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Figure 2: Trace of Hessian and Nuclear Norm. Label noise SGD recovers the min nuclear norm
solution via its sharpness-minimization implicit regularization and thus leads to better generalization
(see Figure 1).

A Experiments

In this section, we examine our theoretical results with controlled experiments via synthetic data. The
experiments are based on mini-batch SGD and label noise SGD [6]. Both use the standard update
rule Wt+1 = Wt � ⌘rLt(Wt), but with different objectives:

• Mini-batch loss: Lmini-batch
t (W ) = 1

B

P
i2Bt

(fi(W )� bi)2;

• Label-noise loss: Llabel-noise(W )
t = 1

B

P
i2Bt

(fi(W )� bi + ⇠t,i)2,

where Bt is the batch of size B independently sampled with replacement at step t and ⇠t 2 Rd are
i.i.d. multivariate zero-mean Gaussian random variables with unit variance.

It is known that with a small learning rate, label noise SGD implicitly minimizes the trace of Hessian
of the loss, after reaching zero loss [10, 29]. In particular, Li et al. [29] show that after reaching zero
loss, in the limit of step size going to zero, label noise SGD converges to a gradient flow according to
the negative gradient of the trace of Hessian of the loss. As a result, we expect label noise SGD to be
biased to regions with smaller trace of Hessian. We also compare the label noise SGD with vanilla
SGD without label noise as a baseline, which can potentially find a solution with large sharpness
when the learning rate is small. Note this is not contradictory with the common belief that mini-batch
SGD prefers flat minimizers and thus benefits generalization [25, 23]. For example, assuming the
convergence of mini-batch SGD, [50] shows that the solution found by SGD must have a small
sharpness, bounded by a certain function of the learning rate. However, there is no guarantee when
the learning rate is small and the upper bound of sharpness becomes vacuous.

In our synthetic experiments, we sample n = 600 input matrices {Ai}
n
i=1, where Ai 2 Rd⇥d with

d = 60. Each entry A(j,k)
i is i.i.d. sampled from normal distribution N (0, 1). The ground truth

matrix M⇤ is constructed by M⇤ = M1M2/d, where M1 2 Rd⇥r and M2 2 Rr⇥d and r is the rank
of M⇤. The entries in M1 and M2 are again i.i.d. sampled from N (0, 1) and the rank r is set to 3.
The corresponding label is therefore computed via bi = hAi,M⇤

i. The parameters (W1, ...,WL) are
sampled from a zero-mean normal distribution for depth L = 2, 3, 5, and 10. For label noise SGD,
we optimize the parameter via SGD with label noise drawn from N (0, 1) and batch size 50. The
learning rate is set to 0.01.

We examine our theory by plotting the training and testing loss along with the nuclear norm and the
trace of Hessian of the label noise SGD solutions in Figures 1 and 2. As the figure illustrates, the
trace of the Hessian exhibits a gradual decrement, eventually reaching a state of convergence over
the course of the training process. This phenomenon co-occurs with the decreasing of the nuclear
norm of the end-to-end matrix. In particular, we further plot the nuclear norm of the min nuclear
norm solution obtained via solving convex optimization in Figure 2 and demonstrate that label noise
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SGD converges to the minimal nuclear norm solution, as predicted by our theorem Theorem 1. As a
consequence of this sharpness-minimization implicit bias, the test loss decreases drastically.

Interestingly, there are a few large spikes in the training loss curve of mini-batch SGD without
label noise even after the training loss becomes as small as 10�12 and its generalization improves
immediately after recovering from the spike. Meanwhile, the trace of hessian and the nuclear
decrease during this process. We do not have a complete explanation for such spikes. One possible
explanation from the literature [36] is that the loss landscape around the minimizers is too sharp and
thus mini-batch SGD is not linear stable around the minimizer, so it escapes eventually. However,
this explanation does not explain why minibatch SGD can find a flatter minimizer each time after
escaping and re-converging.

B Additional Related Work

Implicit Bias of Gradient Descent on Matrix Factorization. At first glance, overfitting could
happen when the number of linear measurements is less than the size of the groundtruth matrix.
Surprisingly, a recent line of works [20, 3, 19, 28, 40, 5, 22, 41] has shown that GD starting from
small initialization has a good implicit bias towards solutions with approximate recovery of ground
truth. Notably, Gunasekar et al. [20] show that for depth 2, GD from infinitesimal initialization is
implicitly biased to the minimum nuclear norm solution under commuting measurements and Arora
et al. [3] generalize this results to deep matrix factorization for any depth. This is very similar to our
main result that for all depth (� 2) the implicit regularization is minimizing nuclear norm, though
the settings are different. Moreover, when the measurements satisfy RIP, Li et al. [27], Stöger and
Soltanolkotabi [45] show that GD exactly recovers the ground truth.

Provable Generalization of Flatness Regularization for Two-layer Models. To our best knowl-
edge, most existing generalization analysis for flat regularization are for two-layer models, e.g.,
Li et al. [29] shows that the min trace of hessian interpolating solution of 2-layer diagonal linear
networks can recover sparse ground truth on gaussian or boolean data, and Nacson et al. [37] proves
a generalization bound for the interpolating solutions with the smallest maximum eigenvalue of
Hessian for non-centered data. Ding et al. [12] is probably the most related work to ours, which
shows that the trace of Hessian implicit bias for two-layer matrix factorization is a rescaled version
of the nuclear norm of the end-to-end matrix. Using this formula, they further prove that the flattest
solution in this problem recovers the low-rank ground truth. However, matrix factorization with
more than two layers is fundamentally more challenging compared to the depth two case; while we
managed to obtain a formula for the trace of Hessian for deeper networks given a single measurement
(see Theorem 7), as far as we know, one in general cannot obtain a closed-form solution for the trace
of Hessian regularizer as a function of the end-to-end matrix for multiple measurements. In this work,
we discover a way to bypass this hardness by showing that minimizing the trace of Hessian regularizer
for a fixed end-to-end matrix approximately amounts to the nuclear norm of the end-to-end matrix,
when the linear measurements satisfy the RIP property. As a cost of this approximation, we are not
able to show the exact recovery of the low-rank ground truth, but only up to a certain precision.

Sharpness Minimization in Deep Diagonal Linear Network. Ding et al. [12] show that the
minimizer of trace of Hessianin a deep diagonal matrix factorization model with Gaussian linear
measurements becomes the Schatten 2� 2/L norm of a rescaled version of the end to end matrix.
At first glance, their result might seem contradictory to our result in the RIP setup, as their implicit
regularization is not always the Nuclear norm — the sparsity regularization vanishes when L!1.
Similar results have been obtained by Nacson et al. [37] for minimizing a different notion of sharpness
among all interpolating solutions, the largest eigenvalue of Hessian, on the same diagonal linear
models. The subtle difference is that since we consider the more standard setting without assuming
the weight matrices are all diagonal, then in the calculation of the trace of Hessian of the loss we
need to also differentiate the loss with respect to the non-diagonal entries, even though their values
are zero, which is quite different from `p norm regularization. This curiously shows the complicated
interplay between the geometry of the loss landscape and the implicit bias of the algorithm.

Sharpness-related Generalization Bounds. Most existing sharpness-related generalizations de-
pend on not only the sharpness of the training loss but also other complexity measures like a norm
of the parameters or even undesirable dependence on the number of parameters [15, 46, 47, 17, 39].
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In contrast, our result only involves the trace of Hessian but not parameter norm or the number of
parameters, e.g., our result holds for any (large) width of intermediate layers, d1, . . . , dL�1.

C Proof of Lemma 3

Proof. For a fixed j 2 {2, . . . , L� 1} and vectors x 2 Rd0 and y 2 RdL we apply the RIP property
in Definition 3 for the rank one matrix X = xyT . As a result we get

(1� �)kxyT k2F 
1

n

nX

i=1

hAi, xy
T
i
2
 (1 + �)kxyT k2F ,

or equivalently

(1� �)kxk2kyk2 
1

n

nX

i=1

(xTAiy)
2
 (1 + �)kxk2kyk2. (25)

Now for arbitrary indices 1  `  dj�1 and 1  k  dj , we pick x, y in Equation (25) equal to the
`th row of the matrix Wj�1 . . .W1 and the kth column of the matrix WL . . .Wj+1:

(1� �)k(Wj�1 . . .W1)`:k
2
k(WL . . .Wj+1):kk

2


1

n

nX

i=1

((Wj�1 . . .W1)`:Ai(WL . . .Wj+1):k)
2

 (1 + �)kWj�1 . . .W1)`:k
2
k(WL . . .Wj+1):kk

2. (26)

Summing this over all ` : k, we obtain that the sum of Frobenius norm of matrices
Wj�1 . . .W1AiWL . . .Wj+1 concentrate around kWj�1 . . .W1k

2
F kWL . . .Wj+1k

2
F .

(1� �)kWj�1 . . .W1k
2
F kWL . . .Wj+1k

2
F


1

n

nX

i=1

kWj�1 . . .W1AiWL . . .Wj+1k
2
F

 (1 + �)kWj�1 . . .W1k
2
kWL . . .Wj+1k

2. (27)

For j = 1, we apply Equation (25) with x = (Wj�1 . . .W1)`: and y = ek, where ek is the kth
standard vector:

(1� �)k(WL�1 . . .W1)`:k
2


1

n

nX

i=1

((WL�1 . . .W1)`:Aiek)
2
 (1 + �)k(WL�1 . . .W1)`:k

2.

Summing this for all k, `

(1� �)d0kWL�1 . . .W1k
2
F 

1

n

nX

i=1

kWL�1 . . .W1Aik
2
F  (1 + �)d0kWL�1 . . .W1k

2
F . (28)

Similarly for j = L

(1� �)dLkWL . . .W2k
2
F 

1

n

nX

i=1

kAiWL . . .W2k
2
F  (1 + �)dLkWL . . .W2k

2
F . (29)

Combining Equations (27), (28), and (29)

(1� �)R(W )  tr(r2L)(W )  (1 + �)R(W ).
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D Proof of Theorem 7

Proof of Theorem 7. Recall that we hope to characterize the solution with a minimal trace of hessian
given that the end-to-end matrix E(W ) = WL · · ·W1 is equal to some fixed matrix M , namely,

min
E(W )=M

LX

i=1

kWi�1 . . .W1A
TWL . . .Wi+1k

2
F .

Let W be any minimizer of the above objective. For arbitrary matrix C 2 Rdi⇥di , define

U(t) = exp(tC) ,
1X

i=0

(tC)i

i!
,

For any i, we multiply Wi from left by U(t) and multiply Wi+1 by U(t)�1 from right,

Wi(t) U(t)Wi,

Wi+1(t) Wi+1U(t)�1.

For convenience, below we drop the dependence of Wi(t),Wi+1(t) over t, that is, only Wi and Wi+1

are implicitly functions of t, while the rest Wj are independent of t. Then, note that for any j  i� 1
we have

Wj�1 . . .W1A
TWL . . .Wi+1U(t)�1U(t)Wi . . .Wj+1 = Wj�1 . . .W1A

TWL . . .Wj+1,

and for j � i+ 2:

Wj�1 . . .Wi+1U(t)�1U(t)Wi . . .W1A
TWL . . .Wj+1 = Wj�1 . . .Wi+1Wi . . .W1A

TWL . . .Wj+1.

So the only terms that actually change as a function of t correspond to j = i,

kWi�1 . . .W1A
TWL . . .Wi+1k

2
F = tr(Wi�1 . . .W1A

TWL . . .Wi+1Wi+1
T . . .WT

L AW1
T . . .Wi�1

T ),
(30)

and to j = i+ 1,

kWi . . .W1A
TWL . . .Wi+2k

2
F = tr(Wi . . .W1A

TWL . . .Wi+2Wi+2
T . . .WL

TAW1
T . . .Wi

T ).
(31)

Now taking derivative of U(t) with respect to t,

U 0(0) = C.

Now for every j 2 {1, . . . , L} we define

fWj = Wj�1 . . .W1A
TWL . . .Wj+1,

where we use Wi�1 . . .W1 and WL . . .Wi+1 to denote identity for i = 1 and i = L respectively.

Then, if we take derivative from the terms (30) and (31) with respect to t:

d

dt
kWi�1 . . .W1A

TWL . . .Wi+1k
2
F

���
t=0

= �tr((C + CT )Wi+1
T . . .WL

TAW1
T . . .Wi�1

TWi�1 . . .W1A
TWL . . .Wi+1), (32)

= tr((C + CT )fWT
i
fWi).

and
d

dt
kWi . . .W1A

TWL . . .Wi+2k
2
F

���
t=0

= �tr((C + CT )fWi+1
fWT

i+1) (33)

Now from the optimality of W , the following equality holds for every matrix C 2 Rd⇥d:

d

dt
tr[r2

L(W (t))]
���
t=0

= tr((C + CT )(fWT
i
fWi �

fWi+1
fWT

i+1)) = 0. (34)
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Now since C is arbitrary and the matrices fWT
i
fWi and fWi+1

fWT
i+1 are symmetric, we must have

fWT
i
fWi = fWi+1

fWT
i+1. (35)

Equation (35) implies that all fWi for 1  i  L have the same set of singular values. Moreover,
there exists matrices {Ui}

L
i=0 where the columns of each matrix are orthogonal, such that for each

1  i  L,
fWi = Wi�1 . . .W1A

TWL . . .Wi+1 = Ui�1⇤Ui
T . (36)

Multiplying Equation (35) for all 1  i  L (in the case i = 1 we take W1 . . .Wi�1 as identity), we
get

⇣
ATE(W)

⌘L�1
AT =

⇣
ATWL . . .W1

⌘L�1
AT = U0⇤

LUL
T , (37)

or in case where A is positive semi-definite,

A1/2
⇣
A1/2E(W)A1/2

⌘L�1
A1/2 = U0⇤

LUL
T . (38)

But having access to Equations (36), we can write tr[r2
L(W )] at the minimizer point W =

(W1, . . . ,WL) as
LX

i=1

kWi�1 . . .W1AWL . . .Wi+1k
2
F = Lk⇤k2F = Lk⇤L

k
2/L
S2/L

.

which based on Equation (37) is equal to

L

����
⇣
ATE(W)

⌘L�1
AT

����
2/L

S2/L

,

or in the symmetric case is equal to

L

����A
1/2

⇣
A1/2E(W )A1/2

⌘L�1
A1/2

����
2/L

S2/L

.

This is the induced regularizer of the trace of Hessian over all interpolating solutions for linear
network with depth L in the space of end-to-end matrices.

E Other Omitted Proofs

E.1 Proof of Theorem 3

Proof. By Corollary 1, we know that with probability at least 1� exp(⌦(n)),
kE(W ⇤)k⇤  3kM⇤

k⇤.

Note by assumption, n = ⌦(d0 + dL). Thus it suffices to show that with probability at least
1 � exp(⌦(d0 + dL)), for all interpolating solutions in H3kM⇤k⇤ = {hM | kMk

⇤
 3 kM⇤

k
⇤
},

Equation (23) holds.

Recall L̄
�
E(W )

�
is the population squared loss of the end-to-end matrix E(W ) 2 Rd0⇥dL . Namely,

L̄(E(W )) , EA(hA,E(W ⇤)i � hA,M⇤
i)2 = EA hA,E(W )�M⇤

i
2 = kE(W ⇤)�M⇤

k
2
F .

First, we bound the population Rademacher complexity of H3kM⇤k⇤
. The empirical Rademacher

complexity on {Ai}
n
i=1is

Rn(H3kM⇤k⇤
) =

1

n
E✏⇠{±1}n sup

h2H3kM⇤k⇤

nX

i=1

✏ih(Ai)

=
1

n
E✏⇠{±1}n sup

M :kMk⇤3kM⇤k⇤

nX

i=1

h✏iAi,Mi = 3/n · kM⇤
k⇤k

nX

i=1

✏iAik2.
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Note that the matrix Asum =
Pn

i=1 ✏iAi itself is an iid Gaussian matrix where each entry is sampled
from N (0, n). Hence, from Proposition 2.4 in [43], we have the following tail bound on the spectral
norm of Asum

P(kAsumk2 � c1
p
n(
p

d0 +
p
dL) +

p
nt)  2e�c2t

2

, (39)

This implies EkAsumk2 = O
�p

n(
p
d0 +

p
dL)

�
, which in turn bounds the Rademacher complexity

Rn(H3kM⇤k⇤
) = ERn(H3kM⇤k⇤

) = O

✓p
d0 +

p
dL

p
n

kM⇤
k
⇤

◆
. (40)

Note that the Gaussian distribution GdL⇥d0 is unbounded, which makes the value of the squared
loss unbounded, while it is convenient to bound the generalization gap when the value of the loss is
bounded. To cope with this fact, for a given threshold c, we define a truncated version of the loss
denoted by lc(x, y) = `c(x� y), plotted in Figure 3, which is a smooth approximation of the squared
loss.

lc(x, y) = `c(x� y) =

8
<

:

(x� y)2, if x� y 2 [�c, c],
�(x� y)2 + 4c|x� y|� 2c2, if x� y 2 [�2c,�c] [ [c, 2c],
2c2, if x� y 2 (�1,�2c] [ [2c,1).

(41)

It is easy to verify @x`c is 2-lipschitz in x. Also it is clear that lc(x, y)  max(2c2, l(x, y)) for all
x, y and lc(x, y) < l(x, y) only when |x� y| > c. Next, we define the c-cap population loss L̄c with
respect to `c:

L̄c(M) = EA⇠GdL⇥d0
`c(hA,Mi , hA,M⇤

i).

Thus we have

L̄(M)� L̄c(M)  E1|hA,M�M⇤i|�c hA,M �M⇤
i
2 .

But note that the variable hA,M �M⇤
i is a Gaussian variable with variance kM � M⇤

k
2
F 

kM �M⇤
k
2
⇤
. Hence, from Lemma 6, picking c = ⇥(log(n)kM⇤

k⇤), for all M 2 H3kM⇤k⇤
,

0  L̄(M)� L̄c(M)  O(
kM⇤

k
2
⇤
log n

n
).

Now using the Rademacher complexity bound in (40) and applying Theorem 6, we have for all
interpolating solutions M 2 H3kM⇤k⇤

with probability at least 1� exp(⌦(d0 + dL)):

L̄c(M)  O

✓
H log3(n)R2

n +
c2(d0 + dL)

n

◆

 O

✓
kM⇤

k
2
⇤

(d0 + dL) log
3 n

n

◆
(42)

where H is the gradient smoothness of the loss `c which is 2 and Lc is the empirical loss defined
in (2) with square loss substituted by `c. Above, we used the fact that `c is bounded by 2c2.

Lemma 6. For standard Gaussian variable X , we have

E1|X|�cX
2
 e�c2/2 2(c

2 + 2)

c
p
2⇡

.
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x2

�c(x)

c = 2

Figure 3: The smooth surrogate loss `c as defined in Equation (41) with parameter c = 2.

Proof of Lemma 6.

E1|X|�cX
2 =2/

p

2⇡

Z
1

x=c
x2e�

x2

2 dx

2/
p

2⇡

Z
1

x=c

x3

c
e�

x2

2 dx

=1/(c
p

2⇡)

Z
1

x=c
x2e�

x2

2 dx2

=1/(c
p

2⇡)

Z
1

x=c2
xe�

x
2 dx

=1/(c
p

2⇡)(�0� (�2e�c2/2(c2 + 2)))

=e�c2/2 2(c
2 + 2)

c
p
2⇡

.

E.2 Proof of Lemma 5

Proof of Lemma 5 . Consider its SVD decomposition of M , M =
Pd

i=1 ↵iuivTi , where ↵i’s are the
singular values and {ui}

d
i=1, {vi}

d
i=1 each is an orthonormal basis for Rd. We can write

nX

i=1

hAi,Mi
2 =

1

n

nX

i=1

(
dX

j=1

↵ju
T
j Aivj)

2

=
1

n

nX

i=1

dX

j:k=1

↵j↵ktr(Aivju
T
j )tr(Aivku

T
k )

=
dX

j:k=1

1

4n

nX

i=1

↵j↵k

�
tr(Ai(vju

T
j + vku

T
k ))

2
� tr(Ai(vju

T
j � vku

T
k ))

2
�
.
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But again using the (2, �)-RIP of {Ai}
n
i=1,

(1� �)kvju
T
j + vku

T
k k

2
F 

1

4n

nX

i=1

tr(Ai(vju
T
j + vku

T
k ))

2
 (1 + �)kvju

T
j + vku

T
k k

2
F

(1� �)kvju
T
j � vku

T
k k

2
F 

1

4n

nX

i=1

tr(Ai(vju
T
j � vku

T
k ))

2
 (1 + �)kvju

T
j � vku

T
k k

2
F .

This implies

1

4n

nX

i=1

�
tr(Ai(vju

T
j + vku

T
k ))

2
� tr(Ai(vju

T
j � vku

T
k ))

2
�


1

2
�(kvju

T
j kF + kvku

T
k kF ) + (1 + �)hvju

T
j , vku

T
k i.

Summing this from j to k and noting that hvjuT
j , vku

T
k i is zero for j 6= k:

nX

i=1

hAi,Mi
2
 (1 + �)(

dX

j=1

↵2
j ) + �(

X

j

|↵j |)
2
 (1 + �)kMk2F + �kMk2

⇤
. (43)

Similarly we obtain
nX

i=1

hAi,Mi
2
� (1� �)kMk2F � �kMk2

⇤
. (44)

Combining Equations (43) and (44):
���

nX

i=1

hAi,Mi
2
� kMk2F

���  �kMk2F + �kMk2
⇤
 2�kMk2

⇤
. (45)

This completes the proof.

F Proof of Theorem 4

Proof of Theorem 4. Here we view matrices in Rd0⇥dL as d0dL dimensional vectors, hence by
rotating a matrix with an orthogonal transformation we mean to rotate the corresponding vector. Note
that the minimum `2 solution of the regression problem is given by fM defined as

fM =
nX

i=1

Ai

h⇣
hAi, Aji

⌘�1

1i,jn
b
i

i
.

First, note that if we rotate the ground-truth matrix M⇤ with an arbitrary orthogonal matrix U , then
fM rotates according to the same U . Combining this with the fact the distribution on the measurement
matrices is Gaussian and rotationally symmetric, we conclude that the population loss L0(fM) is the
same for all M⇤. Hence, to lower bound the population loss, we can further assume that the entries
of M⇤ are sampled from standard Gaussian distribution. Hence, for any M⇤ we can write

E{Ai}
n
i=1

L
0(fM) = EM⇤E{Ai}

n
i=1

L
0(fM)

= E{Ai}
n
i=1

EM⇤kfM �M⇤
k
2
F

= E{Ai}
n
i=1

(1�
n

d0dL
)kM⇤

k
2
F

= (1�
n

d0dL
)kM⇤

k
2
F .

where we used the fact that fM is the projection of M⇤ onto the subspace spanned by {Ai}
n
i=1.
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