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Abstract

Collaborative perception can substantially boost each agent’s perception ability
by facilitating communication among multiple agents. However, temporal asyn-
chrony among agents is inevitable in the real world due to communication delays,
interruptions, and clock misalignments. This issue causes information mismatch
during multi-agent fusion, seriously shaking the foundation of collaboration. To
address this issue, we propose CoBEVFlow, an asynchrony-robust collaborative
perception system based on bird’s eye view (BEV) flow. The key intuition of
CoBEVFlow is to compensate motions to align asynchronous collaboration mes-
sages sent by multiple agents. To model the motion in a scene, we propose BEV
flow, which is a collection of the motion vector corresponding to each spatial
location. Based on BEV flow, asynchronous perceptual features can be reassigned
to appropriate positions, mitigating the impact of asynchrony. CoBEVFlow has two
advantages: (i) CoBEVFlow can handle asynchronous collaboration messages sent
at irregular, continuous time stamps without discretization; and (ii) with BEV flow,
CoBEVFlow only transports the original perceptual features, instead of generating
new perceptual features, avoiding additional noises. To validate CoBEVFlow’s
efficacy, we create IRregular V2V(IRV2V), the first synthetic collaborative percep-
tion dataset with various temporal asynchronies that simulate different real-world
scenarios. Extensive experiments conducted on both IRV2V and the real-world
dataset DAIR-V2X show that CoBEVFlow consistently outperforms other base-
lines and is robust in extremely asynchronous settings. The code is available at
https://github.com/MediaBrain-SJTU/CoBEVFlow.

1 Introduction
Multi-agent collaborative perception allows agents to exchange complementary perceptual informa-
tion through communication. This can overcome inherent limitations of single-agent perception, such
as occlusion and long-range issues. Recent studies have shown that collaborative perception can
substantially boost the performance of perception systems [1–5] and has great potential for a wide
range of real-world applications, such as multi-robot automation system [6, 7], vehicle-to-everything-
communication-aided autonomous driving[8, 9] and multi-UAVs (unmanned aerial vehicles) [10–12].
As an emerging area, the study of collaborative perception has many challenges to be tackled, such as
high-quality datasets [13–15], model-agnostic and task-agnostic formulation [16] and the robustness
to pose errors [17] and adversarial attacks [18, 19].
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Figure 1: Illustration of asynchronous collaborative per-
ception and the perception result w.o./w. CoBEVFlow.
Red boxes are detection results and green boxes are the
ground-truth.

However, a vast majority of existing works do
not seriously account for the harsh realities of
real-world communication among agents, such
as congestion, heavy computation, interruptions,
and the lack of calibration. These factors in-
troduce delays or misalignments that severely
impact the reliability and quality of informa-
tion exchange among agents. Some prior works
have touched upon the issue of communication
latency. For instance, V2VNet [4] and V2X-
ViT [5] incorporated the delay time as an in-
put for feature compensation. However, they
only account for a single frame without leverag-
ing historical frames, making them inadequate
for high-speed scenarios (above 20m/s) or high-
latency scenarios (above 0.3s) scenarios. Mean-
while, SyncNet [20] uses historical features to
predict the complete feature map at the current
timestamp [21]. Nevertheless, this RNN-based
method assumes equal time intervals for its input, causing failures when delays are irregular. Overall,
previous works have not addressed the issues raised by common irregular time delays, rendering
existing collaborative perception systems can never reach their full potential in real-world scenarios.

To fill the research gap, we specifically formulate a setting of asynchronous collaborative perception;
see Fig. 1 for a visual demonstration. Here asynchrony indicates that the time stamps of the collabo-
ration messages from other agents are not aligned and the time interval of two consecutive messages
from the same agent is irregular. Due to the universality and inevitability of temporal asynchrony
in practical applications, handling this setting is critical to the further development of collaborative
perception. To address this, we propose CoBEVFlow, an asynchrony-robust collaborative perception
system based on bird’s eye view (BEV) flow. The key idea is to align perceptual information from
other agents by compensating relative motions. Specifically, CoBEVFlow uses historical frames
to estimate a BEV flow map, which encodes the motion information in each grid cell. Using the
BEV flow map, CoBEVFlow can reassign asynchronous perceptual features to appropriate spatial
locations, which aligns perceptual features on the time dimension, mitigating the impact caused
by asynchrony. The proposed CoBEVFlow has two major advantages: i) CoBEVFlow can handle
asynchronous collaboration messages sent at irregular, continuous timestamps without discretization;
ii) CoBEVFlow better adheres to the essence of compensation, which is to move features to the desig-
nated spatiotemporal positions. Not like SyncNet[20] that regenerates features, this motion-guided
position adjustment fundamentally prevents introducing extra noises to the features.

When validating the effectiveness of CoBEVFlow, we noticed that there is no appropriate collabora-
tive perception dataset that contains asynchronous samples. To facilitate research on asynchronous
collaborative perception, we create IRregular V2V(IRV2V), the first synthetic asynchronous collabo-
rative perception dataset with irregular time delays, simulating various real-world scenarios. Sec. 5
show the experiment results and analysis on both IRV2V and a real-world dataset DARI-V2X[14].
Results show that CoBEVFlow consistently achieves the best compensation performance across
various latencies. When the expected latency on the IRV2V dataset is set to 500ms, CoBEVFlow
outperforms other methods by more than 18.9%. In the case of a 300ms latency with an additional
200ms disturbance, the decrease in AP@0.50 is only 0.25%.

2 Related work
2.1 Collaborative Perception
Factors such as limited sensor fields of view and physical environmental occlusions can negatively
impact perception tasks for individual agents[22, 23]. To address the aforementioned challenges,
collaborative perception based on multi-agent systems has emerged as a promising solution [2, 3, 5, 1,
24–26]. It can enhance the performance of perception tasks by leveraging the exchange of information
among different agents within the same scenario. V2VNet uses multi-round message passing via
graph neural networks to achieve better perception and prediction performance[4]; DiscoNet adopts
knowledge distillation to take advantage of both early and intermediate collaboration[9]; V2X-ViT
proposes a heterogeneous multi-agent attention module to aggregate information from heterogeneous
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agents; Where2comm[1] introduces a spatial confidence map which achieves pragmatic compression
and improves perception performance with limited communication bandwidth.

As unideal communication is an inevitable issue that negatively impacts the performance and applica-
tion of collaborative perception, some methods have been studied for robust collaborative perception.
V2VNet[4] utilizes a convolutional neural network to learn how to compensate for communication
delay by taking time information and relative pose as input; V2X-ViT[5] designs a Delay-aware
Positional Encoding module to learn the influence caused by latency, but these methods do not con-
sider the historical temporal information for compensation. SyncNet[20] uses historical multi-frame
information and compensates for the current time by Conv-LSTM[21], but its compensation for
the whole feature map leads noises to the feature channels, and RNN-based framework can not
handle temporal irregular inputs. This work formulates asynchronous collaborative perception, which
considers real-world communication asynchrony.

2.2 Time-Series Forecasting
Time series analysis aims to extract temporal information of variables, giving rise to numerous
downstream tasks. Time series forecasting leverages historical sequences to predict observations of
variables in future time periods. Classical methods for time series forecasting include the Fourier
transform[27], autoregressive models[28], and Kalman filters[29]. In the era of deep learning, a
plethora of RNN-based and attention-based methods have emerged to model sequence input and
address time series prediction problems[30–32]. The issue of sampling irregularity, which may arise
due to physical interference or device issues, calls for irregularity-robust time series analysis systems.
Approaches such as mTAND[33], IP-Net[34], and DGM2[35] employ imputation-based techniques
to tackle irregular sampling, which estimate the observation or hidden embedding of series at regular
timestamps and then apply the methods designed for regular time series analysis, while SeFT[36] and
Raindrop[37] utilize operations that are insensitive to sampling intervals for processing irregularly
sampled data. In this work, we consider each collaboration message as one irregular sample and use
irregular time series forecasting to estimate the BEV flow map for asynchronous feature alignment.

3 Problem Formulation
Consider N agents in a scene, where each agent can send and receive collaboration messages from
other agents, and store k historical frames of messages. For the nth agent, let X tin

n and Ytin
n be the

raw observation and the perception ground-truth at time current tin, respectively, where tin is the i-th

timestamp of agent n, and Ptjm
m→n be the collaboration message sent from agent m at time tjm. The

key of the asynchronous setting is that the timestamp of each collaboration message tin ∈ R is a
continuous value, those messages from other agents are not aligned, tim ̸= tin, and the time interval
between two consecutive timestamps ti−1

n − tin is irregular. Therefore, each agent has to encounter
collaboration messages from other agents sent at arbitrary times. Then, the task of asynchronous
collaborative perception is formulated as:

max
θ,P

N∑
n=1

g
(
Ŷ

tin
n ,Y

tin
n

)
(1)

subject to Ŷ
tin
n = cθ(X

tin
n , {Ptjm

m→n,Ptj−1
m

m→n, · · · ,Ptj−k+1
m

m→n }Nm=1),

where g(·, ·) is the perception evaluation metric, Ŷtin
n is the perception result of agent n at time tin,

cθ(·) is the collaborative perception network with trainable parameters θ, and tj−k+1
m < tj−k+2

m <
· · · < tjm ≤ tin. Note that: i) when the collaboration messages from other agents are all aligned and
the time interval between two consecutive timestamps is regular; that is, tim = tin for all agent’s pairs
m,n, and tin − ti−1

n is a constant for all agents n, the task degenerates to standard well-synchronized
collaborative perception; and ii) when the collaboration messages from other the agents are not
aligned, yet the time interval between two consecutive timestamps is regular; that is, tim ̸= tin and
tin − ti−1

n is a constant, the task degenerates to the setting in SyncNet [20].

Given such irregular asynchrony, the performances of collaborative perception systems would be
significantly degraded since features from asynchronized timestamps differ from the actual current
features, and using asynchronized features may contain erroneous information during the perception
process. In the next section, we will introduce CoBEVFlow to address this critical issue.
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Figure 2: System overview. Message packing process prepares ROI and sparse features as the message for
efficient communication and BEV flow map generation. Message fusion process generates and applies BEV
flow map for compensation, and fuses the features at the current timestamp from all agents.

4 CoBEVFlow: Asynchrony-Robust Collaborative Perception System
This section proposes an asynchrony-robust collaborative perception system, CoBEVFlow. Figure 2
overviews the overall scheme of CoBEVFlow. We introduce the overall framework of the CoBEVFlow
system in Sec. 4.1. The details of three key modules of CoBEVFlow can be found in Sec. 4.2-4.4.
Sec. 4.5 demonstrates the training details and loss functions of the whole system.

4.1 Overall architecture
The problem of asynchrony results in the misplacements of moving objects in the collaboration
messages. That is, the collaboration messages from multiple agents would record various positions for
the same moving object. The proposed CoBEVFlow addresses this issue with two key ideas: i) we use
a BEV flow map to capture the motion in a scene, enabling motion-guided reassigning asynchronous
perceptual features to appropriate positions; and ii) we generate the region of interest(ROI) to make
sure that the reassignment only happens to the areas that potentially contain objects. By following
these two ideas, we eliminate direct modification of the features and keep the background feature
unaltered, effectively avoiding unnecessary noise in the learned features.

Mathematically, let the n-th agent be the ego agent and X
tin
n be its raw observation at the i-th

timestamp of agent n, denoted as tin. The proposed asynchrony-robust collaborative perception
system CoBEVFlow is formulated as follows:

F
tin
n = fenc(X

tin
n ), (2a)

F̃
tin
n ,Rtin

n = froi_gen(F
tin
n ), (2b)

M
tjm→tin
m = fflow_gen(t

i
n, {R

tqm
m }q=j−k+1,j−k+2,··· ,j), (2c)

F̂
tin
m = fwarp(F̃

tjm
m ,M

tjm→tin
m ), (2d)

Ĥ
tin
n = fagg(F̃

tin
n , {F̂tin

m}m∈Nn
), (2e)

Ŷ
tin
n = fdec(Ĥ

tin
n ), (2f)

where F
tin
n ∈ RH×W×D is the BEV perceptual feature map of agent n at timestamp tin with H,W

the size of BEV map and D the number of channels; Rtin
n is the set of region of interest (ROI);

F̃
tin
n ∈ RH×W×D is the sparse version of Ftin

n , which only contains features inside Rtin
n and zero-

padding outside; Mtjm→tin
m ∈ RH×W×2 is the m-th agent’s the BEV flow map that reflects each grid

cell’s movement from timestamp tjm to timestamp tin, {Rtqm
m }q=j−k+1,j−k+2,··· ,j indicates historical

k ROI sets sent by agent m; F̂tin
m ∈ RH×W×D is the realigned feature map from the m-th agent’s at

timestamp tin after motion compensation; Ĥtin
n ∈ RH×W×D is the aggregated features from all of the

agents; Nn is the collaboration neighbors of the n-th agent; and Ŷ
tin
n is the final output of the system.

Step 2a extracts BEV perceptual feature from observation data. Step 2b generates the ROIs for each
feature map, enabling BEV flow generation in Step 2c. Now all the agents exchange their messages,
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including F̃
tin
n and the Rtin

n . Step 2c generate the BEV flow map M
tjm→tin
m by leveraging historical

ROIs from the same agent. Step 2d gets the estimated feature map by applying the BEV flow map to
reassign the asynchronized features. Step 2e aggregates the feature maps of all agents. Finally, Step
2f outputs the final perceptual results.

Note that i) Steps 2a-2b are done before communication. Steps 2c-2f are performed after receiving
the message from others. During the communication process, both sparse perceptual features and the
ROI set are sent to other agents, which is communication bandwidth friendly; and ii) CoBEVFlow
adopts the feature representations in bird’s eye view (BEV), where the feature maps of all agents are
projected to the same global coordinate system, avoiding complex coordinate transformations and
supporting easier cross-agent collaboration.

The proposed asynchronous collaborative perception system has three advantages: i) CoBEVFlow
can deal with asynchronous collaboration messages sent at irregular, continuous timestamps without
discretization; (ii) with BEV flow, CoBEVFlow only transports the original perceptual features,
instead of generating new perceptual features, causing additional noises; and (iii) CoBEVFlow
promotes robustness to asynchrony by introducing minor communication cost (ROI set).

We now elaborate on the details of Steps 2b-2e in the following subsections.

4.2 ROI generation
Given the perceptual feature map of an agent, Step 2b aims to generate a set of spatial regions of
interest (ROIs) for the areas that possibly contain objects. Each ROI indicates one potential object’s
region in the scene. The intuition is that foreground objects are the only ones that move, while
the background remains static. Therefore, using ROI can enable the subsequent BEV flow map to
concentrate on critical regions and simplify the computation of the BEV flow map.

To implement, we use the structure of the object detection decoder to produce the ROIs. Given agent
m’s perceptual feature map at timestamp tjm, Ftjm

m , the corresponding detection result is obtained as:

O
tjm
m = Φroi_gen(F

tjm
m ) ∈ RH×W×7, (3)

where Φroi_gen(·) is the ROI generation network with detection decoder structure, and each element

(O
tjm
m )h,w = (c, x, y, h, w, cosα, sinα) represents one detected ROI with its class confidence, posi-

tion, size, and orientation. We threshold the class confidence, apply non-max suppression, and obtain
a set of detected boxes, whose occupied spaces form the set of ROIs, Rtjm

m .

Based on this ROI set, we can also get a binary mask H ∈ RH×W , whose values inside ROIs are 1
and the others are 0. We then get the sparse feature map F̃

tjm
m = F

tjm
m ⊙H, which only contains the

features within ROIs. Then, agent m packs its sparse feature map F̃
tjm
m and the ROI set Rtjm

m as the
message and sends out for collaboration.

4.3 BEV flow map generation
After receiving collaboration messages from other agents at various timestamps, Step 2c aims to
generate the BEV flow map to correct feature misalignment due to asynchrony. The proposed BEV
flow map encodes the motion vector of each spatial location. The main idea of obtaining this BEV
flow is to associate correlated ROIs based on a sequence of messages sent by the same collaborator.
In this step, each ROI is regarded as an instance that has its own attributes generated by Step 2b. After
the ROI association, we are able to compute the motion vector and further estimate the positions
where the corresponding object would appear at a certain timestamp. The generation of the BEV flow
map includes two key steps: adjacent timestamp’ ROI matching and BEV flow estimation.

Adjacent frames’ ROI matching. The purpose of adjacent frames’ ROI matching is to match the
ROIs in two consecutive messages sent by the same agent. The matched ROIs are essentially the
same instance perceived at different timestamps. This module contains three processes: cost matrix
construction, greedy matching, and post-processing. We first construct a cost matrix C ∈ Ro1×o2 ,
where o1 and o2 are the numbers of ROIs in the two frames to be matched. Each element Cp,q is the
matching cost between ROI p in the earlier frame and ROI q in the later frame. To determine the value
of Cp,q , we define the vicinity of the front and rear directions as a feasible angle range for matching.
We set Cp,q = dp,q when q is within the feasible angle range of p, otherwise Cp,q = +∞, where
dp,q is the Euclidean distance between the center of ROI p and q. We then use the greedy matching
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strategy to search the paired ROIs. For each row p, we search the q with minimum Cp,q , and match
p, q as a pair. To avoid invalid matching, we further post-process matched pairs by removing those
with excessively large values of Cp,q . Through these processes, we can get the matched ROI pairs in
adjacent frames. For a sequence of frames, we can track each ROI’s multiple locations across frames.

Figure 3: The process of the BEV flow estimation.

BEV flow estimation. We now retrieve each
ROI’s historical locations at a series of irregu-
lar timestamps. In this module, we use those
irregular tracklets to predict the location and
orientation of ROIs at the ego agent’s current
timestamp tin and generate the corresponding

BEV flow map M
tjm→tin
m . To formulate the r-

th ROI’s irregular tracklet perceived by m-th
agent, we extract the motion-related attributes
(i.e. location and orientation) from the r-th
ROI’s attributes set at each timestamp. Let

Vm,r = {vtjm
r ,v

tj−1
m
r , · · · ,vtj−k+1

m
r } be a histor-

ical sequence of the r-th ROI’s attributes sent by
the m-th agent, where v

tjm
r = (x

tjm
r , y

tjm
r , α

tjm
r ),

with (x
tjm
r , y

tjm
r ) is the 2D BEV center position

and α
tjm
r is the orientation. Note that Vm,r is an

irregularly sampled sequence due to time asyn-
chrony. Fig 3 shows this process.

Based on Vm,r, we now predict vtin
r , which is the location and orientation of the r-th ROI at the ego

agent’s current timestamp. Unlike the common motion estimation, we need to handle an irregularly
sampled sequence. To enable the irregularity-compatible motion estimation method, the information
of the timestamp should be taken into account. Here we propose to use traditional trigonometric
functions [38] for timestamp encoding, by which we map the continuous-valued timestamp t into its
corresponding time code u(t) through:

(u(t))2e = sin(
t

100002e/d
), (u(t))2e+1 = cos(

t

100002e/d
), (4)

where e is the index of temporal encoding. The timestamp information now can be input into the
estimation process along with the irregularly sampled sequence and make the estimation process
capable of irregularity-compatible motion estimation. We implement the estimation process using
multi-head attention(MHA). The query of MHA is the time code of the target timestamp tin, and
the key and value both are the sum of the features of the irregularly sampled sequence and its
corresponding time code set Uk:

v̂
tin
r = MHA(u(tin),MLP(Vm,r) +Uk,MLP(Vm,r) +Uk), (5)

where v̂t
i
n
r is the estimation of ROI’s location and orientation v

tin
r , MLP(·) is the encoding function of

the irregular historical series Vr
m, and MHA(·) is the multi-head attention for temporal estimation.

With the estimated location and orientation of ROIs in the ego agent’s current timestamp along
with the ROIs’ sizes predicted by Step 2b, we calculate the motion vector at each grid cell by
an affine transformation of the associated ROI’s motion, constituting the whole BEV flow map
M

tjm→tin
m ∈ RH×W×2. Note that the grid cells outside ROIs are zero-padded.

Compared to Syncnet [20] that uses RNNs to handle regular communication latency, the generated
BEV flow map has two benefits: i) it handles irregular asynchrony via the attention-based estimation
with appropriate time encoding; and ii) it facilitates the motion-guided feature warping, which avoids
regenerating the entire feature channels.

4.4 Feature warp and aggregation

The BEV flow map M
tjm→tin
m is applied on the sparse feature map F̃

tjm
m , which implements Step 2d.

The features at each grid cell are moved to the estimated position based on M
tjm→tin
m . The warping
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Figure 4: Comparison of the performance of CoBEVFlow and other baseline methods under the expectation of
time interval from 0 to 500ms. CoBEVFlow outperforms all the baseline methods and shows great robustness
under any level of asynchrony on both two datasets.

process is: F̃tin
m

[
h+M

tjm→tin
m [h,w, 0] , w +M

tjm→tin
m [h,w, 1]

]
= F

tjm
m [h,w]. After adjusting each

non-ego agent’s feature map, these estimated feature maps and ego feature map are aggregated
together by an aggregation function fagg(·), which implements Step 2e. The fusing function can be
any common fusion operation. All our experiments adopt Multi-scale Max-fusion.

4.5 Training details and loss function
To train the overall system, we supervise three tasks: ROI generation, flow estimation, and the final
fusion detector. As mentioned before, the functionality of the ROI generator and final fusion detector
share the same architecture but do not share the parameters. During the training process, the ROI
generator and flow estimation module are trained separately, and later the final fusion detector is
trained with the pre-trained two modules. Common loss functions in detection tasks: cross entropy
loss and weighted smooth L1 loss are used for the classification and regression of ROI generation
and final fusion detector, and MSE loss is used for flow estimation.

5 Experimental Results
We propose the first asynchronous collaborative perception dataset and conduct extensive experiments
on both simulated and real-world scenarios. The task of the experiments on the two datasets is point-
cloud-based object detection. The detection performance was evaluated using Average Precision (AP)
at Intersection-over-Union (IoU) thresholds of 0.50 and 0.70.

5.1 Datasets
IRregular V2V(IRV2V). To facilitate research on asynchrony for collaborative perception, we
simulate the first collaborative perception dataset with different temporal asynchronies based on
CARLA [39], named IRregular V2V(IRV2V). We set 100ms as ideal sampling time interval and
simulate various asynchronies in real-world scenarios from two main aspects: i) considering that
agents are unsynchronized with the unified global clock, we uniformly sample a time shift δs ∼
U(−50, 50)ms for each agent in the same scene, and ii) considering the trigger noise of the sensors,
we uniformly sample a time turbulence δd ∼ U(−10, 10)ms for each sampling timestamp. The final
asynchronous time interval between adjacent timestamps is the summation of the time shift and time
turbulence. In experiments, we also sample the frame intervals to achieve large-scale and diverse
asynchrony. Each scene includes multiple collaborative agents ranging from 2 to 5. Each agent is
equipped with 4 cameras with a resolution of 600 × 800 and a 32-channel LiDAR. The detection
range is 281.6m × 80m. It results in 34K images and 8.5K LiDAR sweeps. See more details in the
Appendix.

DAIR-V2X. DAIR-V2X [14] is a real-world collaborative perception dataset. There is one ego agent
and one roadside unit in each frame. All frames are captured from real scenarios at 10 Hz with 3D
annotations. Lu et al. [17] complemented the missing annotations outside the camera view on the
vehicle side to cover a 360-degree view detection. We adopt the complemented annotations[17] and
set the perceptual range to x ∈ [−100.8m,+100.8m], y ∈ [−40m,+40m].

5.2 Quantitative evaluation
Benchmark comparison. The baseline methods include late fusion, DiscoNet[9], V2VNet[4],
V2X-ViT[5] and Where2comm[1]. The red dashed line represents single-agent detection without
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Table 1: Detection performance on IRV2V and DAIR-V2X[14] dataset with pose noises following
Gaussian distribution in the testing phase.

Dataset IRV2V DAIR-V2X

Noise Level σt/σr(m/◦) 0.0/0.0 0.1/0.1 0.2/0.2 0.3/0.3 0.4/0.4 0.0/0.0 0.1/0.1 0.2/0.2 0.3/0.3 0.4/0.4

Model / Metric AP@0.50 ↑
V2X-ViT 0.641 0.626 0.627 0.625 0.619 0.693 0.692 0.545 0.685 0.681

Where2comm 0.510 0.411 0.411 0.411 0.411 0.702 0.693 0.679 0.658 0.643
Where2comm+SyncNet 0.654 0.653 0.652 0.651 0.648 0.711 0.692 0.583 0.579 0.671

CoBEVFlow (ours) 0.831 0.820 0.815 0.802 0.781 0.738 0.743 0.732 0.723 0.703
Model / Metric AP@0.70 ↑

V2X-ViT 0.511 0.504 0.502 0.504 0.501 0.545 0.545 0.545 0.685 0.543
Where2comm 0.388 0.323 0.312 0.302 0.293 0.577 0.577 0.561 0.658 0.543

Where2comm+SyncNet 0.549 0.550 0.545 0.538 0.527 0.587 0.583 0.579 0.570 0.567
CoBEVFlow (ours) 0.757 0.730 0.686 0.628 0.570 0.599 0.593 0.579 0.571 0.560

collaboration. We also consider the integration of SyncNet[20] with Where2comm[1], which presents
the SOTA method Where2comm[1] with resistance to time delay. All methods use the same feature
encoder based on PointPillars[40]. To simulate temporal asynchrony, we sample the frame intervals of
received messages with binomial distribution to get random irregular time intervals. Fig. 4 shows the
detection performances (AP@IoU=0.50/0.70) of the proposed CoBEVFlow and the baseline methods
under varying levels of temporal asynchrony on both IRV2V and DAIR-V2X, where the x-axis is
the expectation of the time interval of delay of the latest received information and interval between
adjacent frames and y-axis the detection performance. Note that, when the x-axis is at 0, it represents
standard collaborative perception without any asynchrony. We see that i) the proposed CoBEVFlow
achieves the best performance in both simulation and real-world datasets at all asynchronous settings.
On the IRV2V dataset, CoBEVFlow outperforms the best methods by 23.3% and 35.3% in terms of
AP@0.50 and AP@0.70, respectively, under a 300ms interval expectation. Similarly, under a 500ms
interval expectation, we achieve 30.3% and 28.2% improvements, respectively. On the DAIR-V2X
dataset, CoBEVFlow still performs best. ii) CoBEVFlow demonstrates remarkable robustness to
asynchrony. As shown by the red line in the graph, CoBEVFlow exhibits a decrease of only 4.94%
and 14.0% in AP@0.50 and AP@0.70, respectively, on the IRV2V dataset under different asynchrony.
These results far exceed the performance of single-object detection, even under extreme asynchrony.

Figure 5: Trade-off between detection performance
(AP@0.50/0.70) and communication bandwidth under
asynchrony (expected 300ms latency) on IRV2V dataset.
CoBEVFlow outperforms even with a much smaller
communication volume.

Trade-off between detection results and com-
munication cost. CoBEVFlow allows agents
to share only sparse perceptual features and the
ROI set, which is communication bandwidth-
friendly. Figure 5 compares the proposed
CoBEVFlow with the previous methods in terms
of the trade-off between detection performance
(AP@0.50/0.70) and communication bandwidth
under asynchrony. We adopt the same asyn-
chrony settings mentioned before and choose
300ms as the expectation of the time interval.
We see: i) CoBEVFlow consistently outper-
forms the state-of-the-art communication effi-
cient solution, where2comm, as well as the other
baselines in the setting of asynchrony; ii) as
the communication volume increases, the per-
formance of CoBEVFlow continues to improve
steadily, while the performance of where2comm and where2comm+SyncNet fluctuates due to im-
proper information transformation caused by asynchrony.

Robustness to pose error. We conduct experiments to validate the performance under the impact
of both asynchrony and pose error. To simulate the pose error, we add Gaussian noise N (0, σt) on
x, y and N (0, σr) on θ during the inference phase, where x, y, θ are 2D centers and yaw angle of
accurate global poses. Our pose noise setting follows the Gaussian distribution with a mean of 0m, a
standard deviation of 0m-0.5m, a mean of 0◦ and a standard deviation of 0◦ − 0.5◦. This experiment
is conducted under the expectation of time interval is 300ms to simulate the time asynchrony. We
compare our CoBEVFlow and other baseline methods including V2X-ViT[5], Where2comm[1]
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Figure 6: Visualization of detection results for V2X-ViT, SyncNet, and CoBEVFlow with the expectation of
time intervals are 100, 300, and 500ms on IRV2V dataset. CoBEVFlow qualitatively outperforms the others
under different asynchrony. Red and green boxes denote detection results and ground-truth respectively.

Figure 7: Visualization of detection results for Where2comm, V2X-ViT, SyncNet, and our
CoBEVFlow with the expectation of time intervals are 100, 300, and 500ms on the DAIR-V2X
dataset. Red and green boxes denote detection results and ground-truth respectively.

and SyncNet[20]. Table 1 shows the results on IRV2V and DAIR-V2X[14] dataset. We see that
CoBEVFlow still performs well even when both pose errors and time asynchrony appear.
CoBEVFlow consistently outperforms other methods across all noise settings on the IRV2V dataset.
In the case of noise levels of 0.4/0.4, our approach achieves 0.133 and 0.043 improvement over
SyncNet.

5.3 Qualitative evaluation
Visualization of detection results. We illustrate the detection results of V2X-ViT, SyncNet, and
CoBEVFlow at three asynchrony levels on the IRV2V dataset in figure 6 and the DAIR-V2X dataset
in figure 7. The expectations of time intervals are 100, 300, and 500ms. The red box represents
the detection result and the green box represents the ground truth. V2X-ViT shows significant
deviations in collaborative perception under asynchrony, while SyncNet shows poor compensation
due to introducing noise in feature regeneration and irregularity-incompatible design. The third row
shows the results of CoBEVFlow, which achieves precise compensation and outstanding detections.

Visualization of BEV flow map. Figure 8 visualizes the feature map before/after compensation of
CoBEVFlow in Plot(a)(b), the corresponding flow map in Plot(c), and matching, detection results

9



Figure 8: Visualization of compensation with CoBEVFlow on IRV2V dataset. In subfigure(d), green boxes are
the objects’ ground truth locations, blue boxes are the detection results based on the historical asynchronous
features and red boxes are the detection results after compensation. CoBEVFlow achieves precise matching and
compensation with the BEV flow map and mitigates the negative impact of asynchrony to a great extent.

after compensation in Plot(d). The green boxes in Plot (d) are the ground truth, the blue boxes are the
historical detections with the matched asynchronous ROIs and the red boxes are the compensated
detections. We see that the BEV flow map can be precisely estimated and is beneficial for perceptual
feature alignment. The compensated detection results are more accurate than the uncompensated
ones.

5.4 Ablation Study

Table 2: Ablation Study on IRV2V dataset. Time en-
coding(TE), BEV flow on features, and the proposed
matcher all improve the performance.

Modules AP@0.50 / AP@0.70 ↑
TE Warped by Flow Matcher 300ms 500ms

Box Hungarian 0.724 / 0.473 0.644 / 0.388
✓ Box Hungarian 0.747 / 0.595 0.668 / 0.438
✓ Box Ours 0.764 / 0.611 0.571 / 0.399
✓ Feature Hungarian 0.779 / 0.690 0.739 / 0.614
✓ Feature Ours 0.831 / 0.757 0.815 / 0.687

We conduct ablation studies on the IRV2V
dataset. Table 2 assesses the effectiveness of the
proposed operations, including time encoding,
the object(feature/detected box) to warp, and
our ROI matcher. We see that: i) time encoding
encodes the irregular continuous timestamp and
makes the estimation more accurate; ii) Warp-
ing the features outperforms warping the boxes
directly a lot, which means the operation for fea-
tures shows superiority over the operation for
the detection results; and iii) our ROI matcher
shows more proper matching results than tradi-
tional Hungarian[41] matching.

6 Conclusion and limitation
We formulate the asynchrony collaborative perception task, which considers various unideal factors
that may cause communication latency or information misalignments during collaborative com-
munication. We further propose CoBEVFlow, a novel asynchrony-robust collaborative perception
framework. The core idea of CoBEVFlow is BEV flow, which is a collection of the motion vector
corresponding to each spatial location. Based on BEV flow, asynchronous perceptual features can
be reassigned to appropriate positions, mitigating the impact of asynchrony. Comprehensive experi-
ments show that CoBEVFlow achieves outstanding performance under all settings and far superior
robustness with asynchrony.

Limitation and future work. The current work focuses on addressing the asynchrony problem in
collaborative perception. It is evident that effective prediction can compensate for the negative impact
of temporal asynchrony in collaborative perception. Moreover, the generated flow can also be utilized
not only for compensation but also for prediction. In the future, we expect more works on exploring
the ROI-based flow generation design for collaborative perception and prediction tasks.

Acknowledgment. This research is supported by NSFC under Grant 62171276 and the Science
and Technology Commission of Shanghai Municipal under Grant 21511100900, 22511106101, and
22DZ2229005.
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A IRegular V2V (IRV2V)

To facilitate the research on asynchrony for collaborative perception, we use CARLA [39] (under
MIT license) to simulate IRregular V2V (IRV2V) dataset, which is the first collaborative perception
dataset with multiple asynchronies.

Asynchronous data collection. The number of collaborative vehicles in a scene ranges from 2
to 5. Each collaborative vehicle is equipped with 4 cameras for 360◦ view, a 32-channel LiDAR,
and GPS/IMU sensors. The ideal sample interval of the sensor is 100ms. Due to different asyn-
chronous factors, collaborative messages have asynchronous timestamps. There is a time offset
δs ∼ U(−50, 50)ms at the sampling starting point of non-ego vehicles. And all non-ego vehicles’
collaborative messages are sampled with time turbulence δd ∼ U(−10, 10)ms. Sensing information
at each timestamp of each agent contains 4 camera images with resolution 600× 800, and 32-channel
LiDAR points.

Data size. Assuming the model requires the use of information from the past 10 frames, our dataset
consists of a total of 8,449 collaborative samples, which include 8,449 point cloud inputs and 33,796
RGB images. We have split the dataset into training, validation, and testing sets, which contain 5,445,
994, and 2,010 samples, respectively.

Data analysis. Figure 9 presents some statistical analysis results regarding the IRV2V dataset. The
IRV2V dataset contains a total of 1,564,033 vehicles, with an average of 48.302 vehicles per scene. It
should be noted that the figure only displays the distribution of vehicles with speeds greater than 1
km/h. Considering real-world scenarios, there are around 1,203,793 moving vehicles in the dataset.
Plot (a) illustrates the distribution of moving vehicles with different speeds across all samples, ranging
from 1 to 105 km/h, with an average speed of 25.586 km/h, which achieves around 15km/h faster
compared to the majority of vehicles in the V2X-Sim[15]. Plot (b) shows the distribution of the total
number of vehicles per sample in the dataset, with the maximum number of vehicles being 113.

(a) Vehicle speed distribution. (b) Number of vehicles in the scene distribution.

Figure 9: Data distribution of IRV2V dataset. (a) shows the speed distribution of moving vehicles;
(b) shows the vehicle numbers distribution.

B Detailed information about experimental settings

Implement details. We conduct experiments on LiDAR-based part of IRV2V and DAIR-V2X[14]
dataset. Our feature encoder is PointPillars[40] based. And our backbone follows the setting in
CoAlign[17]. The difference is that we change the fusion method from self-attention to max-fusion.
We conduct training for a total of 60 epochs, starting with an initial learning rate of 2e-3. Subsequently,
at the 10th and 20th epochs, the learning rate decreases to 10% of its previous value. For IRV2V
dataset, we set the lidar range as x ∈ [−140.8,+140.8]m, y ∈ [−40,+40]m. The voxel size is
h = w = 0.4m. The feature map’s size is H = 200,W = 704. For DAIR-V2X dataset, we set the
lidar range as x ∈ [−100.8,+100.8]m, y ∈ [−40,+40]m. The voxel size is h = w = 0.4m. The
feature map’s size is H = 200,W = 504.
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Communication volume. Our communication volume is the same as Where2comm[1]. For
CoBEVFlow, we control the communication volume by adjusting the maximum number of generated
ROIs. Specifically, the average number of voxels contained in each ROI region is 40, and we limit
the maximum number of generated ROIs to K∥R∥. Correspondingly, we modify the information
exchange in Where2comm to include the top 40×K∥R∥ blocks based on their scores on the spatial
confidence map. In practical scenarios, the actual communication volume is influenced by factors
such as the feature dimension and floating-point precision. To simplify the expression, we uniformly
represent the communication volume using the logarithm to the base 2 of the voxel count. The
communication volume is

log2
(
40×K∥R∥

)
, (6)

where K∥R∥ is the maximum number of generated ROIs, and 40 is the average number of voxels in
each ROI.

C Benchmarks

We conduct extensive experiments on current collaborative perception methodologies. Table 3 and
Table 4 present the detection performance under the expectation of time interval from 0 to 500ms on
IRV2V and DAIR-V2X[14] respectively, which correspond to the numerical results shown in Figure
4 in the main text. We see that CoBEVFlow consistently achieves significant improvements over
previous methods on both datasets and the leading gap is bigger when the expectation of the time
interval is higher.

Table 3: Performance of CoBEVFlow and other baseline methods under the expectation of time
interval from 0 to 500ms on IRV2V dataset. CoBEVFlow outperforms all the baseline methods and
shows great robustness under any level of asynchrony.

Expectation of interval (ms) 0 100 200 300 400 500

Model / Metric AP@0.50 ↑
Single 0.647

Late Fusion 0.828 0.638 0.478 0.371 0.324 0.308
V2VNet 0.811 0.747 0.710 0.663 0.626 0.591
V2X-ViT 0.781 0.737 0.692 0.641 0.598 0.575
DiscoNet 0.742 0.728 0.704 0.673 0.647 0.625

Where2comm 0.864 0.758 0.609 0.510 0.455 0.431
Where2comm+SyncNet 0.864 0.721 0.672 0.654 0.649 0.625

CoBEVFlow (ours) 0.864 0.841 0.834 0.831 0.812 0.815
Model / Metric AP@0.70 ↑

Single 0.535

Late Fusion 0.751 0.385 0.285 0.235 0.219 0.223
V2VNet 0.744 0.607 0.540 0.480 0.439 0.408
V2X-ViT 0.630 0.577 0.545 0.511 0.489 0.479
DiscoNet 0.624 0.612 0.586 0.559 0.537 0.519

Where2comm 0.827 0.613 0.458 0.388 0.362 0.359
Where2comm+SyncNet 0.827 0.602 0.555 0.549 0.545 0.536

CoBEVFlow (ours) 0.827 0.781 0.761 0.757 0.714 0.687

We extended our experiments to include the V2XSet[5] dataset. V2XSet is a simulated dataset where
each scenario involves at most one roadside unit and 2 to 4 vehicles as collaborative objects. The
outcomes of these experiments are summarized in Table 5. Under time delays of 300ms and 500ms,
the AP@0.70 scores achieved by CoBEVFlow are 0.776 and 0.713 respectively. These values surpass
the best baseline methods by 17.0% and 10.6% respectively, and are notably higher than the results of
single-object detection(0.556). This once again underscores CoBEVFlow’s ability to maintain high
levels of collaborative perception performance in scenarios involving temporal asynchrony.
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Table 4: Performance of CoBEVFlow and other baseline methods under the expectation of time
interval from 0 to 500ms on DAIR-V2X[14] dataset. CoBEVFlow outperforms all the baseline
methods and shows great robustness under any level of asynchrony.

Expectation of interval (ms) 0 100 200 300 400 500

Model / Metric AP@0.50 ↑
Single 0.674

Late Fusion 0.709 0.664 0.616 0.600 0.595 0.593
V2VNet 0.626 0.623 0.622 0.617 0.612 0.608
V2X-ViT 0.725 0.714 0.704 0.693 0.681 0.681
DiscoNet 0.645 0.630 0.620 0.606 0.597 0.590

Where2comm 0.807 0.739 0.603 0.698 0.686 0.676
Where2comm+SyncNet 0.807 0.719 0.706 0.695 0.687 0.679

CoBEVFlow (ours) 0.807 0.765 0.749 0.738 0.728 0.726
Model / Metric AP@0.70 ↑

Single 0.587

Late Fusion 0.538 0.479 0.467 0.464 0.466 0.465
V2VNet 0.556 0.555 0.554 0.552 0.548 0.548
V2X-ViT 0.556 0.553 0.550 0.545 0.541 0.541
DiscoNet 0.553 0.537 0.530 0.523 0.519 0.518

Where2comm 0.662 0.603 0.587 0.577 0.569 0.566
Where2comm+SyncNet 0.662 0.602 0.588 0.587 0.584 0.580

CoBEVFlow (ours) 0.662 0.621 0.601 0.599 0.592 0.588

Table 5: We conduct experiments on the V2XSet dataset, comparing the performance of CoBEVFlow
and other baseline methods under different expected time intervals. CoBEVFlow outperforms all the
baseline methods and shows great robustness under any level of asynchrony.

Expectation of interval (ms) 0 300 500

Model / Metric AP@0.50/AP@0.70 ↑
Single 0.720 / 0.556

Late Fusion 0.881/0.751 0.460/0.307 0.442/0.333
V2VNet 0.906/0.781 0.581/0.334 0.524/0.341
V2X-ViT 0.912/0.751 0.712/0.529 0.642/0.499

Where2comm 0.901/0.847 0.677/0.542 0.612/0.511
Where2comm+SyncNet 0.901/0.847 0.801/0.663 0.781/0.645

CoBEVFlow (ours) 0.901/0.847 0.871/0.776 0.841/0.713
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