse behavior.

Sequence-level subtasks Frame-level subtasks
Model Day (↓) Time (↓) Strain Lights Approach Chase Close Contact Huddle O/E O/G O/O Watching
TS2Vec-I 0.09380 0.09422 57.12 65.60 1.29 0.66 59.53 46.13 24.74 0.35 1.09 0.74 12.37
TS2Vec-T 0.09882 1.0252 45.82 46.69 0.72 0.14 45.19 34.93 9.38 0.186 0.38 0.38 05.31
TS2Vec-IT 0.09846 1.01646 46.67 44.28 0.67 0.13 44.56 33.87 9.79 0.178 0.42 0.42 04.58

B.6 Notes on TS2Vec experiments

TS2Vec (69) employs two types of contrastive losses to learn representations. The first of these losses
is an instance contrastive loss which contrasts a sequence with all other sequences in a batch which
are treated as negative examples, while two subsequences extracted from the same sequence are
treated as positive examples. The second loss is a temporal contrastive loss which acts along a single
time series. Temporal representations of nearby time points are taken as positive examples, while the
rest of the time points within the same sequence are taken as negative examples. The results for the
three versions of TS2vec, namely TS2Vec-I, which uses only instance contrastive loss, TS2Vec-T,
which uses only temporal contrastive loss,and TS2Vec IT, which uses both instance and temporal
contrastive losses, are listed in Table 6. Our TS2Vec experiments on the mouse dataset showed that
using temporal contrastive loss resulted in worse performance across all tasks as compared to only
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using instance contrastive loss. For this reason, we only report results for TS2vec that only employs
instance contrastive loss.

We note that for both TS2Vec and TS2Vec-IT, we ran into out-of-memory errors when creating
instance-level or global contrast. Contrastive learning methods usually incur high computational
costs, we find that our method, which doesn’t rely on negative examples, can scale better when
working with longer sequences and larger datasets.
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