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Abstract

Organizations typically train large models individually. This is costly and
time-consuming, particularly for large-scale foundation models. Such vertical
production is known to be suboptimal. Inspired by this economic insight, we
ask whether it is possible to leverage others’ expertise by trading the constituent
parts in models, i.e., sets of weights, as if they were market commodities. While
recent advances in aligning and interpolating models suggest that doing so may
be possible, a number of fundamental questions must be answered to create viable
parameter markets. In this work, we address these basic questions, propose a
framework containing the infrastructure necessary for market operations to take
place, study strategies for exchanging parameters, and offer means for agents to
monetize parameters. Excitingly, compared to agents who train siloed models from
scratch, we show that it is possible to mutually gain by using the market, even in
competitive settings. This suggests that the notion of parameter markets may be a
useful paradigm for improving large-scale model training in the future.

1 Introduction

Costs to build powerful state-of-the-art machine learning models, such as foundation models (e.g.,
GPT-3 [1], T5 [2], PaLM [3], BLOOM-176B [4] and OPT-175B [5]), have increased enormously.
These costs can easily reach millions of dollars and even exceed that amount. For example, training
the 11 billion-parameter T5 model is estimated to take around 1.3 million dollars for a single training
run [6]. Unfortunately, few organizations and fewer individuals are sufficiently well-capitalized to
afford such training costs.

One approach to reduce expense is to broadly distribute training workloads, such as in decentralized
training [7, 8, 9, 10]. However, this is limiting; even in the decentralized setting, participants must
first agree to train a shared model and at least minimally coordinate the training process. For this
reason, such techniques cannot be applied when organizations develop different models for different
purposes on different timelines. In these scenarios—the most common solution in large-scale model
development—models are trained individually regardless of high cost.

A natural question is whether such vertical production can be broken down into parts that can be
more easily built, re-used, and exchanged. Taking inspiration from other areas of manufacturing,
we observe that most products are not built in vertical silos, but from components that are traded
in markets. Economic agents, even when competing against each other, buy, sell, and trade such
components to leverage the expertise of other agents so that production costs can be lowered.

This leads us to ask whether subsets of trained weights can be thought of as constituent parts to be
bought and sold on parameter markets. Such markets may provide mutual benefits for both buyers
and sellers. Buyers are able to purchase well-trained parameter sets directly as commodities to
leverage the training expertise of others and then use them to improve model performance. Sellers
(i.e., owners of partially or fully-trained models) are able to monetize parameters as a second profit
center, in addition to the downstream activity enabled by using their models.
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Challenges and Proposed Approach. How can we build and use such markets? To answer this,
we must first overcome several obstacles. An immediate challenge is the notion of alignment: models
trained in isolation may not have parameter sets that correspond in any natural way, especially if these
models have differing purposes. Excitingly, recent work suggests that it is possible to align model
components and then merge them via linear interpolation [11, 12, 13, 14, 15, 16, 17]. Similarly, it
is known that training data can be potentially recovered from weights or gradients so privacy is an
additional challenge [18, 19, 20]. We tackle the orthogonal question:

If model alignment and sufficient privacy can indeed be assured, how can a viable parameter
marketplace be designed?

There are three fundamental challenges in doing so:

1. How should agents (users in the market) decide to perform transactions? Discovering and
verifying useful model parameter sets on the market without prior knowledge is challenging
for buyers. To address this issue, we introduce a trusted third-party organization, the broker.
The broker enables a "try-before-purchase" mechanism for buyers to examine the quality of
parameters. This is a common approach in the existing works on data marketplaces [21, 22]
as it allows buyers to evaluate the quality of data before purchase. Doing so with parameters
rather than data presents additional complications that must be resolved.

2. What rewards may agents gain? An important consideration when using such a framework
is whether agents can expect to see any gains. Indeed, if the process of exchanging and
validating parameter sets does not yield any improvements when compared to siloed training,
there is no reason to participate in parameter markets. We provide theoretical and empirical
analyses validating the improvements gained from participating in such markets.

3. How to monetize model parameters in a competitive market? In settings where parameters
are bought and sold, rather than bartered, it can be challenging to price these assets. Both
the seller and the buyer may not have a clear understanding of the other’s valuation of the
parameters, which makes it difficult for each to maximize their revenues in a trade. To
address this issue, we apply a Bayesian-optimal pricing mechanism [23] to provide valuation
of parameter sets and study Nash bargaining [24] to find market prices in negotiation.

Results and Contributions. We propose and formulate a viable marketplace to trade parameters
for machine learning models. We validate it in both theoretical and empirical settings. Theoretically,
in basic scenarios we show how agent training converges faster through purchasing parameters in
the market. We offer bounds on the improvement gained via trading when training linear models.
Empirically, we conduct experiments in a variety of practical scenarios to validate the framework’s
effectiveness. We demonstrate that compared to agents who stay outside the market and train
models in isolation, participating in parameter trading, even trading subsets of the full set of model
parameters, provides benefits to efficient model training and better model performance. For example,
when training and trading parameters of ResNet20 on TinyImageNet, two agents improve their
performance by gaining accuracy improvements of +10.02% and +15.93% versus separate training.
We also demonstrate the success of price estimation to monetize parameters and negotiate prices.

2 Related Works

First, we describe two related concepts: data and model—as opposed to parameter—marketplaces.
We then give background on model alignment techniques, which are used in our framework.

Data Marketplaces. Data is a key ingredient in machine learning pipelines. There is a rich vein
of work proposing infrastructure to trade data as a commodity [21, 22, 25, 26, 27, 28, 29]. Such
marketplaces have also been instantiated in industry, including in services such as Amazon Web
Services (AWS) Data Exchange, Microsoft’s Azure Data Marketplace, and Google’s Cloud Data
Catalog. Such research; however, cannot be directly applied to trading parameters. It is relatively
easy to evaluate the valuation of a data trade using basic statistical measurements. In contrast, the
value of parameters is challenging to measure, as it can only be determined after testing and depends
on the model’s performance.
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Model Marketplaces. There have been several efforts to build markets to trade entire model
instances trained by a centralized broker [30, 31]. Two major obstacles that need to be overcome
are determining the value and pricing models, and safeguarding privacy. To address the former
issue, a noise-injection mechanism has been suggested, which involves assessing the accuracy of an
optimal model with random Gaussian noise to determine its worth and creating a price-error curve
for selling it on the market [30]. The latter issue has been tackled by proposing a system that apply
differential privacy while still maximizing revenue [31]. In contrast to trading entire model instances
for downstream use, parameter markets are far more refined, enabling each user in the market to train
their own models for their own purposes while gaining from others’ training runs.

Model Alignment. Models that are trained with different batch orders or initialization weights may
not be properly aligned. Directly merging purchased parameters through interpolation may fail. The
process of aligning parameters in model training is therefore critical. Recent studies have explored
the geometric relationship between models [11, 12, 13, 14, 15] and proposed methods for aligning
two sets of neural network parameters [16, 17]. We use such techniques as a building block in our
proposed market infrastructure. Through proper model alignments, we expect agents are able to find
and purchase desired parameter sets in the market.

3 A Framework for Parameter Markets

We provide a general description of the proposed marketplace and then discuss each component in
depth.

3.1 General Marketplace Framework

Figure 1: Overall workflow in a two-agent market.
Blue and orange blocks represent actions taken
by agents and the broker, respectively. In this
example, agent A is informed of a potential gain
through purchasing agent B’s parameters. Hence,
agent A sends a quotation request to inquire
about purchasing parameters. Then, broker helps
both sides negotiate on the price of agent B’s
parameters.

Figure 1 depicts a two-agent version of
the marketplace. Multiple agents training
models for potentially different tasks seek
to buy or sell sets of parameters. Buying
well-trained parameter sets enables reaching
a goal performance faster while selling such
parameters produces profits.

A high-level description of the trading process
follows. First, agents send their own parameters
to the market 1 . A third party (the broker)
operates a "try-before-purchase" routine to align
and merge parameters for buyers 2 . The broker
privately informs agents of the gains or losses
resulting from a potential trade using validation
data 3 . Based on this information, a buyer
values a seller’s parameters, and then makes
a trading decision. If the buyer is willing to
purchase, a quote request is sent out, and both
sides generate and report their valuations to the
broker 4 , 5 . The broker helps both parties
negotiate the price until they reach an agreement
6 . Afterwards, the broker ships parameters to

the buyer and transfers the payment to the seller,
completing the trade.

3.2 Market Setup

In the following sections, we discuss each foundational concept in parameter markets. We first
fix some notation. For agent u, let Du = {su,i}

nu
i=1 be the samples drawn from a distribution D

u

supported on S. At round t, let ✓tu 2 Rd be trained parameters that agent u has access to, and let
L̂u(✓tu) be the empirical loss of agent u for the corresponding model measured on data Du. The
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empirical loss is defined with the agents’ loss function ` in a standard fashion,

L̂u(✓
t
u) :=

1

nu

nuX

i=1

`(✓tu, su,i).

While our framework can handle general settings (i.e., any well-trained parameter sets can be traded),
we focus on supervised learning for ease of exposition. We assume S = X ⇥ Y where X and Y are
the instance and label spaces respectively. Thus, su,i = (xu,i, yu,i), and also denote Du as (Xu, Yu)
where Xu is the set of points xu,i and Yu is the set of corresponding labels. We drop the superscript
u when it is otherwise clear from the context.

Agents and Broker. For simplicity, suppose there are two agents A,B in the market. Agent A has
na data points (Xa, Ya), and agent B has nb data points (Xb, Yb). There is also a trusted third party,
the broker Z, helping the two agents operate in the market impartially. The broker has access to a
validation dataset (Xz, Yz) of size nz with noiseless samples from both distributions.

In the proposed trading framework, the two agents train their models locally first and then trade with
each other. At the beginning of round t, agents perform a standard gradient descent update using their
own datasets. That is, ✓̇tu := ✓t�1

u � ⌘rL̂u(✓t�1
u ), u 2 {a, b}, where ⌘ indicates the step size.

Using Purchased Parameters. In the market, parameters can be bought or sold. To use acquired
parameters, several model alignment techniques can be employed [16, 17]. For a potential trade,
broker aligns seller’s parameter sets to match a buyer’s. Post-alignment, the parameters can be
merged as a straightforward convex combination. For instance, if agent A is willing to buy parameters
from agent B, and a trade occurs eventually, the post-alignment combination will have the form
✓̄ta := (1� ↵)✓̇ta + ↵✓̇tb, ↵ 2 (0, 1]. Here ↵ and (for agent B, �) are weights indicating the portion
of trained parameters from the seller side in the merged parameters.

3.3 Try-Before-Purchase Mechanism

However, before making any trading decision, agents are unaware of the potential benefits
they can achieve through purchasing. Our proposal is for a neutral broker to implement a
"try-before-purchase" mechanism which assists agents. It does so by helping them align and
merge parameters then pre-evaluate their quality by using the broker’s dataset (Xz, Yz). In the
try-before-purchase mechanism, the broker can pick the optimized weights ↵ or � for buyer
agents by minimizing the empirical loss. We write ↵ := argmin⌫2(0,1] L̂z

�
(1 � ⌫)✓̇ta + ⌫✓̇tb

�

and � := argmin⌫2(0,1] L̂z

�
(1� ⌫)✓̇tb + ⌫✓̇ta

�
.

Using the optimized purchased weights, the broker calculates and communicates to agents their
gain or loss from the trade in a confidential manner. We denote the gain-from-trade for agent
u by �t

u, u 2 {a, b}, which serves as prior knowledge to help agents make informed decisions
about whether to make purchases or not. Generally, the notion of gain-from-trade is to compare
relative improvement versus not trading. The trading benefits can be expressed in various ways, such
as the difference between agent’s loss before and after the trade. For example, it might take the
form �t

u = L̂z(✓̇tu)� L̂z(✓̄tu). Other ways to define the gain-from-trade include using the relative
improvement ratio on the empirical loss or improvement ratio on the (estimated) parameter recovery
error.

If the gain-from-trade �t
u does not indicate any benefit for buyer agent u, the agent will not be willing

to make a purchase. Consequently, no quote request will be sent out, and no trade will take place. In
such a scenario, the parameters ✓̇tu will remain with agent u until the next round of gradient descent.
The final parameters at the end of round t, denoted by ✓tu, can be either ✓̄tu or ✓̇tu. To indicate a trade,
we use the indicator variable Itu:

✓tu := (1� Itu) · ✓̇
t
u + Itu · ✓̄tu where Itu =

⇢
1 if agent u buys parameters,
0 if agent u does not make a purchase.
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3.4 Valuation and Pricing Mechanism

Once the gain-from-trade has been determined and trading decisions have been made, quote requests
with purchased weights are circulated throughout the market. Both buyers and sellers begin to
assess various parameters in order to negotiate prices. Each agent has their own private valuation
function, denoted by vu : Rd

7! R+, which quantifies their trading benefits produced by specific
parameters ✓ 2 Rd. The valuation function of each agent is private and is not exposed to others. For
instance, agent A’s valuation function is denoted by va(✓̇tb) for the value of agent B’s parameters for
purchasing, and va(✓̇ta) is the value of their own parameters for selling. In order to generate revenue
from a trade, va(✓̇tb) is the highest price that agent A is willing to bid for purchase, while va(✓̇ta) is
the lowest price that agent A is willing to ask for in order to sell.

Once valuations are completed, the broker—in their role as an impartial middleman—assists in
bargaining the market price to maximize revenue for both sides. The negotiation process for prices
continues until a mutually acceptable market price for parameters is reached. When a buyer offers to
pay a lower price for certain parameters than the seller is willing to accept, the trade cannot be fulfilled.
To analyze this negotiation process, we treat it as a Nash bargaining problem [24]. We assume that the
broker is knowledgeable about the valuations of both parties (not the valuation functions themselves)
and sets the price by maximizing the revenue of both agents impartially. An agent’s revenue, defined
as Uu, is derived from two sources: the profit earned from selling self-parameters and the profit
gained from buying parameters. We employ the popular Cobb-Douglas function to maximize both
agents’ revenue [32]. We denote the market price for agent u’s parameters at round t as P t

u 2 R+,
then formulate the problem accordingly. Set Ua(P t

a, P
t
b ) :=

�
P t
a � va(✓̇ta)

�
+
�
va(✓̇tb) � P t

b

�
and

Ub(P t
b , P

t
a) :=

�
P t
b � vb(✓̇tb)

�
+
�
vb(✓̇ta)� P t

a

�
. Then we have the problem

argmax
P t

a,P
t
b

Ua(P
t
a, P

t
b )⇥ Ub(P

t
b , P

t
a)

s.t. P t
a 2

⇥
va(✓̇

t
a), vb(✓̇

t
a)
⇤
, P t

b 2
⇥
vb(✓̇

t
b), va(✓̇

t
b)
⇤
.

By solving this problem, the broker can determine the difference in price, denoted by �P t
ab, using

�P t
ab = P t

a � P t
b =

1

2

⇣
vb(✓̇

t
a) + va(✓̇

t
a)� va(✓̇

t
b)� vb(✓̇

t
b)
⌘
. (1)

The steps for solving this problem are shown in the Appendix A. The resulting price difference �P t
ab

represents the amount of money that needs to be transferred between parties.

4 Instantiating the Market: Concrete Examples

Now we give a concrete instantiation of the market that we described in the previous section.

Valuations. There are various ways for agents to define valuation functions (i.e. based on agent’s
preference, training budget, or model performance). Here we assume that in the market, agents to
purchase use gain-from-trade �t

u, which can be seen as a notion of relative performance improvement,
to assess the value of parameters so that vu(✓̇tu0) = �t

u, where u0 represents their seller agent.

However, assessing the value of self-parameters for agent u, who is a seller, is a difficult task as there
is no clear information available from the broker regarding the quality of such parameters. The best
approach for a seller to maximize profit is to set a price as close as possible to the buyer’s valuation,
which is the highest price that the buyer is willing to pay. To arrive at this virtual valuation, we use
the Bayesian-optimal pricing mechanism described in Myerson’s work [23]. This mechanism enables
the seller to monetize self-parameters. Under this Bayesian mechanism, we assume that the seller is
also aware that the buyer’s valuation arises from gain-from-trade, and that their valuation function is
derived from a known probability distribution. We discuss these common priors in Appendix G.

Suppose the buyer’s valuation has a cumulative distribution function Fv . If the seller sets a price of
P , the probability that the buyer is willing to purchase is P(P < v) = 1� P(v  P ) = 1� Fv(P ).
The expected revenue for the seller is P ⇥ (1� Fv(P )). Hence, the optimal price to ask for can be
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Algorithm 1 Single Round of Parameter Trading
Input: (Xa, Ya), (Xb, Yb), (Xz, Yz), ✓

⇤, ✓t�1
a , ✓t�1

b

Output: ✓tb
✓̇tu  ✓t�1

u � ⌘rL̂u(✓
t�1
u ), u 2 {a, b} . agents’ local training

✓̄ta = (1� ↵)✓̇ta + ↵✓̇tb, ↵ = argmin⌫2(0,1] L̂z

�
(1� ⌫)✓̇ta + ⌫✓̇tb

�
. broker’s try-before-purchase

✓̄tb = (1� �)✓̇tb + �✓̇ta, � = argmin⌫2(0,1] L̂z

�
(1� ⌫)✓̇tb + ⌫✓̇ta

�
. broker’s try-before-purchase

�t
u =

k✓̇tu�✓⇤k22
k✓̄tu�✓⇤k22

, u 2 {a, b} . inform agents about gain-from-trade

if �t
b > 1 then . agent B sends a quotation request with �
agent A,B provide valuations to broker . agent A’s valuation is estimated by the bounds of �t

b

if vb(✓̇ta) � va(✓̇
t
a) then

transferred payment for buying ✓̇ta after negotiation is set to
�
vb(✓̇

t
a) + va(✓̇

t
a)
�
/2

return ✓̄tb . ship merged parameters
else

return ✓̇tb . negotiation fails
else

return ✓̇tb . agent B decides not to buy

found by maximizing the expected revenue, and it satisfies

P ⇤ :=
1� Fv(P ⇤)

F 0
v(P

⇤)
. (2)

Linear Model Case Study. To further illustrate a concrete example of the seller’s virtual valuation,
we consider pricing parameters for training linear models. For simplicity, we assume that the broker
knows the true parameters ✓⇤—though this is not necessary in practice, as these can be approximated
using the broker’s validation dataset. Both agents’ data is sampled from the same distribution so that
true parameters are identical. Additionally, we take the gain-from-trade revealed by broker to be the
ratio of squared parameter estimation error. We write

�t
u :=

k✓̇tu � ✓⇤k22
k✓̄tu � ✓⇤k22

. (3)

If �t
u > 1, the agent’s model is able to get closer to the true parameter (✓⇤) by purchasing. We

use agent A to illustrate the sale of their parameters ✓̇ta to agent B. First, we show how agent A
determines bounds for the buyer’s valuation vb(✓̇ta). Recall that once agent B expresses a willingness
to purchase, a quote request with their purchased weight � will be communicated to agent A through
the broker. Therefore, when agent A evaluates self-parameters, the broker provides three pieces of
information: the buyer’s purchased weight �, agent A’s purchased weight ↵, and the gain-from-trade
�t

a. In this setting, we have that
Theorem 4.1. Bounds on Buyer’s Gain-from-Trade: In the linear model setting, by knowing �t

a
and weights ↵, �, agent A can obtain bounds on the gain-from-trade of agent B given by:
 

1�
p
�t

a(1� ↵)

(1� �) +
p
�t

a(1� ↵� � + 2↵�)

!2

 �t
b 

 
1 +

p
�t

a(1� ↵)

(1� �)�
p
�t

a(1� ↵� � + 2↵�)

!2

.

Discussion. Theorem 4.1 states that by knowing information disclosed by the broker (including
purchased weights ↵,�), the seller agent A can find the upper and lower bounds of the buyer’s
gain-from-trade, �t

b. This information can then be used to estimate the value that the buyer places
on the item. Using the Bayesian optimal-pricing mechanism, and taking into account the known
probability distribution, the seller can estimate the price to determine their own virtual valuation.

Furthermore, the optimal scenario occurs when the seller agent values self-parameters exactly
as the buyer does. In this case, based on Eq. (1), the broker will set the transfer payment as
�P t

ab = P t
a � P t

b = vb(✓̇ta)� va(✓̇tb). Hence, the transfer payment is equal to the difference between
the gain-from-trade of the two agents, where �P t

ab = �t
a ��t

b.

The proof for Theorem 4.1 is in the Appendix C. We summarize trading steps in a single round for
this instantiation above (Algorithm 1), where two agents are training and trading parameters for the
linear model setting. Here, agents A,B act as a seller and a buyer, respectively.
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5 Convergence Analysis

Next, we study a theoretical analysis for the effectiveness of buying parameters. In particular, we are
interested in understanding whether participating in the market leads to faster training convergence
(in the worst-case scenario). We show this holds in a simplified setting where agent A always leads
and never purchases parameters, while agent B always purchases from agent A. This asymmetry
could be due to various reasons including a lack of training resources for agent B. Here we study
a setting for general L-smooth functions, which is more practical, as the broker doesn’t need to be
knowledgeable about the true parameter ✓⇤. We assume the broker’s loss is lower than agents’ losses,
in particular, L̂z(✓)  L̂a(✓) and L̂z(✓)  L̂b(✓), 8✓ 2 Rd. We take the gain-from-trade �t

u by
using the subtraction of empirical loss before and after a trade. We write it as

�t
u = L̂z(✓̇

t
u)� L̂z(✓̄

t
u), u 2 {a, b}. (4)

Theorem 5.1. For all agents u 2 {a, b, z}, let the loss function L̂u be L�smooth and let the samples
on all agents be drawn from the same distribution D. Let ED[L̂u] = Lu, and �t

b = L̂z(✓̇tb)� L̂z(✓̄tb).
Let the algorithm run until round T with step size ⌘ 2 (0, 1

L ), and let �b := mint2[T ] E[�t
b] and

ḡ2b := mint2[T ] E[krL̂b(✓tb)k
2
2]. Then we have the following results,

a) (Always Trade) If �t
b > 0, 8t, and agent B always buys (i.e. Itb = 1, 8t). Then T �

2(L(✓0
b )�L(✓⇤

b ))
⌘✏2+2�b

implies ḡb  ✏.
b) (Never Trade) If the agents never trade i.e. (Ita = Itb = 0, 8t). Then ḡb  ✏ for

T �
2(L(✓0

b )�L(✓⇤
b ))

⌘✏2 .

Discussion. We show the convergence rate of always trade for agent B is O
�
1/(✏2 + �b)

�
, while

never trade is O(1/✏2). The difference between these two scenarios is due to �b— the minimal
gain-from-trade over T runs. More gain-from-trade implies a smaller T (i.e. faster convergence) in
the worst-case scenario. In addition, when �b is ⌦(✏), we can get much better convergence rate of
O(1/✏). Our results in this fundamental setting illustrate that participation in the market can lead to
faster convergence when there exists gain-from-trade. The proof for Theorem 5.1 is in the Appendix
D.1. In addition to this general setting, we provide convergence analysis for the linear model that we
used as a case study in Sec. 4. This analysis also shows a better convergence rate when agents trade
parameters. See Appendix D.2 for more details.

6 Experiments

We study the proposed framework empirically. Our goals are to validate (i) trading in the proposed
framework results in improvements, (ii) these improvements persist even when trading subsets of
parameters, (iii) these persist even when agents are trading different models for different tasks, (iv)
trading and pricing are viable in competitive settings, and (v) understand the importance of key
components of our framework, such as the need for alignment.

6.1 Collaborative Agents

We first conduct experiments in a collaborative setting, where there is no payment for buying
parameters. Our goal is to validate the potential improvements from transactions independently of
the pricing mechanism, which we explore in a later set of experiments.

6.1.1 Parameter Trading in Neural Networks

Setup. We use MNIST [33], CIFAR10 [34], and TinyImageNet [35] for training MLPs and
ResNet20 [36]. Agents have imbalanced datasets where half of the classes contain only 10%
of datapoints. Agents are limited to collecting a part of a dataset, making it difficult for them to
achieve satisfactory performance without collaborating and trading parameters to leverage each
other’s strengths.

Models are trained from different random initializations and batch orders over 60 epochs. Agents
trade entire parameter sets and join the market after five epochs. The broker discloses gain-from-trade
to agents. Broker aligns parameters [16], then merge.
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Agent A Agent B

Testing Acc. (%) Testing Acc. (%)

MNIST +
MLP

out-of-market 68.50% 72.97%
FedAvg 81.98% 81.98%

w/o alignment 84.64% 84.64%
w alignment 86.96% 86.96%

CIFAR10 +
ResNet20

out-of-market 71.14% 70.56%
FedAvg 70.35% 67.85%

w/o alignment 78.31% 78.31%
w alignment 79.90% 79.90%

TinyImageNet +
ResNet20

out-of-market 21.67% 15.89%
FedAvg 19.95% 19.33%

w/o alignment 31.28% 31.30%
w alignment 31.69% 31.82%

Table 1: Testing accuracies are reported for each combination of dataset and model. In FedAvg,
there is no broker to assist agents in conducting transactions. The interpolated weight is determined
solely based on the proportion of data assets. w/o alignment indicates that broker merges parameters
via simple interpolation with the optimized purchased weight. In w alignment, the broker aligns
parameters by applying [16] and then interpolates.

In addition to the approach that agents train models on their own, we include another baseline method,
FedAvg [37], which assumes that there is no broker involved in a trade to help agents align parameters
and optimize their purchased weights. In FedAvg, the interpolated weight is determined by the
portion of data assets that an agent is endowed with, which is 0.5 in this setting.

Figure 2: Testing loss converges the
fastest by aligning and interpolating.

Results. Table 1 shows the performance of two agents.
We find that both agents are able to achieve improved
performance by leveraging each other’s training expertise,
compared to out-of-market agents. Specifically, training
and trading ResNet20 with TinyImageNet resulted
in improving accuracy by +10.02% and +15.93%,
respectively. We measure two ways to merge parameters
for buying: with and without model alignment. With
model alignment, the broker is able to merge models
more effectively, ultimately enhancing performance for
both agents. In addition, compared to FedAvg method,
results confirm the significance of having a trusted broker
in parameter trading. Without an intermediary broker to
facilitate the trade, the performance of purchased weights
can be negatively impacted, as evidenced by the results of
CIFAR10 + ResNet20 and TinyImageNet + ResNet20.

Finally, Figure 2 displays a comparison of testing loss
for the MLP on MNIST. Our results demonstrate that
trading parameters results in faster convergence compared
to siloed training. Using alignment further helps, as
expected.

6.1.2 Parameter Subsets Trading in Neural Networks

Setup. Next, we explore the potential benefits of trading subsets of parameters. This scenario may
take place when agents are interested in only certain components or are restricted by trading budgets.
We use the same data endowment as in the preceding configuration. We train two 5-layer MLPs on
MNIST and align parameters in each layer to trade.

Results. Table 2 displays the results by trading parameters from different layers. As expected,
trading the entire model gives optimal performance (the last row). Trading subsets is helpful but
suboptimal. We observe that purchasing parameters from shallow layers, close to the input layers,

8



Agent A Agent B

Testing Acc. (%) Testing Acc. (%)

out-of-market 71.29% 72.54%
layers {3, 4} 66.28% 71.98%

layers {2, 3, 4} 70.73% 73.36%
layers {0, 1, 2} 74.76% 74.16%
layers {0, 1} 78.86% 79.82%

layers {0, 1, 2, 3, 4} 86.96% 86.96%

Table 2: Testing accuracies for trading parameters from different layers in 5-layer MLPs on MNIST.

Figure 3: Both agents earn improvements mutually through trading in the market. We visualize
trading results of two linear regression models with a synthesized dataset. Leftmost: trading logs over
100 runs. Second from left: The ratio of squared parameter estimation error between agent A and
agent B. A red line represents tied performance. Above the red line, agent B leads, and vice versa.
Second from right & rightmost: agent A’s and agent B’s learning curve compared to out-of-market
agents. Market usage thus produces performance improvements.

offers more benefits than trading with deeper layers. This provides trading guidance for budget-limited
agents.

6.1.3 The Effectiveness of Buying Parameters in Controlled Settings

Setup. We use a synthetic dataset to study trading in a fully-controlled environment. We use two
linear regression models with dimension d = 1000. Agent A has na = 500 datapoints in dataset
(Xa, Ya) and B has nb = 800 datapoints in dataset (Xb, Yb), but the latter’s labels are affected by
zero-mean Gaussian noise (�2 = 0.5). We assume that the broker knows the true parameter ✓⇤ and
obtains (Xz, Yz) and has access to nz = 10, 000 datapoints. Both agents start learning function
fa, fb with the same initialized weight ✓0. We compare the results over 100 runs with agents who
obtain the same data endowment but do not participate in the market.

Results. The leftmost Figure 3 displays the trading log over 100 runs. Green dots and red dots
show whether an agent purchases the other’s parameters in a specific run. Next, we show the ratio
of squared parameter estimation error between agents. If the ratio is larger than 1 (red dashed line),
agent B leads the market. We see that agent A leads the market in the first half of runs, making agent
B continue buying parameters from agent A. At the end of a few runs, agent B turns to the lead.

The rightmost plots show convergence. If an agent is involved in the market and trades with the other,
the convergence rate is faster compared to never trading. This study demonstrates agents’ behaviors in
the trading runs and validates the effectiveness of buying parameters, leading to more efficient model
training. We compute the empirical testing loss at the end. Compared to out-of-market agents, we
find that agent A and agent B are able to improve testing loss by 42.84% and 23.88%, respectively.

6.1.4 Trading Parameters of Models with Different Purposes

Figure 4: Trading with
parameters that are from related
tasks is possible.

Setup. Next, we validate whether trading makes sense even
if agents are training different models for different purposes.
This scenario is more realistic as it simulates situations where
organizations in the market are working on different but potentially
related tasks. We model this setting by sweeping the distance
between the true parameters ✓⇤a, ✓⇤b of two linear regression models
to observe how it impacts the benefits of trading.

Results. We record the benefits from trading when compared to
an agent who does not participate but has the same data as agent
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A. We measure the relative improvement in empirical testing loss. The results are shown in Figure 4,
which indicates that even though the two agents are not training on the same task, agent A is still able
to benefit from trading. Note that the gain exists even when the tasks are quite different (i.e. large
distance k✓⇤a � ✓⇤bk2) but is strongest as the tasks are most closely related.

6.2 Competitive Agents

Finally, we study agents engaging in a competitive scenario. In this case, the transactions require
pricing. We validate the proposed pricing mechanism.

6.2.1 The Effectiveness of Bayesian Optimal Pricing Mechanism

Figure 5: We visualize parameter market
price negotiated by broker. We can
see in the first half of runs, since
agent A’s performance dominates the
market, making agent A’s parameter
more valuable compared to opponent
agent B. Note that, if there is no
trade, market price remains the same as
historical price.

Setup. We reuse the synthesized dataset from the
collaborative experiment. We set the buyer’s valuation to
gain-from-trade and estimate the seller’s virtual valuation
by the lower bound that we can find.

Results. Market prices negotiated by the broker over
100 trading runs are displayed in Figure 5. Based on Eq.
1, the market price is determined by the average of the
buyer’s valuation and the seller’s virtual valuation. To
demonstrate market efficiency, we also study the scenario
where the seller sets the valuation to be exactly the same
as the buyer’s. As shown in Figure 3 (second from
left: performance ratio), agent A is initially leading in
the first half of the runs, resulting in a higher price for
their parameters. However, at the end of a few runs,
agent B takes the lead, causing their parameter price to
increase while opponent A’ goes down. It is important
to note that the gap between the estimated price (the
blue line) and the optimal price (the orange line) can
be reduced with more information learned through the
market, such as via historical transactions. Besides, the
resulting negotiated price creates a discrepancy with the
price in the optimal scenario where both parties report
their valuations truthfully, highlighting the significance
of revealing accurate parameter values and justifying
the need for incentives. At last, this study illustrates
the feasibility of using the Bayesian optimal pricing
mechanism to assist seller agents in monetizing parameters
with limited information to make a trade.

7 Conclusion

In this paper, we introduced a framework for parameter markets that can serve to reduce the heavy
costs of large-scale model training. Borrowing from economic principles, we provided a set of
mechanisms that enable the functioning of such markets. Theoretically, for simple settings, we
analyzed market efficiency and proved that agents can gain from participating. We empirically
validated the effectiveness of parameter markets under collaborative and competitive settings and
demonstrated when participants in the market earn mutual benefits through market usage.
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