
Supplementary of PRIOR: Personalized Prior for
Reactivating the Information Overlooked in Federated

Learning

A Glossary, Some Basic Knowledge and Details about Implementations

A.1 Glossary

The main notations in this paper are shown in Table 5.

Table 5: The glossary of notations mentioned in this paper

Notation Implication
·i · on ith client
fi local loss function
Fi local objective function
F global objective function
E· expectation on ·
H entropy
P probability measure
Pef probability in exponential family
Psef probability in scaled exponential family
Ω· complete set of ·
F generic σ-algebra
σ(·) σ-algebra derived from ·
{Ω,F} measurable space

{Ω, σ(Ω),P} probability measurable space
P̂ estimated probability

xi,yi, di input data, label data, the pairs of them
w global model parameter
Θi local information
θi personalized parameters

winit, θinit function to initialize parameters
µi the function to generate mean parameter
si the function to generate natural parameter

x,y,ŵ,θ,µ,s generic point notations
T,N,R,S number of total global epochs, clients, local epochs, number of sampling clients

t,r global epochs, local epochs
β,η,ηα,λ,λ̂ scalar notations
g, h, hλ generic function notations
Dg Bregman divergence derived from g
Dprox Bregman divergence proximal mapping
Denv Bregman Moreau envelope
∇,D,∇2 gradient, Jocobian and Hessian operator

∆ deviation from mean
·∗ the Fenchel conjugate of ·
L averaged local test loss
G averaged global test loss
·̄ mean of · over clients

I ,Im identity mapping, identity matrix
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A.2 Bregman Divergence

Bregman divergence is a general distance satisfying that its first-order moment estimation is the point
that minimizes the expectation of the distance to all points for all measurable functions on Rd. In
other words, the given distance D satisfies Condition ( 15):

∀X ∈ {Rd,F ,P},E[X] = argminyE[D(X, y)] (15)

Eq. (16) is the definition of Bregman divergence:

Dg(x, y) := g(x)− g(y)− ⟨∇g(y), x− y⟩

=

∫ x

y

∇g(t)−∇g(y)dt (16)

where g is a convex function. For convenience, in this paper, g is assumed to be strictly convex, proper
and differentiable, so that the equation above Eq. (16) are well-defined. In the perspective of Taylor
expansion, Bregman divergence is the first-order residual of g expanded at point y valued at point
x, which is the natural connection between Bregman divergence and Legendre transformation. The
Bregman divergence does not satisfy the distance axiom, but it provides some of the properties we
need, such as non-negative distance. Hence, the selected function g should be convex. Furthermore,
if one wants the distance to have a good property that x = y ↔ Dg(x, y) = 0, one needs g to be
strictly convex.

A.3 Non-Maximum Entropy

Besides, the non-maximum entropy rule approach is also worth considering, but we focus on
maximum entropy prior in this section. See [63, 24, 38, 23] for additional information of non-
maximum entropy assumptions.

A.4 Future PFL

Besides the FTML, Bayesian learning, EM, and transfer learning mentioned in the main paper,
neural-collapse-motivated methods and life-long learning are also promising methods to handle PFL
problem [47, 30, 73].

PFL could also fucos on personalizing other characteristics about FL system, e.g., communications,
resource-constrained device. For example, this paper [80] gives a data distillation (compression) [78,
70] method to reduce communication cost, and the compressed data itself contains personalize
posterior information.

A.5 Personalized Prior and MAML

Based on previous derivations, to obtain a deployable algorithm, our remaining task is to determine Φ.
In this section, inspired by MAML, we briefly introduce a meta-step-based implementation method.
The mean parameter is used to represent the prior under SX-family prior assumption given any λ
and g in this paper. The mean of the SX-family prior in Eq. (8) is used in regular term, which can be
personalized in each client i as µi, corresponding to µΦ in Eq. (11), as shown in Figure 1. Motivated
by this, we use MAML to learn the personalized regularization (or personalized prior in Bayesian
learning) in Section 5. For example, meg in Eq. (14) uses MAML on the Bregman-Moreau envelope
Denvg∗,λ−1fi by substituting it into J in Section 2 and Φ in Eq. (11).

A.6 Sampling Method in Bayesian Learning

Bayesian methods are a elegant solution to the complex issue of heterogeneous data, as they operate
on a principle whereby the model allocates increasing attention to local data as available, and derives
insight from prior information when local information is scarce. Furthermore, Bayesian modeling
brings fresh probabilistic insights to PFL regularization techniques, while simultaneously providing
a flexible framework for exploring novel strategies. Bayesian modeling, as well as the expectation
maximuzatioin and maximum a posteriori estimate (EM-MAP) [15], provide our personalized prior
approach with straightforward theoretical support, as well as more general perspectives for analysis.
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Table 6: Complexity Comparison

Complexity/Methods FedEM FedAvg pFedMe Per-FedAvg FedAMP pFedBreD (ours)
Sys. Memory O(NM) O(N) O(N) O(N) O(N) O(N)
Sys. Time O(NTRM) O(NTR) O(NTRK) O(NTR) O(NTRK) O(NTRK)

Meanwhile, it addresses the cost of additional sampling in the classic and approximate Bayesian
learning paradigm with MAP, the regularization method.

In Bayesian modeling, the EP global loss provides more information that we want to use for local
training due to its zero-avoiding property. [56]

The sampling methods used to calculate the solution of Bayesian Model mentioned in this paper can
be importance sampling, MCMC or others. In this work, we use the approximation Bayesian methods.
See more details in [2]. The local training process based on regular terms differs from Bayesian
learning based on sampling, i.e., each time a model needs to be obtained by sampling the model
distribution under the current parameters. We choose to use Bayesian MAP as a point estimation as
our estimation method, thus eliminating steps such as sampling and reparameterization to improve
inference efficiency. The personalized model sampled from local training can be seen as the results
from random data sampling using SGD or the mean parameter directly.

A.7 First-order Methods

There are three parts in Eq. (13) we need to deal with, and the first-order methods are as shown below:

Jacobian Matrix of Mean: specifically, utilizing the prior selection strategy discussed in Section 4,
we have Dµi(w) = I − η∇2Φ(w). Using different Φ functions yields varying results. For instance,
with first-order methods and the last term removed, we get the approximation Dµi ← I .

Hessian Matrix: with first-order methods, we let ∇2g∗(·) = Im. It happens when assuming θi
obeys the spherical Gaussian by letting g = 1

2 || · ||
2. Moreover, we can assume θi obeys the general

multivariable Gaussian by letting g = ⟨·,Σ−1·⟩ and∇2g(·) = Σ−1 ⪰ 0.

Proximal Mapping: given µi(w), the proximal mapping part Dproxg∗,λ−1fi(µi(w)) can be ap-
proximately solved with numerical methods, e.g., gradient descent methods. In other words, we can
alternately calculate µi(w) on each client and then fix µi(w) in each local epoch with EM.

A.8 Complexity

Since the general process of our implementations, FedAMP and pFedMe are the same as shown
in pFedBreD framework, these methods share the same complexity of memory/calculation,
O(N)/O(NTRK) as shown in Table 6. The complexities of both FedAvg and Per-FedAvg are
O(N)/O(NTR) since the original methods of them do not need a approximate proximal mapping
solution, and therefore are free on K, the number of iterations to calculate the solution. The complex-
ity of FedEM is O(NM)/O(NTRM), where M is the components of the distributions we assume,
due to the calculation of M components in each global epoch.

A.9 Broader Impacts

In recent years, PFL has found use not only in predictive tasks like mobile device input methods
but also in areas where privacy is paramount, such as healthcare and finance. However, before its
widespread deployment, several critical factors must be taken into consideration.

One of the primary concerns regarding PFL is its deployment cost. It involves significant computa-
tional resources, making it a costly affair. Additionally, client transparency is an important issue that
needs attention. Clients have the right to know what data is being collected and how it is used.

Another factor that complicates PFL’s deployment is the differences in user behavior and hardware
and software configurations between clients. These differences can affect the performance of the
algorithm and require bespoke solutions for each client.
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In addition, PFL’s robustness is another essential aspect to consider. Real-world environments are
often unpredictable and can interfere with the algorithm’s performance, leading to erroneous results.
Therefore, it is necessary to ensure that the algorithm is sufficiently robust before deploying it.

Lastly, even though PFL offers significant benefits, potential drawbacks should not be overlooked.
All stakeholders involved in its deployment need to approach this technology with caution and
forethought. By considering these factors, we can harness the power of PFL while minimizing its
limitations and risks.

B Details of Equations

B.1 Hidden Information

From the definition of KL divergence, we have

argmin
w

EiEdiKL(P(yi|xi)||P̂(yi|xi, w))

= argmin
w

E logP(yi|xi)− log P̂(yi|xi, w))

= argmin
w

E− log P̂(yi|xi, w))

= argmax
w

E log P̂(yi|xi, w))

(17)

This is used in Eq. (5) in the main paper.

B.2 Bregman Divergence and X-Family

We use the SX-family due to its computational advantages. While other families of distributions may
be able to handle special cases, they may not be as computationally efficient.

If proper and strictly convex function g is differentiable, with g∗ the Fenchel conjugate function of g,
Dg(x, y) the Bregman divergence, µ dual point of s, we have:

Dg∗(V, µ) = g∗(V) + g(s)− ⟨V, s⟩ = Dg[s,∇g∗(V)] (18)

From the definition of Bregman divergence , ∇g(s) = µ and definition of g∗ Fenchel conjugate on
convex function g ,we have:

Dg∗(V, µ) = g∗(V)− g∗(µ)− ⟨∇g∗(µ),V − µ⟩
= g∗(V)− g∗(µ)− ⟨s,V − µ⟩
= g∗(V)− ⟨s,V⟩ − g∗(µ) + ⟨µ, s⟩
= g∗(V)− ⟨s,V⟩+ g(s)

(19)

Similarly, we have Dg[s,∇g∗(V)] = g∗(V)− ⟨s,V⟩+ g(s). This property is used in Eq. (3) and ( 4)
in the main paper.

Table 7: Bregman divergence and exponential family. (note ξ = ⟨·, ln ·⟩)

Name Gaussian Bernoulli Possion Exponential

Domain Rd {0, 1} N R++

g(y) 1
2 ||y||

2
Σ−1 ln(1 + ey) ey − ln(−y)

∇g(y) y exp{y}
1+exp{y} ey −y−1

g∗(x) 1
2 ||x||

2
Σ−1 ξ(x) + ξ(1− x) x ln(x)− x − ln(x)− 1

∇g∗(x) x ln( x
1−x ) ln(x) −x−1

Dg∗(x, y) 1
2 ||x− y||2Σ−1 ln(1 + e(1−2x)y) ey + ξ(x)− x(y + 1) x

y − ln x
y − 1

Table 7 shows parts of the relationship between specific g and related member in exponential family.
See [6] for more about the relationships between g that derives Bregman divergence Dg and related
derived divergence (e.g., ·Σ−1· & Mahalanobis distance,

∑
· · log · & KL divergence / generalized

I-divergence and etc.).

19



B.3 Expectation Maximization

The details of Eq. (7) in the main paper is shown in Eq. (20).∑
i

logP(yi|xi, w) =
∑
i

log

∫
P(yi,Θi|xi, w)dΘi =

∑
i

∫
Q(Θi) log

P(yi,Θi|xi, w)

Q(Θi)
dΘi

≥
∑
i

∫
logQ(Θi)

P(yi,Θi|xi, w)

Q(Θi)
dΘi =

∑
i

EQ(Θi) log
P(yi,Θi|xi, w)

Q(Θi)

=
∑
i

EQ(Θi) logP(yi,Θi|xi, w)− logQ(Θi)

≥
∑
i

EQ(Θi) logP(yi,Θi|xi, w) =
∑
i

EQ(Θi)[log P̂(yi|xi,Θi, w) + logP(Θi|xi, w)]

=
∑
i

EQ(Θi)[log P̂(yi|xi,Θi, w) + log

∫
yi

P(Θi|di, w)P(yi|xi, w)]

≥
∑
i

EQ(Θi)[log P̂(yi|xi,Θi, w) +Eyi|xi,w logP(Θi|di, w)]

(20)
In Eq. (20), we use the concavity of logarithmic function for the first inequality and entropy
H(Q(Θi)) = EQ(Θi) − logQ(Θi) ≥ 0 the for the second. (probability Q(Θi) ∈ [0, 1]; The
first equal sign holds, when Q(Θi) = P(Θi|di, w).) The last inequality is derived from the concavity
of the logarithmic function.

Why is a-posteriori distribution a prior in this modeling and problem formulation? We assume
Θi|di, w ∼ P̂sef (Θi;λ, si(w; di), g), and have:

EQ(Θi)[log P̂(yi|xi,Θi, w) +Eyi|xi,w logP(Θi|di, w)]
=EQ(Θi) log P̂(yi|xi,Θi, w)

+EQ(Θi)Eyi|xi,w[logP(Θi|xi, w) + logP(yi|Θi, xi, w)− logP(yi|xi, w)]

(21)

Optimization local problem taken on both side in any Q sampling, we have:

argmin
Θi

{log P̂(yi|xi,Θi, w) +Eyi|xi,w logP(Θi|di, w)}

=argmin
Θi

{log P̂(yi|xi,Θi, w)

+Eyi|xi,w[logP(Θi|xi, w) + logP(yi|Θi, xi, w)− logP(yi|xi, w)]}
=argmin

Θi

{log P̂(yi|xi,Θi, w)︸ ︷︷ ︸
Predicted Likelihood

+Eyi|xi,w[logP(Θi|xi, w)︸ ︷︷ ︸
Prior Distribution

+ logP(yi|Θi, xi, w)︸ ︷︷ ︸
Assumed Likelihood

]}

(22)

Thus, we do maximum a-posteriori estimation alongside added predicted likelihood, which is virtually
doing assumptions on prior distribution and take mixed likelihood. Moreover, taking assumption
on a-posteriori distribution leads calculation efficiency. Note that the hyperparameters should be
carefully discussed.

Bi-level optimization trick:

max
x,y

f(x, y) ≥ max
x

max
y

f(x, y)∑
i

ai max f(x, yi) = max
∑
i

aif(x, yi)
(23)

In Eq. (8), we use the two properties of max shown in Eq. (23). Moreover, these properties are also
used to build the upper bound of Eq. (10) as Eq. (11).

B.4 Notations of Deviations

The notations are shown as follows:
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Li,c: The averaged local test loss of the ith personalized model over its own local test with label c.
The value equals zero on the clients without c-labeled data.

L̄c: The mean of the averaged local test loss over all personalized models. Each Li,c is weighted by
the ratio of the number of own test data with label c.

Gi,c: The averaged global test loss of the ith personalized model over the global test with label c.

Ḡc: The mean of the averaged global test loss over all personalized models.

The deviations of the averaged global and local test loss of the ith personalized model on class c:
∆Gi,c = Gi,c − Ḡc and ∆Li,c = Li,c − L̄c.

C More About Experiments

The access of all data and code is available 9 .

C.1 More about implementations

The three implementations of µi, i.e. lg, meg and mh, represent loss gradient, memorized envelope
gradient and memorized hybrid respectively. Memorized means that we choose the gradient of
Bregman-Moreau envelope ∇Fi(w

(t)
i,r−1) as η[w

(t−1)
i,R − θ

(t)
i,r−1], where η ≥ 0 is a step-size-like

hyper-parameter. Each local client memorizes their own local part of the latest global model w(t) at
the last global epochs w(t−1)

i,R , instead of w(t)
i,r−1 in practice.

C.2 Variant

Based on the facts, the results in Table 1 shows the instability of our personalized models. Here we
propose a variant of mh, shown in Eq. (24), trying to improve the robustness of personalized model
on the original mh, which use Φi ← fi + Fi.

Φi ← F̃i,η̃α,η̃ := η̃αfi ◦ (· − η̃∇fi) + Fi

µi,r ← w
(t)
i,r−1 − η∇F̃i,η̃α,η̃(w

(t)
i,r−1)

= w
(t)
i,r−1 − η{η̃α∇fi[w(t)

i,r−1 − η̃∇fi(w(t)
i,r−1)]} − η{w(t−1)

i,R − θ
(t)
i,r−1}

(24)

This method in Eq. (24) performance almost the same as the orginal mh when ηα is small, but it
provides flexibility to tune the hyper-parameter and decide whether to focus more on the current
gradient step or the meta-gradient step by tuning η̃α and η̃. η̃α ← ηα/η and η̃ ← ηα are used in
practice.

C.3 Implementations of Per-FedAvg

We implement Per-FedAvg with the first-order method [20] and fine-tune the personalized model
twice, with each learning step of the global and personalized step sizes.

C.4 Details of Tricks, Datasets and Models

Tricks are shown as follows:

FT: fine-tuning single personalized model one more step for local test.

AM: aggregate momentum, the same trick used in 12th line of Algorithm 1.(To compare more fairly
between methods with single global model; β = 2 for methods and employing AM)

Datasets settings are shown as follows:

CIFAR-10: the whole dataset is separated into 20 clients, and each client has data of 3 classes of
label. [18, 39]

9https://github.com/BDeMo/pFedBreD_public
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FEMNIST: we use non-i.i.d. FEMNIST from LEAF benchmark with fraction of data to sample of
5% and fraction of training data of 90%. [11]

FMNIST: the whole fashion-MNIST dataset is separated into 100 clients, and each client has data of
2 classes of label. [65, 67]

MNIST: the whole MNIST dataset is separated into 100 clients, and each client has data of 3 classes
of label. [65, 42]

Sent140: we use non-i.i.d text dataset Sent140 from LEAF benchmark with fraction of data to sample
of 5%, fraction of training data of 90% and minimum number of samples per user of 3. Then we
re-separate Sent140 into 10 clients with at least 10 samples. [11]

Model settings are shown as follows:

CNN: for the image data, we use convolutional neural network of CifarNet [28].

DNN: the non-linear model is 2 layers deep neural network with 100-dimension hidden layer and
activation of leaky ReLU [51] and output of softmax.

MCLR: the linear model, multi-class linear regression, is 1 layer of linear mapping with bias, and
then output with softmax.

LSTM: text data model consists of 2 LSTM layers [27] as feature extraction layer of 50-dimension
embeding and hidden layer and 2 layers deep neural network as classifier with 100-dimension of
hidden layer.

C.5 Non-I.I.D Distribution

Figure 4 shows the non-i.i.d. distribution of MNIST, CIFAR-10, FMNIST, FEMNIST and Sent140.
Sent140 is a bi-level classification so each client has two class of label data and we directly use the
LEAF benchmark [11] and Dirichlet distribution of α = 0.5 to separate users into 10 groups (See the
code for more details).
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Figure 4: The visualization of the non-i.i.d. data distributions of MNIST, CIFAR-10, FMNIST,
FEMNIST and Sent140.
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C.6 More About Hyper-Parameter Effect

We post the hyper-parameter effects of η and λ on FEMNIST, FMNIST, MNIST and Sent140 and of
η on CIFAR-10 in Figure 5- 8. We haven’t put the effects of λ on CIFAR-10 for better visualization of
the effects of more sensitive eta, as well as our equipment limitations, and the fact that other non-linear
models for image classification are already demonstrated on FEMNIST, FMNIST and MNIST. The
results of these figures are in the same hyper-parameter settings as mentioned in Section 6.1 except
the varying hyper-parameters.

FEMNIST-MCLR-G FEMNIST-MCLR-P FEMNIST-DNN-G FEMNIST-DNN-P

Figure 5: Hyper-parameter effect: The left, middle and right bars in each figure respectively represent
λ, η and test accuracy, ranges of which are respectively [0,100], [0,1] and [0,1] increasing from
bottom to top (color from blue to red refers to the accuracy from 0 to 1).

FMNIST-MCLR-G FMNIST-MCLR-P FMNIST-DNN-G FMNIST-DNN-P

Figure 6: The left, middle and right bars in each figure respectively represent λ, η and test accuracy,
ranges of which are respectively [0,100], [0,1] and [0,1] increasing from bottom to top (color from
blue to red).

MNIST-MCLR-G MNIST-MCLR-P MNIST-DNN-G MNIST-DNN-P

Figure 7: The left, middle and right bars in each figure respectively represent λ, η and test accuracy,
ranges of which are respectively [0,100], [0,1] and [0,1] increasing from bottom to top (color from
blue to red).

C.7 More about Deviation Analysis

The deviations of the global and local test on each settings are shown in Figure 9 mentioned in
Section 6.2 in the main paper.

C.8 Experiments about Instability and Robustness on Aggregation Noise and Data
Heterogeneity

In this section, we experimentally demonstrate the instability of the global model in mh at small
aggregation ratios by comparing the performances of clients with different aggregation numbers.
Additionally, we also conduct experiments on different data heterogeneity settings.
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Sent140-LSTM-G Sent140-LSTM-P CIFAR-10-CNN-G CIFAR-10-CNN-G

Figure 8: The left, middle and right bars in each figure respectively represent λ and test accuracy,
ranges of which are respectively [0,100] and [0,1] increasing from bottom to top (color from blue to
red). The ranges of η are respectively [0,0.5] and [0,0.4] in settings of CIFAR-10-CNN and Sent140.

0 1 2 3 4 5 6 7 8 9

Class Index

2

0

2

4

6

8

L
o
ss

 D
ev

ia
ti

o
n

meg (ours)

PerFedAvg

lg (ours)

pFedMe

mh (ours)

0 1 2 3 4 5 6 7 8 9

Class Index

0.2

0.0

0.2

0.4

0.6

L
o
ss

 D
ev

ia
ti

o
n

meg (ours)

PerFedAvg

lg (ours)

pFedMe

mh (ours)

0 1 2 3 4 5 6 7 8 9

Class Index

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

L
o
ss

 D
ev

ia
ti

o
n

lg (ours)

meg (ours)

mh (ours)

PerFedAvg

pFedMe

0 1 2 3 4 5 6 7 8 9

Class Index

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

L
o

ss
 D

ev
ia

ti
o

n

lg (ours)

meg (ours)

mh (ours)

PerFedAvg

pFedMe

FMNIST-DNN-G FMNIST-DNN-L FMNIST-MCLR-G FMNIST-MCLR-L

0 7 14 21 28 35 42 49 56

Class Index

2

0

2

4

L
o
ss

 D
ev

ia
ti

o
n

lg (ours)

mh (ours)

meg (ours)

pFedMe

PerFedAvg

0 7 14 21 28 35 42 49 56

Class Index

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

L
o
ss

 D
ev

ia
ti

o
n

lg (ours)

mh (ours)

meg (ours)

pFedMe

PerFedAvg

0 7 14 21 28 35 42 49 56

Class Index

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

L
o
ss

 D
ev

ia
ti

o
n

PerFedAvg

pFedMe

meg (ours)

0 7 14 21 28 35 42 49 56

Class Index

6

4

2

0

2

4

L
o
ss

 D
ev

ia
ti

o
n

PerFedAvg

pFedMe

meg (ours)

lg (ours)

mh (ours)

FEMNIST-DNN-G FEMNIST-DNN-L FEMNIST-MCLR-G FEMNIST-MCLR-L

0 1 2 3 4 5 6 7 8 9

Class Index

6

4

2

0

2

4

6

8

L
o
ss

 D
ev

ia
ti

o
n

lg (ours)

PerFedAvg

mh (ours)

meg (ours)

pFedMe

0 1 2 3 4 5 6 7 8 9

Class Index

1.5

1.0

0.5

0.0

0.5

1.0

L
o
ss

 D
ev

ia
ti

o
n

lg (ours)

PerFedAvg

mh (ours)

meg (ours)

pFedMe

0 1

Class Index

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

L
o
ss

 D
e
v
ia

ti
o
n

lg (ours)

pFedMe

mh (ours)

meg (ours)

PerFedAvg

0 1

Class Index

0.06

0.04

0.02

0.00

0.02

0.04

0.06

L
o
ss

 D
e
v
ia

ti
o
n

lg (ours)

pFedMe

mh (ours)

meg (ours)

PerFedAvg

CIFAR-10-CNN-G CIFAR-10-CNN-L Sent140-LSTM-G Sent140-LSTM-L

Figure 9: The loss deviation of our experiments in Section 6 on the first client on settings: FEMNIST-
DNN/MCLR, FMNIST-DNN/MCLR, CIFAR-10-CNN and Sent140-LSTM.

The experimental settings in Section 6.1 of the main paper have been utilized, with the exception
of the client count for aggregation at the culmination of each global epoch. To ensure clarity, we
present Table 3 without well-tuning hyper-parameters (which are random selected in a narrow range
with Gaussian variance of 0.01). Notably, supplementary experiments have been repeated 5 times to
enhance the robustness of our analysis.

The results of experiments about different Non-IID settings are shown in Table 4. The FMNIST
in these experiments are equal number of total local data with different local data distribution the
distribution are shown in Figure 10. All experiments employ full aggregation of 40 clients and only 1
local epoch to get rid of the effects from aggregation noise and client drift caused by multiple local
update.

An interesting example is that if the local classes are only two classes in the case of an extremely
unbalanced heterogeneous distribution, the underlying local test accuracy for a personalized model
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Figure 10: Different heterogeneous distributions of FMNIST. The horizontal and vertical axes
represent the different classes and clients respectively.

Table 8: Additional experiments with new baselines. (accuracy)

Methods / Datasets & Models FEMNIST / DNN CIFAR-10 / CNN Sent140 / LSTM Average Decrease by Noise
Aggregation Ratio 10%→ 5% 20%→ 10% 40%→ 20% -
FedPAC [68] 62.2%→ 60.7% 78.9%→ 77.3% 68.1%→ 66.8% 1.5%
FedHN [64] 61.1%→ 59.6% 77.5%→ 76.9% 71.2%→ 70.1% 1.1%
Fedfomo [75] 60.1%→ 58.9% 71.4%→ 70.6% 70.1%→ 68.9% 1.1%
Ditto [44] 52.9%→ 52.2% 72.4%→ 72.1% 71.0%→ 70.3% 0.6%
mh(ours) 64.9%→ 64.3% 79.4%→ 79.1% 72.0%→ 71.8% 0.4%

will be at least the probability of the maximum probability class being sampled, say 90% of the first
class and 10% of the second class, then a learned knowledge model is at least 90% accurate.

C.9 Additional Experiments

The additional experiments with more baselines are shown in Table 8 with the same settings mentioned
in the Table 1.

D Details of Theorems

D.1 Proof Sketch

We prove the theorems primarily through two supporting lemmas. The first lemma provides the upper
bound of the global iterative error, while the second lemma restricts the upper bound of the error
between the actual local update and theoretical expectation.

D.2 Related Notations

·(t)i,r represents the · on ith client at rth local epoch of tth global epoch.

The Local Sampled Data d̃i ∈ di

The Approximated Personalized Model θ̃(t)i,r := θ̃(µ
(t)
i,r).

The Uniform Local Data Sampling Expectation Ed̃i
:= 1

|di|
∑

d̃i∈di

The Unbiased Empirical First Moment Ed̃i
∇f̃i(θ; d̃i) = ∇fi(θ)

The Global Minimizer w∗.

The Local Minimizer θ∗(t)i,r := Dproxg∗,λ−1fi(µ
(t)
i,r).

The Local Approximate Error ∆(t)
i,r := θ̃

(t)
i,r − θ

∗(t)
i,r .

The Global Approximate Squared Error ∆(t) := E||w(t) − w∗||2
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The Approximated Global Gradient g(t)
i,r = λDµ

(t)
i,r∇2g∗(µ

(t)
i,r)[µ

(t)
i,r − θ̃

(t)
i,r ]

The (first-order) Approximated Envelope Gradient: ∇F̃i(w).

|| · ||m is any matrix norm, with ||I||m = ûm.

IE , indicator function on event E .

The Virtual Global Gradient: g(t) = 1
SR

∑
i∈S(t)

∑R
r=1 g

(t)
i,r .

The Virtual Global Step-size: α̃m = αmβR.

The Expected Smooth [26] Coefficient of F and Fi: LF· LFi .

Bounded Deviation Ratio of Strategy Disturbance Coefficient σΦ.

D.3 Basic Propositions

Proposition 1 (µ-strongly convex). If f is µ-strongly convex, we have:

⟨∇f(x)−∇f(y), x− y⟩ ≥ µ||x− y||2

||∇f(x)−∇f(y)|| ≥ µ||x− y||

Proposition 2 (L-smooth). If f is L-smooth, we have:

⟨∇f(x)−∇f(y), x− y⟩ ≤ L||x− y||2

||∇f(x)−∇f(y)|| ≤ L||x− y||
||∇f(x)−∇f(y)||2 ≤ 2LDf (x, y)

Proposition 3 (Jensen’s inequality). If f is convex, we have:

EXf(X) ≥ f(EXX)

. A variant of the general one shown above:

||
N∑
i=1

xi||2 ≤ N
N∑
i

||xi||2

.

Proposition 4 (triangle inequality). The triangle inequality:

||A+B|| ≤ ||A||+ ||B||

Proposition 5 (matrix norm compatibility). The matrix norm compatibility, A ∈ Ra×b, B ∈
Rb×c, v ∈ Rb:

||AB||m ≤ ||A||m||B||m
||Av||m ≤ ||A||m||v||

Proposition 6 (Peter Paul inequality).

2⟨x, y⟩ ≤ 1

ϵ
||x||2 + ϵ||y||2

D.4 General Assumptions for Analysis

Assumption 1 (Prior selection). The given g∗ is µ̂g∗ -strongly convex and L̂g∗ -smooth: µ̂g∗ ||x−y|| ≤
||∇g∗(x)−∇g∗(y)|| < L̂g∗ ||x− y||. and ||∇2g∗(·)||m ≤ L̂g∗ (Examples are in Appendix A.7).

Assumption 2 (Smooth envelope assumption). For each local envelope Ei(·) = [Fi ◦ µ−1
i ](·) =

Denvg∗,λ−1(·)), we have ||∇Ei(x) − ∇Ei(y)||2 ≤ 2L̂Ei
DEi

(x, y), note that Ei is convex,
DEi

(x, y) := Ei(x) − Ei(y) − ⟨∇Ei(y), x − y⟩. For simplification, we take L̂E := max L̂Ei
,∀i

and bounded difference on optimal point 0 ≤ DEi
(µi(w),µi(w

∗))

DFi
(w,w∗) ≤ τ .
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Assumption 3 (Strongly convex envelope settings). fi is µ̂fi-strongly convex: µ̂fi ||x − y|| ≤
||∇fi(x) − ∇fi(y)||, µ̂f = mini µ̂fi ,∀i; fi is L̂fi-smooth and non-convex : L̂fi ||x − y|| ≥
||∇fi(x) − ∇fi(y)||„ L̂f = maxi L̂fi ,∀i. Therefore, we have Fi is µ̂Fsc := λµ̂g + µ̂f -strongly
convex or µ̂Fnc

:= λµ̂g − L̂f -strongly convex, by tuning λ to make λµ̂g − L̂f > 0. We use µ̂F· as
the unified notation for both, for simplification.
Assumption 4 (Bounded local error). Since classical gradient descent is used locally, we assume
a unified local error bound, ∀(i, r, t), ||∇fi(θ̃(t)i,r ; di) + λ∇Dg∗(θ̃

(t)
i,r , µi)|| ≤ c

(t)
i,r ≤ ϵ̂,∀i, and a

local data sampling shift variance bound ∀θ,d ∈ di,Ed||∇f̃i(θ;d)−∇fi(θ; di)|| ≤ γfi ≤ γ̂f :=
max{γfi},∀i.
Assumption 5 (RMD meta-step function bound). ∀i,Φi with limited gradient, ||∇Φi(·)|| ≤ GΦ, and
Hessian||∇2Φi(w)||m ≤ γ̂Φ, therefore, ||Dµi(w)||m = ||I − η∇2Φi(w)||m ≤ ûm + ηγ̂Φ.
Assumption 6 (Bounded deviation ratio of strategy disturbance). We assume the local training
is not affected too much by the personalized prior strategies, which means we don’t want a large
discrepancy between the results of local strategies formulation and the calculation of local envelope
gradients given the prior on each client, which may cause a significant disturbance in the local
optimization objective due to the haphazard formulation of prior strategies. Given ∀, w, w′, we have:

||Dµi(w)−Dµi(w
′)||m

||∇E(µi(w))−∇E(µi(w′))||
≤ σΦ

max{||Dµi(w)||m, ||Dµi(w
′)||m}

max{||∇E(µi(w))||, ||∇E(µi(w′))||}
Assumption 7 (Optimal global gradient noise bound). ||∇Fi(w

∗)||2 ≤ σ2
Fi,∗, let σ2

F,∗ =

maxi σ
2
Fi,∗,∀i.

Assumption 8 (First-order approximate bound). ||∇Fi(w)−∇F̃i(w)|| ≤ ϵ1

D.5 General Lemmas

Lemma 1 (Local Samplng Proximal Bound). Under settings and assumptions in Section 5 and

Section D.4, if f is µ̂f -strongly convex, Ed̃i
||∆(t)

i,r ||2 ≤ 2
(µ̂f+λµ̂g∗ )2

[
γ̂2
f

|d̃i|
+ ϵ̂2] holds; if f is L̂f -smooth

and non-convex, Ed̃i
||∆(t)

i,r ||2 ≤ 2
(λµ̂g∗−L̂f )2

[
γ̂2
f

|d̃i|
+ ϵ̂2] holds, such that:

Ed̃i
||∆(t)

i,r ||
2 ≤ 2

µ̂2
F·

[
γ̂2
f

|d̃i|
+ ϵ̂2]

Proof. With Proposition 1, Assumption 3 and optimal condition of Fi(µ
(t)
i,r) on θ

∗(t)
i,r , we have:

||∆(t)
i,r ||

2 = ||θ̃(t)i,r − θ
∗(t)
i,r ||

2 ≤ 1

µ2
F·

||g(t)
i,r ||

2

Note that, g(t)
i,r = ∇f̃i(θ̃(t)i,r ; d̃i)+λ∇Dg∗(θ̃

(t)
i,r , µ

(t)
i,r). With Proposition 3 and Assumption 4, we have:

||g(t)
i,r ||

2 = ∇f̃i(θ̃(t)i,r ; d̃i)−∇fi(θ̃
(t)
i,r ; di) +∇fi(θ̃

(t)
i,r ; di) + λ∇Dg∗(θ̃

(t)
i,r , µi)

≤2{||∇f̃i(θ̃(t)i,r ; d̃i)−∇fi(θ̃
(t)
i,r ; di)||

2 + ||∇fi(θ̃(t)i,r ; di) + λ∇Dg∗(θ̃
(t)
i,r , µi)||2}

≤2{||∇f̃i(θ̃(t)i,r ; d̃i)−∇fi(θ̃
(t)
i,r ; di)||

2 + ϵ̂2}
Taking expectation on both sides, combining both inequalities above, we have:

Ed̃i
||∆(t)

i,r ||
2 ≤2{ 1

|d̃i|2
Ed||

∑
d∈d̃i

∇f̃i(θ̃(t)i,r ;d)−∇fi(θ̃
(t)
i,r ; di)||

2 + ϵ̂2}

≤2{ 1

|d̃i|2
∑
d∈d̃i

Ed||∇f̃i(θ̃(t)i,r ;d)−∇fi(θ̃
(t)
i,r ; di)||

2 + ϵ̂2}

≤2[
γ̂2
f

|d̃i|
+ ϵ̂2]
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Lemma 2 (Expected-Smooth Personalized Local Object). Under settings and assumptions in Sec-
tion 5 and Section D.4, the personalized local objective function is expected-smooth, such that:

||∇Fi(w)−∇Fi(w
′)|| ≤ (1 + σΦ)(ûm + ηγ̂Φ)||∇Ei(µi(w))−∇Ei(µi(w

′))||,∀w,w′;

||∇Fi(w)−∇Fi(w
∗)||2 ≤ 2(1 + σΦ)

2(ûm + ηγ̂Φ)
2L̂Ei
DE(µi(w), µi(w

∗)) ≤ 2L̂Fi
DFi

(w,w∗);

Ei||∇Fi(w)−∇Fi(w
∗)||2 ≤ 2L̂F [F (w)− F (w∗)] = 2L̂FDF (w,w

∗),

where L̂Fi
:= τ(1 + σΦ)

2(ûm + ηγ̂Φ)
2L̂Ei

and L̂F = max L̂Fi
,∀i.

Proof. With Assumption 5 and Assumption 6, we have:

||∇Fi(w)−∇Fi(w
′)||2 = ||Dµi(w)∇E(µi(w))−Dµi(w

′)∇E(µi(w
′))||

=||Dµi(w)∇E(µi(w))−Dµi(w
′)∇E(µi(w

′)) +Dµi(w)∇E(µi(w
′))−Dµi(w)∇E(µi(w

′))||
≤||Dµi(w)[∇E(µi(w))−∇E(µi(w

′))]||+ ||[Dµi(w
′)−Dµi(w)]∇E(µi(w

′))||
≤||Dµi(w)||m||[∇E(µi(w))−∇E(µi(w

′))]||+ ||[Dµi(w
′)−Dµi(w)]||m||∇E(µi(w

′))||
≤max{||Dµi(w)||, ||Dµi(w

′)||}||∇E(µi(w))−∇E(µi(w
′))||

+max{||∇E(µi(w))||, ||∇E(µi(w
′))||}|[Dµi(w

′)−Dµi(w)]||m
≤max{||Dµi(w)||, ||Dµi(w

′)||}||∇E(µi(w))−∇E(µi(w
′))||

+ σΦ max{||Dµi(w)||m, ||Dµi(w
′)||m}||∇E(µi(w))−∇E(µi(w

′))||
≤(1 + σΦ)(ûm + ηγ̂Φ)||∇E(µi(w))−∇E(µi(w

′))||

where the first two inequalities is by Proposition 4 and Proposition 5.

With the first inequality in our lemma is proven. With the proven one and Assumption 2, we have:

||∇Fi(w)−∇Fi(w
∗)||2 ≤2(1 + σΦ)

2(ûm + ηγ̂Φ)
2L̂EiDE(µi(w), µi(w

∗))

≤2(1 + σΦ)
2(ûm + ηγ̂Φ)

2L̂Ei
τDFi

(w,w∗)

≤2L̂Fi
DFi

(w,w∗);

Ei||∇Fi(w)−∇Fi(w
∗)||2 ≤2L̂F [F (w)− F (w∗)] = 2L̂FDF (w,w

∗)

where the client sampling expectation is taken in the final inequality.

Lemma 3 (RMD Personalized Prior Bound). Under settings and assumptions in Section 5 and
Section D.4, the relationship between ||∇Fi(w)|| and ||∇Ei(µi(w))|| is:

||∇Fi(w)|| ≤ (ûm + ηγ̂Φ)||∇Ei(µi(w))|| ≤ λL̂g∗(ûm + ηγ̂Φ)||µi(w)− θ∗i ||

Proof. Applying Proposition 5 and Assumption 5, ∇Fi(w) = Dµi(w)∇Ei(µi(w)), it’s easy to
prove the first inequality. Rewriting∇Ei(µi(w)) in detail as shown following, applying Proposition 5
and Assumption 1, the final inequality is proven:

∇Ei(µi(w)) = λ∇2g∗(µi(w))[µi(w)− θ∗i ]

Lemma 4 (Local Objective’s Client Sampling Error Bound). Under settings and assumptions in
Section 5 and Section D.4, the upper bound of local sampling error is:

ESt || 1
S

∑
i∈S(t)

∇Fi(w
(t))−∇F (w(t))||2 ≤ N/S − 1

N − 1

N∑
i

1

N
||∇Fi(w

(t))−∇F (w(t))||2

, where |S(t)| = S, ∀t.
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Proof. This lemma is the same lemma in [46, 65].

ESt || 1
S

∑
i∈S(t)

∇Fi(w
(t))−∇F (w(t))||2 =

1

S2
ES(t) ||

∑
i∈[N ]

Ii∈S(t)∇Fi(w
(t))−∇F (w(t))||2

=
1

S2
[
∑
i∈[N ]

ES(t) [Ii∈S(t) ]||∇Fi(w
(t))−∇F (w(t))||2

+
∑
i ̸=j

ES(t) [Ii∈S(t) , Ij∈S(t) ]⟨∇Fi(w
(t))−∇F (w(t)),∇Fj(w

(t))−∇F (w(t))⟩]

=
1

SN

N∑
i

||∇Fi(w
(t))−∇F (w(t))||2

+
∑
i ̸=j

S − 1

SN(N − 1)
⟨∇Fi(w

(t))−∇F (w(t)),∇Fj(w
(t))−∇F (w(t))⟩

=
1

SN
(1− S − 1

N − 1
)
∑
i∈[N ]

||∇Fi(w
(t))−∇F (w(t))||2

=
N/S − 1

N − 1

∑
i∈[N ]

1

N
||∇Fi(w

(t))−∇F (w(t))||2

where I· ∈ {0, 1} is indicator function, ES(t) [Ii∈S(t) ] = S
N and ES(t) [Ii∈S(t) , Ij∈S(t) ] =

S(S−1)
N(N−1) ,∀i ̸= j. Note that:

N∑
i

||∇Fi(w
(t))−∇F (w(t))||2 +

∑
i ̸=j

⟨∇Fi(w
(t))−∇F (w(t)),∇Fj(w

(t))−∇F (w(t))⟩ = 0.

Lemma 5 (Variance of Global Aggregation on Client Sampling Bound). Under settings and assump-
tions in Section 5 and Section D.4, the upper bound of gradient aggregation variance is:

Ei||∇Fi(w)−∇F (w)||2 ≤ Ei||∇Fi(w)||2 ≤ 4L̂FDF (w,w
∗) + 2σF,∗

2

Proof.

Ei||∇Fi(w)−∇F (w)||2 ≤Ei||∇Fi(w)||2 ≤ 2Ei[||∇Fi(w)−∇Fi(w
∗)||2 + ||∇Fi(w

∗)||2]
≤4L̂FDF (w,w

∗) + 2σF,∗
2

where the first inequality is by E[||X||2] = E[||X − E[X]||2] + E[||X||]2, the second one is by
Proposition 3 and the final one is by Lemma 2 and Assumption 7.

D.6 Supporting Lemmas

Lemma 6 (Global Iteration Bound). Under settings and assumptions in Section 5 and Section D.4,
the upper bound of global iteration error is:

E·|t||w(t+1) − w∗||2 ≤(1− α̃mµ̂F·

2
)||w(t) − w∗||2 + 3α̃2

m + 2α̃m/µ̂F·

NR

N,R∑
i,r

||g(t)
i,r −∇Fi(w

(t))||

+ 3α̃2
mE·|t||

1

S

∑
i∈S(t)

∇Fi(w
(t))−∇F (w(t))||2

+ (6α̃2
mL̂F − 2α̃m)EDF (w

(t), w∗)

Proof. To separate the norm, we have:

E·|t||w(t+1) − w∗||2 = E·|t[||w(t) − α̃mg(t) − w∗||2]
= ||w(t) − w∗||2 − 2α̃mE·|t[⟨g(t), w(t) − w∗⟩] + α̃2

mE·|t[||g(t)||2]
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The second term:

−2α̃mE·|t[⟨g((t), w(t) − w∗⟩] = −2α̃m⟨E·|tg
((t), w(t) − w∗⟩

= −2α̃m
1

NR

N,R∑
i,r

[⟨g(t)
i,r −∇Fi(w

(t)), w(t) − w∗⟩+ ⟨∇Fi(w
(t)), w(t) − w∗⟩]

=
α̃m

NR

N,R∑
i,r

[−2⟨g(t)
i,r −∇Fi(w

(t)), w(t) − w∗⟩]− 2α̃mEi⟨∇Fi(w
(t)), w(t) − w∗⟩

Each of the two factors of the second term is bounded (note that Ei =
1
N

∑N
i=1 is discussed):

−Ei⟨∇Fi(w
(t)), w(t) − w∗⟩ ≤ −EDF (w

(t), w∗)−E
µ̂F·
2 ||w

(t) − w∗||2

−2⟨g(t)
i,r − ∇Fi(w

(t)), w(t) − w∗⟩ ≤ 2
µ̂F·
||g(t)

i,r − ∇Fi(w
(t))|| + µ̂F·

2 ||w
(t) − w∗||2 where the first

inequality is by Proposition 1 and the second one is by Proposition 6.

The third term:

E·|t||g(t)||2 = E·|t||
1

SR

S(t),R∑
i,r

g
(t)
i,r ||

2 ≤ 3E·|t[||
1

SR

S(t),R∑
i,r

g
(t)
i,r −∇Fi(w

(t))||2

+ || 1
S

∑
i∈S(t)

∇Fi(w
(t))−∇F (w(t))||2 + ||∇F (w(t))||2]

≤ 3[
1

NR

N,R∑
i,r

||g(t)
i,r −∇Fi(w

(t))||2

+E·|t||
1

S

∑
i∈S(t)

∇Fi(w
(t))−∇F (w(t))||2 + 2L̂FEDF (w

(t), w∗)]

where the first inequality is by Proposition 3 the second one is by∇F (w(t)) = ∇F (w(t))−∇F (w∗)
and Lemma 2.

Thus, if we combine each term back into the separation at the very beginning of this proof, the lemma
is proven.

Lemma 7 (Local-Global Client Drift Bound). Under settings and assumptions in Section 5 and
Section D.4, by choosing a proper α̃m ≤ β√

2ċ
, the client drift bound is:

1

NR

N,R∑
i,r

E·|t,i||g
(t)
i,r −∇Fi(w

(t))||2 ≤ δ̇ + eċα2
m2R+1{(1 + 2R)E·|t,i[||∇Fi(w

(t))||2] + δ̇}

where δ̇ = 4[λ
L̂g∗

µ̂F·
(ûm + ηγ̂Φ)]

2(
γ̂2
f

|d̃i|
+ ϵ̂2) + 16[(1 + σΦ)L̂E(ûm + ηγ̂Φ)γ̂Φ]

2 and ċ = 4[(1 +

σΦ)L̂E(ûm + ηγ̂Φ)]
2.
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Proof.

||g(t)
i,r −∇Fi(w

(t))||2 ≤ 2[||g(t)
i,r −∇Fi(w

(t)
i,r)||

2 + ||∇Fi(w
(t)
i,r)−∇Fi(w

(t))||2]

≤2{[λL̂g∗(ûm + ηγ̂Φ)]
2||∆(t)

i,r ||
2

+ (1 + σΦ)
2(ûm + ηγ̂Φ)

2||∇Ei(µi(w
(t)
i,r))−∇Ei(µi(w

(t)))||2]}

≤2{[λL̂g∗(ûm + ηγ̂Φ)]
2||∆(t)

i,r ||
2 + [(1 + σΦ)L̂Ei

(ûm

+ ηγ̂Φ)]
2||µi(w

(t)
i,r)− µi(w

(t))||2]}

≤2{[λL̂g∗(ûm + ηγ̂Φ)]
2||∆(t)

i,r ||
2 + [(1 + σΦ)L̂Ei

(ûm

+ ηγ̂Φ)]
2[2||w(t)

i,r − w(t)||2 + 2||∇2Φ(w
(t)
i,r)−∇

2Φ(w(t))||2]}

≤2{[λL̂g∗(ûm + ηγ̂Φ)]
2||∆(t)

i,r ||
2 + 2[(1 + σΦ)L̂Ei

(ûm + ηγ̂Φ)]
2||w(t)

i,r − w(t)||2

+ 8[(1 + σΦ)L̂Ei
(ûm + ηγ̂Φ)γ̂Φ]

2}

(25)

where the first inequality is by Proposition 3, the second one is by Lemma 2, the third one is by
Assumption 2 and Proposition 2, the fourth one is by Proposition 3 and bringing in Equation ( 11)
and the final one is by Assumption 5.

With Lemma 1, we have:

E·|t,i||g
(t)
i,r −∇Fi(w

(t))||2 ≤ 4[λ
L̂g∗

µ̂F·

(ûm + ηγ̂Φ)]
2(

γ̂2
f

|d̃i|
+ ϵ̂2)

+ 16[(1 + σΦ)L̂Ei
(ûm + ηγ̂Φ)γ̂Φ]

2 + 4[(1 + σΦ)L̂Ei
(ûm + ηγ̂Φ)]

2E·|t,i||w
(t)
i,r − w(t)||2

For simplification: E·|t,i||g
(t)
i,r −∇Fi(w

(t))||2 ≤ δ̇ + ċE·|t,i||w
(t)
i,r − w(t)||2

The second term:
E·|t,i||w

(t)
i,r − w(t)||2 =E·|t,i[||w

(t)
i,r−1 − w(t) − αmg

(t)
i,r−1||

2]

≤2E·|t,i[||w
(t)
i,r−1 − w(t) − αm∇Fi(w

(t))||2

+ α2
m||g

(t)
i,r−1 −∇Fi(w

(t))||2)]

≤2(1 + 1

2R
)E·|t,i[||w

(t)
i,r−1 − w(t)||2] + 2(1 + 2R)α2

mE·|t,i[||∇Fi(w
(t))||2]

+ 2α2
m[δ̇ + ċE·|t,i||w

(t)
i,r−1 − w(t)||2]

≤2(1 + 1

2R
+ α2

mċ)E·|t,i[||w
(t)
i,r−1 − w(t)||2]

+ 2(1 + 2R)α2
mE·|t,i[||∇Fi(w

(t))||2] + 2α2
mδ̇

≤2(1 + 1

R
)E·|t,i[||w

(t)
i,r−1 − w(t)||2] + 2(1 + 2R)α2

mE·|t,i[||∇Fi(w
(t))||2]

+ 2α2
mδ̇

where the first inequality is by Proposition 3, the second one is by Proposition 6 and the simplified
inequality and the final one is by choose α̃2

m ≤
β2

2ċ , and α2
mċ ≤ 1

2R2 ≤ 1
2R .

To recursively unroll:

E·|t,i||w
(t)
i,r − w(t)||2

≤{(1 + 2R)α2
mE·|t,i[||∇Fi(w

(t))||2] + α2
mδ̇}

r∑
r̃=0

2r̃+1(1 +
1

R
)r̃

≤{(1 + 2R)α2
mE·|t,i[||∇Fi(w

(t))||2] + α2
mδ̇}

R−1∑
r̃=0

2r̃+1(1 +
1

R
)r̃

≤α2
me2R+1{(1 + 2R)E·|t,i[||∇Fi(w

(t))||2] + δ̇}

(26)
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Thus, bringing in the recursively unrolled inequality back into the simplified one, the lemma’s
proven.

D.7 Proof of Theorems

D.7.1 Proof of Theorem 1

The proof of Theorem 1 is shown as followings:

Proof. With Lemma 6, we have:

∆(t+1) := E||w(t+1) − w∗||2

≤ (1− α̃mµ̂F·

2
)∆(t) +

3α̃2
m + 2α̃m/µ̂F·

NR

N,R∑
i,r

||g(t)
i,r −∇Fi(w

(t))||2

+ 3α̃2
mE·|t||

1

S

∑
i∈S(t)

∇Fi(w
(t))−∇F (w(t))||2 + (6α̃2

mL̂F − 2α̃m)EDF (w
(t), w∗)

With Lemma 4, we have:

∆(t+1) ≤ (1− α̃mµ̂F·

2
)∆(t) +

3α̃2
m + 2α̃m/µ̂F·

NR

N,R∑
i,r

||g(t)
i,r −∇Fi(w

(t))||2

+ 3α̃2
m

N/S − 1

N − 1
Ei||∇Fi(w

(t))−∇F (w(t))||2 + (6α̃2
mL̂F − 2α̃m)EDF (w

(t), w∗)

With Lemma 5, we have:

Ei||∇Fi(w)−∇F (w)||2 ≤4L̂FDF (w,w
∗) + 2σF,∗

2

Thus, the inequality is:

∆(t+1) ≤ (1− α̃mµ̂F·

2
)∆(t) +

3α̃2
m + 2α̃m/µ̂F·

NR

N,R∑
i,r

||g(t)
i,r −∇Fi(w

(t))||2

+ 3α̃2
m

N/S − 1

N − 1
[4L̂FEDF (w

(t), w∗) + 2σF,∗
2] + (6α̃2

mL̂F − 2α̃m)EDF (w
(t), w∗)

(27)
With Lemma 7 and α̃m ≤ β√

2ċ
, by taking full expectation of all variables noted by E, we have:

1

NR

N,R∑
i,r

E||g(t)
i,r −∇Fi(w

(t))||2 ≤eċα2
m2R+1(1 + 2R)Ei[||∇Fi(w

(t))||2] + (eċα2
m2R+1 + 1)δ̇

≤eċα2
m2R+1(1 + 2R)Ei[2||∇Fi(w

(t))−∇Fi(w
∗))||2

+ 2||∇Fi(w
∗))||2] + (eċα2

m2R+1 + 1)δ̇

≤eċα2
m2R+3(1 + 2R)L̂FEDF (w

(t), w∗)

+ eċα2
m2R+2(1 + 2R)σ2

F,∗ + (eċα2
m2R+1 + 1)δ̇

where the second inequality is by Proposition 3 and the final one is using Lemma 2 and Assumption 7.
With this inequality, Equation ( 27) turns into:

∆(t+1) ≤(1− α̃mµ̂F·

2
)∆(t) + 6α̃2

m

N/S − 1

N − 1
σF,∗

2

+ (3α̃2
m + 2α̃m/µ̂F·)[eċα̃

2
m

2R+2(1 + 2R)

β2R2
σ2
F,∗ + (eċα̃2

m

2R+1

β2R2
+ 1)δ̇]

+ {eċ(3α̃m + 2/µ̂F·)α̃
3
m

2R+3(1 + 2R)

β2R2
L̂F + 12α̃2

m

N/S − 1

N − 1
L̂F

+ 6α̃2
mL̂F − 2α̃m}EDF (w

(t), w∗)
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To simplify this inequality with condition α̃m ≤ min{ β√
2ċ
, 2
µ̂F·
}, we have:

∆(t+1) ≤ (1− α̃mµ̂F·

2
)∆(t) + 6α̃2

m

N/S − 1

N − 1
σF,∗

2

+
2R+4eċ

µ̂F·β
2R2

[2(1 + 2R)σ2
F,∗ + δ̇]α̃3

m +
8δ̇

µ̂F·

α̃m

− {2− α̃m[
e(1 + σΦ)L̂E(ûm + ηγ̂Φ)2

R+6 1
2 ( 1

R + 2)

µ̂F·βR

+ 12
N/S − 1

N − 1
+ 3]L̂F }α̃mEDF (w

(t), w∗)

where we use 3α̃m ≤ 6
µ̂F·

and ċα̃m ≤
√
2β(1 + σΦ)L̂E(ûm + ηγ̂Φ)

Let ċ1 := 2− α̃m[
e(1+σΦ)L̂E(ûm+ηγ̂Φ)2R+6 1

2 ( 1
R+2)

µ̂F·βR
+ 12N/S−1

N−1 + 6]L̂F , and we have ċ1 ≥ 1, when
α̃m satisfies:

α̃m ≤ α̂m :=
µ̂F·βR

e(1 + σΦ)L̂E(ûm + ηγ̂Φ)2R+6 1
2 ( 1

R + 2) + 18(µ̂F·βR)L̂F

≤ 1

[
e(1+σΦ)L̂E(ûm+ηγ̂Φ)2R+6 1

2 ( 1
R+2)

µ̂F·βR
+ 12N/S−1

N−1 + 6]L̂F

(28)

By setting α̃m with Equation ( 28), then let ξ(t) = (1 − α̃µ̂F·
2 )−t−1 and X (T ) =

∑T−1
t=0 ξ(t),

α̃T ≥ 2
µ̂F·

, α̃m ≤ min{ β√
2ċ
, 2
µ̂F·
}, we have:

∆(t+1) ≤ (1− α̃mµ̂F·

2
)∆(t) − α̃mEDF (w

(t), w∗) +

3∑
j=1

δ̇jα̃
j
m

where δ̇1 := 8δ̇
µ̂F·

, δ̇2 := 6N/S−1
N−1 σF,∗

2 and δ̇3 := 2R+4eċ
µ̂F·β

2R2 [2(1 + 2R)σ2
F,∗ + δ̇].

Reformulate it as following:

EDF (w
(t), w∗) ≤ 1

α̃m
[(1− α̃mµ̂F·

2
)∆(t) −∆(t+1)] +

3∑
j=1

δ̇jα̃
j−1
m

Multiply both sides with ξ(t) and accumulate over t:

EDF (

∑T−1
t=0 ξ(t)w(t)

X (T )
, w∗) ≤

∑T−1
t=0 ξ(t)

X (T )
EDF (w

(t), w∗)

≤ 1

α̃mX (T )

T−1∑
t=0

[(1− α̃mµ̂F·

2
)ξ(t)∆(t) − ξ(t)∆(t+1)] +

3∑
j=1

δ̇jα̃
j−1
m

=
1

α̃mX (T )
∆(0) − ξ(T−1)

α̃mX (T )
∆(T ) +

3∑
j=1

δ̇jα̃
j−1
m

=
µ̂F·

2ξ(T−1)[1− (1− α̃mµ̂F·/2)
T ]

∆(0) − ξ(T−1)

α̃mX (T )
∆(T ) +

3∑
j=1

δ̇jα̃
j−1
m

≤µ̂F·e
−α̃mµ̂F·T/2∆(0) − µ̂F·

2
∆(T ) +

3∑
j=1

δ̇jα̃
j−1
m

≤µ̂F·e
−α̃mµ̂F·T/2∆(0) +

3∑
j=1

δ̇jα̃
j−1
m

≤O[DF (w̄
(T ), w∗)]
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where w̄(T ) :=
∑T−1

t=0 ξ(t)

X (T ) w(t), we use convexity of DF and F for the first inequality, the second one

is by the reformulated inequality and the third one is by setting α̃mT ≥ 2
µ̂F·

and the fact 2ξ(T−1)

α̃mµ̂F·
≥

X (T ) =
2ξ(T−1)[1−(1−

α̃mµ̂F·
2 )T ]

α̃mµ̂F·
≥ ξ(T−1)

α̃mµ̂F·
and 0 ≤ (1− α̃mµ̂F·

2 )T ≤ e−
1
2 α̃mµ̂F·T ≤ e−1 ≤ 1

2 .

To tighten this bound, we recommend [4], which discusses the range and strategy of step sizes in
detail rather than our unified bound.

With α̃m ≥ 2
µ̂F·T

, we have:

3∑
j=1

δ̇jα̃
j−1
m ≤ O(δ̇1) +O(

δ̇2
T µ̂F·

) +O( δ̇3
T 2µ̂2

F·

)

Thus,

O[DF (w̄
(T ), w∗)] =O(µ̂F·e

−α̃mµ̂F·T/2∆(0)) +O( δ̇

µ̂F·

)

+O( (N/S − 1)σF,∗
2

NTµ̂F·

) +O( 2R+4eċ

T 2µ̂3
F·
β2R2

[2(1 + 2R)σ2
F,∗ + δ̇])

where, δ̇ = 4[λ
L̂g∗

µ̂F·
(ûm + ηγ̂Φ)]

2(
γ̂2
f

|d̃i|
+ ϵ̂2) + 16[(1 + σΦ)L̂E(ûm + ηγ̂Φ)γ̂Φ]

2 and ċ = 4[(1 +

σΦ)L̂E(ûm + ηγ̂Φ)]
2.

For simplification, letting A = [
L̂g∗

µ̂F·
(ûm + ηγ̂Φ)]

2(
γ̂2
f

|d̃i|
+ ϵ̂2), B = [(1 + σΦ)L̂E(ûm + ηγ̂Φ)γ̂Φ]

2

and C =
σ2
ΦL̂2

E(ûm+ηγ̂Φ)2

µ̂3
F·

, we have:

O[DF (w̄
(T ), w∗)] =O(µ̂F·e

−α̃mµ̂F·T/2∆(0)) +O(Aλ2 +B

µ̂F·

)

+O( (N/S − 1)σF,∗
2

NTµ̂F·

) +O( 2RC

T 2β2R2
[Rσ2

F,∗ +Aλ2 +B]).

D.7.2 Proof of Theorem 2

The proof of Theorem 2 is shown as followings:

Proof. With Gaussian prior and first-order methods, we have the bound between personalized

model and optimal global model, with δ̇p = 2
µ̂2
Fi,·

(
γ̂2
f

|d̃i|
+ ϵ̂2) + 2

λ2 ϵ
2
1 + 4

λ2σ
2
F,∗ + 1

2η
2G2Φ, and

ċp = ( 32λ2 L̂F + 8
µ̂F·

):
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E||θ̃i(w̄T )− w∗||2 ≤4[E||θ̃i(w̄T )− θ∗i (w̄
T )||2

+E||θ∗i (w̄T )− µi(w̄
T )||2 +E||µi(w̄

T )− w(T )||2 +E||w(T ) − w∗||2]

≤4[ 2

µ̂2
Fi,·

(
γ̂2
f

|d̃i|
+ ϵ̂2) +

1

λ2
E2[||∇F̃i(w

(T ))−∇Fi(w
(T ))||2

+ ||∇Fi(w
(T ))||2] + 1

2
E||η∇Φi(w

(T ))||2 +E||w(T ) − w∗||2]

≤4[ 2

µ̂2
Fi,·

(
γ̂2
f

|d̃i|
+ ϵ̂2) +

2

λ2
E{ϵ21 + 2[||∇Fi(w

(T ))−∇Fi(w
∗)||2 + ||∇Fi(w

∗)||2]}

+
1

2
η2G2Φ +E||w(T ) − w∗||2]

≤4[ 2

µ̂2
Fi,·

(
γ̂2
f

|d̃i|
+ ϵ̂2) +

2

λ2
ϵ21 +

8

λ2
L̂FDF (w

(T ), w∗) +
4

λ2
σ2
F,∗

+
1

2
η2G2Φ +E||w(T ) − w∗||2]

≤4[ 2

µ̂2
Fi,·

(
γ̂2
f

|d̃i|
+ ϵ̂2) +

2

λ2
ϵ21 +

4

λ2
σ2
F,∗ +

1

2
η2G2Φ + (

8

λ2
L̂F +

2

µ̂F·

)DF (w
(T ), w∗)]

≤O(δ̇p) +O[ċpDF (w̄
(T ), w∗)]

where the first inequality is by Proposition 3, the second one is by Lemma 1 and Proposition 3, the
third one is by Assumption 8 and Lemma 5, the fourth one is by Lemma 2 and Assumption 7 and the
final one is by Theorem 1.
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