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A Experimental details

We conduct experiments using the open-source reinforcement learning library Salina [2], which is
released under the MIT license. In the following, we provide more information about the environment
details (Appendix A.1), method configurations (Appendix A.2), evaluation metrics (Appendix A.3),
and computational costs (Appendix A.4).

A.1 Environments

Brax [4] is a hardware-accelerated physics engine released under the Apache-2.0 license. To build a
continual reinforcement learning benchmark on it, Gaya et al. [5] adapted three of its locomotion
environments, including HalfCheetah (obs dim: 18, action dim: 6), Ant (obs dim: 27, action dim: 7),
and Humanoid (obs dim: 376, action dim: 17), to derive varied environments. The resulting 26 tasks
are summarized in Table 1.

For HalfCheetah, four scenarios are curated in [5] that focus on different aspects of continual learning,
including a forgetting scenario where learning the next task tends to forget the previous one, a transfer
scenario with negative forward transfer (see Appendix A.3 for definition) across tasks, a robustness
scenario that alternates between a normal task and a distraction task, and a compositionality scenario
where the final task is a combination of the previous variations. Specifically, each of them is composed
of a 4-task sequence repeated twice:

1. Forgetting: hugefeet → moon → carrystuff → rainfall
2. Transfer: carrystuff_hugegravity → moon → defective_sensor → hugefeet_rainfall
3. Robustness: normal → inverted_action → normal → inverted_action
4. Compositionality: tinyfeet → moon → carrystuff_hugegravity → tinyfeet_moon

Similarly, Ant includes four different scenarios, each consisting of a 4-task sequence repeated twice:

1. Forgetting: normal → hugefeet → rainfall → moon
2. Transfer: nofeet_1_3 → nofeet_2_4 → nofeet_1_2 → nofeet_3_4
3. Robustness: normal → inverted_actions → normal → inverted_actions
4. Compositionality: nofeet_2_3_4 → nofeet_1_3_4 → nofeet_1_2 → nofeet_3_4

In addition, there is a humanoid scenario with higher observation and action dimensions. It consists
of the following 4-task sequence: normal → moon → carrystuff → tinyfeet.

Continual World [13] is a continual reinforcement learning benchmark based on Meta-World [14],
which is composed of 50 manipulation tasks originally curated for meta-reinforcement learning and
is released under the MIT license. Underlying both benchmarks is MuJoCo [11], a general purpose
physics engine released under the Apache-2.0 license.
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Table 1: List of the 26 tasks used in Brax scenarios [4, 5] with their descriptions.

Task Description

H
al

fC
he

et
ah

normal -
carrystuff 4× mass and radius of the torso
carrystuff_hugegravity 4× mass and radius of the torso, 1.5× gravity
defective_sensor half observations are masked
hugefeet 1.5× mass and radius of the feet
hugefeet_rainfall 1.5× mass and radius of the feet, 0.4× friction
inverted_actions inverted action values
moon 0.15× gravity
tinyfeet 0.5× mass and radius of the feet
tinyfeet_moon 0.5× mass and radius of the feet, 0.15× gravity
rainfall 0.4× friction

A
nt

normal -
hugefeet 1.5× mass and radius of the feet
nofeet_2_3_4 only the 1st leg is enabled
nofeet_1_3_4 only the 2nd leg is enabled
nofeet_1_3 the 1st diagonal legs are disabled
nofeet_2_4 the 2nd diagonal legs are disabled
nofeet_1_2 forefeet are disabled
nofeet_3_4 hindfeet are disabled
inverted_actions inverted action values
moon 0.15× gravity
rainfall 0.4× friction

H
um

an
oi

d normal -
moon 0.15× gravity
carrystuff 4× mass and radius of the torso and lower waist
tinyfeet 0.5× mass and radius of the feet

There are three types of scenarios of different lengths introduced in the original paper [13], including
8 triplets (CW3), a longer 10-task sequence (CW10), and a 20-task sequence (CW20) from simply
repeating CW10 twice. We follow [5] in using CW3 and CW10 scenarios for experiments. In detail,
the CW3 scenarios are designed to have a large forward transfer from the first task to the third task,
with the second task serving as a distraction. They include the following triplets:

1. push-v1 → window-close-v1 → hammer-v1
2. hammer-v1 → window-close-v1 → faucet-close-v1
3. window-close-v1 → handle-press-side-v1 → peg-unplug-side-v1
4. faucet-close-v1 → shelf-place-v1 → peg-unplug-side-v1
5. faucet-close-v1 → shelf-place-v1 → push-back-v1
6. stick-pull-v1 → peg-unplug-side-v1 → stick-pull-v1
7. stick-pull-v1 → push-back-v1 → push-wall-v1
8. push-wall-v1 → shelf-place-v1 → push-back-v1

Meanwhile, the CW10 scenario comprises the following 10-task sequence: hammer-v1 → push-
wall-v1 → faucet-close-v1 → push-back-v1 → stick-pull-v1 → handle-press-side-v1 → push-v1 →
shelf-place-v1 → window-close-v1 → peg-unplug-side-v1.

A.2 Methods

This section describes the configuration of each method. We start with the architectural design shared
by all methods, and then delve into specific hyperparameter settings.

Architecture. The actor and the twin critics all use a 4-layer perception with 256 neurons per layer,
including a task-specific head for the actor. Leaky ReLU (with α = 0.2) [8] is employed as the
activation after each layer. Generally, our architecture is similar to the one used in [13], except
that the layer normalization [1] after the first layer is removed, since it is not trivial to incorporate
task-dependent normalized statistics into the proposed alignment mechanism.
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Table 2: Hyperparameter values for each Brax scenario, selected via grid search following [5].

(a) HalfCheetah

Method Hyperparameter Forgetting Transfer Robustness Compositionality

FT-N

lr policy 0.001 0.0003 0.001 0.0003
lr critic 0.0003 0.0003 0.001 0.0003
reward scaling 1. 1. 1. 10.
target output std 0.1 0.05 0.1 0.1
policy update delay 2 2 4 4
target update delay 2 2 2 4

FT-L2 L2 coefficient 104 100 102 102

EWC [6] Fisher coefficient 10−2 100 10−2 100

CSP [5] threshold 0.1 0.1 0.1 0.1
repeat alpha 100 20 20 100

Ours
number of modes 3 3 3 3
LKL coefficient 10−5 10−5 10−5 10−5

LSP coefficient 102 10−1 100 101

(b) Ant

Method Hyperparameter Forgetting Transfer Robustness Compositionality

FT-N

lr policy 0.001 0.001 0.001 0.0003
lr critic 0.001 0.001 0.001 0.0003
reward scaling 10. 1. 1. 10.
target output std 0.05 0.05 0.1 0.1
policy update delay 2 2 2 4
target update delay 4 2 4 4

FT-L2 L2 coefficient 104 100 100 102

EWC [6] Fisher coefficient 10−2 104 102 10−2

CSP [5] threshold 0.1 0.1 0.1 0.1
repeat alpha 100 100 100 20

Ours
number of modes 3 3 3 3
LKL coefficient 10−5 10−5 10−5 10−5

LSP coefficient 101 10−1 10−1 100

(c) Humanoid

Method Hyperparameter Humanoid

FT-N

lr policy 0.001
lr critic 0.0003
reward scaling 0.1
target output std 0.1
policy update delay 1
target update delay 1

FT-L2 L2 coefficient 10−2

EWC [6] Fisher coefficient 10−2

CSP [5] threshold 0.1
repeat alpha 100

Ours
number of modes 3
LKL coefficient 10−6

LSP coefficient 100
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Table 3: Computational efficiency on the HalfCheetah/forgetting scenario. Our method has a lower
computational cost, despite the need for two forward passes (to compute the distillation loss LKL).

MACs (M) Model size

FT-1 0.14 1.0
PNN [10] 1.08 8.0
CSP [5] 0.63 4.5

Ours 0.48 2.1

Baselines. We follow the hyperparameter settings in [5], which are determined via grid search.
Specifically, the common hyperparameters such as learning rate and reward scaling are set according
to the performance of FT-N, while the remaining hyperparameter values are selected per method.
Table 2 summarizes the hyperparameter setups. It can be seen that the regularization-based FT-L2
accommodates a large regularizer coefficient. In addition, the architecture-based methods PackNet [9]
and PNN [10] are tuned to have a comparable model size to other baselines.

Ours. We grid search the newly introduced three hyperparameters for each scenario. Their settings
on Brax are listed in Table 2. As can be seen, a relatively small LSP coefficient is used across most
of the scenarios, and its effectiveness in mitigating forgetting will be validated in Tables 5 to 7.
For Continual World, we tune our hyperparameters on the T6 scenario, where the baseline FT-L2
performs poorly, and use the results as a default for other scenarios.

A.3 Metrics

In addition to the two metrics used in the main paper, including average performance and model size,
we also adopt two additional metrics commonly used in continual learning [7]. The results evaluated
using these metrics will be presented in Tables 5 to 7 and 9.

Forward transfer measures the knowledge transfer across tasks. Suppose there are a total of T tasks.
The test performance on task j after the i-th training stage is denoted by Pi,j , and the performance by
training only on task i is denoted by bi. Then, forward transfer is calculated as:

FT =
1

T

T∑
t=1

PT,i − bi. (1)

In general, a positive forward transfer indicates the ability to perform “zero-shot" learning by
exploiting the previously learned knowledge [7], whereas a negative forward transfer indicates that
model plasticity is severely reduced due to the learning algorithm used.

Forgetting measures the average performance degradation on each task after training on the entire
task sequence. Using the previously defined notation, it is defined as:

F =
1

T

T∑
t=1

Pt,t − PT,t. (2)

It is worth noting that this metric is not very useful in the context of continual reinforcement learning.
As presented in [13, 5], the forgetting of baseline methods is usually very low and often close to 0.
This is due to the use of a large regularization weight or multiple network checkpoints. In contrast,
our method can achieve a similar level of stability with a much smaller regularization weight and less
parameter overhead, thus promoting plasticity and efficiency.

A.4 Computational costs

Our experiments are performed on Intel(R) Xeon(R) CPU cores (E5-2650 v4 @ 2.20GHz), and each
run uses a single NVIDIA 2080Ti GPU. While the runtime varies depending on server conditions and
task specifics, we estimate an average runtime of 30 hours for Brax scenarios, which is between the
baseline methods FT-N and FT-L2 (≈ 25 hours) and the previous leading method CSP (≈ 35 hours).
As for GPU memory consumption, our approach yields a slight increase (30%) over FT-L2 due to the
extra permutation layers, but is still much more efficient than CSP (> 100%). Further comparison
using multiply-add operations (MACs) and model size is shown in Table 3. Overall, our rewiring
approach is efficient in terms of both time and memory costs.
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Table 4: Reference rewards for Brax scenarios [5]. They are obtained by the baseline method SAC-N,
with hyperparameter values specified in Table 2.

Scenario Task Reward Average reward

H
al

fc
he

et
ah

Forgetting

hugefeet 2209

3125moon 2982
carrystuff 6309
rainfall 1001

Transfer

carrystuff_hugegravity 7233

4921moon 3599
defective_sensors 5909
hugefeet_rainfall 2942

Robustness

normal 4932

5383inverted_actions 5833
normal 4932
inverted_actions 5833

Compositionality

tinyfeet 6311

4479moon 3932
carrystuff_hugegravity 6319
tinyfeet_moon 1355

A
nt

Forgetting

normal 3752

2398hugefeet 2841
rainfall 1596
moon 1401

Transfer

nofeet_1_3 3021

2294nofeet_2_4 4119
nofeet_1_2 1014
nofeet_3_4 1021

Robustness

normal 3542

3871inverted_actions 4199
normal 3542
inverted_actions 4199

Compositionality

nofeet_2_3_4 770

475nofeet_1_3_4 641
nofeet_1_2 201
nofeet_3_4 288

Humanoid

normal 1958

1935moon 1691
carrystuff 2379
tinyfeet 1711

B Full results

B.1 Brax

The full results on three Brax domains are summarized in Tables 5 to 8, after being normalized by the
reference rewards in Table 4. They include a 95% confidence interval derived from 10 individual runs,
as presented in Table 8. Our method consistently demonstrates competitive performance across many
scenarios, even with a small model size. Compared to FT-L2 which mitigates forgetting well, our
method achieves better plasticity through a smaller regularization weight. Our rewiring approach also
significantly outperforms the pruning-based PackNet by fully exploiting the network parameters.

B.2 Continual World

The detailed results on 8 triplet (CW3) scenarios are summarized in Table 9. Our approach achieves
near state-of-the-art performance over all scenarios. Notably, we surpass the previous leading method
CSP in 7 out of 8 scenarios, as well as consistently outperforming the regularization-based baselines
FT-L2 and EWC and the pruning-based PackNet by large margins.

5



Table 5: Detailed results on 4 HalfCheetah scenarios. Baseline results are taken from [5]. New results
are collected using 10 different seeds and presented with mean and standard deviation.

Method Performance ↑ Model size ↓ Transfer ↑ Forgetting ↓
Fo

rg
et

tin
g

FT-1 0.52 ± 0.08 1.0 ± 0.0 0.19 ± 0.23 0.67 ± 0.19
FT-L2 0.67 ± 0.32 2.0 ± 0.0 -0.34 ± 0.30 -0.01 ± 0.00
PackNet [9] 0.94 ± 0.18 2.0 ± 0.0 -0.07 ± 0.17 -0.00 ± 0.00
EWC [6] 0.64 ± 0.26 3.0 ± 0.0 -0.27 ± 0.31 0.09 ± 0.13
PNN [10] 0.96 ± 0.15 8.0 ± 0.0 -0.04 ± 0.13 0.00 ± 0.00
SAC-N 1.00 ± 0.10 8.0 ± 0.0 -0.00 ± 0.09 -0.00 ± 0.00
FT-N 1.25 ± 0.24 8.0 ± 0.0 0.25 ± 0.23 0.00 ± 0.00
CSP [5] 1.41 ± 0.07 4.5 ± 2.0 0.41 ± 0.06 0.00 ± 0.00

Ours 1.31 ± 0.21 2.1 ± 0.0 -0.08 ± 0.21 0.00 ± 0.00

Tr
an

sf
er

FT-1 0.86 ± 0.70 1.0 ± 0.0 0.52 ± 0.62 0.66 ± 0.42
FT-L2 -0.03 ± 0.07 2.0 ± 0.0 -1.00 ± 0.03 -0.03 ± 0.04
PackNet [9] 0.99 ± 0.25 2.0 ± 0.0 -0.01 ± 0.24 0.00 ± 0.00
EWC [6] -0.13 ± 0.23 3.0 ± 0.0 -1.13 ± 0.21 0.00 ± 0.02
PNN [10] 1.05 ± 0.14 8.0 ± 0.0 0.04 ± 0.13 -0.00 ± 0.00
SAC-N 1.00 ± 0.15 8.0 ± 0.0 -0.00 ± 0.14 -0.00 ± 0.00
FT-N 1.39 ± 0.34 8.0 ± 0.0 0.39 ± 0.33 0.00 ± 0.01
CSP [5] 1.95 ± 0.83 4.9 ± 1.1 0.93 ± 0.79 -0.01 ± 0.03

Ours 1.42 ± 0.19 2.1 ± 0.0 0.34 ± 0.19 0.01 ± 0.03

R
ob

us
tn

es
s

FT-1 0.36 ± 0.25 1.0 ± 0.0 -0.11 ± 0.20 0.53 ± 0.25
FT-L2 0.22 ± 0.16 2.0 ± 0.0 -0.79 ± 0.15 -0.00 ± 0.00
PackNet [9] 0.65 ± 0.11 2.0 ± 0.0 -0.35 ± 0.10 0.00 ± 0.00
EWC [6] 0.68 ± 0.28 3.0 ± 0.0 -0.31 ± 0.23 0.01 ± 0.09
PNN [10] 1.14 ± 0.10 8.0 ± 0.0 0.14 ± 0.10 0.00 ± 0.00
SAC-N 1.00 ± 0.29 8.0 ± 0.0 0.00 ± 0.28 0.00 ± 0.00
FT-N 0.98 ± 0.12 8.0 ± 0.0 -0.02 ± 0.11 -0.00 ± 0.00
CSP [5] 1.01 ± 0.13 7.4 ± 0.5 0.01 ± 0.12 -0.00 ± 0.01

Ours 1.07 ± 0.12 2.1 ± 0.0 -0.03 ± 0.12 0.02 ± 0.01

C
om

po
si

tio
na

lit
y

FT-1 0.75 ± 0.12 1.0 ± 0.0 -0.04 ± 0.09 0.22 ± 0.11
FT-L2 0.66 ± 0.03 2.0 ± 0.0 -0.35 ± 0.03 0.01 ± 0.03
PackNet [9] 0.79 ± 0.03 2.0 ± 0.0 -0.21 ± 0.03 -0.00 ± 0.00
EWC [6] 0.53 ± 0.17 3.0 ± 0.0 -0.34 ± 0.09 0.13 ± 0.12
PNN [10] 0.97 ± 0.16 8.0 ± 0.0 -0.03 ± 0.16 0.00 ± 0.00
SAC-N 1.00 ± 0.05 8.0 ± 0.0 -0.00 ± 0.05 -0.00 ± 0.00
FT-N 1.01 ± 0.09 8.0 ± 0.0 0.01 ± 0.09 0.00 ± 0.00
CSP [5] 0.69 ± 0.09 3.4 ± 1.5 -0.31 ± 0.09 0.00 ± 0.00

Ours 0.88 ± 0.09 2.1 ± 0.0 -0.18 ± 0.09 -0.00 ± 0.00

A
gg

re
ga

te

FT-1 0.62 ± 0.29 1.0 ± 0.0 0.14 ± 0.29 0.52 ± 0.24
FT-L2 0.38 ± 0.15 2.0 ± 0.0 -0.62 ± 0.13 -0.01 ± 0.02
PackNet [9] 0.85 ± 0.14 2.0 ± 0.0 -0.15 ± 0.09 0.00 ± 0.00
EWC [6] 0.43 ± 0.24 3.0 ± 0.0 -0.51 ± 0.21 0.06 ± 0.09
PNN [10] 1.03 ± 0.14 8.4 ± 0.0 0.03 ± 0.13 0.00 ± 0.00
SAC-N 1.00 ± 0.15 8.0 ± 0.0 0.00 ± 0.14 0.00 ± 0.00
FT-N 1.16 ± 0.20 8.0 ± 0.0 0.16 ± 0.19 0.00 ± 0.00
CSP [5] 1.27 ± 0.27 5.4 ± 1.3 0.27 ± 0.26 0.00 ± 0.01

Ours 1.17 ± 0.15 2.1 ± 0.0 0.01 ± 0.15 0.01 ± 0.01
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Table 6: Detailed results on 4 Ant scenarios. Baseline results are taken from [5]. New results are
collected using 10 different seeds and presented with mean and standard deviation.

Method Performance ↑ Model size ↓ Transfer ↑ Forgetting ↓
Fo

rg
et

tin
g

FT-1 1.31 ± 0.33 1.0 ± 0.0 0.36 ± 0.20 0.05 ± 0.23
FT-L2 0.76 ± 0.27 2.0 ± 0.0 -0.24 ± 0.24 0.00 ± 0.04
PackNet [9] 1.13 ± 0.20 2.0 ± 0.0 0.13 ± 0.19 0.00 ± 0.00
EWC [6] 1.12 ± 0.21 3.0 ± 0.0 0.30 ± 0.15 0.17 ± 0.22
PNN [10] 0.97 ± 0.20 8.0 ± 0.0 -0.03 ± 0.19 0.00 ± 0.00
SAC-N 1.00 ± 0.17 8.0 ± 0.0 -0.00 ± 0.16 0.00 ± 0.00
FT-N 1.36 ± 0.26 8.0 ± 0.0 0.36 ± 0.25 -0.00 ± 0.00
CSP [5] 1.03 ± 0.14 3.7 ± 1.2 0.03 ± 0.13 0.00 ± 0.00

Ours 1.46 ± 0.15 2.1 ± 0.0 0.20 ± 0.15 -0.00 ± 0.00

Tr
an

sf
er

FT-1 0.08 ± 0.14 1.0 ± 0.0 -0.28 ± 0.20 0.64 ± 0.15
FT-L2 0.44 ± 0.12 2.0 ± 0.0 -0.44 ± 0.07 0.12 ± 0.09
PackNet [9] 0.89 ± 0.09 2.0 ± 0.0 -0.11 ± 0.09 -0.00 ± 0.00
EWC [6] 0.22 ± 0.05 3.0 ± 0.0 -0.78 ± 0.04 0.00 ± 0.00
PNN [10] 1.02 ± 0.05 8.0 ± 0.0 0.02 ± 0.05 0.00 ± 0.00
SAC-N 1.00 ± 0.08 8.0 ± 0.0 0.00 ± 0.07 -0.00 ± 0.00
FT-N 0.83 ± 0.12 8.0 ± 0.0 -0.17 ± 0.12 -0.00 ± 0.00
CSP [5] 0.93 ± 0.10 4.3 ± 0.6 -0.07 ± 0.09 -0.00 ± 0.00

Ours 0.76 ± 0.07 2.1 ± 0.0 -0.32 ± 0.07 0.00 ± 0.01

R
ob

us
tn

es
s

FT-1 0.34 ± 0.06 1.0 ± 0.0 -0.16 ± 0.04 0.50 ± 0.09
FT-L2 0.61 ± 0.08 2.0 ± 0.0 -0.42 ± 0.05 -0.03 ± 0.06
PackNet [9] 0.74 ± 0.05 2.0 ± 0.0 -0.26 ± 0.04 0.00 ± 0.00
EWC [6] 0.54 ± 0.08 3.0 ± 0.0 -0.47 ± 0.07 -0.01 ± 0.02
PNN [10] 0.98 ± 0.19 8.0 ± 0.0 -0.02 ± 0.18 -0.00 ± 0.00
SAC-N 1.00 ± 0.09 8.0 ± 0.0 -0.00 ± 0.09 -0.00 ± 0.00
FT-N 0.80 ± 0.09 8.0 ± 0.0 -0.20 ± 0.09 -0.00 ± 0.00
CSP [5] 0.60 ± 0.11 4.0 ± 0.8 -0.40 ± 0.10 0.00 ± 0.00

Ours 0.73 ± 0.11 2.1 ± 0.0 -0.33 ± 0.11 -0.02 ± 0.03

C
om

po
si

tio
na

lit
y

FT-1 0.35 ± 0.49 1.0 ± 0.0 0.32 ± 0.89 0.97 ± 0.73
FT-L2 1.33 ± 0.35 2.0 ± 0.0 0.08 ± 0.37 -0.25 ± 0.18
PackNet [9] 1.54 ± 0.50 2.0 ± 0.0 0.54 ± 0.47 -0.00 ± 0.00
EWC [6] 0.31 ± 0.62 3.0 ± 0.0 -0.07 ± 0.47 0.62 ± 0.27
PNN [10] 0.95 ± 0.81 8.0 ± 0.0 -0.05 ± 0.77 -0.00 ± 0.00
SAC-N 1.00 ± 1.17 8.0 ± 0.0 0.00 ± 1.11 0.00 ± 0.00
FT-N 0.88 ± 0.35 8.0 ± 0.0 -0.12 ± 0.34 -0.00 ± 0.00
CSP [5] 1.88 ± 0.33 3.6 ± 0.4 0.88 ± 0.32 -0.00 ± 0.01

Ours 1.95 ± 0.11 2.1 ± 0.0 0.51 ± 0.11 -0.00 ± 0.01

A
gg

re
ga

te

FT-1 0.52 ± 0.26 1.0 ± 0.0 0.06 ± 0.33 0.54 ± 0.30
FT-L2 0.78 ± 0.20 2.0 ± 0.0 -0.25 ± 0.18 -0.04 ± 0.09
PackNet [9] 1.08 ± 0.21 2.0 ± 0.0 0.08 ± 0.20 0.00 ± 0.00
EWC [6] 0.55 ± 0.24 3.0 ± 0.0 -0.26 ± 0.18 0.20 ± 0.13
PNN [10] 0.98 ± 0.31 8.0 ± 0.0 -0.02 ± 0.30 0.00 ± 0.00
SAC-N 1.00 ± 0.38 8.0 ± 0.0 0.00 ± 0.36 0.00 ± 0.00
FT-N 0.97 ± 0.20 8.0 ± 0.0 -0.03 ± 0.20 -0.00 ± 0.00
CSP [5] 1.11 ± 0.17 3.9 ± 0.8 0.11 ± 0.16 0.00 ± 0.00

Ours 1.22 ± 0.11 2.1 ± 0.0 0.02 ± 0.11 -0.01 ± 0.01

7



Table 7: Detailed results on the Humanoid scenario. Baseline results are taken from [5]. New results
are collected using 10 different seeds and presented with mean and standard deviation.

Method Performance ↑ Model size ↓ Transfer ↑ Forgetting ↓
FT-1 0.71 ± 0.07 1.0 ± 0.0 0.10 ± 0.23 0.38 ± 0.27
FT-L2 0.68 ± 0.28 2.0 ± 0.0 0.01 ± 0.31 0.33 ± 0.28
PackNet [9] 0.96 ± 0.21 2.0 ± 0.0 -0.04 ± 0.20 -0.00 ± 0.00
EWC [6] 0.94 ± 0.01 3.0 ± 0.0 -0.05 ± 0.02 0.01 ± 0.02
PNN [10] 0.98 ± 0.26 4.0 ± 0.0 -0.02 ± 0.30 0.00 ± 0.00
SAC-N 1.00 ± 0.29 4.0 ± 0.0 0.00 ± 0.21 -0.00 ± 0.00
FT-N 0.65 ± 0.46 4.0 ± 0.0 -0.35 ± 0.35 -0.00 ± 0.00
CSP [5] 1.76 ± 0.19 3.4 ± 0.3 0.75 ± 0.16 -0.00 ± 0.00

Ours 1.78 ± 0.22 2.0 ± 0.0 0.14 ± 0.22 -0.00 ± 0.00

Table 8: Additional results of our method on Brax domains, including the mean and standard deviation
obtained from 10 runs, accompanied by a 95% bootstrap confidence interval (around the mean).

Scenario Performance 95% confidence interval

H
al

fc
he

et
ah Forgetting 1.31 ± 0.21 [1.11, 1.40]

Transfer 1.42 ± 0.19 [1.29, 1.52]
Robustness 1.07 ± 0.12 [0.98, 1.13]
Compositionality 0.88 ± 0.09 [0.81, 1.92]

Aggregate 1.17 ± 0.15 [1.04, 1.24]

A
nt

Forgetting 1.46 ± 0.15 [1.36, 1.55]
Transfer 0.76 ± 0.07 [0.71, 0.79]
Robustness 0.73 ± 0.11 [0.68, 0.81]
Compositionality 1.95 ± 0.11 [1.87, 2.00]

Aggregate 1.22 ± 0.11 [1.15, 1.29]

Humanoid 1.78 ± 0.22 [1.65, 1.92]

Table 9: Detailed success rates (↑) on 8 triplet (CW3) scenarios from Continual World. ∗ indicates
results taken from [5]. The rest of the results are collected from 3 different seeds and presented with
mean and standard deviation. Aggregated results are shown in the main paper.

Method T1 T2 T3 T4

FT-1∗ 0.24 ± 0.13 0.25 ± 0.07 0.39 ± 0.16 0.34 ± 0.05
FT-L2 0.21 ± 0.15 0.21 ± 0.06 0.33 ± 0.19 0.31 ± 0.06
PackNet [9] 0.62 ± 0.21 0.58 ± 0.17 0.80 ± 0.11 0.41 ± 0.07
EWC [6]∗ 0.45 ± 0.12 0.27 ± 0.09 0.38 ± 0.09 0.31 ± 0.12
PNN [10]∗ 0.84 ± 0.08 0.72 ± 0.17 0.90 ± 0.05 0.43 ± 0.08
SAC-N∗ 0.69 ± 0.17 0.71 ± 0.13 0.79 ± 0.19 0.47 ± 0.14
FT-N∗ 0.77 ± 0.08 0.86 ± 0.10 0.78 ± 0.15 0.49 ± 0.14
CSP [5]∗ 0.76 ± 0.20 0.79 ± 0.03 0.82 ± 0.08 0.58 ± 0.09

Ours 0.79 ± 0.12 0.80 ± 0.09 0.83 ± 0.11 0.56 ± 0.08

Method T5 T6 T7 T8

FT-1∗ 0.30 ± 0.01 0.32 ± 0.25 0.17 ± 0.07 0.34 ± 0.05
FT-L2 0.21 ± 0.16 0.11 ± 0.04 0.14 ± 0.06 0.20 ± 0.14
PackNet [9] 0.34 ± 0.10 0.34 ± 0.02 0.36 ± 0.15 0.47 ± 0.11
EWC [6]∗ 0.32 ± 0.07 0.33 ± 0.18 0.20 ± 0.10 0.32 ± 0.08
PNN [10]∗ 0.33 ± 0.23 0.46 ± 0.21 0.44 ± 0.12 0.36 ± 0.20
SAC-N∗ 0.60 ± 0.13 0.55 ± 0.11 0.54 ± 0.15 0.45 ± 0.12
FT-N∗ 0.52 ± 0.13 0.61 ± 0.06 0.61 ± 0.13 0.52 ± 0.06
CSP [5]∗ 0.58 ± 0.06 0.54 ± 0.06 0.58 ± 0.04 0.53 ± 0.08

Ours 0.62 ± 0.13 0.61 ± 0.06 0.57 ± 0.07 0.54 ± 0.07
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Figure 1: Effectiveness of multi-mode strategy in the first stage, compared to pink noise [3]. The
curves depict the median, with shaded areas showing 95% bootstrap confidence interval for the mean.
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Figure 2: Effectiveness of alignment loss LSP in the second stage. The detailed setups follow Fig. 1.

Table 10: Compairson of multi-mode strategy with another ensemble method, BatchEnsemble [12].

Method Performance 95% confidence interval Model size

BatchEnsemble [12] 0.94 ± 0.23 [0.81, 1.08] 1.1
Ours 1.31 ± 0.21 [1.11, 1.40] 2.1

Table 11: Comparison to CSP [5] at similar model sizes. CSP-S reduces the network width to 175,
while Ours-L expands it to 384. See Fig. 4b in the main paper for a more intuitive visualization.

Method Performance 95% confidence interval Model size

CSP-S 1.27 ± 0.15 [1.14, 1.32] 2.3
Ours 1.31 ± 0.21 [1.11, 1.40] 2.1

CSP [5] 1.41 ± 0.07 - 4.5
Ours-L 1.38 ± 0.10 [1.31, 1.42] 4.6

B.3 Ablation studies

This section provides additional justification for our proposed rewiring designs. First, to demonstrate
the exploration efficacy of our multi-mode strategy, we compare it against an existing method called
pink noise [3]. As shown in Fig. 1, while the single-mode baseline with pink noise exhibits rapid
initial learning, its performance plateaus over time. In contrast, our full method with multi-mode
strategy effectively avoids this suboptimal situation and achieves the highest final performance.

To validate the effectiveness of the proposed alignment mechanism, we plot the performance curves
in Fig. 2 (truncated to the second learning stage), where the full model with alignment mechanism
exhibits the fastest adaptation and highest final performance compared to other variants. This also
leads to better results than alternative ensemble methods such as BatchEnsemble [12] in Table 10.

Lastly, to examine the scalability of our approach, we compare it to CSP at similar model sizes.
Table 11 show that our method achieves slightly higher mean performance than CSP-S at small sizes,
while delivering a noticeable improvement and closing the gap with CSP when scaling up.
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