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A Robustness to pose error1

We conduct experiments to validate the performance under the impact of both asynchrony and pose2

error. To simulate the pose error, we add Gaussian noise N (0, σt) on x, y and N (0, σr) on θ during3

the inference phase, where x, y, θ are 2D centers and yaw angle of accurate global poses. Our pose4

noise setting follows the Gaussian distribution with a mean of 0m, a standard deviation of 0m-0.5m,5

a mean of 0◦ and a standard deviation of 0◦ − 0.5◦. And this experiment is conducted under the6

expectation of time interval is 300ms to simulate the time asynchrony. We compare our CoBEVFlow7

and other baseline methods including V2X-ViT[7], Where2comm[2] and SyncNet[4]. Table 1 shows8

the results on IRV2V and DAIR-V2X[8] dataset. We see that CoBEVFlow still performs well9

even when both pose errors and time asynchrony appear. CoBEVFlow consistently outperforms10

other methods across all noise settings on IRV2V dataset. In the case of noise levels of 0.4/0.4, our11

approach achieves 0.133 and 0.043 improvement over SyncNet.12

Table 1: Detection performance on IRV2V and DAIR-V2X[8] dataset with pose noises following
Gaussian distribution in the testing phase.

Dataset IRV2V DAIR-V2X

Noise Level σt/σr(m/◦) 0.0/0.0 0.1/0.1 0.2/0.2 0.3/0.3 0.4/0.4 0.0/0.0 0.1/0.1 0.2/0.2 0.3/0.3 0.4/0.4

Model / Metric AP@0.50 ↑
V2X-ViT 0.641 0.626 0.627 0.625 0.619 0.693 0.692 0.545 0.685 0.681

Where2comm 0.510 0.411 0.411 0.411 0.411 0.702 0.693 0.679 0.658 0.643
Where2comm+SyncNet 0.654 0.653 0.652 0.651 0.648 0.711 0.692 0.583 0.579 0.671

CoBEVFlow (ours) 0.831 0.820 0.815 0.802 0.781 0.738 0.743 0.732 0.723 0.703
Model / Metric AP@0.70 ↑

V2X-ViT 0.511 0.504 0.502 0.504 0.501 0.545 0.545 0.545 0.685 0.543
Where2comm 0.388 0.323 0.312 0.302 0.293 0.577 0.577 0.561 0.658 0.543

Where2comm+SyncNet 0.549 0.550 0.545 0.538 0.527 0.587 0.583 0.579 0.570 0.567
CoBEVFlow (ours) 0.757 0.730 0.686 0.628 0.570 0.599 0.593 0.579 0.571 0.560

B Visualization13

Fig. 1 shows compares detection results of Where2comm[2], V2X-ViT[7], SyncNet[4], and14

CoBEVFlow at three asynchrony levels on the DAIR-V2X[8] dataset. The expectations of time15

intervals are 100, 300, and 500ms. The red boxes represent the detection results and the green boxes16

represent the ground-truth.17
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Figure 1: Visualization of detection results for Where2comm, V2X-ViT, SyncNet, and our
CoBEVFlow with the expectation of time intervals are 100, 300, and 500ms on DAIR-V2X dataset.
Red and green boxes denote detection results and ground-truth respectively.

(a) Vehicle speed distribution. (b) Number of vehicles in the scene distribution.

Figure 2: Data distribution of IRV2V dataset. (a) shows the speed distribution of moving vehicles;
(b) shows the vehicle numbers distribution.

C IRegular V2V (IRV2V)18

To facilitate the research on asynchrony for collaborative perception, we use CARLA [1] (under19

MIT license) to simulate IRregular V2V (IRV2V) dataset, which is the first collaborative perception20

dataset with multiple asynchronies.21

Asynchronous data collection. The number of collaborative vehicles in a scene ranges from 222

to 5. Each collaborative vehicle is equipt with 4 cameras for 360◦ view, a 32-channel LiDAR,23

and GPS/IMU sensors. The ideal sample interval of the sensor is 100ms. Due to different asyn-24

chronous factors, collaborative messages have asynchronous timestamps. There is a time offset25

δs ∼ U(−50, 50)ms at the sampling starting point of non-ego vehicles. And all non-ego vehicles’26

collaborative messages are sampled with time turbulence δd ∼ U(−10, 10)ms. Sensing information27

at each timestamp of each agent contains 4 camera images with resolution 600× 800, and 32-channel28

LiDAR points.29

Data size. Assuming the model requires the use of information from the past 10 frames, our dataset30

consists of a total of 8,449 collaborative samples, which include 8,449 point cloud inputs and 33,79631
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Table 2: Performance of CoBEVFlow and other baseline methods under the expectation of time
interval from 0 to 500ms on IRV2V dataset. CoBEVFlow outperforms all the baseline methods and
shows great robustness under any level of asynchrony.

Expectation of interval (ms) 0 100 200 300 400 500

Model / Metric AP@0.50 ↑
Single 0.647

Late Fusion 0.828 0.638 0.478 0.371 0.324 0.308
V2VNet 0.811 0.747 0.710 0.663 0.626 0.591
V2X-ViT 0.781 0.737 0.692 0.641 0.598 0.575
DiscoNet 0.742 0.728 0.704 0.673 0.647 0.625

Where2comm 0.864 0.758 0.609 0.510 0.455 0.431
Where2comm+SyncNet 0.864 0.721 0.672 0.654 0.649 0.625

CoBEVFlow (ours) 0.864 0.841 0.834 0.831 0.812 0.815
Model / Metric AP@0.70 ↑

Single 0.535

Late Fusion 0.751 0.385 0.285 0.235 0.219 0.223
V2VNet 0.744 0.607 0.540 0.480 0.439 0.408
V2X-ViT 0.630 0.577 0.545 0.511 0.489 0.479
DiscoNet 0.624 0.612 0.586 0.559 0.537 0.519

Where2comm 0.827 0.613 0.458 0.388 0.362 0.359
Where2comm+SyncNet 0.827 0.602 0.555 0.549 0.545 0.536

CoBEVFlow (ours) 0.864 0.781 0.761 0.757 0.714 0.687

RGB images. We have split the dataset into training, validation, and testing sets, which contain 5,445,32

994, and 2,010 samples, respectively.33

Data analysis. Figure 2 presents some statistical analysis results regarding the IRV2V dataset. The34

IRV2V dataset contains a total of 1,564,033 vehicles, with an average of 48.302 vehicles per scene. It35

should be noted that the figure only displays the distribution of vehicles with speeds greater than 136

km/h. Considering real-world scenarios, there are around 1,203,793 moving vehicles in the dataset.37

Plot (a) illustrates the distribution of moving vehicles with different speeds across all samples, ranging38

from 1 to 105 km/h, with an average speed of 25.586 km/h, which achieves around 15km/h faster39

compared to the majority of vehicles in the V2X-Sim[5]. Plot (b) shows the distribution of the total40

number of vehicles per sample in the dataset, with the maximum number of vehicles being 113.41

D Detailed information about experimental settings42

Implement details. We conduct experiments on LiDAR-based part of IRV2V and DAIR-V2X[8]43

dataset. Our feature encoder is PointPillars[3] based. And our backbone follows the setting in44

CoAlign[6]. The difference is that we change the fusion method from self-attention to max-fusion.45

We conduct training for a total of 60 epochs, starting with an initial learning rate of 2e-3. Subsequently,46

at the 10th and 20th epochs, the learning rate decreases to 10% of its previous value. For IRV2V47

dataset, we set the lidar range as x ∈ [−140.8,+140.8]m, y ∈ [−40,+40]m. The voxel size is48

h = w = 0.4m. The feature map’s size is H = 200,W = 704. For DAIR-V2X dataset, we set the49

lidar range as x ∈ [−100.8,+100.8]m, y ∈ [−40,+40]m. The voxel size is h = w = 0.4m. The50

feature map’s size is H = 200,W = 504.51

Communication volume. Our communication volume is the same as Where2comm[2]. For52

CoBEVFlow, we control the communication volume by adjusting the maximum number of generated53

ROIs. Specifically, the average number of voxels contained in each ROI region is 40, and we limit54

the maximum number of generated ROIs to K∥R∥. Correspondingly, we modify the information55

exchange in Where2comm to include the top 40×K∥R∥ blocks based on their scores on the spatial56

confidence map. In practical scenarios, the actual communication volume is influenced by factors57

such as the feature dimension and floating-point precision. To simplify the expression, we uniformly58

represent the communication volume using the logarithm to the base 2 of the voxel count. The59
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Table 3: Performance of CoBEVFlow and other baseline methods under the expectation of time
interval from 0 to 500ms on DAIR-V2X[8] dataset. CoBEVFlow outperforms all the baseline
methods and shows great robustness under any level of asynchrony.

Expectation of interval (ms) 0 100 200 300 400 500

Model / Metric AP@0.50 ↑
Single 0.674

Late Fusion 0.709 0.664 0.616 0.600 0.595 0.593
V2VNet 0.626 0.623 0.622 0.617 0.612 0.608
V2X-ViT 0.725 0.714 0.704 0.693 0.681 0.681
DiscoNet 0.645 0.630 0.620 0.606 0.597 0.590

Where2comm 0.807 0.739 0.603 0.698 0.686 0.676
Where2comm+SyncNet 0.807 0.719 0.706 0.695 0.687 0.679

CoBEVFlow (ours) 0.807 0.765 0.749 0.738 0.728 0.726
Model / Metric AP@0.70 ↑

Single 0.587

Late Fusion 0.538 0.479 0.467 0.464 0.466 0.465
V2VNet 0.556 0.555 0.554 0.552 0.548 0.548
V2X-ViT 0.556 0.553 0.550 0.545 0.541 0.541
DiscoNet 0.553 0.537 0.530 0.523 0.519 0.518

Where2comm 0.662 0.603 0.587 0.577 0.569 0.566
Where2comm+SyncNet 0.662 0.602 0.588 0.587 0.584 0.580

CoBEVFlow (ours) 0.662 0.621 0.601 0.599 0.592 0.588

communication volume is60

log2
(
40×K∥R∥

)
, (1)

where K∥R∥ is the maximum number of generated ROIs, and 40 is the average number of voxels in61

each ROI.62

E Benchmarks63

We conduct extensive experiments on current collaborative perception methodologies. Table 2 and64

Table 3 present the detection performance under the expectation of time interval from 0 to 500ms on65

IRV2V and DAIR-V2X[8] respectively, which correspond to the numerical results shown in Figure66

4 in the main text. We see that CoBEVFlow consistently achieves significant improvements over67

previous methods on both datasets and the leading gap is bigger when the expectation of the time68

interval is higher.69

References70

[1] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla:71

An open urban driving simulator. In Conference on robot learning, pages 1–16. PMLR, 2017.72

[2] Yue Hu, Shaoheng Fang, Zixing Lei, Yiqi Zhong, and Siheng Chen. Where2comm:73

Communication-efficient collaborative perception via spatial confidence maps. arXiv preprint74

arXiv:2209.12836, 2022.75

[3] Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom.76

Pointpillars: Fast encoders for object detection from point clouds. In IEEE Conference on77

Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019,78

pages 12697–12705. Computer Vision Foundation / IEEE, 2019.79

[4] Zixing Lei, Shunli Ren, Yue Hu, Wenjun Zhang, and Siheng Chen. Latency-aware collaborative80

perception. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel,81

October 23–27, 2022, Proceedings, Part XXXII, pages 316–332. Springer, 2022.82

[5] Yiming Li, Dekun Ma, Ziyan An, Zixun Wang, Yiqi Zhong, Siheng Chen, and Chen Feng.83

V2x-sim: Multi-agent collaborative perception dataset and benchmark for autonomous driving.84

IEEE Robotics Autom. Lett., 7(4):10914–10921, 2022.85

4



[6] Yifan Lu, Quanhao Li, Baoan Liu, Mehrdad Dianati, Chen Feng, Siheng Chen, and Yanfeng86

Wang. Robust collaborative 3d object detection in presence of pose errors. CoRR, abs/2211.07214,87

2022.88

[7] Runsheng Xu, Hao Xiang, Zhengzhong Tu, Xin Xia, Ming-Hsuan Yang, and Jiaqi Ma. V2x-vit:89

Vehicle-to-everything cooperative perception with vision transformer. In Computer Vision–ECCV90

2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part91

XXXIX, pages 107–124. Springer, 2022.92

[8] Haibao Yu, Yizhen Luo, Mao Shu, Yiyi Huo, Zebang Yang, Yifeng Shi, Zhenglong Guo, Hanyu93

Li, Xing Hu, Jirui Yuan, and Zaiqing Nie. DAIR-V2X: A large-scale dataset for vehicle-94

infrastructure cooperative 3d object detection. In IEEE/CVF Conference on Computer Vision and95

Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pages 21329–21338.96

IEEE, 2022.97

5


	Robustness to pose error
	Visualization
	IRegular V2V (IRV2V)
	Detailed information about experimental settings
	Benchmarks

