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Abstract

Abstaining classifiers have the option to abstain from making predictions on inputs
that they are unsure about. These classifiers are becoming increasingly popular in
high-stakes decision-making problems, as they can withhold uncertain predictions
to improve their reliability and safety. When evaluating black-box abstaining
classifier(s), however, we lack a principled approach that accounts for what the
classifier would have predicted on its abstentions. These missing predictions matter
when they can eventually be utilized, either directly or as a backup option in a failure
mode. In this paper, we introduce a novel approach and perspective to the problem
of evaluating and comparing abstaining classifiers by treating abstentions as missing
data. Our evaluation approach is centered around defining the counterfactual score
of an abstaining classifier, defined as the expected performance of the classifier
had it not been allowed to abstain. We specify the conditions under which the
counterfactual score is identifiable: if the abstentions are stochastic, and if the
evaluation data is independent of the training data (ensuring that the predictions
are missing at random), then the score is identifiable. Note that, if abstentions are
deterministic, then the score is unidentifiable because the classifier can perform
arbitrarily poorly on its abstentions. Leveraging tools from observational causal
inference, we then develop nonparametric and doubly robust methods to efficiently
estimate this quantity under identification. Our approach is examined in both
simulated and real data experiments.

1 Introduction

Abstaining classifiers (Chow, 1957; El-Yaniv and Wiener, 2010), also known as selective classifiers or
classifiers with a reject option, are classifiers that have the option to abstain from making predictions
on certain inputs. As their use continues to grow in safety-critical applications, such as medical
imaging and autonomous driving, it is natural to ask how a practitioner should evaluate and compare
the predictive performance of abstaining classifiers under black-box access to their decisions.

In this paper, we introduce the counterfactual score as a new evaluation metric for black-box
abstaining classifiers. The counterfactual score is defined as the expected score of an abstaining
classifier’s predictions, had it not been allowed to abstain. This score is of intrinsic importance when
the potential predictions on abstaining inputs are relevant. We proceed with an illustrative example:
Example 1.1 (Free-trial ML APIs). Suppose we compare different image classification APIs. Each
API has two versions: a free version that abstains, and a paid one that does not. Before paying for the
full service, the user can query the free version for up to n predictions on a user-provided dataset,
although it may choose to reject any input that it deems as requiring the paid service. Given two such
APIs, how can the practitioner determine which of the two paid (non-abstaining) versions would be
better on the population data source, given their abstaining predictions on a sample?
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Example 1.1 exhibits why someone using a black-box abstaining classifier would be interested
in its counterfactual score: the user may want to reward classifiers whose hidden predictions are
also (reasonably) good, as those predictions may be utilized in the future. This is a hypothetical
example, but we can imagine other applications of abstaining classifiers where the counterfactual
score is meaningful. In Appendix A.1, we give three additional examples, including safety-critical
applications where the hidden predictions may be used as a backup option in a failure mode.

To formally define, identify, and estimate the counterfactual score, we cast the evaluation problem
in Rubin (1976)’s missing data framework and treat abstentions as missing predictions. This novel
viewpoint directly yields nonparametric methods for estimating the counterfactual score of an
abstaining classifier, drawing upon methods for causal inference in observational studies (Rubin,
1974; Robins et al., 1994; van der Vaart, 2000), and represents an interesting yet previously unutilized
theoretical connection between selective classification, model evaluation, and causal inference.

The identification of the counterfactual score is guaranteed under two standard assumptions: the
missing at random (MAR) condition, which is satisfied as long as the evaluation data is independent
of the classifier (or its training data), and the positivity condition. As with standard missing data
settings, both the MAR and positivity conditions are necessary for identification. We later discuss
each condition in detail, including when the positivity condition is met and how a policy-level
approach may be necessary for safety-critical applications.

Figure 1: A schematic flowchart of comparing
abstaining classifiers. In a black-box setting
where the evaluator does not have access to
the training algorithms or the resources to train
them, the task can be viewed as a nontrivial
missing data problem. This work proposes the
counterfactual score as an evaluation metric.

The counterfactual score can be viewed as an alter-
native to the selective score (mean score on nonab-
stentions) and the coverage (1 minus the abstention
rate) (El-Yaniv and Wiener, 2010), which are the
main existing metrics for evaluating black-box ab-
staining classifiers. As a two-dimensional metric,
comparison on the basis of these is non-trivial. A
common approach is to assume a fixed cost for each
abstention (Chow, 1970), but this is not always sat-
isfactory since determining how to weigh absten-
tions and errors against one another is a nontrivial
question. Thus, in settings such as Example 1.1, the
notion of counterfactual score becomes necessary.
Importantly, selective scores are not representative
of the counterfactual performance, except in the
(unrealistic) case wherein predictions are missing
completely at random (MCAR).2 Figure 1 gives an
overview of scenarios where different metrics may
be appropriate to compare abstaining classifiers.

The counterfactual score also offers practical benefits when comparing abstaining classifiers. Coun-
terfactual scores are comparable even if abstaining classifiers are tuned to different abstention rates or
selective scores. Moreover, compared to evaluation methods using the selective score-coverage curve
(equivalent to re-training the classifier several times at different score/coverage levels), estimating the
counterfactual score does not require re-training the classifier. Instead, we only need to estimate a
pair of nuisance functions that can be learned using the observed predictions (nonabstentions) in the
evaluation set. Let us further note that the setup is applicable generally to any form of prediction that
can be scored, including regression and structured prediction. In this paper, we restrict our attention
to classification for concreteness, as it is the most well-studied abstention framework.

Summary of contributions We first formalize the problem of comparing abstaining classifiers
as a missing data problem and introduce the counterfactual score as a novel metric for abstaining
classifiers. Next, we discuss how the counterfactual score can be identified under the MAR and
positivity conditions. Then, we develop efficient nonparametric estimators for the counterfactual
scores and their differences, namely doubly robust confidence intervals (DR CI). Finally, we validate
our approach in simulated and real-data experiments.

2MCAR means the missing observations are simply a uniformly random subset of all observations, indepen-
dently of the input/output. In contrast, MAR means there can be systematic differences between the missing and
observed values, but these can be explained by the input. Our method only requires MAR.
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Related work on abstaining classifiers The training of abstaining classifiers has seen significant
interest in the literature (e.g., Chow, 1970; Pietraszek, 2005; Bartlett and Wegkamp, 2008; Cortes
et al., 2016; Geifman and El-Yaniv, 2017, 2019; Gangrade et al., 2021). We refer to Hendrickx et al.
(2021); Zhang et al. (2023) for recent surveys. For evaluation, aside from using some combination
of selective score and coverage, the most pertinent reference is the work of Condessa et al. (2017),
who propose the metric of ‘classifier quality’ that is a somewhat inverse version of our counterfactual
accuracy. This metric is the sum of the prediction accuracy when the classifier predicts, and prediction
inaccuracy when it abstains, the idea being that if a classifier is not abstaining needlessly, then it
must hold that the underlying predictions on points it abstains on are very poor. While this view is
relevant to the training of abstention rules, it is at odds with black-box settings where the underlying
predictions may still be executed even when the method abstains, motivating the counterfactual score.
In terms of estimating the score, Condessa et al. (2017) do not discuss the black-box setting that
requires estimating a counterfactual, as they assume full knowledge of the classifier’s predictions.

Related work on missing data, causal inference, and doubly robust estimation Our main
approach to the estimability of counterfactual scores is driven by a reduction to an inference problem
under missing data (or censoring) (Rubin, 1976; Little and Rubin, 2019). A missing data problem can
be viewed equivalently as a causal inference problem in an observational study (Rubin, 1976; Pearl,
2000; Shpitser et al., 2015; Ding and Li, 2018), and there exist well-established theories and methods
for both identifying the counterfactual quantity of interest and efficiently estimating the identified
target functional. For identification, unlike in some observational settings for estimating treatment
effects, our setup straightforwardly satisfies the standard assumption of consistency (non-interference).
The MAR assumption is satisfied as long as independent evaluation data is used, and the positivity
assumption translates to abstentions being stochastic. We discuss various implications of these
conditions in Sections 2.2 and 5. For estimation, efficient methods for estimating targets such as
the average treatment effect (ATE) have long been studied under semiparametric and nonparametric
settings. Doubly robust (DR) estimators, in particular, are known to achieve the asymptotic minimax
lower bound on the mean squared error. For details, we refer the reader to Bickel et al. (1993); Robins
et al. (1994); van der Vaart (2000, 2002); van der Laan and Robins (2003); Bang and Robins (2005);
Tsiatis (2006); Chernozhukov et al. (2018); Kennedy (2022). Unlike the standard ATE estimation
setup in observational studies, our setup contrasts two separate causal estimands, the counterfactual
scores of the two competing classifiers, that operate under their distinct missingness mechanisms.

2 Definition and identification of the counterfactual score

We formulate the problem of evaluating and comparing abstaining classifiers under the missing
data framework (Rubin, 1976). We follow the standard approach of defining the target parameter
(Section 2.1), identifying it with observable quantities (Section 2.2), and estimating the identified
parameter using data (Section 3). In each step, we first consider evaluating one abstaining classifier
and then extend to comparing two abstaining classifiers. Below, X denotes the input space and
Y = {1, . . . , C} is the set of possible classes, while ∆C−1 denotes the C-dimensional probability
simplex on Y .

Abstaining classifiers We define an abstaining classifier as a pair of functions (f, π), representing
its base classifier f : X → ∆C−1 and abstention mechanism π : X → [0, 1], respectively. Given a
query X , the classifier first forms a preliminary (probabilistic) prediction f(X). Then, potentially
using the output f(X), the classifier determines π(X), i.e., the abstention probability. Using π(X),
the classifier then makes the binary abstention decision R | π(X) ∼ Ber(π(X)), so that if R = 1
(“rejection”), the classifier abstains on the query, and if R = 0, it reveals its prediction f(X). In
some cases, we will explicitly define the source of randomness ξ (independent of the data) in deciding
R, such that R = r(π(X), ξ) for a deterministic function r.3 Neither f nor π is assumed to be known
to the evaluator, modeling the black-box access typically available to practitioners.

Scoring rules (Higher scores are better.) We measure the quality of a prediction f(x) for a label
y via a positively oriented scoring rule s : ∆C−1 × Y → R. One simple scoring rule is classification
accuracy, i.e., s(f(x), y) = 1

(
argmaxc∈Y f(x)c = y

)
, but a plethora of scores exist in the literature,

such as the Brier (1950) score: s(f(x), y) = 1−
∑

c∈Y(f(x)c − 1 (y = c))2.

3Specifically, let ξ ∼ Unif[0, 1] and R = 1 (ξ ≤ π(X)). Then, R is a function of only π(X) and ξ.
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The evaluation setup For each labeled data point (X,Y ) in an evaluation set, we observe
the abstention decision R = r(π(X), ξ) for some independent source of randomness ξ used
by the abstaining classifier. Then, its prediction f(X) is observed by the evaluator if and
only if R = 0. Let S := s(f(X), Y ) denote the score of the prediction f on the query
X , irrespective of R. Because S is not observable when R = 1, we refer to S as the po-
tential score that would have been seen had the classifier not abstained. (See Appendix A.2
for equivalent formulations that explicitly invoke Rubin (1974)’s potential outcomes model.)

Table 1: A summary of problem formulations and pro-
posed approaches for evaluation and comparison of ab-
staining classifiers. Our approaches avoid parametric
assumptions and allow for black-box classifiers.

Evaluation Comparison

Classifier(s) (f, π) (fA, πA) & (fB, πB)
Target ψ = E [S] ∆AB = E

[
SA − SB

]
Identification MAR & positivity
Estimation Doubly robust CI
Optimality Nonparametrically efficient

Since our evaluation is based only on the
score S, we can suppress the role of Y and
assume that S is observed directly when
R = 0. Similarly, we can suppress the role
of ξ, which is independent of the data. We
let P denote the law of Z := (X,R, S).

Table 1 summarizes the problem formula-
tions and the proposed approaches in our
paper. The target definitions and the iden-
tification conditions are discussed in the
following subsections; the estimator and its
optimality are discussed in Section 3.

2.1 The counterfactual score

We propose to assess an abstaining classifier (f, π) with its (expected) counterfactual score:
ψ := E [S] , (2.1)

where the expectation is taken w.r.t. P. In words, ψ refers to the expected score of the abstaining
classifier had it not been given the option to abstain. The counterfactual score captures the performance
of an abstaining classifier via the score of its base classifier, making it suitable for cases where the
evaluator is interested in the predictions without using an abstention mechanism.

Note that ψ does not in general equal the selective score, i.e., E [S | R = 0]. For example, when
a classifier abstains from making predictions on its “weak points,” i.e., inputs on which the clas-
sifier performs poorly, the counterfactual score will be lower than the selective score. Also see
Appendix A.3 for a direct comparison with Condessa et al. (2017)’s score, which rewards having
bad hidden predictions, as opposed to (2.1). Our general framework allows estimating either score,
although we focus on (2.1) based on our motivating examples (Example 1.1 and Appendix A.1).

Comparison Counterfactual scores may also be used to compare two abstaining classifiers, (fA, πA)
and (fB, πB), in the form of their counterfactual score difference: ∆AB := ψA − ψB = E[SA − SB].
Here, the expectation is now taken over the joint law of ZAB := (X,RA, SA, RB, SB).

2.2 Identifiability of the counterfactual score

Having defined the target parameters ψ and ∆AB, we now discuss the assumptions under which
these quantities become identifiable using only the observed random variables. In other words, these
assumptions establish when the counterfactual quantity equals a statistical quantity. As in standard
settings of counterfactual inference under missing data, the identifiability of counterfactual scores in
this setting depends on two standard conditions: (i) the missing at random condition and (ii) positivity.

The missing at random (MAR) condition, also known as the ignorability or no unmeasured confound-
ing condition, requires that the score S is conditionally independent of the abstention decision R
given X , meaning that there are no unobserved confounders U that affect both the abstention decision
R as well as the score S. Note that S is the potential score of what the classifier would get had it not
abstained — it is only observed when R = 0. We formally state the MAR condition as follows:
Assumption 2.1 (Scores are missing at random). S ⊥⊥ R | X .

In standard ML evaluation scenarios, where the evaluation set is independent of the training set for
the classifier, Assumption 2.1 is always met. We formalize this sufficient condition for MAR in
the following proposition. Let Dtrain denote the collection of any training data used to learn the
abstaining classifier (f, π) and, as before, (X,Y ) denote an (i.i.d.) data point in the evaluation set.
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Proposition 2.2 (Independent evaluation data ensures MAR). If (X,Y ) ⊥⊥ Dtrain, then S ⊥⊥ R | X .

This result is intuitive: given an independent test inputX , the score S = s(f(X), Y ) is a deterministic
function of the test label Y , and the abstention decision R of a classifier cannot depend on Y simply
because the classifier has no access to it. A short proof is given in Appendix B.1 for completeness. In
Appendix C, we also include causal graphs that visually illustrate how the MAR condition is met.

If the evaluation data is not independent of Dtrain, then the classifier already has information about
the data on which it is tested, so generally speaking, no evaluation score will not accurately reflect its
generalization performance. Although the independence between the training and evaluation data is
expected in standard ML applications, it may not be guaranteed when, e.g., using a publicly available
dataset that is used during the training of the classifier. These issues can be prevented by ensuring
that the evaluation set is held out (e.g., a hospital can use its own patient data to evaluate APIs).

The second condition, the positivity condition, is more substantial in our setting:
Assumption 2.3 (Positivity). There exists ϵ > 0 such that π(X) = P (R = 1 | X) ≤ 1− ϵ.

Assumption 2.3 says that, for each input X , there has to be at least a small probability that the
classifier will not abstain (R = 0). Indeed, if the classifier deterministically abstains from making
predictions on a specific input that has nonzero marginal density, then we have no hope of estimating
an expectation over all possible values that X can take. When it comes to evaluating abstaining
classifiers on safety-critical applications, we argue that this condition may need to be enforced at a
policy level — we elaborate on this point in Section 5 and Appendix A.5. In practice, the exact value
of ϵ is problem-dependent, and in Appendix E.4, we include additional experiments illustrating how
our methods retain validity as long as the abstention rate is capped at 1− ϵ for some ϵ > 0.

Another justification for the positivity condition is that stochastically abstaining classifiers can achieve
better performances than their deterministic counterparts. Kalai and Kanade (2021) illustrate how
stochastic abstentions can improve the out-of-distribution (OOD) performance w.r.t. the Chow (1970)
score (i.e., selective score+α · coverage). Schreuder and Chzhen (2021) also introduce randomness
in their abstaining classifiers, which leverage abstentions as a means to improve their accuracy while
satisfying a fairness constraint. The role of random abstentions in these examples mirrors the role
of randomization in the fairness literature (Barocas et al., 2019), where the optimal randomized fair
predictors are known to outperform their deterministic counterparts (Agarwal and Deshpande, 2022;
Grgić-Hlača et al., 2017). Given the effectiveness of randomized classifiers for fairness, it would not
be surprising if a fair abstaining classifier was randomized (in its decisions and abstentions).

With MAR and positivity in hand, we can show that the counterfactual score is indeed identifiable.
Define µ0(x) := E [S | R = 0, X = x] as the regression function for the score under R = 0.
Proposition 2.4 (Identification). Under Assumptions 2.1 and 2.3, ψ is identified as E [µ0(X)].

The proof, included in Appendix B.2, follows a standard argument in causal inference. The identifica-
tion of the target parameter ψ using µ0 implies that we can estimate ψ, the expectation of a potential
outcome, using only the observed inputs and scores. Specifically, the task of estimating ψ consistently
reduces to the problem of estimating the regression function µ0, which only involves predictions that
the classifier did not abstain from making. We note that, as in standard causal inference, the task of
identification, which concerns what to estimate, is largely orthogonal to the task of estimation, which
concerns how to estimate the quantity. We discuss the latter problem in Section 3.

Comparison For the comparison task, given ∆AB = ψA − ψB, it immediately follows that if the
MAR and positivity assumptions hold for each of (X,RA, SA) and (X,RB, SB), then ∆AB is also
identified as ∆AB = E[µA

0 (X)−µB
0 (X)], where µ•

0(x) := E [S•|R• = 0, X = x] for • ∈ {A,B}. In
words, if (i) the evaluation data is independent of the training data for each classifier (Proposition 2.2)
and (ii) each classifier has at least a small chance of not abstaining on each input (Assumption 2.3),
then the counterfactual score difference, i.e., ∆AB, is identified as the expected difference in the
expected scores over inputs conditional on non-abstentions, i.e., E[µA

0 (X)− µB
0 (X)].

3 Nonparametric and doubly robust estimation of the counterfactual score

Having identified the counterfactual scores, we now focus on the problem of consistently estimating
them. We estimate these quantities without resorting to parametric assumptions about the underlying

5



black-box abstention mechanisms. Instead, we reduce the problem to that of functional estimation
and leverage techniques from nonparametric statistics. See Kennedy (2022) for a recent review.

3.1 Estimating the counterfactual score

Task Let {(Xi, Ri, Si)}ni=1 ∼ P denote an i.i.d. evaluation set of size n. As before, we assume
that we are given access to the censored version of this sample, i.e., that we observe Si if and only if
Ri = 0. Using the observables, we seek to form an estimate ψ̂ of the counterfactual score ψ = E[S].

Doubly robust estimation Under identification (Proposition 2.4), we can estimate ψ by estimating
the regression function µ0(X) on the data {(Xi, Si) : Ri = 0}. However, the naïve “plug-in”
estimate suffers from an inflated bias due to the structure present in the abstention patterns. (See
Appendix A.4 for details.) We instead develop a doubly robust (DR) estimator (Robins et al., 1994;
Bang and Robins, 2005), which is known to consistently estimate ψ at the optimal nonparametric
efficiency rates, meaning that no other estimator based on the n observations can asymptotically
achieve a smaller mean squared error (van der Vaart, 2002). The derivation below is relatively
standard, explaining our brevity.

Formally, the DR estimator is defined using the (uncentered) efficient influence function (EIF) for
the identified target functional ψ(P) = EP[µ0(X)]: IF(x, r, s) := µ0(x) +

1−r
1−π(x) (s− µ0(x))

(0/0 := 0). Here, π and µ0 are the “nuisance” functions, representing the abstention mechanism and
the score function under R = 0, respectively. The EIF can be computed as long as s is available when
r = 0. An intuition for the EIF is that it is the first-order “distributional Taylor approximation” (Fisher
and Kennedy, 2021) of the target functional, such that its bias is second-order.

Given that π and µ0 are unknown, we define an estimate of the EIF, denoted as ÎF, by plugging in
estimates π̂ for π and µ̂0 for µ0. Then, the DR estimator is simply the empirical mean of the EIF:

ψ̂dr =
1

n

n∑
i=1

ÎF(Xi, Ri, Si) =
1

n

n∑
i=1

[
µ̂0(Xi) +

1−Ri

1− π̂(Xi)
(Si − µ̂0(Xi))

]
. (3.1)

This estimator is well-defined because Si is available precisely when Ri = 0. Note that the first term
is the (biased) plug-in estimator, and the second term represents the first-order correction term, which
involves inverse probability weighting (IPW) (Horvitz and Thompson, 1952; Rosenbaum, 1995). In
our experiments, we show how the DR estimator improves upon both the plug-in estimator, in terms
of the bias, and the IPW-based estimator, which we recap in Section A.4, in terms of the variance.

The “double robustness” of ψ̂dr translates to the following useful property: ψ̂dr retains the parametric
rate of convergence, OP(1/

√
n), even when the estimators µ̂0 and π̂ themselves converge at slower

rates. This allows us to use nonparametric function estimators to estimate µ0 and π, such as
stacking ensembles (Breiman, 1996) like the super learner (van der Laan et al., 2007) and regularized
estimators like the Lasso (Tibshirani, 1996; Belloni et al., 2014). Even for nonparametric models
whose rates of convergence are not fully understood, such as random forests (Breiman, 2001) and
deep neural networks (LeCun et al., 2015), we can empirically demonstrate valid coverage and
efficiency (Section 4).

In practice, the nuisance functions can be estimated via cross-fitting (Robins et al., 2008; Zheng and
van der Laan, 2011; Chernozhukov et al., 2018), which is a K-fold generalization of sample splitting.
First, randomly split the data into K folds; then, fit π̂ and µ̂0 on K − 1 folds and use them to estimate
the EIF on the remaining “evaluation” fold; repeat the process K times with each fold being the
evaluation fold; finally, average the EIFs across all data points. The key benefit of using cross-fitting
is to avoid any complexity restrictions on individual nuisance functions without sacrificing sample
efficiency. In the following, we let ψ̂dr be the estimator (3.1) obtained via cross-fitting.

Now we are ready to present our first result, which states the asymptotic validity and efficiency of the
DR estimator for ψ under identification and the DR condition.

Theorem 3.1 (DR estimation of the counterfactual score for an abstaining classifier). Suppose that
Assumptions 2.1 and 2.3 hold. Also, suppose that

∥π̂ − π∥L2(P) ∥µ̂0 − µ0∥L2(P) = oP(1/
√
n) (3.2)
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and that ∥ÎF− IF∥L2(P) = oP(1). Then,
√
n
(
ψ̂dr − ψ

)
⇝ N (0,VarP [IF]) ,

where VarP [IF] matches the nonparametric efficiency bound.

The proof adapts standard arguments in mathematical statistics, as found in, e.g., van der Vaart
(2002); Kennedy (2022), to the abstaining classifier evaluation setup. We include a proof sketch in
Appendix B.3. Theorem 3.1 tells us that, under the identification and the DR condition (3.2), we can
construct a closed-form asymptotic confidence interval (CI) at level α ∈ (0, 1) as follows:

Cn,α =

(
ψ̂dr ± zα/2

√
n−1VarP̂n

[ÎF]

)
, (3.3)

where zα/2 = Φ(1 − α
2 ) is the (1 − α

2 )-quantile of a standard normal (e.g., 1.96 for α = 0.05).
In Appendix D, we describe an asymptotic confidence sequence (AsympCS; Waudby-Smith et al.,
2021), which is a CI that is further valid under continuous monitoring (e.g., as more data is collected).

3.2 Estimating counterfactual score differences

Task Next, we return to the problem of comparing two abstaining classifiers, (fA, πA) and (fB, πB),
that each makes a decision to make a prediction on each input Xi or abstain from doing so. That
is, R•

i | π•(Xi) ∼ Ber(π•(Xi)), and we observe S•
i = s(f•(Xi), Yi) if and only if R•

i = 0, for
• ∈ {A,B}. Recall that the target here is the score difference ∆AB = ψA − ψB = E

[
SA − SB

]
.

Doubly robust difference estimation If the parameters ψA and ψB are each identified according
to Proposition 2.4, then we can estimate ∆AB as ∆̂AB = ψ̂A − ψ̂B, for individual estimates ψ̂A and
ψ̂B. The resulting EIF is simply the difference in the EIF for A and B: IFAB(x, rA, rB, sA, sB) =

IFA(x, rA, sA)− IFB(x, rB, sB), where IFA and IFB denote the EIF of the respective classifier. Thus,
we arrive at an analogous theorem that involves estimating the nuisance functions of each abstaining
classifier and utilizing IFAB to obtain the limiting distribution of ∆̂AB

dr = ψ̂A
dr − ψ̂B

dr.
Theorem 3.2 (DR estimation of the counterfactual score difference). Suppose that Assumptions 2.1
and 2.3 hold for both (Xi, R

A
i , S

A
i ) and (Xi, R

B
i , S

B
i ). Also, suppose that

∥π̂A − πA∥L2(P)∥µ̂
A
0 − µA

0∥L2(P) + ∥π̂B − πB∥L2(P)∥µ̂
B
0 − µB

0∥L2(P) = oP(1/
√
n) (3.4)

and that ∥ÎFAB − IFAB∥L2(P) = oP(1). Then,
√
n
(
∆̂AB

dr −∆AB
)
⇝ N

(
0,VarP

[
IFAB

])
,

where VarP[IF
AB] matches the nonparametric efficiency bound.

A proof is given in Appendix B.4. As with evaluation, Theorem 3.2 yields a closed-form asymptotic
CI of the form (3.3) using the analogous estimate of EIF under MAR, positivity, and DR (3.4).
Inverting this CI further yields a hypothesis test for H0 : ψA = ψB vs. H1 : ψA ̸= ψB.

4 Experiments

The main goals of our experiments are to empirically check the validity and power of our estimation
methods and to illustrate how our methods can be used in practice. First, in Section 4.1, we present
results on simulated data to examine the validity of our proposed inference methods (CIs and
hypothesis tests). Then, in Section 4.2, we study three scenarios on the CIFAR-100 dataset that
illustrate the practical use of our approach to real data settings. All code for the experiments is publicly
available online at https://github.com/yjchoe/ComparingAbstainingClassifiers.

4.1 Simulated experiments: Abstentions near the decision boundary

Setup (MAR but not MCAR) We first consider comparing two abstaining classifiers according
to their accuracy scores, on a simulated binary classification dataset with 2-dimensional inputs.
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Given n = 2, 000 i.i.d. inputs {Xi}ni=1 ∼ Unif([0, 1]2), each label Yi is decided using a linear
boundary, f∗(x1, x2) = 1 (x1 + x2 ≥ 1), along with a 15% i.i.d. label noise. Importantly, each
classifier abstains near its decision boundary, such that its predictions and scores are MAR but not
MCAR (because abstentions depend on the inputs). As a result, while the counterfactual score of A
(ψA = 0.86) is much higher than B (ψB = 0.74), their selective scores are more similar (SelA = 0.86,
SelB = 0.81) and coverage is lower for A (CovA = 0.55) than for B (CovB = 0.62). Another point to
note here is that, even though both the outcome model and classifier A are linear, both the abstention
mechanism4 πA and the selective score function5 µA

0 are nonlinear functions of the inputs (similarly
for πB and µB

0 ). More generally, if a classifier abstains near its decision boundary, then both π and µ0

could be at least as complex as the base classifier f itself. Further details of the setup, including a
plot of the data, predictions, and abstentions, are provided in Appendix E.1.

Table 2: Miscoverage rates (and widths) of 95% CIs us-
ing three estimation approaches and three nuisance func-
tion (π and µ0) estimators in a simulated experiment.
Mean and standard error computed over m = 1, 000
runs are shown; those within 2 standard errors of the
intended level (0.05) are boldfaced. The sample size
is n = 2, 000 in each run. The mean widths of CIs
are shown in parentheses. DR estimation with either a
random forest or a super learner achieves control over
the miscoverage rate, and the DR-based CI is twice as
tight as the IPW-based CI in terms of their width.

µ̂0 & π̂ Plug-in IPW DR

Linear 1.00 ± 0.00 0.76 ± 0.01 1.00 ± 0.00
(0.00) (0.09) (0.04)

Random 0.64 ± 0.02 0.14 ± 0.01 0.05 ± 0.01
forest (0.02) (0.13) (0.07)

Super 0.91 ± 0.01 0.03 ± 0.01 0.05 ± 0.01
learner (0.01) (0.12) (0.06)

Miscoverage rates and widths As our
first experiment, we compare the miscov-
erage rates and widths of the 95% DR CIs
(Theorem 3.2) against two baseline esti-
mators: the plug-in and the IPW (Rosen-
baum, 1995) estimators (Appendix A.4).
For each method, the miscoverage rate of
the CI Cn is approximated via P(∆AB /∈
Cn) ≈ m−1

∑m
j=1 1(∆

AB /∈ C
(j)
n ), where

m is the number of simulations over re-
peatedly sampled data. If the CI is valid,
then this rate should approximately be 0.05.
The miscoverage rate and the width of a CI,
respectively, capture its bias and variance
components. For the nuisance functions,
we try linear predictors (L2-regularized lin-
ear/logistic regression for µ̂0/π̂), random
forests, and super learners with k-NN, ker-
nel SVM, and random forests.

We present our results in Table 2. First,
using the random forest or the super learner,
the DR CIs consistently achieve the intended coverage level of 0.95, over m = 1, 000 repeated
simulations (standard error 0.01). This validates the asymptotic normality result of (3.2). Note that
the CI with linear estimators does not achieve the intended coverage level: this is expected as neither
π̂ nor µ̂0 can consistently estimate the nonlinear functions π or µ0, violating the DR condition (3.4).

Second, when considering both the miscoverage rate and CI width, the DR estimator outperforms
both the plug-in and IPW estimators. The plug-in estimator, despite having a small CI width, has a
very high miscoverage rate (0.91 with the super learner), meaning that it is biased even when flexible
nuisance learners are used. On the other hand, the IPW estimator has double the width of the DR
estimator (0.12 to 0.06, with the super learner), meaning that it is not as efficient. Also, while the
IPW estimator achieves the desired coverage level with the super learner (0.03), it fails with the
random forest (0.14), which tends to make overconfident predictions of the abstention pattern and
biases the resulting estimate. In contrast, the DR estimator retains its intended coverage level of 0.05
with the random forest, suggesting that it is amenable to overconfident nuisance learners.

Power analysis We conduct a power analysis of the statistical test for H0 : ∆AB = 0 vs. H1 :
∆AB ̸= 0 by inverting the DR CI. The results confirm that the power reaches 1 as either the sample
size (n) or the absolute difference (|∆AB|) increases. This experiment is included in Appendix E.2.

4The abstention mechanism π(x) = P(R = 1 | X = x) here separates the region below and above the
decision boundary from the region near the boundary. Thus π is nonlinear even when the boundary is linear.

5Given any input X for which the classifier did not abstain (R = 0) and its output Y , the score S =
s(f(X), Y ) is nonlinear if either s(·, y) or f is nonlinear. Thus, even for linear f , nonlinear scores like the Brier
score automatically make the selective score function µ0(x) = E[S | R = 0, X = x] nonlinear.
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4.2 Comparing abstaining classifiers on CIFAR-100

To illustrate a real data use case, we compare abstaining classifiers on the CIFAR-100 image
classification dataset (Krizhevsky, 2009). Observe that abstaining classifiers can behave differently not
just when their base classifiers are different but also when their abstention mechanisms are different.
In fact, two abstaining classifiers can have a similarly effective base classifier but substantially
different abstention mechanisms (e.g., one more confident than the other). In such a case, the
counterfactual score difference between the two classifiers is zero, but their selective scores and
coverages are different. We examine such scenarios by comparing image classifiers that use the same
pre-trained representation model but have different output layers and abstention mechanisms.

We start with the 512-dimensional final-layer representations of a VGG-16 convolutional neural
network (Simonyan and Zisserman, 2015), pre-trained6 on the CIFAR-100 training set, and compare
different output layers and abstention mechanisms on the validation set. Generally, in a real data setup,
we cannot verify whether a statistical test or a CI is correct; yet, in this experiment, we can still access
to the base model of each abstaining classifier. This means that (a) if we compare abstaining classifiers
that share the base classifier but differ in their abstention patterns, then we actually know that their
counterfactual scores are exactly the same (∆AB = 0); (b) if we compare abstaining classifiers
with different base classifiers, then we can compute their counterfactual scores accurately up to an
i.i.d. sampling error. This estimate is denoted by ∆̄AB := n−1

∑n
i=1[s(f

A(Xi), Yi)− s(fB(Xi), Yi)].

For all comparisons, we use the DR estimator, where the nuisance functions π̂ and µ̂0 for both
classifiers are each an L2-regularized linear layer learned on top of the pre-trained VGG-16 features.
The use of pre-trained representations for learning the nuisance functions is motivated by Shi et al.
(2019), who demonstrated the effectiveness of the approach in causal inference contexts. We also use
the Brier score in this experiment. We defer other experiment details to Appendix E.3.

Table 3: The 95% DR CIs and their corresponding
hypothesis tests for H0 : ∆AB = 0 at significance level
α = 0.05, for three different comparison scenarios on
(half of) the CIFAR-100 test set (n = 5, 000). The three
scenarios compare different abstention mechanisms or
predictors, as detailed in text; all comparisons use the
Brier score. ∆̄AB is the empirical counterfactual score
difference without any abstentions. The result of each
statistical test agrees with whether ∆̄AB is 0.

Scenarios ∆̄AB 95% DR CI Reject H0?

I 0.000 (-0.005, 0.018) No
II 0.000 (-0.014, 0.008) No
III −0.029 (-0.051, -0.028) Yes

In scenario I, we compare two abstaining
classifiers that use the same softmax out-
put layer but use a different threshold for
abstentions. Specifically, both classifiers
use the softmax response (SR) threshold-
ing (Geifman and El-Yaniv, 2017), i.e., ab-
stain if maxc∈Y f(X)c < τ for a thresh-
old τ > 0, but A uses a more conservative
threshold (τ = 0.8) than B (τ = 0.5). As
a result, while their counterfactual scores
are identical (∆AB = 0), A has a higher
selective score (+0.06) and a lower cover-
age (−0.20) than B. This is also a deter-
ministic abstention mechanism, potentially
challenging the premises of our setup. As
shown in Table 3, we see that the 95% DR
CI is (−0.005, 0.018) (n = 5, 000), confirming that there is no difference in counterfactual scores.7

Scenario II is similar to scenario I, except that the abstention mechanisms are now stochastic: A uses
one minus the SR as the probability of making a prediction, i.e., πA(x) = 1−maxc∈[C] f(X)c, while
B uses one minus the Gini impurity as the probability of abstention, i.e., πB(x) = 1−

∑C
c=1 f(X)2c ,

both clipped to (0.2, 0.8). The Gini impurity is an alternative measure of confidence to SR that is
quadratic in the probabilities, instead of piecewise linear, and thus the Gini-based abstaining classifier
(B) is more cautious than the SR-based one (A), particularly on uncertain predictions. In our setup,
A achieves a higher coverage than B, while B achieves a higher selective score than A. The 95%
DR CI is (−0.014, 0.008), confirming that there is once again no difference in counterfactual scores.
Scenarios I and II both correspond to case (a).

In scenario III, we now examine a case where there is a difference in counterfactual scores between
the two abstaining classifiers (case (b)). Specifically, we compare the pre-trained VGG-16 model’s

6Reproduced version, accessed from https://github.com/chenyaofo/pytorch-cifar-models.
7The reason why the DR CI correctly estimates the true ∆AB = 0, despite the fact that positivity is violated

in this case, is because the two classifiers happen to abstain on similar examples (B abstains whenever A does)
and their scores on their abstentions happen to be relatively similar (0.604 for A; 0.576 for B).
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output layers (512-512-100) with the single softmax output layer that we considered in earlier
scenarios. It turns out that the original model’s multi-layer output model achieves a worse Brier score
(0.758) than one with a single output layer (0.787), likely because the probability predictions of the
multi-layer model are too confident (miscalibrated). When using the same abstention mechanism
(stochastic abstentions using SR, as in II), the overconfident original model correspondingly achieves
a higher coverage (and worse selective Brier score) than the single-output-layer model. The Monte
Carlo estimate of the true counterfactual score difference is given by ∆̄AB = −0.029, and the 95%
DR CI falls entirely negative with (−0.051,−0.028), rejecting the null of ∆AB = 0 at α = 0.05.

5 Discussion

This paper lays the groundwork for addressing the challenging problem of counterfactually comparing
black-box abstaining classifiers. Our solution casts the problem in the missing data framework, in
which we treat abstentions as MAR predictions of the classifier(s), and this allows us to leverage
nonparametrically efficient tools from causal inference. We close with discussions of two topics.

Addressing violations of the identification conditions At the conceptual level, the biggest chal-
lenge arises from the positivity condition, which requires the classifiers to deploy a non-deterministic
abstention mechanism. As mentioned in Section 2.2, the counterfactual score is unidentifiable without
this assumption. We argue that this issue calls for a policy-level treatment, especially in auditing
scenarios, where the evaluators may require vendors to supply a classifier that can abstain but has
at least an ϵ > 0 chance of nonabstention. The level ϵ can be mutually agreed upon by both parties.
Such a policy achieves a middle ground in which the vendors are not required to fully reveal their
proprietary classifiers. In Appendix A.5, we discuss this policy-level treatment in greater detail.

An alternative is to explore existing techniques that aim to address positivity violations directly (Pe-
tersen et al., 2012; Ju et al., 2019; Léger et al., 2022). Due to the unidentifiability result, these tech-
niques have their own limitations. For example, we may consider applying sample trimming (Crump
et al., 2009) to make valid inferences on a subpopulation, but the conclusions would not hold for the
entire input domain (even when relevant). Nevertheless, it remains a meaningful future work to adapt
modern tools in causal inference for diagnosing and addressing positivity violations (e.g., Lei et al.,
2021; Kennedy, 2019). In the case of addressing MAR violations, if we suspect the evaluation data
is “compromised” and used in training, we can adapt sensitivity analysis methods that measure how
much of the evaluation data is contaminated by the training data (Bonvini and Kennedy, 2022).

Connections to learning-to-defer scenarios and cascading classifiers There are variants of
abstaining classifiers in ML for which we can utilize the counterfactual score analogously. First,
in the learning-to-defer setting (Madras et al., 2018), where the algorithm is allowed to defer its
decision to an expert that gives their own decision, the counterfactual score naturally corresponds to
the expected score of the overall system had the classifier not deferred at all. The score is thus an
evaluation metric primarily for the classifier, and it is independent of the expert’s predictions, even
when the classifier is adaptive to the expert’s tendencies. In the case where the goal is to assess the
joint performance of the algorithm and the expert, then a variant of Condessa et al. (2017)’s score
can be useful; in Appendix A.6, we discuss how the DR estimator can be utilized for estimating this
variant, even when the expert’s score is random.

Another example would be cascading or multi-stage classifiers (Alpaydin and Kaynak, 1998; Viola
and Jones, 2001), which are classifiers that short-circuit easy predictions by using simple models in
their early stages to save computation. The counterfactual framework can assess the performance of
cascading classifiers by treating each component as an abstaining classifier. For example, a two-stage
cascading classifier, equipped with a small model f0, a large model f1, and a deferral mechanism π,
can be viewed as a pair of abstaining classifiers with tied abstention mechanisms, specifically (f0, π)
and (f1, π̄) where π̄ = 1−π. Then, the corresponding counterfactual scores capture the performance
of the cascading classifier had it been using only that (small or large) model. We can further extend
this to general multi-stage classifiers if we are interested in estimating the score of a classifier in each
stage individually. The two-stage setup is also relevant to the learning-to-defer setup, where the large
model is an imperfect expert on the task. In such a setup, we can devise a metric that combines (i) the
selective score of the small model and (ii) the relative improvement by switching to the expert. Our
approach can also estimate this new metric using essentially the same tools.
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