
A MultiModN Framework Implementation

A task- and modality-agnostic open-source framework MultiModN solution has been implemented
in Python using PyTorch as the primary machine learning framework. The /multimodn package
contains the MultiModN model and its components. The /datasets package is responsible of
preparing the data inputs for MultiModN. Some examples using the public Titanic dataset have been
provided.

The code is available at: https://github.com/epfl-iglobalhealth/MultiModN.

Figure 6: Architecture of MultiModN code. The upper panel shows a more detailed depiction
of sequential encoding using a series of model-agnostic encoders which receive inputs of variable
dimension to create the evolving state vector, which represents the shared feature space. The lower
panel shows how each state can be probed by any number of target decoders.

A.1 MultiModN metrics

During training and evaluation, the metrics of the model are stored in a log at each epoch in a matrix
of dimensions (E + 1) ⇤D, where E is the number of encoders and D the number of decoders. Each
row represents the metrics for a target at each state of the model.

A.2 Code structure

A.2.1 MultiModN

/multimodn package contains the MultiModN model and its modules:

[1] Encoders: /multimodn/encoders
[2] Decoders: /multimodn/decoders
[3] State: /multimodn/state.py

A.2.2 Datasets

/dataset package contains the MultiModDataset abstract class, compatible with MultiModN.

Specific datasets are added in the /dataset directory and must fulfill the following requirements:

• Contain a dataset class that inherit MultiModDataset or has a method to convert into a
MultiModDataset

• Contain a .sh script responsible of getting the data and store it in /data folder

__getitem__ function of MultiModDataset subclasses must yield elements of the following shape:

tuple
(

data: [torch.Tensor],
targets: numpy.ndarray,

14

(optional) encoding_sequence: numpy.ndarray
)

namely a tuple containing an array of tensors representing the features for each subsequent encoder, a
numpy array representing the different targets and optionally a numpy array giving the order in which
to apply the encoders to the subsequent data tensors. Note: data and encoding_sequence must
have the same length.

Missing values. The user is able to choose to keep missing values (nan values). Missing values can
be present in the tensors yielded by the dataset and are managed by MultiModN.

A.2.3 Pipelines

/pipeline package contains the training pipelines using MultiModN for Multimodal Learning. It
follows the following steps:

• Create MultiModDataset and the dataloader associated
• Create the list of encoders according to the features shape of the MultiModDataset
• Create the list of decoders according to the targets of the MultiModDataset
• Init, train and test the MultiModN model
• Store the trained model, training history and save learning curves

A.3 Quick start

Quick start running MultiModN on Titanic example pipeline with a Multilayer Perceptron encoder:

./datasets/titanic/get_data.sh
python3 pipelines/titanic/titanic_mlp_pipeline.py

Open pipelines/titanic/titanic_mlp.png to look at the training curves.

B Additional details about MultiModN Architecture

Figure 7: Schematic representation of the modules (g, groups) of MultiModN. e: encoders, s: state
vector, d: decoders. Each module is connected by a single edge between sn and en+1. There are |M|
groups (i.e. input-specific modules) and |T | decoders per module.

Modularity. In the following, we detail the computation of MultiModN’s modularity measure. The
total number of edges in a MultiModN module is |T |+ 1. The total number of modules is |M| and
there are |M|� 1 edges connecting consecutive modules, which makes for a total number of edges
in the entire MultiModN model of m = |M|(|T |+ 2)� 1.

To compute the modularity following using the formalization proposed by Newman et al [29], we
need to define groups. In the case of MultiModN, each group corresponds to one module. Let G be
the matrix whose components gij is the fraction of edges in the original network that connect vertices
in group i to those in group j.

15

Within MultiModN, each group contains (|T |+ 1) edges and is connected to adjacent groups by two
edges, with the exception of g1 and g|M|, which are connected to only one other group (cf. Figure 7).

Thus, G is a tridiagonal matrix whose diagonal elements Gii are equal to (|T |+ 1)/m and whose
upper and lower diagonal elements are equal to 1/m:

G =
1

m

0

BBBBBBBBBBBBBBB@

|T |+1 1

1 |T |+1 1

.

1 |T |+1 1

1 |T |+1

1

CCCCCCCCCCCCCCCA

The modularity measure is defined by Q = tr(G)� kG2k, where tr(G), is the trace of G and kG2k
is the sum of elements of G2. The trace of G is equal to |M|

m (T + 1) and we have G2 equal to:

1

m2

0

BBBBBBBBBBBBBBBBBBBBB@

(|T |+1)2+1 2(|T |+1) 1

2(|T |+1) (|T |+1)2+2 2(|T |+1) 1

1 2(|T |+1) (|T |+1)2+2 2(|T |+1) 1

.

1 2(|T |+1) (|T |+1)2+2 2(|T |+1)

1 2(|T |+1) (|T |+1)2+1

1

CCCCCCCCCCCCCCCCCCCCCA

Hence, we have:

kG2k =
1

m2

⇥
|M|((|T |+ 1)2 + 2)� 2 + 2(|M|� 1)2(|T |+ 1) + 2(|M|� 2)

⇤

=
|M||T |2 + 6|M||T |+ 9|M|� 4|T |� 10

|M|2|T |2 + 4|M|2|T |+ 4|M|2|� 2|M||T |� 4|M|+ 1

It is important to note that when M increases, the trace will tend to (|T |+ 1)/(|T |+ 2) ⇡ 1 for a
large number of tasks. Moreover, when |M|increases ||G2|| will decrease towards to 0. Thus, for a
large number of tasks, we have a modularity measure that increases and tends to 1 with the number
of modalities.

Architecture alignment between P-Fusion and MultiModN. We purposely align the feature
extraction pipelines of P-Fusion and MultiModN in order to best isolate the effect of monolithic-
parallel fusion vs. modular-sequential fusion. In Figure 8, we see how the alignment is limited
to the input, where both MultiModN and P-Fusion share the feature-extraction of each modality,
where the MultiModN encoders receive an embedding (emb). No element of MultiModN is changed
as described in Figure 1. Embeddings from missing data can be skipped (i.e. not encoded) by
MultiModN.

16

!"#1

!1

!"#1

!2

!"#|!|

!n

!"#n

Multimodal
Encoders

Separate
embeddings !"#2

!"#
missing

Missing embeddings skipped

P-fusion creates
embeddings that
MultiModN takes
in sequence
(instead of
concatenating)

MultiModN
Architecture
unchanged

!"#$| ! |

, … ,

!"#$1

!1

"1j

!|M|

"|M|j

, … ,

, … ,

#1 #|T|
module"

Multimodal
Encoders

State: One for
each number &
combination of
inputs

Multi-task
Decoders

, … ,#1 #|T|
module1

!"#$| ! |

, … ,

!"#$1

Figure 8: Alignment of P-Fusion and MultiModN architectures. We purposely ensure that the
feature extraction pipelines are aligned between P-Fusion and MultiModN. To this end, we use the
embeddings (emb) produced by P-Fusion as inputs into the MultiModN encoders (e). No element
of MultiModN is changed. MultiModN encoders (e) are in orange, the MultiModN state (s) is in blue
and multi-task MultiModN decoders (d) are in green.

For MIMIC, feature extraction for each modularity is replicated from previous work [20] and we use
embeddings generated from a set of pre-trained models. For Weather and Education, as there were
no pre-existing embedding models, we design autoencoders trained to reconstruct the original input
features from a latent space. We keep the autoencoder’s encoder and decoder structure exactly aligned
with the encoders of MultiModN (two ReLU activated, fully-connected Dense layers and a third layer
either generating the state representation with a ReLU activation or the final prediction with a sigmoid
activation). We also align the number of trainable parameters with MultiModN’s modality-based
encoders for a fair baseline comparison by selecting an appropriate state representation size per
modality to equal the state representation in MultiModN. The remaining hyperparameters are left
exactly the same (batch size, hidden layer size, dropout rate, optimization metrics, loss function).

C Datasets and Tasks

A description of all tasks is provided in Table 2. In the following paragraphs, we detail the prepro-
cessing decisions on the datasets for context and reproducibility.

MIMIC. The data includes four input modalities (tabular, textual, images, and time-series) derived
from several sources for each patient. We align our preprocessing pipeline exactly with the study from
which our baseline of P-Fusion is derived [20] (described in 4.1). To this end, we use patient-level
feature embeddings extracted by the pre-trained models described in [20] and depicted in Figure 8.

The dataset is a combination of two MIMIC databases: MIMIC-IV v.1.0 [21] and MIMIC-CXR-JPG
v.2.0.0 [22]. After gaining authorized access to PhysioNet online repository [30], the embedding
dataset can be downloaded via this link: https://physionet.org/content/haim-multimodal/
1.0.1/. The dataset comprises 45, 050 samples, each corresponding to a time point during a patient’s
hospital stay when a chest X-ray was obtained. It covers a total of 8, 655 unique patient stays. To
ensure data quality and limit our experiments to two thematic tasks (diagnosis of task1: cardiomegaly
and task2: enlarged cardiomediastinum), we remove duplicates (based on image id and image
acquisition time), and retain only relevant samples that have valid labels for both targets of interest,

17

i.e. both task1 and task2 are either present (1) or absent (0). Subsequent experiments for these tasks
are thus performed on the 921/45, 050 selected relevant patients.

EDU. This dataset involves hand-crafted features extracted for 5, 611 students across 10 weeks
of data. The preprocessing of data is an exact replication of several related works using the same
dataset [34, 31, 42] based on 4 feature sets determined as predictive for MOOC courses in [43]. 45
features regarding problem and video data are extracted per student per week, covering features like
Delay Lecture, which calculates the average delay in viewing video lectures after they are released to
students or TotalClicksProblem, the number of clicks that a student has made on problems this week.
The features are normalized with min-max normalization, and missing values are imputed with zeros
that have meaning i.e. no problem events in a week is correctly inferred as zero problems attempted.
In this setting, missingness is a valued, predictive feature of the outcome, and thus we do not perform
missingness experiments on this dataset. MultiModN has the ability to select whether missingenss is
encoded or not, and thus it would not suffer a disadvantage in a setting where missingness should be
featurized.

In MOOCs, a common issue is that students join a course and never participate in any assignments,
homeworks, or quizzes. This could be due to registering aspirationally, to read some material, or to
watch videos [44]. An instructor can easily classify students who have never completed an assignment
as failing students. As introduced by Swamy et al. in [34] and used with this dataset in related work
[31, 42, 33], EDU has removed students that were predicted to fail in the first two weeks simply by
having turned in no assignments (99% confidence of failing with an out-of-the-box logistic regression
model, where the confidence threshold was tuned over balanced accuracy calculations). It has been
shown that including these students will artificially increase the performance of the model, providing
even better results than those showcased by MultiModN in this work [34]. We thus exclude these
students to test a more challenging modeling problem.

Weather. The Weather2k dataset, presented in [36], covers features from 1, 866 weather stations
with 23 features covering seven different units of measurements (degrees, meters, HPA, celsius,
percentage, ms�1, millimeters). To align these features on vastly different scales, we normalize the
data. We use the large extract (R) provided by the authors instead of the smaller representative sample
also highlighted in the benchmark paper (S) [36]. We use the first 24 hourly measurements as input
to train the MultiModN model and calculate the five regression tasks as determined in Table 2 below.

Tasks. As showcased in Table 2, our evaluation covers 10 binary and regression tasks in two settings:
static (one value per datapoint) or continuous (changing values per datapoint, per timestep).

Task Type Name Description

MIMIC 1 Static
Binary Cardiomegaly Labels determined as per [20] using NegBio [45] and CheXpert [46]

to process radiology notes, resulting in four diagnostic outcomes: positive, negative, uncertain, or missing.

2 Static
Binary

Enlarged
Cardiomediastatinum

Labels determined as per [20] using NegBio [45] and CheXpert [46].
The set of label values is identical to the one for cardiomegaly.

EDU
3 Static

Binary
Student Success

Prediction End of course pass-fail prediction (per student) as per [34] on the course.

4 Continuous
Binary

Student Dropout
Prediction

1 if student has any non-zero value on a video or problem feature from next week until the end of the course, 0 if not.
Not valid for the last week, so the task involves n-1 decoder steps for n timesteps. Can be easily extended
to a multiclass task by separating video or problem involvement until the end of the course into separate classes.

5 Continuous
Regression

Next Week
Performance
Forecasting

Moving average (per student, per week) of three student performance features from [43] and removed
in baseline paper [34]: Student Shape (recieving the maximum quiz grade on the first attempt),
CompetencyAlignment (number of problems the student has passed this week), CompetencyStrength

(extent to which a student passes a quiz getting the maximum grade with few attempts).

Weather

6 Continuous
Regression

Short Term
Temperature
Forecasting

Changing air temperature measurements (collected per station, per hour), shifted by 24 hourly measurements (1 day).

7 Continuous
Regression

Mid Term
Temperature
Forecasting

Changing air temperature measurements (collected per station, per hour), shifted by 72 hourly measurements (3 days).

8 Continuous
Regression

Long Term
Temperature
Forecasting

Changing air temperature measurements (collected per station, per hour), shifted by 720 hourly measurements (30 days).

9 Static
Regression Relative Humidity Instantaneous humidity relative to saturation as a percentage at 48h from 2.5 meters above the ground,

as used as a benchmark forecasting task in [36].

10 Static
Regression Visibility 10 minute mean horizontal visibility in meters at 48 hr from 2.8 meters above the ground,

as used as a benchmark forecasting task in [36]

Table 2: Description of all 10 tasks used to evaluate MultiModN.

18

Note that for task4, the three features used to calculate next week’s performance were not included
in the original input features because of possible data leakage, as student performance on quizzes
directly contributes to their overall grade (Pass/Fail).

For the AUROC curves on tasks9�10 in Figure 2, we conduct a binarization of the two last regression
tasks. To align with the regression task, we conduct a static forecasting prediction per station for the
relative humidity or visibility with a time window of 24h for the 48th timestep (one day in advance).
While MultiModN is capable of making a prediction at each continuous timestep, P-Fusion is not
able to do this without a separate decoder at each timestep, and therefore to compare the tasks we
must choose a static analysis. We choose a threshold based on the normalized targets: 0.75 for
humidity and 0.25 for visibility (selected based on the distribution of the feature values for the first
1000 timesteps), and evaluate the predictions as a binary task over this threshold.

Analogously, in the Section E analysis below on the binarization of the remaining regression tasks,
we express the continuous regression tasks for temperature forecasting tasks6�8 as a static binary
task. To do this, we evaluate the prediction from the full window (24th timestep) at the respective
forecasting timestep (48, 96, 744). The threshold we select is 0.3, closely corresponding to the
normalized mean of the temperature (0.301) over the first 1000 timesteps.

D Model Optimization

Table 3 indicates the chosen hyperparameters for the experiments conducted in Section 6 of the paper,
selected based on the optimal hyperparameters for the multi-task settings (all the tasks for a dataset
predicted jointly). The single tasks use the same hyperparameters as the multi-task settings. For saving
the best model across training epochs in the time series settings (EDU, Weather), our optimization
metric saved the ones with best validation set results on the most short term task. Therefore, for
EDU, we use MSE of task5, predicting next week performance, and task6 for Weather, forecasting
temperature within a day). The intuition is that choosing the best model on the short term task would
allow the model to emphasize stronger short-term connections, which in turn would improve long
term performance.

Task # of
Timesteps

Batch
Size

Dropout
Rate

Hidden
Layer
Size

State
Rep.
Size

Save Best Model
(chosen metric)

1 1 16 0.2 32 50 task1 Val BAC + Macro AUROC
2 1 16 0.2 32 50 task2 Val BAC + Macro AUROC

MIMIC 1 16 0.2 32 50 tasks1�2 BAC + Macro AUROC
3 10 64 0.1 32 20 task3 Val Accuracy
4 10 64 0.1 32 20 task4 Val Accuracy
5 10 64 0.1 32 20 task5 Val MSE

EDU 10 64 0.1 32 20 task5 Val MSE
6 24 128 0.1 32 20 task6 Val MSE
7 24 128 0.1 32 20 task7 Val MSE
8 24 128 0.1 32 20 task8 Val MSE
9 24 128 0.1 32 20 task9 Val MSE

10 24 128 0.1 32 20 task10 Val MSE
Weather 24 128 0.1 32 20 task6 Val MSE

Table 3: Hyperparameters selected for each experiment. We tuned the hyperparameters for the
multi-task models (MIMIC, EDU, Weather) and used the same hyperparameters for each single-task
model for a fair comparison.

In Figure B, we examine a case study of MultiModN’s changing performance on task3, student
success prediction in the EDU dataset, by varying hyperparameters across three model architectures
(chosen for small, medium, and large hyperparameter initializations). We note that batch size is fairly
robust across all three initial model settings, with large batch size on the largest model having slightly
variable performance. Examining changing dropout rate, we note that with medium and large models,
change in dropout impacts performance considerably. This allows us to hypothesize that high dropout
on larger state representations does not allow the model to learn everything it can from the data.

19

Looking at varied hidden layer size, we see comparable performance for the small and medium
initializations, but note that in the large case, having a smaller hidden layer size is important to
maintain performance. Even as MultiModN performance trends upwards with larger hidden layer
size (i.e. 128) for the large initialization, the confidence interval is large, so performance is not
stable. Lastly, observing state representation size, we see that when state representation is too small
for the task (i.e. 1, 5), the small and large models are adversly impacted. Additionally, when state
representation is too large (i.e. 100), performance seems to drop or increase variability again. It is
therefore important to tune MultiModN and find the right state representation size for the dataset and
predictive task(s).

Hyperparameter Initializations
Small [32 batch - 16 hidden - 10 state]
Medium [64 batch - 32 hidden - 20 state]
Large [128 batch - 64 hidden - 30 state]

Hyperparameter Initializations
Small [16 hidden - 10 state - 0.2 dr]
Medium [32 hidden - 20 state - 0.2 dr]
Large [64 hidden - 30 state - 0.2 dr]

Hyperparameter Initializations
Small [32 batch - 10 state - 0.2 dr]
Medium [64 batch - 20 state - 0.2 dr]
Large [128 batch - 30 state - 0.2 dr]

Hyperparameter Initializations
Small [32 batch - 16 hidden - 0.2 dr]
Medium [64 batch - 32 hidden - 0.2 dr]
Large [128 batch - 64 hidden - 0.2 dr]

Hidden Layer Size State Representation SizeDropout RateBatch Size

B
A

C
 S

co
re

 (a
vg

 o
ve

r 5
 s

ee
ds

)

Figure 9: MultiModN hyperparameter selection across four parameters on task3 of the EDU dataset
(Pass/Fail). Each individual parameter is varied on the x-axis (dr: dropout rate) with all other
initializations fixed (grouped in small, medium, and large values). These are compared in terms of
balanced accuracy (BAC). 95% CIs are shaded.

Experimental Setup. For the results reported in Sections 6.1, 6.2 and 6.4, we perform
5-fold stratified cross-validation with 80-10-10 train-validation-test split. Due to the time-
series nature of the EDU and Weather datasets, we orient the stratification the real labels
associated with the longest-term task. For EDU, task3 (end of course pass-fail prediction)
and for Weather task8 (30-day temperature forecasting) is chosen for the stratification split.

Figure 10: AUROC for three additional
binary prediction tasks in Weather2k. Tar-
gets predicted by P-Fusion are compared
to MultiModN. 95%CIs are shaded.

In an alternative approach, regarding the MIMIC dataset,
a two-step procedure was implemented to address the
imbalanced class ratios, given the absence of a priori-
tized task. Initially, a new dummy label was assigned
to each sample, indicating positivity if both pathologies
are present and negativity otherwise. Subsequently, a
label was assigned to each unique hospital stay based on
the aggregated labels from the first step. A hospital stay
was considered positive if the number of times sample
from that stay has been found positive is greater than
or equal to the half of samples with the same hospital
stay ID. The latter, as outlined in [20], ensured that no
information was leaked on the hospital stay level during
stratification.

Experiments were conducted using the same architecture
in PyTorch (MIMIC) and TensorFlow (EDU, Weather),
to provide multiple implementations across training
frameworks for ease of use. We use an Adam optimizer
with gradient clipping across all experiments.

E Additional Experiments

E.1 Single task

We present the binarized results (AUROC curves) for several additional regression tasks (tasks6�8

for Weather) in Figure 10. The specific details of binarization are discussed above in Appendix

20

Section C. We note that the confidence intervals overlap for P-Fusion and MultiModN over all
Weather tasks. However, it is clear that the performance of MultiModN varies a lot (large CIs). This
could be due to the design of the binarization as originally in the benchmark paper [36], this was
introduced as a regression task. Another contributing factor to large CIs could be that the model
was trained across all timesteps but only evaluated on one timestep for a comparable binarization.
Despite these caveats, we can statistically conclude that P-Fusion and MultiModN performance are
comparable on these additional tasks.

E.2 Interpretability

We perform an interpretability analysis for the EDU dataset, analogous to the local and global
interpretability analysis on MIMIC from Figure 4. The global analysis (IMC) is conducted over
all students for the first week of the course. We note interesting findings: specifically that problem
interactions are more important for tasks3�4 while video interactions are more important for task5.

M
ul

tiM
od

N
P-

Fu
si

on

Individual Modality Contributions: Global Interpretability Technique
(importance scores)

(+ all previous) (+ all previous) (+ all previous) (+ all previous)

Cumulative Predictions: Local Interpretability Technique
(probabilities)

P-Fusion interpretability is not possible for individual modalities.

Prior Tabular Image Text Time Series
(Random)

(+ all previous) (+ all previous)
Prior Problem Video

(Random)
True
Label

Problem Video

1.0

0

Task 3

Task 4
0.5M

ul
tiM

od
N

P-
Fu

si
on

Task 5

Task 3

Task 4

Task 5

Task 3

Task 4

Task 5

(+ all previous) (+ all previous)
Prior Problem Video

(Random)

1.0

0

0.5

P-Fusion interpretability is not
possible at intermediate steps.

Figure 11: Inherent modality-specific model explainability in MultiModN for tasks3�5.
Heatmaps show individual modality contributions (IMC) (top) and cumulative contributions (CP)
(bottom): respectively importance score (global explainability) or cumulative probability (lo-
cal explainability). The multi-task MultiModN for task3�5 in EDU is compared to two single-task
P-Fusion models. IMC are only possible for MultiModN (only 1 modality encoded, rest are skipped).
CP are made sequentially from states encoding all previous modalities. P-Fusion is unable to natu-
rally decompose modality-specific contributions (can only make predictions once all modalities are
encoded). IMC is computed across all students in the test set. CP is computed for a single student,
(true label = 1 for tasks3�4 and 0 for task5). The CP heatmap shows probability ranging from
confident negative diagnosis (0) to perfect uncertainty and confident positive diagnosis (1) .

The student selected for the CP local analysis passes the course (1 for task3) and does not dropout (1
for task4), but does not have strong performance in the next week (⇠ 0 in task5). This analysis is
also conducted across the first week of course interactions. We see that P-Fusion cannot produce
modality-specific interpretations and predicts the incorrect label. However, MultiModN is able to
identify a changing confidence level across modalities, eventually ending on the right prediction for
all tasks. The confidence for task3 increases with the student’s problem interactions and reduces
for their video interactions. This could have potential for designing an intervention to improve
student learning outcomes. We note that for task5, both the students’ problem and video interactions
contribute similarly to the prediction.

21

E.3 Missingness

We expand on the missingness experiments presented in 6.4. Here, we present further control
experiments (training on data missing-at-random, MAR) in both MIMIC tasks (task1: diagnosis of
Cardiomegaly 12 and task2: diagnosis of Enlarged Cardiomediastinum 13).

In the first two subplots of each figure, both P-Fusion (black) and MultiModN (red) are trained
on MNAR data and then evaluated either on a test set at risk of catastrophic failure (where the
pattern of MNAR is label-flipped, first figure) or on a test set with no missingness. As can be seen
in the first figures, P-Fusion suffers catastrophic failure in the MNAR flip, becoming worse than
random when a single modality is missing at 80%, as opposed to MultiModN, which only decreases
AUROC about 10%. When the test set has no missing values, P-Fusion and MultiModN are not
significantly different, proving that the catastrophic failure of P-Fusion is due to MNAR. This is
further confirmed in the last two plots of each task, where the models are trained on MAR data and
evaluated on test sets either without missing values or MAR missingness.

Figure 12: Detailed missingness experiments for task1 (Cardiomegaly). P-Fusion (black) and
MultiModN (red) are trained on MIMIC data where various percentages of a single modality are
missing (0 or 80%) either for a single class (MNAR, first two plots) or without correlation to either
class (MAR, last two plots). The AUROCs are shown for each when evaluated on test sets which
either have a risk of catastrophic failure (first plot, MNAR with label flip) or on test sets without
missingness or MAR missingness. CI95% shaded.

Figure 13: Detailed missingness experiments for task2 (Enlarged Cardiomediastinum).
P-Fusion (black) and MultiModN (red) are trained on MIMIC data where various percentages
of a single modality are missing (0 or 80%) either for a single class (MNAR, first two plots) or
without correlation to either class (MAR, last two plots). The AUROCs are shown for each when
evaluated on test sets which either have a risk of catastrophic failure (first plot, MNAR with label
flip) or on test sets without missingness or MAR missingness. CI95% shaded.

E.4 Comparison to a P-Fusion Transformer

Additional experiments with a Transformer have been conducted on 10 tasks across three datasets.
Results are showcased below in two tables (left for tasks1�4 and right for tasks5�10) with 95% CIs.

The hyperparameter-tuned architecture (based on head size, number of transformer blocks, MLP units)
for EDU and Weather is a transformer model with 4 transformer blocks, 4 heads of size 256, dropout
of 0.25, MLP units 128 with dropout 0.4, batch size 64, trained for 50 epochs with cross-entropy loss.
For MIMIC, the most performant (tuned) transformer architecture includes 2 transformer blocks with
3 heads of size 128, MLP units 32 with batch size 32. We train this architecture on each decoder

22

task individually and all tasks together for a total of 13 new models with the exact preprocessing
steps as in the P-Fusion and MultiModN experiments. The results indicate that MultiModN often
outperforms or at least matches the P-Fusion Transformer benchmark in the vast majority of single
task and multi-task settings, and comes with several interpretability, missingness, and modularity
advantages. Specifically, using the primary metric for each task (BAC for the classification tasks and
MSE for the regression tasks), MultiModN beats the Transformer baseline significantly in 7 tasks,
overlaps 95% CIs in 11 tasks, and loses very slightly (by 0.01) in 2 regression tasks.

Classification

M
IM

IC
ED

U

Regression

ED
U

W
EA
TH

ER

Figure 14: Performance of the P-Fusion Transformer on 10 classification and regression tasks
across 3 datasets. Results are showcased with 95% confidence intervals. BAC and MSE are the
primary evaluation metrics for classification and regression respectively.

E.5 Additional Inference Settings

MultiModN P-Fusion
Modalities
(Inference)

C
M

EC
M

C
M

EC
M

Task

C
M

EC
M

C
M

EC
M

0.47

MultiModN P-Fusion
Modalities
(Inference)

C
M

EC
M

C
M

EC
M

Task

C
M

EC
M

C
M

EC
M

0.47

MultiModN P-Fusion
Modalities
(Inference)

C
M

EC
M

C
M

EC
M

Task

C
M

EC
M

C
M

EC
M

0.47

Figure 15: Detailed modality inference experiments for MultiModN in comparison to P-Fusion.
In these experiments, different combinations of modalities and orderings at the time of inference are
used for the two tasks in the MIMIC dataset. All 95% CIs overlap between the two models.

23

To provide insight into performance gains, we performed additional experiments to showcase the
benefits of modularity with vastly different training and inference settings. The results of 30 new
experiments of inference encoders, each performed with 5-fold cross-validation are included in Figure
15. We compare P-Fusion and MultiModN on both tasks of the MIMIC dataset using all possible
combinations of four input modalities at test time. MultiModN ignores missing modalities whereas
P-Fusion imputes and therefore encodes missing modalities.

We note that the performance at inference for P-Fusion and MultiModN has no significant differences
for all experiments (using 95% CIs). Figure 15 shows that, on average, P-Fusion tends to overfit
more to the most dominant (visual) modality. When this modality is missing (at random or completely
at random), MultiModN performs better on a combination of the remaining modalities (demo, text,
time series). In the case of missing modalities, the observed effect in Figure 15 is weak – confidence
intervals overlap. Considering the MNAR (missing not-at-random) scenario described in Sec. 6.4,
the difference becomes significant.

24

