
A Generalisation to other groups

The main text describes layers with strict or relaxed equivariance to the translation group because this
is the most commonly used symmetry in deep learning architectures used in classical convolutional
layers. In this section, we show that all layers can be generalised to other symmetry groups G, where
2-dimensional discrete translations correspond to the special case of G = Z2. In this case any two
group elements (x, y) = g ∈ G = Z2 and inverses become subtraction g−1g′ = (x′ − x, y′ − y).

On groups, we consider input and output feature maps on a group y : [0, B] × [0, C] × G and
x : [0, B] × [0, C] × G, which can be achieved through group lifting [Kondor and Trivedi, 2018].
We generalise the linear layer of Eq. (1) on a group G as:

y(c′, g′) =
∑
c

∑
g∈G

w(c′, c, g′, g)x(c, g)

Generalising regular convolutional layer to a group G becomes the group equivariant convolution
proposed in Cohen and Welling [2016]:

y(c′, g′) =
∑
c

∑
g

x(c, g)θ̄(c′, c, g−1g′)

The residual pathway of Eq. (10) was originally in Finzi et al. [2021a] for general groups G. It can be
seen as a factorisation w = θ + θ̄ where θ : (c′, c, g′, g) 7→ R and θ̄ : (c′, c, g) 7→ R:

y(c′, g′) =
∑
c

∑
g

x(c, g)θ(c′, c, g′, g) +
∑
c

∑
g

x(c, g)θ̄(c′, c, g−1g′) (10)

The factorisation of Eq. (5) proposed to further reduce the number of parameters generalises as:∑
c

∑
g

x(c, g)θ(c′, c, g′, g) =
∑
c

θ1(c
′, c, g′)

∑
g

x(c, g)θ2(c
′, c, g)

where θ1 : (c′, c, g′) 7→ R and θ2 : (c′, c, g) 7→ R. The sparse fully-connected layer of Eq. (7)
generalises to groups G as:∑

c

∑
g

x(c, g)θ̄(c′, c, g−1g′) =
∑
c

∑
g

x(c, g)s̄ω(c′, c, g−1g′)

with stationary filters θ̄ : (c′, c, u) 7→ R taking group elements u=g−1g′ ∈ G as argument. The
sparse convolutional layer of Eq. (6) becomes:∑

c

θ1(c
′, c, g′)

∑
g

x(c, g)θ2(c
′, c, g) =

∑
c

sω1 (c
′, c, g′)

∑
g

x(c, g)sω2 (c
′, c, g)

where sω1 : ... and sω2 : In this case, the bases become functions on the group ϕ : G → R, as have
been explored in Azangulov et al. [2022].

B Selecting symmetry from multiple groups

Consider a set of M groups G1, G2, . . . , GM , then we can factor multiple groups as follows:

y(c′, g′) =

M∑
i=1

∑
c

∑
g∈Gi

x(c, g)θ(c′, c, g′, g) +

M∑
i=1

∑
c

∑
g∈Gi

x(c, g)θ̄(c′, c, g−1g′) (11)

strictly generalising residual pathways of Eq. (10) to multiple groups {Gi}Mi=1. The other layers can
equivalently be extended to multiple groups.

Similar to the original residual pathway paper [Finzi et al., 2021a], we could also write linear
mappings as matrix W and consider a set of groups G1, G2, . . . , GM with representations and find a
corresponding set of equivariant bases B1,B2, . . .BM [Finzi et al., 2021b], in which case we could
write the layer of Eq. (11) equivalently as a sum of these linear maps:

vec(W) =

G∑
i=1

Biui + v

The latter notation makes it possibly more clear that the layer forms a sum of linear layers that span
subspaces associated with different equivariance constraints.

14

C Extensions of Kronecker-factored approximate curvature (KFAC)

We briefly review KFAC for fully-connected neural networks and then extend it to the layers proposed
in this work, i.e., factored layers and sparsified layers. Further, we give an extension for group
convolutional layers. The goal of KFAC is to approximate the Hessian of the log likelihood, Hθ∗ ,
which is the overall loss Hessian from which the simple Hessian of the prior is subtracted. We have
for the Gauss-Newton approximation H:

Hθ∗ ≈ H =
∑
n

Hn =
∑
n

J(xn)
⊤Λ(xn)J(xn),

where J(xn) are the Jacobians of neural network output f with respect to parameters θ for a given
data point xn, i.e., [J(xn)]k,p = ∂fk

∂θp
(xn), and [Λ(xn)]k,g = ∂ log p(yn|xn;f(xn;θ))

∂fk∂fg
, which is the

Hessian of the log likelihood with respect to the functional output of the neural network and is for
common likelihoods independent of the label [Martens, 2020].

KFAC approximates the GGN in two efficient ways: first, the approximation is conducted in blocks,
each corresponding to a single layer l, and, second, the GGN of each block is approximated as a
Kronecker product. We denote a block corresponding to the lth layer as Hl, which is the GGN of the
parameter θl, and has the Jacobian Jl(x). Then, we have

Hl =
∑
n

Hn,l =
∑
n

Jl(xn)
⊤Λ(xn)Jl(xn),

For a fully-connected layer, θx with θ ∈ RGl×Dl and x ∈ RDl , we can write the Jacobian of a
single data point w.r.t. parameters as Jl(xn)

⊤ = al,n ⊗ gl,n, where al,n ∈ RDl×1 is the input to the
layer and gl,n ∈ RGl×K is the transposed Jacobian of f w.r.t. the output of the lth layer. KFAC can
then be derived using the following equalities and lastly approximation:

Hl =
∑
n

Jl(xn)
⊤Λ(xn)Jl(xn) =

∑
n

[al,n ⊗ gl,n]Λ(xn)[al,n ⊗ gl,n]
⊤

=
∑
n

[al,na
⊤
l,n]⊗ [gl,nΛ(xn)g

⊤
l,n] ≈

1

N

[∑
n

al,na
⊤
l,n

]
⊗

[∑
n

gl,nΛ(xn)g
⊤
l,n

]
.

The resulting KFAC just requires to compute the two last Kronecker factors, which are relatively
small compared to the full GGN block. To extend KFAC to the proposed layers, the essential step is
to write the Jacobian of the lth layer, Jl(x), as a Kronecker product so it can be factored for each
data point and then approximated with the last KFAC step.

C.1 KFAC for factored layers

Factored layers have two parameters θ1,θ1, each of which will result in a KFAC approximation of its
respective curvature. First, we split up the definition from Eq. (5):

y(c′, x′, y′) =
∑
c

∑
x,y

x(c, x, y)θ(c′, c, x′, y′, x, y)

=
∑
c

θ1(c
′, c, x′, y′)

∑
x,y

x(c, x, y)θ2(c
′, c, x, y)

=
∑
c

θ1(c
′, c, x′, y′)x1(c

′, c),

which defines x1(c
′, c) as intermediate value, i.e., it is input to θ1 and output of operation θ1. Both

individual operations can be equivalently written similar to linear layers by modifying the inputs.

For θ2, we write θ2 ∈ Rc′×cxy and x ∈ Rcxy×c which is given by repeating x across the c dimensions
along the diagonal. We then have x

(o)
1 = θ2x ∈ Rc′×c. For θ1, we have similarly θ1 ∈ Rx′y′×cc′

and x
(i)
1 ∈ Rcc′×c′ , which is a block-diagonal constructed from the previous output x(o)

1 , i.e., θ1 is
applied individually per c′. We have y ∈ Rx′y′×c′ = θ1x

(i)
1 . To obtain KFAC for the two parameters,

we need to write out the Jacobian as a Kronecker product of input data and output gradient. The

15

input data are given by the expanded x and transposed output Jacobians are dy ∈ Rx′y′c′×K and
dx ∈ Rc′c×K . This can be done as follows:

Jθ2
=
∑
c

dx⊤
c ⊗ xc, and Jθ1

=
∑
c′

dy⊤
c′ ⊗ (x

(i)
1)c′

where c and c′ denote the index of the repeated dimension, respectively. Prototypically for θ2,
defining al,n,c as xc and gl,n,c as dx⊤

c , we have the following KFAC approximation:

Hl =
∑
n

[∑
c

al,n,cgl,n,c

]
⊗

[∑
c

al,n,cΛ(xn)gl,n,c

]

≈ 1

NC

∑
n

∑
c

[
al,n,ca

⊤
l,n,c

]
⊗
[
gl,n,cΛ(xn)g

⊤
l,n,c

]
,

which equivalently holds for θ1 by replacing c with c′, i.e., the number of input channels with output
channels.

C.2 KFAC for sparsified layers

For sparsified factored layers S-FC, we extend the K-FAC approximation for factored layers. We
follow the same derivation as in App. C.1 to obtain Jacobians Jsω

1
and Jsω

2
with respect to weights

induced by the basis functions sω1 , sω2 :

Jsω
1
=
∑
c

dx⊤
c ⊗ xc, and Jsω

2
=
∑
c′

dy⊤
c′ ⊗ (x

(i)
1)c′

In sparsified layers, sω1 and sω2 are functions and not part of the model parameters anymore. Instead,
we are looking for the Jacobians Ju1

and Ju2
with respect to the sparser set of anchor point weights

u1 and u2, which we can find by applying the chain rule:

∂f

∂u1
=

∂f

∂sω1

∂sω1
∂u1

, and
∂f

∂u2
=

∂f

∂sω2

∂sω2
∂u2

where the partial derivatives are given by basis functions 1ϕ and 2ϕ associated to u1 and u2:

∂sω1 (c
′, c, x, y)

∂(u1)j
= 1ϕc′,c

j (x, y) , and
∂sω2 (c

′, c, x, y)

∂(u1)j
= 2ϕc′,c

j (x, y)

As basis functions form partial derivatives from sω1 and sω2 to u1 and u2, respectively, we can use
them to project the factors used in Section 3.1 in terms of the new sparsified parameters.

For sparsified convolutional layers S-CONV, we extend the KFAC approximation for convolutional
layers derived in [Grosse and Martens, 2016]. Similarly to above, we use the existing derivation
to approximate KFAC in terms of Jacobians w.r.t. induced convolutional filters Js̄ω . Filters s̄ω in
S-CONV layers are not part of the model parameters anymore and we need to find Jacobians Ju with
respect to anchor point weights ū, which we can find by applying the chain rule:

∂f

∂u
=

∂f

∂s̄ω
∂sω2
∂u2

, with
∂s̄ω(c′, c, u, v)

∂ūj
= ϕ̄c′,c

j (u, v)

Similar to S-FC layers, we can project Kronecker factors of KFAC for CONV layer into the right
sparser parameter space by multiplying the appropriate dimensions with basis function evaluations.

16

D Inspecting learned layer-wise structure.

Prior precisions Weight norms Normalised Effective Num. of Param. Relative Effective Num. of Param.
↑ implies ’off’ ↓ implies ’off’ ↓ implies ’off’ ↓ implies ’off’ Effective

Layer l FC σ−2
l CONV σ̄−2

l FC ||θl||22 CONV ||θ̄l||22 FC γl

γl+γ̄l
CONV γl

γl+γ̄l
FC γl/Pl

γl/Pl+γ̄l/P̄l
CONV γ̄l/P̄l

γl/Pl+γ̄l/P̄l
Layer type

0 3588348.50000000 0.07513507 0.00000000 10.74257360 0.00000002 0.80731778 0.00000003 0.99999997 CONV
1 2750749.50000000 1.26366782 0.00000000 0.55490241 0.00000007 0.70107951 0.00000010 0.99999990 CONV
2 5898884.50000000 14.50690365 0.00000000 0.04562404 0.00000014 0.66181451 0.00000021 0.99999979 CONV
3 22690960.00000000 230.75096130 0.00000000 0.00216724 0.00000089 0.50004517 0.00000178 0.99999822 CONV
4 29633508.00000000 5438.10449219 0.00000000 0.00007521 0.00000772 0.40905216 0.00001888 0.99998112 CONV
5 35631228.00000000 3797.48779297 0.00000000 0.00003772 0.00000379 0.14326709 0.00002643 0.99997357 CONV
6 635.57513428 31321916.00000000 0.00001135 0.00000000 0.00721232 0.00000522 0.99927627 0.00072373 FC
7 35582056.00000000 1.75766361 0.00000000 0.00259477 0.00000009 0.00456014 0.00001874 0.99998126 CONV

Table 4: Analysis of learned layer types after training FC+CONV model on CIFAR-10. Reported
prior precision, weight norms, effective dimension and relative effective dimension metrics. On this
task, the model learns to use CONV layers, except for a FC layer at the end of the model.

D.1 Learned prior variances

To learn symmetries, we follow Bayesian model selection by specifying symmetry in the prior and
learning it by optimising marginal likelihood estimates. For each layer, we consider a Gaussian
prior with prior precisions 1

σ2 controlling the amount of equivariance. Most notably, in the limit of
limc→∞

1
σ2 = c we have strict equivariance. We can inspect prior precisions of both the CONV path

σ̄−2 and the FC path σ−2, where high prior precisions can intuitively interpret as the layer being
‘switched off’. Prior precisions learned for the CONV+FC model are shown on the left in Table 4.
Although prior precisions may not always be directly interpretable (see App. D.2, the learned prior
precisions indicate that the model learns convolutional structure for most layers, except for layer 7 at
the end, which we argue is a desirable solution as hypothesised in Section 6.2.

D.2 Effective number of parameters

MacKay [1992] defines the effective number of parameters γ using the Laplace approximation to the
posterior. In particular, it measures how well a parameter is determined relative to its prior. MacKay
[1992] defines it for a model with Gaussian prior N (0, α−1IP) over P , whose posterior covariance
is given by Σ. We then have

γ = P − αTr(Σ) = P − αTr(H + αIP)
−1 = P −

P∑
p=1

α

λp + α
=

P∑
p=1

λp

λp + α
,

where H is the Hessian at the posterior mode. However, this therefore requires the full posterior
covariance Σ due to the Laplace approximation. In our case, we further have a layer-wise KFAC
approximation over the individual layers l with corresponding parameters. Our models share the
following setup: we have a prior variances σ2

l and σ̄2
l per layer, each corresponding to the fully

connected and convolutional path, respectively. Further, let Pl and P̄l be the number of distinct
parameters in the respective layers. Our posterior approximation is block-diagonal and Kronecker-
factored, i.e., we have that H is a block-diagonal constructed from Hl and H̄l for all layers l and
each can be written as Hl ≈ Ql ⊗Wl. Therefore, we have

γ =

L∑
l=1

Pl − σ−2
l Tr(Hl + σ−2

l)−1 + P̄l − σ̄−2
l Tr(H̄l + σ̄−2

l)−1

=

L∑
l=1

∑
w,q

λl,wλl,q

λl,wλl,q + σ−2
l︸ ︷︷ ︸

=γl

+
∑
w,q

λ̄l,wλ̄l,q

λ̄l,wλ̄l,q + σ̄−2
l︸ ︷︷ ︸

=γ̄l

,

where λl,w denotes the eigenvalue of Wl and similarly for λl,q. The simplification is due to the
eigenvalues of the Kronecker product being the outer product of its factors eigenvalues. Further,
denote γl and γ̄l the effective number of parameters for FC and CONV layer at l. For FC and CONV,
respectively, we define the ‘normalised effective number of parameters’ as γl

Pl
and γ̄l

P̄l
and the ‘relative

effective number of parameters’ as γl/Pl

γl/Pl+γ̄l/P̄l
and γ̄l/P̄l

γl/Pl+γ̄l/P̄l
. The definitions generalise trivially

if more than these two layer types are being considered.

17

E Comparison of existing approaches

Symmetry Layer-wise Automatic No validation No explicit Sparse layer-wise
Method learning equivariance objective data regulariser symmetry

Zhou et al. [2019] ✓ ✓ ✓ ✓ ✓
Benton et al. [2020] ✓ ✓

Zhou et al. [2020] ✓ ✓ ✓ ✓
Romero and Lohit [2021] ✓ ✓ ✓

Finzi et al. [2021a] ✓ ✓ ✓
Dehmamy et al. [2021] ✓ ✓ ✓ ✓ ✓

Immer et al. [2022] ✓ ✓ ✓ ✓
Yeh et al. [2022] ✓ ✓ ✓ ✓

Maile et al. [2022] ✓ ✓ ✓ ✓
van der Ouderaa et al. [2022] ✓ ✓ ✓

Yang et al. [2023] ✓ ✓ ✓
van der Ouderaa and van der Wilk [2023] ✓ ✓ ✓ ✓

(Ours) ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Table 5: Overview of existing methods for symmetry discovery.

Symmetry learning: In this comparison, we include methods that learn symmetries in the context
of deep neural networks, including both learnable invariances and equivariances.

Layer-wise equivariance: Invariances can often be parameterised by averaging data augmentations
after forward passes through a model. Layer-wise equivariances can be more difficult to parameterise,
as this places constraints on intermediary features and, therefore, relies on adaptions inside the actual
architecture of the model.

Automatic objective: Symmetries enforce constraints on the functions a network can represent,
which makes it hard to learn them with regular maximum likelihood training objectives that rely on
data fit. To avoid collapse into solutions with the least (symmetry) constraints, some methods rely
on explicit regularisation to enforce symmetry. Although this approach has been successful in some
cases [Benton et al., 2020, Finzi et al., 2021a, van der Ouderaa et al., 2022], issues with the approach
have also been noted and discussed in Immer et al. [2022]. The most important critique is that direct
regularisation of symmetry often depends on the chosen parameterisation and introduces additional
hyperparameters that need tuning. Automatic objectives learn symmetries from training data without
introducing additional hyperparameters that need tuning.

No validation data: No validation data is used to select or learn symmetries. Most notably, these
are methods that use differentiable validation data as an objective to learn hyperparameters. We
also include methods in this category that initialise networks at strict symmetry and use validation
data as an early-stopping criterion, in case no other encouragement is added in the training objective
- assuming that early-stopping, in this case, becomes the mechanism that prevents collapse into
non-symmetric solutions.

Sparse layer-wise symmetry: We deem methods that fall within a 10-fold increase of number
of parameters to parameterise relaxed symmetry constraints. Although this might seem like a lot,
this distinguishes methods that relax symmetry by considering fully-flexible linear maps, which in
practice often leads to an increase of more than 100 times.

18

F Implementation details

F.1 Network architecture

Table 6 describes the used architecture for all experiments. The design is adapted from the convolu-
tional architecture used in [Neyshabur, 2020]. We use strict equivariant subsampling described in
App. F.2 as POOL and use element-wise ReLU(x)=max(0, x) activation functions. With convolu-
tional layers CONV, the architecture is strictly equivariant. In some experiments the CONV layers
are replaced to relax strict layer-wise symmetry constraints.

layer input output

CONV(3× 3) + ReLU B × Cin × 32× 32 B × α× 32× 32
CONV(3× 3) + POOL + ReLU B × α× 32× 32 B × 2α× 16× 16
CONV(3× 3) + ReLU B × α× 16× 16 B × 2α× 16× 16
CONV(3× 3) + POOL + ReLU B × 2α× 16× 16 B × 4α× 8× 8
CONV(3× 3) + ReLU B × 4α× 16× 16 B × 4α× 8× 8
CONV(3× 3) + POOL + ReLU B × 4α× 8× 8 B × 8α× 4× 4
CONV(3× 3) + POOL + ReLU B × 8α× 4× 4 B × 8α× 2× 2
CONV(3× 3) + ReLU B × 16α× 2× 2 B × 16α× 1× 1
CONV(1× 1) + ReLU B × 16α× 1× 1 B × 64α× 1× 1
CONV(1× 1) B × 64α× 1× 1 B × Cout × 1× 1

Table 6: Used architecture with α=10.

F.2 Group subsampling and maintaining strict equivairance.

The core idea of this work is to utilise parameterisations that have strict equivariance symmetries as
controllable limiting case and learning the relative importance of the symmetry constraint through
Bayesian model selection. In this framework, we encode the limiting case of strict equivariance in
the prior through use of (group) convolutions with circular padding and pointwise non-linearities,
which respect the equivariance property. It is known, however, that subsampling operations such
as maxpooling and strided convolutions present in most convolutional architectures, including our
baseline [Neyshabur, 2020], do not respect equivariance strictly. To overcome this issue, we might
consider coset-pooling [Cohen and Welling, 2016], but this looses locality of the feature maps
and is therefore typically only used at the end of the architecture. Alternatives, such as Xu et al.
[2021], introduce an additional subsampling dimension which requires memory and complicates
implementation. The implementation of our method is already involved because Kronecker-factored
curvature approximations are to date not naively supported in most deep learning frameworks. We
therefore follow the more pragmatic approach of Chaman and Dokmanic [2021] and subsample
feature maps by breaking them up into polyphase components selecting the component with the
highest norm (we use l∞-norm). This is easy to implement and maintains both strict equivariance and
locality of feature maps. Furthermore, the baseline is not negatively affected by this change as regular
MAP performance of the CONV model improved by 1-2 % percentage points in test accuracy.

F.3 Locality of support, separable group convolutions, pointwise group convolutions.

In deep learning literature, convolutional filters commonly only have a very small local support (e.g.
5×5, 3×3 or even 1×1). This is efficient and induces a locality bias that has empirically been found
beneficial for many tasks. Interestingly, group equivariant convolutional filters are rarely locally
supported and often defined on the entire group. Recent work by Knigge et al. [2022], explores
factoring filters by generalising the concept of (spatially) separable convolutions to (sub)groups.
Spatial separability implies the filter factorisation θ̄(c′, c, x, y) = θ̄(c′, c, x)θ̄(c′, c, y). Applying the
same concept to separate rotation and translation subgroups for roto-translation equivariance with
(x, y, θ) ∈ G = Z2 ⋊ p4 factors filters over subgroups θ̄(c′, c, x, y, θ) = θ̄(c′, c, x, y)θ̄(c′, c, θ). We
take this one step further and propose filters that are only pointwise for specific subgroups, which can
be seen as a special case of separable group convolution with θ̄(c′, c, θ) = 1θ=Id(θ) with the indicator
function always returning 1 at the group identity element Id ∈ G and 0 otherwise. Pointwise group
convolutions generalise commonly used 1× 1 convolutional filters to (sub)groups. The simplification
does not impact the equivariance property (to both rotation and translation) in any way.

19

Pointwise group convolutions are easier to implement because the summation over the (sub)group
filter domain can be omitted, reducing memory and computational cost in the forward-pass by a
factor proportional to the (sub)group size |G|. In Table 7, we compare full, separable and pointwise
factorisations of the rotation subgroup in a roto-translation equivariant CNN. We also note an inter-
esting equivalence between applying group convolutions that are pointwise in specific (sub)groups
and invariance (to specific subgroups) that is achieved by pooling outputs after applying the same
network to augmented inputs on the group. This connects invariance obtained by pooling after
stacked layer-wise equivariant layers with DeepSets [Zaheer et al., 2017] and the set-up used in most
invariance learning literature [Benton et al., 2020, van der Ouderaa and van der Wilk, 2021, Immer
et al., 2022]. The equivalence only holds for strict equivariance. Pointwise convolutions have the
benefit that they can be relaxed using our method and allow place-coded features related to the group
to rate-coded features, on a per-layer basis.

Rotated CIFAR-10
Roto-translation (Z2 ⋊ p4)-CNN θ̄(c′, c, x, y, θ) Parameters (α) Test accuracy (%)

Full, channel matched θ̄(c′, c, x, y, θ) 1025380 (10) 73.70
Separable, channel matched θ̄1(c

′, c, x, y)θ̄2(c
′, c, θ) 214550 (10) 61.31

Depthwise Separable, channel matched θ̄1(x, y)θ̄2(θ)θ̄3(c
′, c) 139735 (10) 51.63

Full, parameter matched θ̄(c′, c, x, y, θ) 371200 (6) 69.89
Separable, parameter matched θ̄1(c

′, c, x, y)θ̄2(c
′, c, θ) 358463 (13) 59.99

Depthwise Separable, parameter matched θ̄1(x, y)θ̄2(θ)θ̄3(c
′, c) 346215 (16) 49.77

Pointwise, channel+parameter matched θ̄1(c
′, c, x, y)1θ=Id(θ) 338770 (10) 66.77

Classical CNN, baseline θ̄(c′, c, x, y) (θ not convolved) 338770 (10) 57.89

Table 7: Experimental comparison of roto-translation equivariant convolutional architectures with
full, separable and pointwise factorisation of the rotation subgroup. Reported test accuracy.

F.4 Sparsified layers

For sparsified S-FC and S-CONV layers, we use half the number of anchor points M as there would
otherwise be parameters in that layer without spatial sparsification. In non-integer, we round upwards.

F.5 Datasets

For MNIST [LeCun, 1998] and CIFAR-10 [Krizhevsky et al., 2009] datasets, we normalise images
standardised to zero mean and unit variance, following standard practice. Rotated datasets ‘Rotated
MNIST’ and ‘Rotated CIFAR-10’ consists of original datasets but every image rotated by an angle
uniformly sampled from along the unit circle. Similarly, images in ‘Translated MNIST’ are randomly
translated in x- and y- axes by uniformly sampled pixels in the range [-8, 8].

F.6 Training details

For the CIFAR-10 experiments, we optimise using Adam [Kingma and Ba, 2014] (β1=0.9, β2=0.999)
with a learning rate of 0.01 for model parameters θ and 0.1 for hyperparameters η, cosine-annealed
[Loshchilov and Hutter, 2016] to zero. We train with a batch size of 128 for 4000 epochs, and
update hyperparameters every 5 epochs after a 10 epoch burn-in. For parameter updates, we use
standard data augmentation consisting of horizontal flips and 4-pixel random shifts, and do not
augment when calculating the marginal likelihood estimates. For MAP training, we use unit prior
variances σl=σ̄l=1 for all layers l. For Laplace training, we use this same setting to initialise our
prior but treat them as part of the hyperparameters η and optimise them during training. For MNIST
experiments, we use the same settings, except that we do not use data augmentation and train for a
shorter period of 1000 epochs at a lower initial learning rate of 0.01. All experiments were run on a
single NVIDIA RTX 3090 GPU with 24GB onboard memory.

F.7 Code

Code accompanying this paper is available at https://github.com/tychovdo/ella

20

https://github.com/tychovdo/ella

