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Abstract

Recent works on over-parameterized neural networks have shown that the stochas-
ticity in optimizers has the implicit regularization effect of minimizing the sharpness
of the loss function (in particular, the trace of its Hessian) over the family zero-loss
solutions. More explicit forms of flatness regularization also empirically improve
the generalization performance. However, it remains unclear why and when flatness
regularization leads to better generalization. This work takes the first step toward
understanding the inductive bias of the minimum trace of the Hessian solutions in
an important setting: learning deep linear networks from linear measurements, also
known as deep matrix factorization. We show that for all depth greater than one,
with the standard Restricted Isometry Property (RIP) on the measurements, mini-
mizing the trace of Hessian is approximately equivalent to minimizing the Schatten
1-norm of the corresponding end-to-end matrix parameters (i.e., the product of all
layer matrices), which in turn leads to better generalization. We empirically verify
our theoretical findings on synthetic datasets.

1 Introduction

Modern deep neural networks are typically over-parametrized and equipped with huge model capacity,
but surprisingly, they generalize well when trained using stochastic gradient descent (SGD) or its
variants [51]. A recent line of research suggested the implicit bias of SGD as a possible explanation
to this mysterious ability. In particular, Damian et al. [10], Li et al. [29], Arora et al. [4], Lyu et al.
[33], Wen et al. [48], Liu et al. [31] have shown that SGD can implicitly minimize the sharpness

of the training loss, in particular, the trace of the Hessian of the training loss, to obtain the final
model. However, despite the strong empirical evidence on the correlation between various notions of
sharpness and generalization [25, 23, 38, 24] and the effectiveness of using sharpness regularization
on improving generalization [16, 49, 53, 39], the connection between penalization of the sharpness of
training loss and better generalization still remains majorly unclear [13, 2] and has only been proved
in the context of two-layer linear models [29, 37, 12]. To further understand this connection beyond
the two layer case, we study the inductive bias of penalizing the trace of the Hessian of training loss
and its effect on the generalization in an important theoretical deep learning setting: deep linear

networks (or equivalently, deep matrix factorization [3]). We start by briefly describing the problem
setup.

Deep Matrix Factorization. Consider an L-layer deep network where L 2 N+, L � 2 is the depth
of the model. Let Wi 2 Rdi⇥di�1 and di denote the layer weight matrix and width of the ith (i 2 [L])
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layer respectively. We use W to denote the concatenation of all the parameters (W1, . . . ,WL) and
define the end-to-end matrix of W as

E(W) , WLWL�1 · · ·W1. (1)

In this paper, we focus on models that are linear in the space of the end-to-end matrix E(W ).
Suppose M⇤

2 RdL⇥d0 is the target end-to-end matrix, and we observe n linear measurements
(matrices) Ai 2 RdL⇥d0 and the corresponding labels bi = hAi,M⇤

i. The training loss of W is the
mean-squared error (MSE) between the prediction hAi,WLWL�1 · · ·W1i and the observation bi:

L(W) , 1

n

nX

i=1

(hAi,WLWL�1 · · ·W1i � bi)
2 . (2)

Throughout this paper, we assume that di � min(d0, dL) for each i 2 [L] and, thus, the image of the
function E(·) is the entire RdL⇥d0 . In particular, this ensures that the deep models are sufficiently
expressive in the sense that min

W
L(W ) = 0. For this setting, we aim to understand the structure of

the trace of the Hessian minimization, as described below. The trace of Hessian is the sum of the
eigenvalues of Hessian, which is an indicator of sharpness and it is known that variants of SGD, such
as label noise SGD or 1-SAM, are biased toward models with a smaller trace of Hessian [29, 48].

Min Trace of Hessian Interpolating Solution. Our primary object of study is the interpolating
solution with the minimum trace of Hessian, defined as:

W ⇤
2 argmin

W :L(W )=0
tr[r2

L(W )]. (3)

As we shall see shortly, the solution to the above optimization problem is not unique. We are
interested in understanding the underlying structure of any minimizer W ⇤. This will, in turn, inform
us about the generalization nature of these solutions.

1.1 Main Results

Before delving into the technical details, we state our main results in this section. This also serves the
purpose of highlighting the primary technical contributions of the paper. First, since the generalization
of W only depends on its end-to-end matrix E(W ), it is informative to derive the properties of
E(W ⇤) for any min trace of the Hessian interpolating solution W ⇤ defined in (3). Indeed, penalizing
the trace of Hessian in the W space induces an equivalent penalization in the space of the end-to-end
parameters. More concretely, given an end-to-end parameter M , let the induced regularizer F (M)
denote the minimum trace of Hessian of the training loss at W among all W ’s that instantiate the
end-to-end matrix M i.e., E(W ) = M .
Definition 1 (Induced Regularizer). Suppose M 2 RdL⇥d0 is an end-to-end parameter that fits the

training data perfectly (that is, hAi,Mi = bi, 8i 2 [n]). We define the induced regularizer as

F (M) , min
W :E(W )=M

tr[r2
L(W )] (4)

Since the image of E(·) is the entire RdL⇥d0 by our assumption that di � min(d0, dL), function F
is well-defined for all M 2 RdL⇥d0 . It is easy to see that minimizing the trace of the Hessian in
the original parameter space (see (3)) is equivalent to penalizing F (M) in the end-to-end parameter.
Indeed, the minimizers of the implicit regularizer in the end-to-end space are related to the minimizers
of the implicit regularizer in the W space, i.e.,

argmin
M :L0(M)=0

F (M) =

(
E(W ⇤) | W ⇤

2 argmin
W :L(W )=0

tr[r2
L(W )]

)
,

where for any M 2 RdL⇥d0 , we define L
0(M) , 1

n

P
i=1 (hAi,Mi � bi)

2 and thus L(W ) =
L
0(E(W )). This directly follows from the definition of F in (4). Our main result characterizes the

induced regularizer F (M) when the data satisfies the RIP property.
Theorem 1 (Induced regularizer under RIP). Suppose the linear measurements {Ai}

n
i=1 satisfy the

(1, �)-RIP condition.

2



Settings Induced Regularizer F (M)/L Theorem

(1, �)-RIP (1±O(�))(d0dL)
1/L

kMk
2�2/L
⇤ Theorem 1

L = 2
���
�
1
nAiA>

i

�1/2
M

�
1
nA

>

i Ai

�1/2
���
⇤

Theorem 5 ([12])

n = 1

����
⇣
ATM

⌘L�1
AT

����
2/L

S2/L

Theorem 7

Table 1: Summary of properties of the induced regularizer in the end-to-end matrix space. Here k·kSp
denotes

the Schatten p-norm for p 2 [1,1] and Schatten p-quasinorm for p 2 (0, 1) (see Definition 2). k·k⇤ denotes
the Schatten 1-norm, also known as the nuclear norm.

1. For any M 2 RdL⇥d0 such that hAi,Mi = bi, 8i 2 [n], it holds that

(1� �)L(d0dL)
1/L

kMk
2(L�1)/L
⇤  F (M)  (1 + �)L(d0dL)

1/L
kMk

2(L�1)/L
⇤ . (5)

2. Let W ⇤
2 argminW :L(W )=0 tr[r2

L(W )] be an interpolating solution with minimal trace

of Hessian . Then E(W ⇤) roughly minimizes the nuclear norm among all interpolating

solutions of L
0
. That is,

kE(W ⇤)k⇤ 
1 + �

1� �
min

L0(M)=0
kMk⇤.

However, for more general cases, it is challenging to compute the closed-form expression of F .
In this work, we derive closed-form expressions for F in the following two cases: (1) depth L is
equal to 2 and (2) there is only one measurement, i.e., n = 1 (see Table 1). Leveraging the above
characterization of induced regularzier, we obtain the following result on the generalization bounds:
Theorem 2 (Recovery of the ground truth under RIP). Suppose the linear measurements {(Ai)}ni=1
satisfy the (2, �(n))-RIP (Definition 3). Then for any W ⇤

2 argmin
W :L(W )=0

tr[r2
L(W )], we have

kE(W ⇤)�M⇤
k
2
F 

8�(n)

(1� �(n))2
kM⇤

k
2
⇤
. (6)

where �(n) depends on the number of measurements n and the distribution of the measurements.

If we further suppose {Ai}
n
i=1 are independently sampled from some distribution over RdL⇥d0

satisfying that EA hA,Mi
2 = kMk

2
F , e.g., the standard multivariate Gaussian distribution, denoted

by GdL⇥d0 , we know �(n) = O(
q

dL+d0
n ) from Candes and Plan [7] (see Section 5.1 for more

examples).
Theorem 3. For n � ⌦(r(d0 + dL)), with probability at least 1 � exp(⌦(d0 + dL)) over the

randomly sampled {Ai}
n
i=1 from multivariate Gaussian distribution G, for any minimum trace

of Hessian interpolating solution W ⇤
2 argmin

W :L(W )=0
tr[r2

L(W )], the population loss L(W ⇤) ,

EA⇠G(hA,E(W ⇤)i � hA,M⇤
i)2 satisfies that

L(W ⇤) = kE(W ⇤)�M⇤
k
2
F  O

⇣d0 + dL
n

kM⇤
k
2
⇤
log3 n

⌘
.

Next, we state a lower bound for the conventional estimator for overparameterized models that
minimizes the norm. The lower bound states that, to achieve a small error, the number of samples
should be as large as the product of the dimensions of the end-to-end matrix d0dL as opposed to
d0 + dL in case of the min trace of Hessian minimizer. It is proved in Appendix F.
Theorem 4 (Lower bound for `2 regression). Suppose {Ai}

n
i=1 are randomly sampled from multivari-

ate Gaussian distribution G, let W̃ = argminW :L(W )=0 kE(W )kF to be the minimum Frobenius

norm interpolating solution, then the expected population loss is

EL(W̃ ) = (1� min{n,d0dL}

d0dL
) kM⇤

k
2
F .
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The lower bound in Theorem 4 shows in order to obtain an O(1)-relatively accurate estimates of the
ground truth in expectation, namely to guarantee EL(W̃ )  O(1)kM⇤

k
2
F , the minimum Frobenius

norm interpolating solution needs at least ⌦(d0dL) samples. In contrast, the minimizer of trace
of Hessian in the same problem only requires O((d0 + dL)kM⇤

k
2
⇤
/kM⇤

k
2
F ) samples, which is at

least Õ(min{d0,dL}

r ) times smaller. We further illustrate experimentally the superior generalization
ability of sharpness minimization algorithms like label noise SGD [6, 10, 29] compared to vanilla
mini-bactch SGD Figure 1. Due to the space limits, we defer the full setting for experiments into
Appendix A.

2 Related Work

Connection Between Sharpness and Generalization. Research on the connection between gener-
alization and sharpness dates back to Hochreiter and Schmidhuber [21]. Keskar et al. [25] famously
observe that when increasing the batch size of SGD, the test error and the sharpness of the learned
solution both increase. Jastrzebski et al. [23] extend this observation and found that there is a pos-
itive correlation between sharpness and the ratio between learning rate and batch size. Jiang et al.
[24] perform a large-scale empirical study on various notions of generalization measures and show
that sharpness-based measures correlate with generalization best. Liu et al. [31] find that among
language models with the same validation pretraining loss, those that have smaller sharpness can
have better downstream performance. On the other hand, Dinh et al. [13] argue that for networks
with scaling invariance, there always exist models with good generalization but with arbitrarily large
sharpness. We note this does not contradict our main result here, which only asserts the interpo-
lation solution with a minimal trace of Hessian generalizes well, but not vice versa. Empirically,
sharpness minimization is also a popular and effective regularization method for overparametrized
models [39, 17, 53, 49, 26, 32, 54, 52, 1].

Implicit Bias of Sharpness Minimization. Recent theoretical works [6, 10, 29, 31] show that SGD
with label noise is implicitly biased toward local minimizers with a smaller trace of Hessian under the
assumption that the minimizers locally connect as a manifold. Such a manifold setting is empirically
verified by Draxler et al. [14], Garipov et al. [18] in the sense that the set of minimizers of the training
loss is path-connected. It is the same situation for the deep matrix factorization problem studied in
this paper, although we do not study the optimization trajectory. Instead, we directly study properties
of the minimum trace of Hessian interpolation solution.

Sharpness-reduction implicit bias can also happen for deterministic GD. Arora et al. [4] show that
normalized GD implicitly penalizes the largest eigenvalue of the Hessian. Ma et al. [35] argues
that such sharpness reduction phenomena can also be caused by a multi-scale loss landscape. Lyu
et al. [33] show that GD with weight decay on a scale-invariant loss function implicitly decreases the
spherical sharpness, i.e., the largest eigenvalue of the Hessian evaluated at the normalized parameter.
Another line of work focuses on the sharpness minimization effect of a large learning rate in GD,
assuming that it converges at the end of training. This has been studied mainly through linear stability
analysis [50, 8, 34, 9]. Recent theoretical analysis [11, 30] showed that the sharpness minimization
effect of a large learning rate in GD does not necessarily rely on convergence and linear stability,
through a four-phase characterization of the dynamics at the Edge of Stability regime [8].

3 Preliminaries

Notation. We use [n] to denote {1, 2, . . . , n} for every n 2 N. We use kMkF , kMk
⇤
, kMk2 and

tr(M) to denote the Frobenius norm, nuclear norm, spectral norm and trace of matrix M respectively.
For any function f defined over set S such that minx2S f(x) exists, we use argminS f to denote
the set {y 2 S | f(y) = minx2S f(x)}. Given a matrix M , we use hM to denote the linear map
A 7! hA,Mi. We use Hr to to denote the set Hr , {hM | kMk

⇤
 r}. Mi: and M:j are used to

denote the ith row and jth column of the matrix M .

The following definitions will be important to the technical discussion in the paper.
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Rademacher Complexity. Given n data points {Ai}
n
i=1, the empirical Rademacher complexity of

function class H is defined as

Rn(H) =
1

n
E✏⇠{±1}n sup

h2H

nX

i=1

✏ih(Ai).

Given a distribution P , the population Rademacher complexity is defined as follows: Rn(H) =
E
Ai

iid
⇠P

Rn(H). This is mainly used to upper bound the generalization gap of SGD.

Definition 2 (Schatten p-(quasi)norm). Given any d, d0 2 N+
, p 2 (0,1) a matrix M 2 Rd⇥d0

with

singular values �1(M), . . . ,�min(d,d0)(M), we define the Schattern p-(semi)norm as

kMkSp
=

✓Xmin(d,d0)

i=1
�p
i (M)

◆1/p

.

Note that in this definition k·kSp
is a norm only when p � 1. When p 2 (0, 1), the triangle inequality

does not hold. Note that when p 2 (0, 1), kA+BkSp
 21/p�1(kAkSp

+ kBkSp
) for any matrices

A and B, however, 21/p�1 > 1.

We use L to denote the depth of the linear model and W = (W1, . . . ,WL) to denote the parameters,
where Wi 2 Rdi⇥di�1 . We assume that di � min(d0, dL) for each i 2 [L�1] and, thus, the image of
E(W ) is the entire RdL⇥d0 . Following is a simple relationship between nuclear norm and Frobenius
norm that is used frequently in the paper.
Lemma 1. For any matrices A and B, it holds that kABk⇤  kAkF kBkF .

4 Exact Formulation of Induced Regularizer by Trace of Hessian

In this section, we derive the exact formulation of trace of Hessian for `2 loss over deep matrix
factorization models with linear measurements as a minimization problem over W . We shall later
approximate this formula by a different function in Section 5, which allows us to calculate the implicit
bias in closed-form in the space of end-to-end matrices.

We first introduce the following simple lemma showing that the trace of the Hessian of the loss is
equal to the sum of squares of norms of the gradients of the neural network output.
Lemma 2. For any twice-differentiable function {fi(W )}ni=1, real-valued labels {bi}ni=1, loss

function L(W) = 1
n

Pn
i=1(fi(W )� bi)2, and any W satisfying L(W ) = 0, it holds that

tr(r2
L(W)) =

2

n

nX

i=1

krfi(W)k2.

Using Lemma 2, we calculate the trace of Hessian for the particular loss defined in (2). To do this, we
consider W in Lemma 2 to be the concatenation of matrices (W1, . . . ,WL) and we set fi(W ) to be
the linear measurement hAi, E(W )i, where E(W ) = WL · · ·W1 (see (1)). To calculate the trace of
Hessian, according to Lemma 2, we need to calculate the gradient of L(W) in (2). To this end, for a
fixed i, we compute the gradient of hAi, E(W )i with respect to one of the weight matrices Wj .

rWj hAi, E(W )i = rWj tr(A>

i WL . . .W1)

= rWj tr((Wj�1 . . .W1A
>

i WL . . .Wj+1)Wj)

= (Wj�1 . . .W1A
>

i WL . . .Wj+1)
>.

According to Lemma 2, trace of Hessian is given by

tr(r2L)(W) =
1

n

nX

i=1

LX

j=1

krWj hAi, E(W )i k2F =
1

n

nX

i=1

LX

j=1

kWj�1 . . .W1A
>

i WL . . .Wj+1k
2
F .

As mentioned earlier, our approach is to characterize the minimizer of the trace of Hessian among
all interpolating solutions by its induced regularizer in the end-to-end matrix space. The above
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calculation provides the following more tractable characterization of induced regularizer F in (12):

F (M) = min
E(W )=M

nX

i=1

LX

j=1

kWj�1 . . .W1A
>

i WL . . .Wj+1k
2
F . (7)

In general, we cannot solve F in closed form for general linear measurements {Ai}
n
i=1; however,

interestingly, we show that it can be solved approximately under reasonable assumption on the mea-
surements. In particular, we show that the induced regularizer, as defined in (7), will be approximately
proportional to a power of the nuclear norm of E(W ) given that the measurements {Ai}

n
i=1 satisfy a

natural norm-preserving property known as the Restricted Isometry Property (RIP) [7, 42].

Before diving into the proof of the general result for RIP, we first illustrate the connection between
nuclear norm and the induced regularizer for the depth-two case. In this case, fortunately, we can
compute the closed form of the induced regularizer. This result was first proved by Ding et al. [12].
For self-completeness, we also provide a short proof.
Theorem 5 (Ding et al. [12]). For any M 2 RdL⇥d0 , it holds that

F (M) , min
W2W1=M

tr[r2
L](W ) = 2

����
⇣

1
n

X
i
AiA

>

i

⌘1/2
M

⇣
1
n

X
i
A>

i Ai

⌘1/2
����
⇤

. (8)

Proof of Theorem 5. We first define B1 = (
Pn

i=1 AiAi
T )

1
2 and B2 = (

Pn
i=1 Ai

TAi)
1
2 . Therefore

we have that

tr[r2
L](W ) =

nX

i=1

�
kAi

TW2k
2
F + kW1Ai

T
k
2
F

�
= kB1W2k

2
F + kW1B2k

2
F .

Further applying Lemma 1, we have that

F (M) = min
W2W1=M

tr[r2
L](W ) = min

W2W1=M

nX

i=1

�
kAi

TW2k
2
F + kW1Ai

T
k
2
F

�

� min
W2W1=M

2kB1W2W1B2k
2
⇤
= 2kB1MB2k

2
⇤
.

Next we show this lower bound of F (M) can be attained. Let U⇤V T be the SVD of B1MB2.
The equality condition happens for W ⇤

2 = B1
†U⇤1/2,W ⇤

1 = ⇤1/2V TB2
†, where we have thatPn

i=1 kAi
TW ⇤

2 k
2
F + kW ⇤

1Ai
T
k
2
F = 2k⇤k2F = 2kB1MB2k

2
F . This completes the proof.

The right-hand side in (8) will be very close to the nuclear norm of M if the two extra multiplicative
terms are close to the identity matrix. It turns out that {Ai}

n
i=1 satisfying the (1, �)-RIP exactly

guarantees the two extra terms are O(�)-close to identity. However, the case for deep networks where
depth is larger than two is fundamentally different from the two-layer case, where one can obtain a
closed form for F . To the best of our knowledge, it is open whether one obtain a closed form for the
induced-regularizer for the trace of Hessian when L > 2. Nonetheless, in Section 5.1, we show that
under RIP, we can still approximate it with the nuclear norm.

5 Results for Measurements with Restricted Isometry Property (RIP)

In this section, we present our main results for the generalization benefit of flatness regularization in
deep linear networks. We structure the analysis as follows:

1. In Section 5.1, we first recap some preliminaries on the RIP property.
2. In Section 5.2, we prove that the induced regularizer by trace of Hessian is approximately

the power of nuclear norm for (1, �)-RIP measurements (Theorem 1).
3. In Section 5.3, we prove that the minimum trace of Hessian interpolating solution with (2, �)-

RIP measurements can recover the ground truth M⇤ up to error � kM⇤
k
2
⇤
. For {Ai}

n
i=1

sampled from Gaussian distributions, we know � = O(
q

d0+dL
n ).

4. In Section 5.4, we prove a generalization bound with faster rate of d0+dL
n kM⇤

k
2
⇤

using
local Rademacher complexity based techniques from Srebro et al. [44].

Next, we discuss important distributions of measurements for which the RIP property holds.
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5.1 Preliminaries for RIP

Definition 3 (Restricted Isometry Property (RIP)). A family of matrices {Ai}
n
i=1 satisfies the (r, �)-

RIP iff for any matrix X with the same dimension and rank at most r:

(1� �)kXk
2
F 

1

n

Xn

i=1
hAi, Xi

2
 (1 + �)kXk

2
F . (9)

Next, we give two examples of distributions where ⌦(r(d0 + dL)) samples guarantee (r,O(1))-RIP.
The proofs follow from Theorem 2.3 in [7].
Example 1. Suppose for every i 2 {1, . . . , n}, each entry in the matrix Ai is an independent standard

Gaussian random variable, i.e., Ai
i.i.d.
⇠ GdL⇥d0. For every constant � 2 (0, 1), if n � ⌦(r(d0+dL)),

then with probability 1� e⌦(n)
, {Ai}

n
i=1 satisfies (r, �)-RIP.

Example 2. If each entry of Ai is from a symmetric Bernoulli random variable with variance 1, i.e.

for all i, k, `, entry [Ai]k,` is either equal to 1 or �1 with equal probabilities, then for any r and �,

(r, �)-RIP holds with same probability as in Example 1 if the same condition there is satisfied.

5.2 Induced Regularizer of Trace of Hessian is Approximately Nuclear Norm

This section focuses primarily on the proof of Theorem 2. Our proof consists of two steps: (1) we
show that the trace of Hessian of training loss at the minimizer W is multiplicatively O(�)-close to
the regularizer R(W ) defined below (Lemma 3) and (2) we show that the induced regularizer of R,
F 0(M), is proportional to kMk

2(L�1)/L
⇤

(Lemma 4).

R(W ) , kWL . . .W2k
2
F d0 +

L�1X

j=2

kWL . . .Wj+1k
2
F kWj�1 . . .W1k

2
F + kWL�1 . . .W1k

2
F dL.

(10)

Lemma 3. Suppose the linear measurement {Ai}
n
i=1 satisfy (1, �)-RIP. Then, for any W such that

L(W ) = 0, it holds that

(1� �)R(W)  tr(r2L)(W)  (1 + �)R(W).

Since tr(r2
L)(W ) closely approximates R(W ), we can study R instead of tr[r2

L] to understand
the implicit bias up to a multiplicative factor (1 + �). In particular, we want to solve the induced
regularizer of R(W ) on the space of end-to-end matrices, F 0(M):

F 0(M) , min
W :WL···W1=M

R(W). (11)

Surprisingly, we can solve this problem in closed form.
Lemma 4. For any M 2 RdL⇥d0 , it holds that

F 0(M) , min
W : WL...W1=M

R(W) = L(d0dL)
1/L

kMk
2(L�1)/L
⇤ . (12)

Proof of Lemma 4. Applying the L-version of the AM-GM to Equation (10):

(R(W)/L)L �d0kWL · · ·W2k
2
F · kW1k

2
F kWL · · ·W3k

2
F · · · kWL�1 · · ·W1k

2
F dL. (13)

=d0dL

L�1Y

j=1

⇣
kWL · · ·Wj+1k

2
F kWj · · ·W1k

2
F

⌘

Now using Lemma 1, we have for every 1  j  L� 1:

kWL . . .Wj+1k
2
F kWj . . .W1k

2
F � kWL . . .W1k

2
⇤
= kMk

2
⇤
. (14)

Multiplying Equation (14) for all 1  j  L� 1 and combining with Equation (13) implies

min
{W | WL...W1=M}

R(W) � L(d0dL)
1/L

kMk
2(L�1)/L
⇤ . (15)
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Now we show that equality can indeed be attained. To construct an example in which the equality
happens, consider the singular value decomposition of M : M = U⇤V T , where ⇤ is a square matrix
with dimension rank(M).

For 1  i  L, we pick Qi 2 Rdi⇥rank(M) to be any matrix with orthonormal columns. Note that
rank(M) is not larger than di for all 1  i  L, hence such orthonormal matrices Qi exist. Then we
define the following with ↵,↵0 > 0 being constants to be determined:

WL = ↵0↵�(L�2)/2U⇤1/2QL�1
T
2 RdL⇥dL�1 ,

Wi = ↵QiQi�1
T
2 Rdi⇥di�1 , 82  i  L� 1,

W1 = ↵0�1
↵�(L�2)/2Q1⇤

1/2V T
2 Rd1⇥d0 .

Note that ⇤ is a square matrix with dimension rank(M). First of all, note that the defined matrices
satisfy

WLWL�1 . . .W1 = ↵L�2↵�(L�2)U⇤1/2⇤1/2V T = M.

To gain some intuition, we check that the equality case for all the inequalities that we applied above.
We set the value of ↵ in a way that these equality cases can hold simultaneously. Note that for the
matrix holder inequality that we applied in Equation (14):

kWL . . .Wj+1k
2
F kWj . . .W1k

2
F = kWL . . .W1k

2
⇤
= k⇤1/2

k
2
F ,

independent of the choice of ↵. It remains to check the equality case for the AM-GM inequality that
we applied in Equation (13). We have for all 2  j  L� 1:

kWL . . .Wj+1kF kWj�1 . . .W1kF

= ↵j�2↵�(L�2)/2↵L�j�1↵�(L�2)/2
kU⇤1/2

kF k⇤
1/2V T

kF = ↵�1
k⇤1/2

k
2
F , (16)

Hence, equality happens for all of them. Moreover, for cases j = 1 and j = L, we have

d0kWL . . .W2k = k⇤1/2
kF d0↵

0↵L�2↵�(L�2)/2 = k⇤1/2
kF d0↵

0↵(L�2)/2. (17)

dLkWL�1 . . .W1k = k⇤1/2
kF dL↵

0�1
↵L�2↵�(L�2)/2 = k⇤1/2

kF dL↵
0�1

↵(L�2)/2. (18)

Thus it suffices to set ↵0 = (dL
d0
)1/2 and ↵ = (k⇤

1/2
kF

p
d0dL

)2/L = (kMk⇤
d0dL

)1/L so that the left-hand sides
of (16), (17), and (18) are equal, which implies that the lower bound in Equation (15) is actually an
equality. The proof is complete.

Now we can prove Theorem 1 as an implication of Lemma 4.

Proof of Theorem 1. The first claim is a corollary of Lemma 3. We note that
F (M) = min

WL...W1=M
tr[r2

L](M)  (1 + �) min
WL...W1=M

R(W) = (1 + �)F 0(M)

F (M) = min
WL...W1=M

tr[r2
L](M) � (1� �) min

WL...W1=M
R(W) = (1� �)F 0(M).

For the second claim, pick W̄ that minimizes R(W̄) over all W’s that satisfy the linear measurements,
thus we have that

R(W̄) = L(d0dL)
1/L

kE(W̄ )k⇤
2(L�1)/L

= L(d0dL)
1/L min

L0(M)=0
kMk⇤

2(L�1)/L. (19)

Now from the definition of E(W ⇤),

tr(r2L)(W⇤)  tr(r2L)(W̄)  (1 + �)R(W̄), (20)
where the last inequality follows from the definition of W . On the other hand

tr(r2L)(W⇤) � (1� �)R(W̄) � (1� �)L(d0dL)
1/L

kE(W⇤)k⇤
2(L�1)/L. (21)

Combining (19), (20) and (21),

kE(W⇤)k⇤  (
1 + �

1� �
)

L
2(L�1) min

L0(M)=0
kMk⇤.

The proof is completed by noting that L
2(L�1)  1 for all L � 2.
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Thus combining Example 1 and Theorem 1 with � = 1/2, we have the following corollary.
Corollary 1. Let {Ai}

n
i=1 be sampled independently from Gaussian distribution GdL⇥d0 where

n � ⌦((d0 + dL)), with probability at least 1� exp(⌦(n)), we have

kE(W ⇤)k⇤  3 min
L0(M)=0

kMk⇤  3 kE(W ⇤)k
⇤
.

5.3 Recovering the Ground truth

In this section, we prove Theorem 2. The idea is to show that under RIP, the empirical loss L(W ) is
a good approximation for the Frobenius distance of E(W ) to the ground truth M⇤. To this end, we
first introduce a very useful Lemma 5 below, whose proof is deferred to Appendix E.
Lemma 5. Suppose the measurements {Ai}

n
i=1 satisfy the (2, �)-RIP condition. Then for any matrix

M 2 RdL⇥d0 , we have that
���
1

n

Xn

i=1
hAi,Mi

2
� kMk

2
F

���  2�kMk
2
⇤
.

We note that if {Ai}
n
i=1 are i.i.d. random matrices with each coordinate being independent, zero

mean, and unit variance (like standard Gaussian distribution), then kW �M⇤
k
2
F is the population

squared loss corresponding to W . Thus, Theorem 2 implies a generalization bound for this case.
Now we are ready to prove Theorem 2.

Proof of Theorem 2. Note that from Theorem 1,

kE(W ⇤)k⇤ 
1 + �

1� �
min

L0(M)=0
kMk⇤ 

1 + �

1� �
kM⇤

k⇤,

which implies the following by triangle inequality,

kE(W ⇤)�M⇤
k⇤  kẼ(W ⇤)k⇤ + kM⇤

k⇤ 
2

1� �
kM⇤

k⇤. (22)

Combining (22) with Lemma 5 (with M = E(W ⇤)�M⇤):
���
1

n

Xn

i=1
hAi, E(W ⇤)�M⇤

i
2
� kE(W ⇤)�M⇤

k
2
F

��� 
8�

(1� �)2
kM⇤

k
2
⇤
.

Since W ⇤ satisfies the linear constraints tr(AiE(W⇤)) = bi, 1
n

Pn
i=1 hAi, E(W ⇤)�M⇤

i
2 =

1
n

Pn
i=1

�
hAi, E(W ⇤)i � bi

�2
= 0, which completes the proof.

5.4 Generalization Bound

In this section, we prove the generalization bound in Theorem 3, which yields a faster rate of
O(d0+dL

n kM⇤
k
2
⇤
) compared to O(

q
d0+dL

n kM⇤
k
2
⇤
) in Theorem 2. The intuition for this is as

follows: By Corollary 1, we know that with very high probability, the learned solution has a bounded
nuclear norm for its end-to-end matrix, no larger than 3 kM⇤

k2, where M⇤ is the ground truth. The
key mathematical tool is Theorem 6, which provides an upper bound on the population error of the
learned interpolation solution that is proportional to the square of the Rademacher complexity of the
function class H3kM⇤k⇤ = {hM | kMk

⇤
 3 kM⇤

k
⇤
}.

Theorem 6 (Theorem 1, Srebro et al. [44]). Let H be a class of real-valued functions and ` : R⇥R !

R be a differentiable non-negative loss function satisfying that (1) for any fixed y 2 R, the partial

derivative `(·, y) with respect to its first coordinate is H-Lipschitz and (2) | supx,y `(x, y)|  B,

where H,B are some positive constants. Then for any p > 0, we have that with probability at least

1� p over a random sample of size n, for any h 2 H with zero training loss,

L̄(h)  O

✓
H log3 nR2

n(H) +
B log(1/p)

n

◆
. (23)

One technical difficulty is that Theorem 6 only works for bounded loss functions, but the `2 loss on
Gaussian data is unbounded. To circumvent this issue, we construct a smoothly truncated variant of
`2 loss (41) and apply Theorem 6 on that. Finally, we show that with a carefully chosen threshold,
this truncation happens very rarely and, thus, does not change the population loss significantly. The
proof can be found in Appendix E.
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L=2 L=3 L=5 L=10

Figure 1: Train and test loss. Label noise SGD leads to better generalization results due to the
sharpness-minimization implicit biases (as shown in Figure 2), while mini-batch SGD without label
noise finds solutions with much larger test loss.

6 Result for the Single Measurement Case

Quite surprisingly, even though in the general case we cannot compute the closed-form of the induced
regularizer in (12), we can find its minimum as a quasinorm function of the E(W ) which only
depends on the singular values of E(W ). This yields the following result for multiple layers L
(possibly L > 2) with a single measurement.
Theorem 7. Suppose there is only a single measurement matrix A, i.e., n = 1. For any M 2 RdL⇥d0 ,

the following holds:

F (M) = min
WL...W1=M

tr[r2
L](W ) = L

����
⇣
ATM

⌘L�1
AT

����
2/L

S2/L

. (24)

To better illustrate the behavior of this induced regularizer, consider the case where the measurement
matrix A is identity and M is symmetric with eigenvalues {�i}

d
i=1. Then, it is easy to see that

F (M) in (24) is equal to F (M) =
P

i �
2(L�1)/L
i . Interestingly, we see that the value of F (M)

converges to the Frobenius norm of M and not the nuclear norm as L becomes large, which behaves
quite differently (e.g. in the context of sparse recovery). This means that beyond RIP, the induced
regularizer can behave very differently, and perhaps the success of training deep networks with SGD
is closely tied to the properties of the dataset.

7 Conclusion and Future Directions

In this paper, we study the inductive bias of the minimum trace of the Hessian solutions for learning
deep linear networks from linear measurements. We show that trace of Hessian regularization
of loss on the end-to-end matrix of deep linear networks roughly corresponds to nuclear norm
regularization under restricted isometry property (RIP) and yields a way to recover the ground truth
matrix. Furthermore, leveraging this connection with the nuclear norm regularization, we show a
generalization bound which yields a faster rate than Frobenius (or `2 norm) regularizer for Gaussian
distributions. Finally, going beyond RIP conditions, we obtain closed-form solutions for the case of a
single measurement. Several avenues for future work remain open, e.g., more general characterization
of trace of Hessian regularization beyond RIP settings and understanding it for neural networks with
non-linear activations.
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