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Abstract

Recommender systems trained on offline historical user behaviors are embracing1

conversational techniques to online query user preference. Unlike prior conversa-2

tional recommendation approaches that systemically combine conversational and3

recommender parts through a reinforcement learning framework, we propose CORE,4

a new offline-training and online-checking paradigm that bridges a COnversational5

agent and REcommender systems via a unified uncertainty minimization framework.6

It can benefit any recommendation platform in a plug-and-play style. Here, CORE7

treats a recommender system as an offline relevance score estimator to produce an8

estimated relevance score for each item; while a conversational agent is regarded as9

an online relevance score checker to check these estimated scores in each session.10

We define uncertainty as the summation of unchecked relevance scores. In this11

regard, the conversational agent acts to minimize uncertainty via querying either12

attributes or items. Based on the uncertainty minimization framework, we derive13

the expected certainty gain of querying each attribute and item, and develop a14

novel online decision tree algorithm to decide what to query at each turn. We15

reveal that CORE can be extended to query attribute values, and we establish a new16

Human-AI recommendation simulator supporting both open questions of querying17

attributes and closed questions of querying attribute values. Experimental results18

on 8 industrial datasets show that CORE could be seamlessly employed on 9 popular19

recommendation approaches, and can consistently bring significant improvements,20

compared against either recently proposed reinforcement learning-based or classi-21

cal statistical methods, in both hot-start and cold-start recommendation settings. We22

further demonstrate that our conversational agent could communicate as a human23

if empowered by a pre-trained large language model, e.g., gpt-3.5-turbo.24

1 Introduction25

Recommender systems are powerful tools to facilitate users’ information seeking [26, 37, 4, 19, 21,26

20, 51, 50]; however, most prior works solely leverage offline historical data to build a recommender27

system. The inherent limitation of these recommendation approaches lies in their offline focus on28

users’ historical interests, which would not always align with users’ present needs. As intelligent29

conversational assistants (a.k.a., chat-bots) such as ChatGPT and Amazon Alexa, have entered the30

daily life of users, these conversational techniques bring an unprecedented opportunity to online obtain31

users’ current preferences via conversations. This possibility has been envisioned as conversational32

recommender systems and has inspired a series of conversational recommendation methods [24, 28,33

43]. Unfortunately, all of these approaches try to model the interactions between users and systems34

using a reinforcement learning-based framework, which inevitably suffers from data insufficiency35

and deployment difficulty, because most recommendation platforms are based on supervised learning.36
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(a) Matrix of Candidate Items with Offline 
Estimated Relevance Scores My offline estimated relevance 

scores are: Hotel A is 0.1,  Hotel B 
is 0.4, Hotel C is 0.4, Hotel D is 0.1.
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An Example of CORE: an Offline-training and 
Online-checking Framework  

I build an online decision tree 
according to your estimation.

I will offline update estimations for 
Hotel A, Hotel B, Hotel C, Hotel D.

(b) Online Decision Tree to Decide What to 
Query (Either an Attribute or an Item)

Figure 1: An illustrated example of CORE, an offline-training and online-checking framework, where a recom-
mender system operates as an offline relevance score estimator (colored in green), while a conversational agent
acts as an online relevance score checker (colored in blue). Concretely, given a matrix of candidate items, as
shown in (a), the recommender system could offline assign an estimated relevance score to each item, and then
the conversational agent would online check these scores by querying either items or attributes, depicted in (b).

In this paper, we propose CORE that can bridge a COnversational agent and REcommender systems37

in a plug-and-play style. In our setting, a conversational agent can choose either to query (a.k.a., to38

recommend) an item (e.g., Hotel A) or to query an attribute (e.g., Hotel Level), and the user should39

provide their corresponding preference. Here, the goal of the conversational agent is to find (a.k.a., to40

query) an item that satisfies the user, with a minimal number of interactions.41

We formulate the cooperation between a conversational agent and a recommender system into a novel42

offline-training and online-checking framework. Specifically, CORE treats a recommender system43

as an offline relevance score estimator that offline assigns a relevance score to each item, while a44

conversational agent is regarded as an online relevance score checker that online checks whether45

these estimated relevance scores could reflect the relevance between items and the user’s current46

needs. Here, “checked items” means those items, we can certainly say that they can not satisfy the47

user according to already queried items and attributes. We introduce a new uncertainty metric defined48

as the summation of estimated relevance scores of those unchecked items. Then, the goal of our49

conversational agent can be formulated as minimizing the uncertainty via querying items or attributes50

during the interactions. To this end, we derive expected certainty gain to measure the expectation51

of uncertainty reduction by querying each item and attribute. Then, during each interaction, our52

conversational agent selects an item or an attribute with the maximum certainty gain, resulting in an53

online decision tree algorithm. We exemplify the above process in Figure 1.54

Notice that users usually do not hold a clear picture of their preferences on some attributes (i.e.,55

attribute IDs), e.g., what Hotel Level they need, instead, they could have a clear preference on56

a specific value of an attribute (i.e., attribute value), e.g., Hotel Level=5 is too expensive for a57

student user. Also, asking an open question of querying attributes could result in an unexpected58

answer, e.g., a user answers 3.5 to Hotel Level. In this regard, querying attribute values leading to59

closed questions (i.e., Yes or No questions) could be a better choice. We reveal that CORE could be60

directly applied to the above querying strategies. We also develop a new Human-AI recommendation61

simulator that supports both querying attributes and attribute values.62

In practice, we extend CORE to handle continuous attributes and to consider the dependence among63

attributes. Moreover, we demonstrate that our conversational agent could straightforwardly be em-64

powered by a pre-trained language model, e.g., gpt-3.5-turbo, to communicate as a human. Note65

that CORE poses no constraint on recommender systems, only requiring the estimated relevance scores.66

Therefore, CORE can be seamlessly applied to any recommendation platform. We conduct experiments67

on 8 industrial datasets (including both tabular data, sequential behavioral data and graph-structured68

data) with 9 popular recommendation approaches (e.g., DeepFM [19], DIN [51]). Experimental69

results show that CORE can bring significant improvements in both hot-start recommendation (i.e., the70

recommender system is offline trained) and cold-start recommendation (i.e., the recommender system71

is not trained) settings. We compare CORE against recently proposed reinforcement learning based72

methods and classical statistical methods, and CORE could consistently show better performance.73
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2 Bridging Conversational Agents and Recommender Systems74

2.1 Problem Formulation75

Let U denote a set of users, V = {v1, . . . , vM} be a set of M items, X = {x1, . . . , xN} be a set of76

N attributes (a.k.a., features) of items. We consider a recommender system as a mapping function,77

denoted as ΨRE : U × V → R that assigns an estimated relevance score to each item regarding a78

user. Then, during each online session, a conversational agent also can be formulated as a mapping79

function, denoted as ΨCO : U ×A → R that chooses either an item or an attribute to query user, and80

A = V ∪ X denotes the action space of the conversational agent. For convenience, we call the items81

satisfying the user in each session as target items. Our goal is to find one target item in the session.82

For this purpose, ΨRE(·) acts as an offline estimator to produce an estimated relevance distribution83

for each user through offline training on previous behavioral data; while ΨCO(·) operates as an84

online checker to check whether these estimated scores fit the user’s current needs (i.e., an oracle85

relevance distribution) through online interactions. Here, “checked items” denote those items that86

can not be target items according to queried items and attributes. For example, as Figure 1 illustrates,87

after querying Breakfast Service, we have items Hotel C and Hotel D checked. We introduce88

uncertainty as the summation of estimated relevance scores of unchecked items. Formally, we have:89

Definition 1 (Uncertainty and Certainty Gain). For the k-th turn, we define uncertainty, denoted90

as Uk, to measure how many estimated relevance scores are still unchecked, i.e.,91

Uk := SUM({ΨRE(vm)|vm ∈ Vk}), (1)

where ΨRE(vm)1 outputs the estimated relevance score for item vm, Vk is the set of all the unchecked92

items after k interactions, and Vk is initialized as V0 = V . Then, the certainty gain of k-th interaction93

is defined as ∆Uk := Uk−1 − Uk, i.e., how many relevance scores are checked at the k-th turn. Since94

our goal is to find a target item, if ΨCO(·) successfully finds one at the k-th turn, then we set all the95

items checked, namely Uk = 0.96

In this regard, our conversational agent is to minimize Uk at each k-th turn via removing those97

checked items from Vk. Considering that online updating ΨRE(·) is infeasible in practice due to the98

high latency and computation costs, the objective of ΨCO(·) can be expressed as:99

min
Ψ∗

RE

K, s.t., UK = 0, (2)

where K is the number of turns, and Ψ∗
RE means that the recommender system is frozen. To this end,100

the design of our conversational agent could be organized as an uncertainty minimization problem.101

2.2 Comparisons to Previous Work102

Bridging conversational techniques and recommender systems has become an appealing solution to103

model the dynamic preference and weak explainability problems in recommendation task [14, 24],104

where the core sub-task is to dynamically select attributes to query and make recommendations105

upon the corresponding answers. Along this line, the main branch of previous studies is to combine106

the conversational models and the recommendation models from a systematic perspective. Namely107

conversational and recommender models are treated and learned as two individual modules [28, 2,108

29, 43, 47] in the system. The system is developed from a single-turn conversational recommender109

system [5, 6, 46] to a multiple-turn one [48]. To decide when to query attributes and when to make110

recommendations (i.e., query items), recent papers [28–30] develop reinforcement learning-based111

solutions, which are innately suffering from insufficient usage of labeled data and high complexity112

costs of deployment.113

Different from the conversational components introduced in [43, 28], our conversational agent can114

be regarded as a generalist agent that can query either items or attributes. In addition, our querying115

strategy is derived based on the uncertainty minimization framework, which only requires estimated116

relevance scores from the recommender system. Hence, CORE can be straightforwardly applied to117

any supervised learning-based recommendation platform, in a plug-and-play way.118

We present the connections to other previous work (e.g., decision tree algorithms) in Appendix A5.119

1In this paper, as our conversational agent only faces one user u ∈ U in each session, we omit the input u in
mapping functions Ψ·(·)s for simplicity.
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3 Making the Conversational Agent a Good Uncertainty Optimizer120

3.1 Building an Online Decision Tree121

As described in Section 2.1, the aim of our conversational agent is to effectively reduce uncertainty122

via querying either items or attributes. The core challenge is how to decide which item or attribute to123

query. To this end, we begin by introducing expected certainty gain to measure the expectation of124

how much uncertainty could be eliminated by querying each item and each attribute. Then, we can125

choose an item or an attribute with the maximum expected certainty gain to query.126

Formally, let Xk denote the set of unchecked attributes after k interactions. Then, for each k-th turn,127

we define aquery as an item or an attribute to query, which is computed following:128

aquery = argmax
a∈Vk−1∪Xk−1

ΨCG(query(a)), (3)

where ΨCG(·) denotes the expected certainty gain of querying a, and a can be either an unchecked129

item (from Vk−1) or an unchecked attribute (from Xk−1).130

ΨCG(·) for Querying an Item. We first consider the case where a ∈ Vk−1. Let V∗ denote the set of131

all the target items in the session. Since we only need to find one target item, therefore, if a ∈ Vk−1,132

we can derive:133

ΨCG(query(a)) = ΨCG(a ∈ V∗) · Pr(a ∈ V∗) + ΨCG(a /∈ V∗) · Pr(a /∈ V∗)

=
( ∑

vm∈Vk−1

ΨRE(vm)
)
· Pr(a ∈ V∗) + ΨRE(a) · Pr(a /∈ V∗), (4)

where a ∈ V∗ and a /∈ V∗ denote that queried a is a target item and not. If a ∈ V∗, the session is134

done, and therefore, the certainty gain (i.e., ΨCG(a ∈ V∗)) is the summation of all the relevance scores135

in Vk−1. Otherwise, only a is checked, and the certainty gain (i.e., ΨCG(a /∈ V∗)) is the relevance136

score of a, and we have Vk = Vk−1\{a} and Xk = Xk−1.137

Considering that a being a target item means a being a relevant item, we leverage the user’s previous138

behaviors to estimate the user’s current preference. With relevance scores estimated by ΨRE(·), we139

estimate Pr(a ∈ V∗) as:140

Pr(a ∈ V∗) =
ΨRE(a)

SUM({ΨRE(vm)|vm ∈ Vk−1})
, (5)

and Pr(a /∈ V∗) = 1− Pr(a ∈ V∗).141

ΨCG(·) for Querying an Attribute. We then consider the case where a ∈ Xk−1. For each queried142

attribute a, letWa denote the set of all the candidate attribute values, and let w∗
a ∈ Wa denote the143

user preference on a, e.g., a is Hotel Level, w∗
a is 3. Then, if a ∈ Xk−1, we have:144

ΨCG(query(a)) =
∑

wa∈Wa

(
ΨCG(wa = w∗

a) · Pr(wa = w∗
a)
)
, (6)

where wa = w∗
a means that when querying a, the user’s answer (represented by w∗

a) is wa, ΨCG(wa =145

w∗
a) is the certainty gain when wa = w∗

a happens, and Pr(wa = w∗
a) is the probability of wa = w∗

a146

occurring. If wa = w∗
a holds, then all the unchecked items whose value of a is not equal to wa should147

be removed from Vk−1, as they are certainly not satisfying the user’s needs.148

Formally, let Vavalue=wa denote the set of all the items whose value of a is equal to wa, and let149

Vavalue ̸=wa denote the set of rest items. Then, ΨCG(wa = w∗
a) can be computed as:150

ΨCG(wa = w∗
a) = SUM({ΨRE(vm)|vm ∈ Vk−1 ∩ Vavalue ̸=wa

}), (7)

which indicates that the certainty gain, when wa is the user’s answer, is the summation of relevance151

scores of those items not matching the user preference.152

To finish ΨCG(query(a)), we also need to estimate Pr(wa = w∗
a). To estimate the user preference on153

attribute a, we leverage the estimated relevance scores given by ΨRE(·) as:154

Pr(wa = w∗
a) =

SUM({ΨRE(vm)|vm ∈ Vk−1 ∩ Vavalue=wa
})

SUM({ΨRE(vm)|vm ∈ Vk−1})
. (8)
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In this case, we remove Vk−1 ∩ Vavalue ̸=w∗
a

from Vk−1, namely we have Vk = Vk−1 \ Vavalue ̸=w∗
a
. As155

attribute a is checked, we have Xk = Xk−1\{a}. Here, w∗
a is provided by the user after querying a.156

By combining Eqs. (4), (6), and (7), we can derive a completed form of ΨCG(query(a)) for a ∈157

Vk−1 ∪ Xk−1 (See Appendix A1.1 for details). Then, at each k-th turn, we can always follow Eq. (3)158

to obtain the next query aquery. As depicted in Figure 1(b), the above process results in an online159

decision tree, where the nodes in each layer are items and attributes to query, and the depth of the tree160

is the number of turns (see Appendix A4.3 for visualization of a real-world case).161

3.2 From Querying Attributes to Querying Attribute Values162

We note that the online decision tree introduced above is a general framework; while applying it to163

real-world scenarios, there should be some specific designs.164

ΨCG(·) for Querying an Attribute Value. One implicit assumption in the above online decision tree165

is that the user’s preference on queried attribute a always falls into the set of attribute values, namely166

w∗
a ∈ Wa holds. However, it can not always hold, due to (i) a user would not have a clear picture167

of an attribute, (ii) a user’s answer would be different from all the candidate attribute values, e.g.,168

a is Hotel Level, w∗
a = 3.5, andWa = {3, 5}, as shown in Figure 1(a). In these cases, querying169

attributes would not be a good choice. Hence, we propose to query attribute values instead of attribute170

IDs, because (i) a user is likely to hold a clear preference for a specific value of an attribute, e.g.,171

a user would not know an actual Hotel Level of her favoring hotels, but she clearly knows she172

can not afford a hotel with Hotel Level=5, and (ii) since querying attribute values leads to closed173

questions instead of open questions, a user only needs to answer Yes or No, therefore, avoiding the174

user’s answer to be out of the scope of all the candidate attribute values.175

Formally, in this case, A =Wx ×Xk−1 which indicates we need to choose a value wx ∈ Wx where176

x ∈ Xk−1. In light of this, we compute the expected certainty gain of querying attribute value wx as:177

ΨCG(query(x) = wx) = ΨCG(wx = w∗
x) · Pr(wx = w∗

x) + ΨCG(wx ̸= w∗
x) · Pr(wx ̸= w∗

x), (9)
where w∗

x ∈ Wx denotes the user preference on attribute x. Here, different from querying attributes,178

a user would only respond with Yes (i.e., wx = w∗
x) or No (i.e., wx ̸= w∗

x). Therefore, we only need179

to estimate the certainty gain for the above two cases. ΨCG(wx = w∗
x) can be computed following180

Eq. (7) and ΨCG(wx ̸= w∗
x) can be calculated by replacing Vxvalue ̸=wx

with Vxvalue=wx
. Pr(wx = w∗

x)181

is estimated in Eq. (8) and Pr(wx ̸= w∗
x) = 1 − Pr(wx = w∗

x). In this case, if all the values of x182

have been checked, we have Xk = Xk−1\{x}; otherwise, Xk = Xk−1; and Vk = Vk−1 \ Vxvalue ̸=wx
183

if receiving Yes from the user, Vk = Vk−1 \ Vxvalue=wx
, otherwise.184

We reveal the connection between querying attributes (i.e., querying attribute IDs) and querying185

attribute values in the following proposition.186

Proposition 1. For any attribute x ∈ Xk−1, ΨCG(query(x)) ≥ ΨCG(query(x) = wx) holds for all187

the possible wx ∈ Wx.188

This proposition shows that if users could give a clear preference for the queried attribute and their189

preferred attribute value is one of the candidate attribute values, then querying attributes would be190

an equivalent or a better choice than querying attribute values. In other words, querying attributes191

and querying attribute values can not operate on the same attributes (otherwise, ΨCO(·) would always192

choose to query attributes). Therefore, we can combine querying items and querying attribute values193

by setting the action space to A =Wx ×Xk−1 ∪ Vk−1. Then, we can re-formulate Eq. (3) as:194

aquery = argmax
a∈{wx,v}

(
max

wx∈Wx where x∈Xk−1

ΨCG(query(x) = wx), max
v∈Vk−1

ΨCG(query(v))
)
. (10)

In the context of querying attribute values, we further reveal what kind of attribute value is an ideal195

one in the following theorem.196

Proposition 2. In the context of querying attribute values, an ideal choice is always the one that can197

partition all the unchecked relevance scores into two equal parts (i.e., the ideal wx ∈ Wx, x ∈ Xk−1198

is the one that makes ΨCG(wx = w∗
x) = SUM({ΨRE(vm)|vm ∈ Vk−1})/2 hold), if it is achievable.199

And the certainty gain in this case is ΨCG(query(x) = wx) = SUM({ΨRE(vm)|vm ∈ Vk−1})/2.200

Then, we consider the bound of the expected number of turns. To get rid of the impact of ΨRE(·), we201

introduce a cold-start setting [42], where ΨRE(·) knows nothing about the user, and equally assigns202

relevance scores to all M items, resulting in ΨRE(vm) = 1/M holds for any vm ∈ V .203
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Lemma 1. In the context of querying attribute values, suppose that ΨRE(vm) = 1/M holds for any204

vm ∈ V , then the expected number of turns (denoted as K̂) is bounded by logM+1
2 ≤ K̂ ≤ (M+1)/2.205

Here, the good case lies in that our conversational agent is capable of finding an attribute value to206

form an ideal partition at each turn, while the bad case appears when we can only check one item at207

each turn. We provide detailed proofs of Propositions 1 and 2, and Lemma 1 in Appendix A1.2.208

ΨCG(·) for Querying Attributes in Large Discrete or Continuous Space. All the above querying209

strategies are designed in the context that for each attribute, the range of its candidate values is a210

“small” discrete space, namely |Wx| ≪ |Vk−1| where x ∈ Xk−1. When it comes to cases whereWx211

is a large discrete space or a continuous space, then either querying attribute x or any attribute value212

wx ∈ Wx would not be a good choice. For example, let x be Hotel Price, then when querying213

x, the user would not respond with an accurate value, and querying x=one possible value could be214

ineffective. To address this issue, we propose to generate a new attribute value wx and query whether215

the user’s preference is not smaller than it or not. Formally, we have:216

ΨCG(query(x) ≥ wx) = ΨCG(wx ≥ w∗
x) · Pr(wx ≥ w∗

x) + ΨCG(wx < w∗
x) · Pr(wx < w∗

x), (11)

where x ∈ Xk−1 and wx can be either in or out ofWx. Compared to querying attribute values (i.e.,217

Eq. (9)), the new action space is A = R×Xk−1. Notice that Proposition 2 is also suitable for this218

case (see detailed description in Appendix A2.1), where the best partition is to divide the estimated219

relevance scores into two equal parts. Therefore, we produce wx by averaging all the candidate220

attribute values weighted by the corresponding relevance scores. Formally, for each x ∈ Xk−1, we221

compute wx as:222

wx = AVERAGE({ΨRE(vm) · wvm |vm ∈ Vk−1}), (12)
where wvm

is the value of attribute x in item vm, e.g., in Figure 1(a), let a be Hotel Level, and vm223

be Hotel A, then wvm = 3.224

In this case, Xk = Xk−1, and Vk = Vk−1 \ Vxvalue<wx if receiving Yes from the user when querying225

whether user preference is not smaller than wx, Vk = Vk−1 \ Vxvalue≥wx
otherwise. Vxvalue<wx

is the226

set of all the items whose value of x is smaller than wx and Vxvalue≥wx
is the set of the rest items.227

3.3 Plugging the Conversational Agent into Recommender Systems228

Overall Algorithm. We begin by summarizing CORE for querying items and attributes or querying229

items and attribute values in Algorithm 1. From the algorithm, we can clearly see that our ΨCO(·) puts230

no constraints on ΨRE(·) and only requires the estimated relevance scores from ΨRE(·), therefore, CORE231

can be seamlessly integrated into any recommendation platform. We note that in a conversational232

agent, querying attributes and querying attribute values can be compatible, but can not simultaneously233

operate on the same attribute, due to Proposition 1. See Appendix A2.3 for a detailed discussion.234

Making ΨCG(·) Consider Dependence among Attributes. We notice that the above formulations235

of either querying attributes or querying attribute values, does not consider the dependence among236

attributes (e.g., as Figure 1(a) shows, attribute Hotel Level can largely determine attribute Shower237

Service). To address this issue, we take ΨCG(·) in Eq. (6) as an example (see detailed descriptions238

of the other ΨCG(·)s in Appendix A2.2), and re-formulate it as:239

ΨD
CG(query(a)) =

∑
a′∈Xk−1

(
ΨCG(query(a′)) · Pr(query(a′)|query(a))

)
, (13)

where a ∈ Xk−1, and Pr(query(a′)|query(a)) measures the probability of the user preference240

on a determining the user preference on a′. Compared to ΨCG(query(a)), ΨD
CG(query(a)) further241

considers the impact of querying attribute a on other attributes. To estimate Pr(query(a′)|query(a)),242

we develop two solutions. We notice that many widely adopted recommendation approaches are243

developed on factorization machine (FM) [37], e.g., DeepFM [19]. Therefore, when applying these244

FM-based recommendation approaches, one approach is to directly adopt their learned weight for245

each pair of attributes (a, a′) as the estimation of Pr(query(a′)|query(a)). When applying CORE to246

any other recommendation method (e.g., DIN [51]), we develop a statistical based approach that does247

estimations by computing this conditional probability ΨD
CG(query(a)) based on the given candidate248

items. We leave the detailed computations of ΨD
CG(query(a)) in both ways in Appendix A2.2.249

Empowering ΨCO(·) to Communicate with Humans. When applying CORE into real-world scenar-250

ios, users may provide a Not Care attitude regarding the queried attributes or queried attribute values.251
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Algorithm 1 CORE for Querying Items and Attributes

Input: A recommender system ΨRE(·), an item set V , an attribute set X , an offline dataset D.
Output: Updated recommender system ΨRE(·), up-to-date dataset D.

1: Train ΨRE(·) on D. ▷ Offline-Training
2: for each session (i.e., the given user) do
3: Initialize k = 1 and V0 = V , X0 = X .
4: repeat
5: Compute aquery following Eq. (3) for querying items and attributes or following Eq. (10)

for querying items and attribute values. ▷ Online-Checking
6: Query aquery to the user and receive the answer. ▷ Online-Checking
7: Generate Vk and Xk from Vk−1 and Xk−1. ▷ Online-Checking
8: Go to next turn: k ← k + 1.
9: until Querying a target item or k > KMAX where KMAX is the maximal number of turns.

10: Collect session data and add to D.
11: end for
12: Update ΨRE(·) using data in D. ▷ Offline-Training

In these cases, we generate Vk and Xk by Vk = Vk−1 and Xk = Xk−1\{a}, because querying a is252

non-informative. To capture the user’s different attitudes on queried items and attributes or attribute253

values, we can incorporate a pre-trained language model (LM) (e.g., gpt-3.5-turbo) in ΨCO(·).254

As our online-checking part does not require training, simply plugging an LM would not cause the255

non-differentiable issue. In light of this, we exemplify some task-specific prompts to enable the256

conversational agent to (i) communicate like humans by prompting queried items and attributes, and257

(ii) extract the key answers from the user. See Appendix A4.2 for a detailed description.258

4 Experiments259

4.1 Experimental Configurations260
Table 1: Result comparisons in the context of query-
ing attributes. See Table A1 for the full version.

ΨRE(·) ΨCO(·)
Amazon

T@3 S@3 T@5 S@5

COLD
START

ME 3.04 0.98 5.00 1.00

CORE 2.88 1.00 2.87 1.00
CORE+D 2.84 1.00 2.86 1.00

FM

AG 2.76 0.74 2.97 0.83
CRM 3.07 0.98 3.37 1.00
EAR 2.98 0.99 3.13 1.00

CORE 2.17 1.00 2.16 1.00
CORE+D 2.14 1.00 2.14 1.00

We summarize different experimental settings as fol-261

lows. (i) We design two different quering strategies262

regarding attributes (shown in line 5 in Algorithm 1).263

One is querying attributes (i.e., attribute IDs); and264

the other is querying attribute values. (ii) We in-265

troduce two different recommender system settings.266

One is the hot-start setting (shown in line 1 in Al-267

gorithm 1) that initializes the estimated relevance268

scores of items by a given pre-trained recommender269

system; and the other is the cold-start setting where270

those estimated relevance scores are uniformly gen-271

erated (corresponding to the case where the recommender system knows nothing about the given272

user). Because the conversational agent ΨCO(·) operates in a dynamic process, we develop a new273

simulator to simulate the Human-AI recommendation interactions, which consists of a conversational274

agent and a user agent. Specifically, for each user, we use her browsing log as session data, and treat275

all the items receiving positive feedback (e.g., chick) as target items. Then, for each k-th turn, when276

the conversational agent queries an attribute x ∈ Xk−1, the user agent returns a specific attribute277

value if all the target items hold the same value for x; otherwise, the user agent returns Not Care.278

When the conversational agent queries an attribute value wx ∈ Wx, the user agent returns Yes if at279

least one target item holds wx as the value of attribute x; otherwise, returns No.280

For each experimental setting, we first set KMAX, and then evaluate the performance in terms of the281

average turns needed to end the sessions, denoted as T@KMAX (where for each session, if ΨCO(·)282

successfully queries a target item within KMAX turns, then return the success turn; otherwise, we283

enforce ΨCO(·) to query an item at (KMAX + 1)-th turn, if succeeds, return KMAX + 1, otherwise return284

KMAX + 3); and the average success rate, denoted as S@KMAX (where for each session, if ΨCO(·)285

successfully queries a target item within KMAX turns, then we enforce ΨCO(·) to query an item after286

KMAX turns, if succeeds, return 1, otherwise return 0).287
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Table 2: Result comparisons of querying attribute values on tabular datasets. See Table A2 for the full version.

ΨRE(·) ΨCO(·)
Amazon LastFM Yelp

T@3 S@3 T@5 S@5 T@3 S@3 T@5 S@5 T@3 S@3 T@5 S@5

COLD
START

AG 6.47 0.12 7.83 0.23 6.77 0.05 8.32 0.14 6.65 0.08 8.29 0.13
ME 6.50 0.12 8.34 0.16 6.84 0.04 8.56 0.11 6.40 0.15 8.18 0.20

CORE 6.02 0.25 6.18 0.65 5.84 0.29 5.72 0.74 5.25 0.19 6.23 0.65
CORE+D 6.00 0.26 6.01 0.67 5.79 0.30 5.70 0.75 5.02 0.21 6.12 0.68

FM

AG 2.76 0.74 2.97 0.83 4.14 0.52 4.67 0.64 3.29 0.70 3.39 0.81
CRM 4.58 0.28 6.42 0.38 4.23 0.34 5.87 0.63 4.12 0.25 6.01 0.69
EAR 4.13 0.32 6.32 0.42 4.02 0.38 5.45 0.67 4.10 0.28 5.95 0.72

CORE 3.26 0.83 3.19 0.99 3.79 0.72 3.50 0.99 3.14 0.84 3.20 0.99
CORE+D 3.16 0.85 3.22 1.00 3.75 0.74 3.53 1.00 3.10 0.85 3.23 1.00

DEEP
FM

AG 3.07 0.71 3.27 0.82 3.50 0.68 3.84 0.79 3.09 0.74 3.11 0.88
CRM 4.51 0.29 6.32 0.40 4.18 0.38 5.88 0.63 4.11 0.23 6.02 0.71
EAR 4.47 0.30 6.35 0.43 4.01 0.37 5.43 0.69 4.01 0.32 5.74 0.75

CORE 3.23 0.85 3.22 0.99 3.47 0.81 3.34 1.00 2.98 0.93 3.11 1.00

PNN AG 3.02 0.74 3.10 0.87 3.44 0.67 3.53 0.84 2.83 0.77 2.82 0.91

CORE 3.01 0.88 3.04 0.99 3.10 0.87 3.20 0.99 2.75 0.88 2.76 1.00

To verify CORE can be applied to a variety of recommendation platforms, we conduct evaluations on288

three tubular datasets: Amazon [8, 32], LastFM [9] and Yelp [12], three sequential datasets: Taobao289

[10], Tmall [11] and Alipay [7], two graph-structured datasets: Douban Movie [34, 52] and Douban290

Book [34, 52]. The recommendation approaches used in this paper, i.e., ΨRE(·)s, include FM [37],291

DEEP FM [19], PNN [36], DIN [51], GRU [22], LSTM [17], MMOE [31], GCN [25] and GAT [45].292

We also use COLD START to denote the cold-start recommendation setting. The conversational293

methods used in this paper, i.e., ΨCO(·)s, include (i) Abs Greedy (AG) always queries an item with294

the highest relevance score at each turn; (ii) Max Entropy (ME) always queries the attribute with the295

maximum entropy in the context of querying attributes, or queries the attribute value of the chosen296

attribute, with the highest frequency in the context of querying attribute values; (iii) CRM [43], (iv)297

EAR [28]. Here, AG can be regarded as a strategy of solely applying ΨRE(·). Both CRM and EAR298

are reinforcement learning based approaches, originally proposed on the basis of FM recommender299

system. Thus, we also evaluate their performance with hot-start FM-based recommendation methods,300

because when applying them to a cold-start recommendation platform, their strategies would reduce301

to a random strategy. Consider that ME is a ΨCO(·), independent of ΨRE(·) (namely, the performance302

of hot-start and cold-start recommendation settings are the same); and therefore, we only report their303

results in the cold-start recommendation setting. We further introduce a variant of CORE, denoted as304

CORE+D where we compute and use ΨD
CG(·)s instead of ΨCG(·)s in line 5 in Algorithm 1.305

We provide detailed descriptions of datasets and data pre-processing, simulation design, baselines,306

and implementations in Appendix A3.1, A3.2, A3.3, and A3.4. All the codes (including simulations)307

and pre-processed datasets will be released at publication.308

4.2 Experimental Results309

We report our results of querying attributes and items in Table 1, and the results of querying attribute310

values and items in Tables 2, and 3, 4, and summarize our findings as follows.311

Reinforcement learning based methods work well in querying items and attributes but perform312

poorly in querying items and attribute values. By comparing Table 1 to Table 2, we can see a huge313

performance reduction of CRM and EAR. One possible explanation is that compared to attribute IDs,314

the action space of querying attribute values is much larger. Thus, it usually requires much more315

collected data to train a well-performed policy.316

T@KMAX could not align with S@KMAX. A higher success rate might not lead to a smaller number317

of turns; and ME gains a worse performance than AG in some cases in the context of the cold-start318

recommendation setting. The main reason is that although querying an attribute value can obtain an319

equivalent or more certainty gain than querying an item at most times; however, only querying (a.k.a.,320

recommending) an item could end a session. Therefore, sometimes, querying an attribute value is too321

conservative. It explains why CORE outperforms AG in terms of S@3 but gets a lower score of T@3322

in Amazon dataset and FM recommendation base.323
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Table 3: Result comparisons of querying attribute values on sequential datasets. See Table A3 for the full version.

ΨRE(·) ΨCO(·)
Taobao Tmall Alipay

T@3 S@3 T@5 S@5 T@3 S@3 T@5 S@5 T@3 S@3 T@5 S@5

COLD
START

AG 6.30 0.15 7.55 0.27 6.80 0.04 8.54 0.09 6.47 0.11 7.95 0.19
ME 6.43 0.14 7.82 0.29 6.76 0.05 8.50 0.12 6.71 0.07 8.46 0.11

CORE 5.42 0.39 5.04 0.89 6.45 0.13 7.38 0.37 5.98 0.25 6.17 0.65

DIN AG 2.71 0.85 2.83 0.95 4.14 0.51 4.81 0.59 3.10 0.82 3.35 0.85

CORE 2.45 0.97 2.54 1.00 4.12 0.64 4.16 0.89 3.25 0.83 3.32 0.96

GRU AG 2.80 0.80 2.64 0.97 3.82 0.56 4.40 0.64 3.17 0.83 3.29 0.87

CORE 2.31 0.98 2.44 1.00 3.81 0.72 3.91 0.92 3.10 0.84 3.11 0.96

LSTM AG 2.60 0.85 2.52 0.97 4.73 0.41 5.63 0.49 3.43 0.78 3.27 0.89

CORE 2.37 0.97 2.49 1.00 4.58 0.55 4.36 0.90 3.03 0.84 3.16 0.97

MMOE AG 3.04 0.75 2.98 0.92 4.10 0.54 4.56 0.62 3.58 0.83 3.90 0.92

CORE 2.48 0.96 2.60 1.00 3.92 0.65 4.19 0.85 3.21 0.91 3.17 0.98

Table 4: Result comparisons of querying attribute values on graph datasets. See Table A4 for the full version.

ΨRE(·) ΨCO(·)
Douban Movie Douban Book

T@3 S@3 T@5 S@5 T@3 S@3 T@5 S@5

COLD
START

AG 6.52 0.11 7.94 0.21 6.36 0.15 7.68 0.26
ME 6.60 0.10 8.16 0.21 6.40 0.15 8.04 0.24

CORE 5.48 0.38 4.84 0.94 5.96 0.26 5.08 0.92

GAT AG 3.75 0.63 3.65 0.87 3.56 0.64 3.41 0.87

CORE 2.89 0.91 2.97 1.00 2.80 0.92 2.91 1.00

GCN AG 3.21 0.69 3.33 0.83 3.20 0.71 3.18 0.89

CORE 2.76 0.92 2.81 1.00 2.85 0.91 2.85 1.00

Our conversational agent can consistently improve the recommendation performance in terms324

of success rate. CORE can consistently outperform AG, in terms of success rate, especially for the325

cold-start recommendation setting. As AG means solely using recommender systems, it indicates326

that ΨCO(·) can consistently help ΨRE(·). One possible reason is that our uncertainty minimization327

framework unifies querying attribute values and items. In other words, AG is a special case of CORE,328

where only querying items are allowed.329

Considering Dependence among attributes is helpful. Comparisons between CORE and CORE+D330

reveal that considering the dependence among attributes could improve the performance of CORE in331

most cases.332

Figure 2: Comparisons of CORE and AG with dif-
ferent KMAX in both cold-start and hot-start settings.

We further investigate the impact of KMAX by assign-333

ing KMAX = 1, 3, 5, 7, 9 and reporting the results of334

CORE and AG on Amazon dataset in the context of335

the cold-start and hot-start recommendation setting336

in Figure 2, which further verifies the superiority of337

CORE especially with a cold-start ΨRE(·).338

We also provide a case study of incorporating a large339

LM into CORE to handle free-text inputs and output340

human language, and a visualization of an online341

decision tree in Appendix A4.2 and A4.3.342

5 Conclusions and Future Work343

In this paper, we propose CORE that can incorporate a conversational agent into any recommenda-344

tion platform in a plug-and-play fashion. Empirical results verify that CORE outperforms existing345

reinforcement learning-based and statistics-based approaches in both setting of querying items and346

attributes, and setting of querying items and attribute values. In the future, it would be interesting to347

evaluate CORE in some online real-world recommendation platforms.348
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A1 Conversational Agent Design on Uncertainty Minimization Framework485

A1.1 Detailed Deviations486

This paper introduces a conversational agent built upon the recommender system to interact with a487

human user. We begin by summarizing the interaction principles, taking Figure 1 as an example.488

Definition A1 (Conversational Agent and Human User Interactions). Our conversational agent489

is designed to act in the following four ways.490

(i) Query an item v ∈ Vk−1, where Vk−1 is the set of unchecked items after k − 1 interactions (e.g.,491

recommend Hotel A to the user).492

(ii) Query an attribute x ∈ Xk−1, whereXk−1 is the set of unchecked attributes after k−1 interactions493

(e.g., query what Hotel Level does the user want).494

(iii) Query whether the user’s preference on an attribute x ∈ Xk−1 is equal to a specific attribute495

value wx ∈ Wx whereWx is the set of values of attribute x (e.g., query whether the user likes a496

hotel with Hotel Level=5).497

(iv) Query whether the user’s preference on an attribute is not smaller than a specific value wx ∈ R498

(e.g., query whether the user likes a hotel with Hotel Level≥3.5).499

The human user is supposed to respond in the following ways.500

(i) For queried item v, the user should answer Yes (if v satisfies the user) or No (otherwise) (e.g.,501

answer Yes, if the user likes Hotel A).502

(ii) For queried attribute x, the user should answer her preferred attribute value, denoted as w∗
x ∈ Wx503

(e.g., answer 3 for queried attribute Hotel Level), or answers Not Care to representing that504

any attribute value works.505

(iii) For queried attribute value wx, the user should answer Yes (if wx matches the user preference)506

or No (otherwise) (e.g., answer Yes, if the user wants a hotel with Hotel Level=5), or answers507

Not Care to representing that any attribute value works.508

(iv) For queried attribute value wx, the user should answer Yes (if the user wants an item whose value509

of attribute x is not smaller than wx) or No (otherwise) (e.g., answer Yes, if the user wants a510

hotel with Hotel Level=5), or answers Not Care to representing that any attribute value works.511

Then, we separately describe the key concepts, including uncertainty, certainty gain, and expected512

certainty gain, introduced in this paper.513

Definition A2 (Uncertainty). For the k-th turn, we define uncertainty, denoted as Uk, to measure514

how many estimated relevance scores are still unchecked, which can be formulated as:515

Uk := SUM({ΨRE(vm)|vm ∈ Vk}), (14)

where ΨRE(vm) outputs the estimated relevance score for item vm. The above equation tells us that516

the uncertainty of each turn is decided by the unchecked items.517

It is straightforward to derive the certainty gain, as the uncertainty reduction at each turn.518

Definition A3 (Certainty Gain). For the k-th turn, we define certainty gain of k-th interaction as:519

∆Uk := Uk−1 − Uk = SUM({ΨRE(vm)|vm ∈ ∆Vk}), (15)

where ∆Vk = Vk−1 − Vk. For simplicity, we use a to denote the k-th action of the conversational520

agent. According to Human-AI interactions introduced in Definition A1, we can derive:521

∆Vk =



Vk, a ∈ Vk−1 and the answer to querying (i) is Yes,
{a}, a ∈ Vk−1 and the answer to querying (i) is No,

Vavalue ̸=w∗
a
∩ Vk−1, a ∈ Xk−1 and the answer to querying (ii) is w∗

a,
Vxvalue ̸=wx

∩ Vk−1, a ∈ Wx where x ∈ Xk−1 and the answer to querying (iii) is Yes,
Vxvalue=wx

∩ Vk−1, a ∈ Wx where x ∈ Xk−1 and the answer to querying (iii) is No,
Vxvalue<wx

∩ Vk−1, a ∈ R, x ∈ Xk−1 and the answer to querying (iv) is Yes,
Vxvalue≥wx

∩ Vk−1, a ∈ R, x ∈ Xk−1 and the answer to querying (iv) is No.
∅, the answer to querying either (ii), (iii) or (iv) is Not Care,

(16)
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where Vavalue ̸=w∗
a

is the set of unchecked items whose value of attribute a is not equal to the user522

answer w∗
a, Vxvalue ̸=wx is the set of unchecked items whose value of attribute x is not equal to the523

queried attribute value wx, Vxvalue=wx , a subset of Vk−1, is the set of unchecked items whose value of524

attribute x is equal to the queried attribute value wx, Vxvalue<wx
is the set of unchecked items whose525

value of attribute x is smaller than the queried attribute value wx, Vxvalue≥wx
is the set of unchecked526

items whose value of attribute x is not smaller than the queried attribute value wx.527

To estimate the certainty gain from taking each possible action, we introduce the expected certainty528

gain as follows.529

Definition A4 (Expected Certainty Gain). For the k-th turn, we define expected certainty gain to530

estimate ∆Uk on ΨCO(·) taking a different action.531

ΨCG(·) =


Eq. (4), a ∈ Vk−1, i.e., querying (i),
Eq. (6), a ∈ Xk−1, i.e., querying (ii),
Eq. (9), a ∈ Wx, i.e., querying (iii),
Eq. (11), a ∈ R, x ∈ Xk−1, i.e., querying (iv).

(17)

Then, at each turn, we can compute the candidate action, getting the maximum expected certainty532

gain, as the action to take, denoted as aquery. In practice, as shown in Proposition 1, for each attribute,533

querying attribute IDs, i.e., (ii), and querying attribute values, i.e., (iii), is not compatible. And, (iv)534

is particularly designed for a large discrete or continuous value space, which can be regarded as a535

specific attribute value generation engineering for (iii) (i.e., using Eq. (12) to directly compute the536

queried value for each attribute), and thus, we treat (iv) as a part of (iii). Therefore, we organize two537

querying strategies. One is querying (i) and (ii), whose objective can be formulated as Eq. (3). The538

other one is querying (i) and (iii), and the objective can be written as Eq. (10).539

Besides Vk, we further summarize the update of Xk as follows. Similarly, we can define ∆Xk :=540

Xk−1 −Xk, then ∆Xk can be written as:541

∆Xk =

{ {a}, querying (ii),
{x}, querying either (iii) or (iv), and there is no unchecked attribute value in x,
∅, querying either (i) or (iv).

(18)
Based on the above, CORE runs as Algorithm 1 shows.542

Remark. One of the advantages of querying attribute values, compared to querying attributes, is543

that the user’s answer to queried attribute would be out of the candidate attribute value (i.e.,Wx for544

queried attribute x). We are also aware that one possible solution is that the conversational agent545

would list all the candidate attribute values in the query. However, we argue that this approach would546

work when the number of candidate values is small (namely, |Wx| is small) such as attributes Color547

and Hotel Level, but can not work when there are many candidate values, e.g., attribute Brand,548

since listing all of them would significantly reduce the user satisfaction.549

A1.2 Proofs550

Proposition A1. For any attribute x ∈ Xk−1, ΨCG(query(x)) ≥ ΨCG(query(x) = wx) holds for551

all the possible wx ∈ Wx.552

Proof. For consistency, we re-formulate Eq. (6) as:553

ΨCG(query(x)) =
∑

wx∈Wx

(
ΨCG(wx = w∗

x) · Pr(wx = w∗
x)
)
, (19)

where x is the queried attribute, and w∗
x represents the user preference on x (corresponding to the554

notations a and w∗
a respectively). We can also re-write ΨCG(wx = w∗

x) as:555

ΨCG(w
′
x = w∗

x) =SUM({ΨRE(vm)|vm ∈ Vk−1 ∩ Vxvalue ̸=w′
x
})

=
∑

w′′
x∈Wx\{w′

x}

(
SUM({ΨRE(vm)|vm ∈ Vk−1 ∩ Vxvalue=w′′

x
})
)

=
∑

w′′
x∈Wx\{w′

x}

ΨCG(w
′′
x ̸= w∗

x) ≥ ΨCG(wx ̸= w∗
x),

(20)
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where wx is an arbitrary attribute value inWx\{w′
x}. The above equation is built upon the simple556

fact that after an attribute x, the answer of the user preferring w′
x is equivalent to the answer of the557

user not preferring all the other w′′
xs, which can remove all the unchecked items whose value is equal558

to any w′′
x . Thus, the expected certainty gain of knowing the user preferring w′

x is not smaller than559

knowing the user not preferring any one wx ∈ Wx\{w′
x}, and the equality holds only in the case560

whereWx = {wx, w
′
x}, namely there are only two candidate attribute values.561

Based on the above equations, we can derive:562

ΨCG(query(x)) =
∑

wx∈Wx

(
ΨCG(wx = w∗

x) · Pr(w′
x = w∗

x)
)

=ΨCG(wx = w∗
x) · Pr(wx = w∗

x) +
∑

w′
x∈Wx\{wx}

(
ΨCG(w

′
x = w∗

x) · Pr(w′
x = w∗

x)
)

≥ΨCG(wx = w∗
x) · Pr(wx = w∗

x) +
∑

w′
x∈Wx\{wx}

(
ΨCG(wx ̸= w∗

x) · Pr(w′
x = w∗

x)
)

≥ΨCG(wx = w∗
x) · Pr(wx = w∗

x) + ΨCG(wx ̸= w∗
x) ·

∑
w′

x∈Wx\{wx}

(
Pr(w′

x = w∗
x)
)

≥ΨCG(wx = w∗
x) · Pr(wx = w∗

x) + ΨCG(wx ̸= w∗
x) · Pr(wx ̸= w∗

x)

≥ΨCG(query(x) = wx).

(21)

Since we put no constraint on x ∈ Xk−1, thus it proves the proposition.563

Proposition A2. In the context of querying attribute values, an ideal choice is always the one that can564

partition all the unchecked relevance scores into two equal parts (i.e., the ideal wx ∈ Wx, x ∈ Xk−1565

is the one that makes ΨCG(wx = w∗
x) = SUM({ΨRE(vm)|vm ∈ Vk−1})/2 hold), if it is achievable.566

And the certainty gain in this case is ΨCG(query(x) = wx) = SUM({ΨRE(vm)|vm ∈ Vk−1})/2.567

Proof. Without loss of generalizability, in the context of querying attribute values, we recap the568

formulation of ΨCG(query(x) = wx), shown in Eq. (9) as:569

ΨCG(query(x) = wx) = ΨCG(wx = w∗
x) · Pr(wx = w∗

x) + ΨCG(wx ̸= w∗
x) · Pr(wx ̸= w∗

x)

=SUM({ΨRE(vm)|vm ∈ Vk−1 ∩ Vavalue ̸=wa
}) · SUM({ΨRE(vm)|vm ∈ Vk−1 ∩ Vavalue=wa})

SUM({ΨRE(vm)|vm ∈ Vk−1})

+ SUM({ΨRE(vm)|vm ∈ Vk−1 ∩ Vavalue=wa}) ·
SUM({ΨRE(vm)|vm ∈ Vk−1 ∩ Vavalue ̸=wa

})
SUM({ΨRE(vm)|vm ∈ Vk−1})

=RYES ·
R−RYES

R
+ (R−RYES) ·

RYES

R
,

(22)

where we use RYES to denote SUM({ΨRE(vm)|vm ∈ Vk−1 ∩ Vavalue ̸=wa
}), the expected certainty gain570

of the event wx = w∗
x happening (i.e., the user answering Yes to querying wx), and use R to denote571

the summation of relevance scores of all the unchecked items, i.e., SUM({ΨRE(vm)|vm ∈ Vk−1}).572

For convenience, we use Ψ to denote ΨCG(query(x) = wx). Then, Ψ can be regarded as a function573

of RYES, where RYES is the independent variable and Ψ is the dependent variable.574

To maximize Ψ, we have:575

∂Ψ

∂RYES

=
2

R
· (R− 2 ·RYES) = 0. (23)

Therefore, we have RYes = R/2, and in this case, Ψ = R/2. Then, we can reach the conclusion that576

the ideal partition is the one dividing all the unchecked relevance scores, i.e., R, into two equal parts;577

and in this case, ΨCG(query(x) = wx) = R/2 = SUM({ΨRE(vm)|vm ∈ Vk−1})/2, which indicates578

that querying wx can check half of the relevance scores in expectation.579

Lemma A1. In the context of querying attribute values, suppose that ΨRE(vm) = 1/M holds for any580

vm ∈ V , then the expected number of turns (denoted as K̂) is bounded by logM+1
2 ≤ K̂ ≤ (M+1)/2.581

Proof. We begin by considering the best case. According to Proposition 2, if we can find an attribute582

value wx, where querying wx can partition the unchecked relevance scores into two equal parts, then583
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we can build a binary tree, where we can check M/2k at the k-th turn. Therefore, we have:584

1 + 2 + · · ·+ 2K̂−1 = M, (24)

which derives K̂ = logM+1
2 . In the worst case, we only can query one item during one query. Then,585

the expected number of turns is:586

K̂ = 1 · 1

M
+ 2 · (1− 1

M
) · 1

M − 1
+ · · ·+M ·

M−1∏
i=0

(1− 1

M − i
) · 1 =

M + 1

2
. (25)

Combining Eqs. (24) and (25) together, we can draw logM+1
2 ≤ K̂ ≤ (M + 1)/2.587

A2 Plugging the Conversational Agent in Recommender Systems588

A2.1 ΨCG(·) for Querying Attributes in Large Discrete or Continuous Space589

The main idea of our conversational agent is to recursively query the user to reduce uncertainty. The590

core challenge is that there exist some cases where querying any attribute values or items can not591

effectively reduce uncertainty. Most of these cases occur when some key attributes have a large592

discrete space or a continuous space, leading to a broad decision tree. Formally, for a key attribute593

x ∈ Xk−1, a “small” discrete space usually means |Wx| ≪ |Vk−1|. For example, for attribute Hotel594

Price, then querying x, the user would not respond with an accurate value, and querying x=one595

possible value could be ineffective.596

To address this issue, we propose a find a wx ∈ R instead of wx ∈ Wx, and then we can query597

whether the user’s preference is not smaller than it or not, i.e., query(x) ≥ wx instead of whether598

the user’s preference is equal to wx or not, i.e., query(x) = wx. Then, the expected certainty gain in599

this case can be written as:600

ΨCG(query(x) ≥ wx) = ΨCG(wx ≥ w∗
x) · Pr(wx ≥ w∗

x) + ΨCG(wx < w∗
x) · Pr(wx < w∗

x), (26)

where601

ΨCG(wx ≥ w∗
x) = SUM({ΨRE(vm)|vm ∈ Vx<wx

∩ Vk−1}),
ΨCG(wx < w∗

x) = SUM({ΨRE(vm)|vm ∈ Vx≥wx
∩ Vk−1}),

(27)

where Vx≥wx is the set of items whose value of attribute x is not smaller than wx, and Vx<wx is the602

set of the rest items, namely Vx≥wx
∪ Vx<wx

= Vk−1; and603

Pr(wx ≥ w∗
x) =

SUM({ΨRE(vm)|vm ∈ Vx≥wx
∩ Vk−1})

SUM({ΨRE(vm′)|vm′ ∈ Vk−1})
,

Pr(wx < w∗
x) =

SUM({ΨRE(vm)|vm ∈ Vx<wx ∩ Vk−1})
SUM({ΨRE(vm′)|vm′ ∈ Vk−1})

.

(28)

Therefore, the same as query(x) = wx, query(x) ≥ wx also divide the unchecked items into two604

parts, and the user is supposed to answer Yes or No, corresponding to either one of the two parts.605

Then, Proposition 2 also works here. Namely, for each attribute x ∈ Xk−1, the oracle wx, denoted as606

wO
x, is the one that can partition the relevance scores into two equal parts. Formally, we have:607

wO
x = argmin

wx∈R

∥∥∥SUM({ΨRE(vm)|vm ∈ Vx≥wx ∩ Vk−1})−
SUM({ΨRE(vm′)|vm′ ∈ Vk−1})

2

∥∥∥. (29)

Since it is infeasible to find an exact oracle one, we approximate wO
x as:608

wx = AVERAGE({ΨRE(vm) · wvm |vm ∈ Vk−1}), (30)

where wvm is the value of attribute x in item vm. It indicates that our estimation is the average of the609

attribute values for the items in Vk−1 weighted by their relevance scores.610
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A2.2 Making ΨCG(·) Consider Dependence among Attributes611

The following techniques allow CORE to take the dependence among attributes into account. We612

provide two ways, where one requires a FM based recommender system, while the other one poses613

no constraint.614

Taking ΨCG(·) in Eq. (6) as an example, we re-formulate Eq. (6) as, when a ∈ Xk−1, we compute615

ΨCG(query(a)) as:616

ΨD
CG(query(a)) =

∑
a′∈A

(
ΨCG(query(a′)) · Pr(query(a′)|query(a))

)
, (31)

where we use ΨD
CG(·) to denote this variant of ΨCG(·).617

Estimation from a Pre-trained FM based Recommender System. If our recommender system618

applies a factorization machine (FM) based recommendation approach, then we can directly adopt619

the learned weights as the estimation of Pr(query(a′)|query(a)) in Eq. (31). Taking DeepFM [19]620

as an example, we begin by recapping its FM component:621

yFM = w0 +

N∑
n=1

wnxn +

N∑
n=1

N∑
n′=n+1

⟨vn,vn′⟩xnxn′ , (32)

where the model parameters should be estimated in the recommender system (in line 1 in Algorithm 1)622

are: w0 ∈ R, w ∈ RN , V ∈ RN×D and D is the dimension of embedding. And, ⟨·, ·⟩ is the dot623

product of two vectors of size d, defined as ⟨vi,vj⟩ =
∑D

d=1 vid · vjd. In this regard, for each pair624

of attributes (e.g., (a, a′) in Eq. (31)), we can find the corresponding ⟨vn,vn′⟩ as the estimation of625

Pr(query(a′)|query(a)).626

Estimation in a Statistical Way. If applying any other recommendation approach to the recommender627

system, we design a statistical way. We first decompose ΨD
CG(query(a)) according to Eq. (6):628

ΨD
CG(query(a)) =

∑
wa∈Wa

(
ΨD

CG(wa = w∗
a) · Pr(wa = w∗

a)
)
, (33)

where we define ΨD
CG(wa = w∗

a) as:629

ΨD
CG(wa = w∗

a) =
∑
a′∈A

∑
wa′∈Wa′

(
ΨCG(wa′ = w∗

a′) · Pr(wa′ = w∗
a′ |wa = w∗

a)
)
, (34)

where Pr(wa′ = w∗
a′ |wa = w∗

a) measures the probability of how likely getting the user’s preference630

on attribute a (i.e., wa = w∗
a) determinate the user’s preference on other attributes (i.e., wa′ = w∗

a′).631

For example, in Figure 1, if the user’s preference on attribute Hotel Level and the answer is 5 (i.e.,632

a is Hotel Level, wa is 5 and the user’s answer is Yes), then we could be confident to say that the633

user preference on attribute Shower Service is Yes (i.e., a′ is Shower Service, wa′ is Yes, and634

the user’s answer is Yes), i.e., Pr(wa′ = w∗
a′ |wa = w∗

a) is close to 1.635

We estimate Pr(wa′ = w∗
a′ |wa = w∗

a) by using the definition of the conditional probability:636

Pr(wa′ = w∗
a′ |wa = w∗

a) =
|V(avalue=wa)∧(a′

value=wa′ ) ∩ Vk−1|
|Vavalue=wa ∩ Vk−1|

, (35)

where Vavalue=wa
is the set of items whose value of a equals wa, and V(avalue=wa)∧(a′

value=wa′ ) is the637

set of items whose value of a equals wa and value of a′ equals wa′ . By incorporating Eqs. (34) and638

(35) into Eq. (33), we can compute ΨD
CG(query(a)) for any a ∈ Xk−1.639

Extensions to Other Cases. Besides querying attributes, we also introduce another querying strategy640

to query attribute values. Formally, we can have:641

ΨD
CG(query(x) = wa) = ΨD

CG(wx = w∗
x) · Pr(wx = w∗

x) + ΨD
CG(wx ̸= w∗

x) · Pr(wx ̸= w∗
x), (36)

where ΨD
CG(wx = w∗

x) can computed by Eq. (34), and the formulation of ΨD
CG(wx ̸= w∗

x) could be642

directly extended from Eq. (34) by replacing ΨCG(wx = w∗
x) with ΨCG(wx ̸= w∗

x), and replacing643

Pr(wa′ = w∗
a′ |wa = w∗

a) with Pr(wa′ ̸= w∗
a′ |wa ̸= w∗

a). Pr(wa′ ̸= w∗
a′ |wa ̸= w∗

a) could644

be computed by replacing Vavalue=wa
with Vavalue ̸=wa

, and replacing V(avalue=wa)∧(a′
value=wa′ ) with645
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V(avalue ̸=wa)∧(a′
value ̸=wa′ ). Vavalue ̸=wa is the set of items whose value of a does not equal wa, and646

V(avalue ̸=wa)∧(a′
value ̸=wa′ ) is the set of items whose value of a does not equal wa and value of a′ does647

not equal wa′ .648

Then, we have made our conversational agent consider the dependence among attributes for cases (ii)649

and (iii), summarized in Definition A1. There is no need to consider the dependence in case (i), and,650

as concluded in Appendix A1.1, (iv) can be regarded as a special engineering technique in (iii), and651

thus, one just follow the same way to handle case (iv).652

A2.3 Overall Algorithm653

We summarize the overall algorithm in Algorithm 1. CORE follows an offline-training-and-online-654

checking paradigm, where offline-training represents in lines 1 and 12, and online-checking represents655

in lines 5, 6 and 7.656

As shown in line 5, there are two querying settings, i.e., querying items and attributes, and querying657

items and attribute values. We note that querying attributes and querying attribute values can be658

compatible, but can not simultaneously operate on the same attribute. We recap that Proposition 1659

says that for each attribute, assuming users could give a clear answer showing their preference,660

querying an attribute can always obtain certainty gain not smaller than querying any attribute value of661

the attribute.662

Therefore, in practice, we would select those attributes that are likely to receive a clear preference663

from users (e.g., attributes Category, Brand) in the setting of querying items and attributes, and664

use the rest of attributes (e.g., attributes Price) in the setting of querying items and attribute values.665

Also, as stated at the end of Appendix A1.1, we can further select several attributes with a small666

space of attribute values, use them in the setting of querying items and attributes, and list all the667

candidate attribute values in the queries. In this regard, for any attribute, since the space of attribute668

values is changing in the context of querying attribute values, then we may transfer from the setting669

of querying attribute values to querying attributes, when there are few unchecked candidate attribute670

values.671

All the above operations need careful feature engineering, which should be task-specific and dataset-672

specific. We argue that this is out of the scope of this paper, and we leave it for future work.673

A3 Experimental Configuration674

A3.1 Dataset Descriptions and Data Pre-processing675

We summarize the datasets used in this paper as follows.676

• Amazon dataset [8, 32] is a dataset collected by Amazon from May 1996 to July 2014. There are677

1,114,563 reviews of 133,960 users and 431,827 items and 6 attributes.678

• LastFM dataset [9] is a dataset collected from Lastfm, a music artist recommendation platform.679

There are 76,693 interactions of 1,801 users and 7,432 items and 33 attributes.680

• Yelp dataset [12] is a dataset collected from Yelp, a business recommendation platform. There681

are 1,368,606 interactions of 27,675 users and 70,311 items and 590 attributes. We follow [28] to682

create 29 (parents) attributes upon 590 original attributes, and we use the newly created ones in our683

experiments.684

• Taobao dataset [10] is a dataset collected by Taobao from November 2007 to December 2007.685

It consists of 100,150,807 interactions of 987,994 users and 4,162,024 items with an average686

sequence length of 101 and 4 attributes.687

• Tmall dataset [11] is a dataset collected by Tmall from May 2015 to November 2015. It consists688

of 54,925,331 interactions of 424,170 users and 1,090,390 items with an average length of 129 and689

9 attributes.690

• Alipay dataset [7] is a dataset collected by Alipay, from July 2015 to November 2015. There are691

35,179,371 interactions of 498,308 users and 2,200,191 items with an average sequence length of692

70 and 6 attributes.693

• Douban Movie dataset [34, 52] is a dataset collected from Douban Movie, a movie recommenda-694

tion platform. There are 1,278,401 interactions of 2,712 users and 34,893 items with 4 attributes.695
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Table A1: Result comparisons in the context of querying attributes and items on tabular datasets. ∗ indicates that
the average value of CORE, when subtracted by the deviation, still outperforms the best baseline.

ΨRE(·) ΨCO(·)
Amazon LastFM Yelp

T@3 S@3 T@5 S@5 T@3 S@3 T@5 S@5 T@3 S@3 T@5 S@5

COLD
START

AG 6.47 0.12 7.83 0.23 6.77 0.05 8.32 0.14 6.65 0.08 8.29 0.13
ME 3.04 0.98 5.00 1.00 3.00 1.00 5.00 1.00 3.00 1.00 5.00 1.00

CORE 2.88∗ 1.00 2.87∗ 1.00 2.73∗ 1.00 2.75∗ 1.00 2.92 1.00 2.94∗ 1.00
CORE+D 2.84 1.00 2.86 1.00 2.74 1.00 2.73 1.00 2.90 1.00 2.91 1.00

FM

AG 2.76 0.74 2.97 0.83 4.14 0.52 4.67 0.64 3.29 0.70 3.39 0.81
CRM 3.07 0.98 3.37 0.83 2.98 0.99 3.43 1.00 3.08 0.98 3.12 0.96
EAR 2.98 0.99 3.13 1.00 3.02 1.00 3.51 1.00 2.94 1.00 3.02 0.99

CORE 2.17∗ 1.00 2.16∗ 1.00 2.06∗ 1.00 2.07∗ 1.00 2.09∗ 1.00 2.10∗ 1.00
CORE+D 2.14 1.00 2.14 1.00 2.05 1.00 2.05 1.00 2.10 1.00 2.08 1.00

DEEP
FM

AG 3.07 0.71 3.27 0.82 3.50 0.68 3.84 0.79 3.09 0.74 3.11 0.88
CRM 2.68 0.99 2.99 0.99 2.94 0.99 3.05 0.99 2.92 1.00 2.99 1.00
EAR 2.70 1.00 2.88 1.00 2.95 1.00 3.21 0.98 2.87 1.00 2.97 1.00

CORE 2.07∗ 1.00 2.06∗ 1.00 2.07∗ 1.00 2.08∗ 1.00 2.06∗ 1.00 2.07∗ 1.00
CORE+D 2.08 1.00 2.02 1.00 2.05 1.00 2.03 1.00 2.03 1.00 2.06 1.00

PNN

AG 3.02 0.74 3.10 0.87 3.44 0.67 3.53 0.84 2.83 0.77 2.82 0.91

CORE 2.71∗ 1.00∗ 3.00 1.00∗ 2.05∗ 1.00∗ 2.06∗ 1.00∗ 2.15∗ 1.00∗ 2.16∗ 1.00∗
CORE+D 2.68 1.00 2.98 1.00 2.07 1.00 2.02 1.00 2.08 1.00 2.11 1.00

• Douban Book dataset [34, 52] is a dataset collected from Douban Book, a book recommendation696

platform. There are 96,041 interactions of 2,110 users and 6,777 items with 5 attributes.697

In summary, our paper includes three tubular datasets (i.e., Amazon, LastFM, Yelp), three sequential698

datasets (i.e., Taobao, Tmall, Alipay), and two graph-structured datasets (i.e., Douban Book, Douban699

Movie). First, we follow the common setting of recommendation evaluation [21, 38] that reduces the700

data sparsity by pruning the users that have less than 10 historical interactions and the users that have701

at least 1 positive feedback (e.g., clicks in Taobao). We construct each session by sampling one user702

and 30 items from her browsing log (if less than 30 items, we randomly sample some items that are703

not browsed, as the items receive negative feedback, into the session). During sampling, we manage704

the ratio of the number of items receiving positive feedback and the number of negative feedback705

fails into the range from 1:10 to 1:30. We use a one-to-one mapping function to map all the attribute706

values into a discrete space to operate. From those attributes with continuous spaces, we directly707

apply our proposed method introduced in Section 3.2.708

A3.2 Simulator Design709

As summarized in Definition A1, there are two main agents in our simulator, namely a conversational710

agent and a user agent. The conversational agent is given the set of candidate items (i.e., V), and the711

set of candidate attributes (i.e., X ) (together with their candidate values, i.e.,Wx for every x ∈ X ).712

Then, at k-th turn, the conversational agent is supposed to provide an action of querying, either one713

from (i), (ii), (iii) and (iv) shown in Definition A1, and the user agent is supposed to generate the714

corresponding answer and derive the set of unchecked items (i.e., Vk), and the set of unchecked715

attributes (i.e., Xk) (together with the unchecked values of each attribute x). LetWk
x be the set of the716

unchecked values of x, then its update function is simple. Firstly, we assignW0
x =Wx, and we can717

further define ∆Wk
x =Wk−1

x −Wk
x , then ∆Wk

x can be written as:718

∆Wk
x =

{
{wx}, querying (iii), and selecting an attribute value in x,
∅, otherwise. (37)

For simplicity, we omit the above update in the main text.719

From the above description, we know that the conversational agent and the user agent are communicat-720

ing through exchanging the set of unchecked items and unchecked attributes (and unchecked attribute721

values). We also develop a port function in the conversational agent that leverages a pre-trained722

large language model to generate the human text for each action. See Appendix A4.2 for detailed723

description and examples.724
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Table A2: Result comparisons of querying attribute values and items on tabular datasets. ∗ indicates that the
average value of CORE, when subtracted by the deviation, still outperforms the best baseline.

ΨRE(·) ΨCO(·)
Amazon LastFM Yelp

T@3 S@3 T@5 S@5 T@3 S@3 T@5 S@5 T@3 S@3 T@5 S@5

COLD
START

AG 6.47 0.12 7.83 0.23 6.77 0.05 8.32 0.14 6.65 0.08 8.29 0.13
ME 6.50 0.12 8.34 0.16 6.84 0.04 8.56 0.11 6.40 0.15 8.18 0.20

CORE 6.02∗ 0.25∗ 6.18∗ 0.65∗ 5.84∗ 0.29∗ 5.72∗ 0.74∗ 5.25∗ 0.19 6.23∗ 0.65∗
CORE+D 6.00 0.26 6.01 0.67 5.79 0.30 5.70 0.75 5.02 0.21 6.12 0.68

FM

AG 2.76 0.74 2.97 0.83 4.14 0.52 4.67 0.64 3.29 0.70 3.39 0.81
CRM 4.58 0.28 6.42 0.38 4.23 0.34 5.87 0.63 4.12 0.25 6.01 0.69
EAR 4.13 0.32 6.32 0.42 4.02 0.38 5.45 0.67 4.10 0.28 5.95 0.72

CORE 3.26 0.83∗ 3.19 0.99∗ 3.79∗ 0.72∗ 3.50∗ 0.99∗ 3.14∗ 0.84∗ 3.20∗ 0.99∗
CORE+D 3.16 0.85 3.22 1.00 3.75 0.74 3.53 1.00 3.10 0.85 3.23 1.00

DEEP
FM

AG 3.07 0.71 3.27 0.82 3.50 0.68 3.84 0.79 3.09 0.74 3.11 0.88
CRM 4.51 0.29 6.32 0.40 4.18 0.38 5.88 0.63 4.11 0.23 6.02 0.71
EAR 4.47 0.30 6.35 0.43 4.01 0.37 5.43 0.69 4.01 0.32 5.74 0.75

CORE 3.23 0.85∗ 3.22 0.99∗ 3.47 0.81∗ 3.34∗ 1.00∗ 2.98 0.93∗ 3.11 1.00∗
CORE+D 3.16 0.87 3.21 1.00 3.45 0.83 3.30 1.00 2.97 0.94 3.10 1.00

PNN

AG 3.02 0.74 3.10 0.87 3.44 0.67 3.53 0.84 2.83 0.77 2.82 0.91

CORE 3.01 0.88∗ 3.04 0.99∗ 3.10∗ 0.87∗ 3.20∗ 0.99∗ 2.75∗ 0.88∗ 2.76∗ 1.00∗
CORE+D 3.00 0.92 3.04 1.00 3.05 0.88 3.12 1.00 2.74 0.88 2.76 1.00

A3.3 Baseline Descriptions725

We first summarize the recommendation approaches, denoted as ΨRE(·), used in this paper as follows.726

• COLD START denotes the cold-start setting, where all the relevance scores of items are uniformly727

generated. In other words, for the item set V = {vm}Mm=1, we set the relevance score for each item728

vm ∈ V by ΨRE(vm) = 1/M .729

• FM [37] is a factorization machine based recommendation method working on tabular data, which730

considers the second-order interactions among attributes (i.e., feature fields).731

• DEEP FM [19] combines a FM component and a neural network component together to produce732

the final prediction.733

• PNN [36] includes an embedding layer to learn a representation of the categorical data and a734

product layer to capture interactive patterns among categories.735

• DIN [51] designs a deep interest network that uses a local activation unit to adaptively learn the736

representation of user interests from historical behaviors.737

• GRU [22] applies a gated recurrent unit (GRU) to encode the long browsing histories of users.738

• LSTM [17] applies a long short term memory unit (LSTM) to encode the historical browsing logs739

of users.740

• MMOE [31] develops a multi-gate mixture-of-experts that can model the user’s multiple behaviors741

by sharing the expert sub-models across all the behaviors.742

• GCN [25] designs a graph convolutional network that learns representations of nodes (either users743

or items) by passing and aggregating their neighborhood information.744

• GAT [45] designs a graph attention network that adopt an attention mechanism to consider the745

different contributions from the neighbor nodes in representing the central nodes (either users or746

items).747

We then summarize the conversational techniques, denoted as ΨCO(·), used in this paper as follows.748

• AG (Abs Greedy) always queries an item with the highest relevance score at each turn, which is749

equivalent to solely using the recommender system as a conversational agent.750

• ME (Max Entropy) always generates a query in the attribute level. In the setting of querying items751

and attributes, it queries the attribute with the maximum entropy, which can be formulated as:752

aquery = argmax
x∈Xk−1

∑
wx∈Wx

( |Vxvalue=wx
∩ Vk−1|

|Vk−1|
log
|Vxvalue=wx

∩ Vk−1|
|Vk−1|

)
. (38)

In the setting of querying items and attribute values, we first apply Eq. (38) to obtain the chosen753

attribute and then we select the attribute value with the highest frequency of the chose attribute as:754

aquery = argmax
wx∈Wx

|Vxvalue=wx ∩ Vk−1|, (39)
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where x is computed following Eq. (38). To evaluate the success rate, during the evaluation turn,755

we apply AG after employing ME.756

• CRM [43] integrates the conversational component and the recommender component by feeding757

the belief tracker results to an FM-based recommendation method. It is originally designed for the758

single-round setting, and we follow [28] to extend it to the multiple-round setting.759

• EAR [28] consists of three stages, i.e., the estimation stage to build predictive models to estimate760

user preference on both items and attributes based on an FM-based recommendation approach, the761

action stage to determine whether to query attributes or recommend items, the reflection stage to762

update the recommendation method.763

The proposed methods are listed as follows.764

• CORE is our proposed method calculating ΨCG(·)s in line 5 in Algorithm 1.765

• CORE+D is a variant of CORE that computes ΨD
CG(·)s instead of ΨCG(·)s, making ΨD

CG(·)s consider the766

dependence among attributes.767

A3.4 Implementation Details768

For each recommendation approach, we directly follow their official implementations with the769

following hyper-parameter settings. The learning rate is decreased from the initial value 1× 10−2 to770

1× 10−6 during the training process. The batch size is set as 100. The weight for L2 regularization771

term is 4 × 10−5. The dropout rate is set as 0.5. The dimension of embedding vectors is set as772

64. For those FM-based methods (i.e., FM, DEEP FM), we build a representation vector for each773

attribute. We treat it as the static part of each attribute embedding, while the dynamic part is the774

representation of attribute values stored in the recommendation parameters. In practice, we feed the775

static and dynamic parts together as a whole into the model. After the training process, we store the776

static part and use it to estimate the dependence among attributes, as introduced in Appendix A2.2.777

All the models are trained under the same hardware settings with 16-Core AMD Ryzen 9 5950X778

(2.194GHZ), 62.78GB RAM, NVIDIA GeForce RTX 3080 cards.779

A4 Additional Experimental Results780

A4.1 Performance Comparisons781

We conduct the experiment in two different experimental settings. One is the setting of querying782

items and attributes, and the other is the setting of querying items and attribute values. We report783

the results of the former setting on tabular datasets (i.e., Amazon, LastFM, Yelp) in Table A1, and784

also report the results of the latter setting on these tabular datasets in Table A2. We also evaluate the785

performance of CORE in sequential datasets and graph-structured datasets, and report their results in786

Table A3 and Table A4 respectively.787

By combining these tables, our major findings are consistent with the one shown in Section 4.2.788

Moreover, we also note that the performance of CORE in querying items and attributes is close to789

the oracle, and thus considering the dependence among attributes in CORE+D does not bring much790

improvement.791

A4.2 Incorporating Our Conversational Agent with a Frozen Chat-bot792

With the development of pre-trained large language models (LLMs), chat-bots built based on these793

LLMs are capable of communicating like humans, which is a powerful tool to allow our conversational794

agent to extract the key information from the user’s free text feedback and generate free text for795

querying attributes and items. Concretely, chat-bot can act as either a question generator or a answer796

extractor. As shown in Figure A1, if our conversational agent decides to query attribute breakfast797

service, then the command passes to the question generator to generate a free text question “Do798

you require breakfast service?” The user answers the question by free text “I do not care about799

breakfast service, and I really want a hotel with shower”, and then the answer extractor extracts800

the user preference on the given answer, namely the user does not care about attribute breakfast801

service and gives positive feedback on attribute shower.802
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Table A3: Result comparisons of querying attribute values and items on sequential datasets. ∗ indicates that the
average value of CORE, when subtracted by the deviation, still outperforms the best baseline.

ΨRE(·) ΨCO(·)
Taobao Tmall Alipay

T@3 S@3 T@5 S@5 T@3 S@3 T@5 S@5 T@3 S@3 T@5 S@5

COLD
START

AG 6.30 0.15 7.55 0.27 6.80 0.04 8.54 0.09 6.47 0.11 7.95 0.19
ME 6.43 0.14 7.82 0.29 6.76 0.05 8.50 0.12 6.71 0.07 8.46 0.11

CORE 5.42∗ 0.39∗ 5.04∗ 0.89∗ 6.45∗ 0.13∗ 7.38∗ 0.37∗ 5.98∗ 0.25∗ 6.17∗ 0.65∗
CORE+D 5.41 0.40 5.05 0.90 6.34 0.17 7.14 0.40 5.91 0.28 6.12 0.68

FM

AG 3.03 0.70 3.17 0.81 3.57 0.58 4.32 0.61 2.99 0.84 3.20 0.87

CORE 3.01 0.87∗ 2.95∗ 1.00∗ 3.53 0.69∗ 4.14∗ 0.86∗ 3.37 0.90∗ 3.29 0.97∗
CORE+D 3.02 0.88 2.91 1.00 3.50 0.71 4.11 0.87 3.32 0.91 3.14 0.97

DEEP
FM

AG 2.99 0.72 2.93 0.89 4.38 0.46 5.23 0.52 3.03 0.83 3.22 0.87

CORE 2.73∗ 0.92∗ 2.78∗ 0.99∗ 4.31 0.62∗ 4.43∗ 0.84∗ 3.17 0.87 3.18 0.97∗
CORE+D 2.68 0.94 2.80 1.00 4.13 0.65 4.42 0.85 3.12 0.87 3.17 0.97

PNN

AG 2.93 0.76 2.87 0.92 3.98 0.52 4.60 0.61 3.18 0.88 2.94 0.91

CORE 2.51∗ 0.98∗ 2.64∗ 1.00∗ 3.20∗ 0.64∗ 4.11∗ 0.90∗ 3.19 0.88 3.15 0.98∗
CORE+D 2.48 0.98 2.61 1.00 3.20 0.65 4.02 0.94 3.18 0.88 3.11 0.98

DIN

AG 2.71 0.85 2.83 0.95 4.14 0.51 4.81 0.59 3.10 0.82 3.35 0.85

CORE 2.45∗ 0.97∗ 2.54∗ 1.00∗ 4.12 0.64∗ 4.16∗ 0.89∗ 3.25 0.83 3.32 0.96∗
CORE+D 2.44 0.97 2.50 1.00 4.10 0.66 4.12 0.91 3.22 0.85 3.30 0.97

GRU

AG 2.80 0.80 2.64 0.97 3.82 0.56 4.40 0.64 3.17 0.83 3.29 0.87

CORE 2.31∗ 0.98∗ 2.44∗ 1.00∗ 3.81 0.72∗ 3.91∗ 0.92∗ 3.10 0.84 3.11∗ 0.96∗
CORE+D 2.96 0.99 2.40 1.00 3.78 0.74 3.90 0.93 3.10 0.84 3.12 0.95

LSTM

AG 2.60 0.85 2.52 0.97 4.73 0.41 5.63 0.49 3.43 0.78 3.27 0.89

CORE 2.37∗ 0.97∗ 2.49 1.00∗ 4.58∗ 0.55∗ 4.36∗ 0.90∗ 3.03∗ 0.84∗ 3.16∗ 0.97∗
CORE+D 2.30 0.98 2.49 1.00 4.56 0.57 4.34 0.91 3.05 0.85 3.18 0.97

MMOE

AG 3.04 0.75 2.98 0.92 4.10 0.54 4.56 0.62 3.58 0.83 3.90 0.92

CORE 2.48∗ 0.96∗ 2.60∗ 1.00∗ 3.92∗ 0.65∗ 4.19∗ 0.85∗ 3.21∗ 0.91∗ 3.17∗ 0.98∗
CORE+D 2.46 0.97 2.61 1.00 3.90 0.66 4.20 0.84 3.19 0.89 3.12 0.99

Table A4: Result comparisons of querying attribute values and items on graph datasets. ∗ indicates that the
average value of CORE, when subtracted by the deviation, still outperforms the best baseline.

ΨRE(·) ΨCO(·)
Douban Movie Douban Book

T@3 S@3 T@5 S@5 T@3 S@3 T@5 S@5

COLD
START

AG 6.52 0.11 7.94 0.21 6.36 0.15 7.68 0.26
ME 6.60 0.10 8.16 0.21 6.40 0.15 8.04 0.24

CORE 5.48∗ 0.38∗ 4.84∗ 0.94∗ 5.96∗ 0.26∗ 5.08∗ 0.92∗

CORE+D 5.45 0.40 4.81 0.94 5.91 0.28 4.98 0.94

GAT

AG 3.75 0.63 3.65 0.87 3.56 0.64 3.41 0.87

CORE 2.89∗ 0.91∗ 2.97∗ 1.00∗ 2.80∗ 0.92∗ 2.91∗ 1.00∗

CORE+D 2.87 0.92 2.96 1.00 2.81 0.93 2.90 1.00

GCN

AG 3.21 0.69 3.33 0.83 3.20 0.71 3.18 0.89

CORE 2.76∗ 0.92∗ 2.81∗ 1.00∗ 2.85∗ 0.91∗ 2.85∗ 1.00∗

CORE+D 2.74 0.93 2.80 1.00 2.83 0.93 2.78 1.00

For this purpose, we follow a short OpenAI tutorial2 for prompt engineering to design the following803

prompts based on gpt-3.5-turbo model.804

# Load the API key and relevant Python libaries.805

import openai806

import os807

808

def get_completion(prompt, model="gpt-3.5-turbo"):809

messages = [{"role": "user", "content": prompt}]810

response = openai.ChatCompletion.create(811

model=model,812

messages=messages,813

2https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/
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temperature=0, # this is the degree of randomness of the model’s output814

)815

return response.choices[0].message["content"]816

We first evaluate using an LLM as a question generator by an example of generating a question to817

query an attribute, e.g., breakfast service.818

# Large language model as question generator.819

text = f"""820

Attribute, Breakfast Service, Hotel821

"""822

prompt = f"""823

You will be provided with text delimited by triple quotes.824

If it starts with the word "item", it denotes an item,825

then you should generate a text to recommend the item to the user.826

Otherwise, it denotes an attribute,827

then you should generate a text to query the user’s preference on the attribute.828

You should be gentle.829

‘‘‘{text}‘‘‘830

"""831

response = get_completion(prompt)832

print(response)833

The following is the corresponding output provided by the LLM.834

Good day! May I ask for your preference regarding breakfast service in a hotel?835

Would you like to have a complimentary breakfast or do you prefer to have the836

option to purchase breakfast at the hotel restaurant?837

We then evaluate using an LLM as a question generator by an example of generating a question to838

query (i.e., recommend) an item, e.g., hotel A.839

# Large language model as question generator.840

text = f"""841

Item, Hotel A842

"""843

prompt = f"""844

You will be provided with text delimited by triple quotes.845

If it starts with the word "item", it denotes an item,846

then you should generate a text to recommend the item to the user.847

Otherwise, it denotes an attribute,848

then you should generate a text to query the user’s preference on the attribute.849

You should be gentle.850

‘‘‘{text}‘‘‘851

"""852

response = get_completion(prompt)853

print(response)854

The following is the corresponding output provided by the LLM.855

Great choice! Hotel A is a wonderful option. Would you like me to provide more856

information about the hotel or help you book a room?857

Also, we evaluate using an LLM as an answer extractor by an example of extracting the user858

preference on attributes, e.g., breakfast service, hotel level, and shower.859

text = f"""860

I do not care about breakfast service, and I really want a hotel with a shower.861

"""862

prompt = f"""863

You will be provided with text delimited by triple quotes.864
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Do you require Breakfast Service?Query Breakfast 
Service

Conversational 
Agent

Question 
Generator

Answer 
Extractor User

I do not care about Breakfast 
Service, and I really want a hotel 

with a Shower. 

Breakfast Service: Not 
Care

Shower: Yes
Hotel Level: Not Know

Chat-bot Empowered Conversational Agent

Empowered 
Conversational 

Agent

(a) 

(b) 

(c) 

Figure A1: An illustrated example of empowering our conversational agent by a pre-trained chat-bot, where
the red box denotes the chat-bot empowered conversational agent. For this purpose, we feed the output queries
generated by the original conversational agent, e.g., Breakfast Service into the question generator, as shown
in (a). The user should input the generated question in a free-text format and provide the corresponding answer
also in a free-text format, as shown in (b). The answer extractor would extract the key information from the user
response and give them to the original conversational agent, as shown in (c).

If you can infer the user preference on attributes,865

then re-write the text in the following format:866

[attribute name]: [user perference]867

Attribute names include Breakfast Service, Hotel Level, and Shower.868

User preference includes Yes to denote the positive preference, No to denote the869

negative preference, and Not Care to denote the user does not care.870

If you can not infer the user preference on attributes,871

then re-write the text in the following format:872

[attribute name]: Not Know873

‘‘‘{text}‘‘‘874

"""875

response = get_completion(prompt)876

print(response)877

The following is the corresponding output by the LLM.878

Breakfast Service: Not Care879

Hotel Level: Not Know880

Shower: Yes881

Similarly, we also can evaluate using an LLM as a question generator by an example of generating a882

question to query an attribute value, e.g., Hotel Level=5.883

# Large language model as question generator.884

text = f"""885

Attribute, Hotel Level is 5, Hotel886

"""887

prompt = f"""888

You will be provided with text delimited by triple quotes.889

If it starts with the word "item", it denotes an item \890

then you should generate a text to recommend the item to the user.891

Otherwise, it denotes an attribute \892

then you should generate a text to query the user’s preference on the attribute.893

You should be gentle.894

‘‘‘{text}‘‘‘895

"""896

response = get_completion(prompt)897

print(response)898

The following is the corresponding output by the LLM.899

Excuse me, may I ask for your preference on hotel level? Would you prefer a900

5-star hotel or are you open to other options?901

According to Definition A1, we have exemplified querying (i), (ii), and (iii) in the above examples.902

We further evaluate querying (iv). Namely, we evaluate using an LLM as a question generator by an903
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Query Attribute Value: 
whether Children's Books or not

Query Item:
whether 0001061100 or not 

Query Attribute Value:
whether Price is not smaller 

than $5.5 or not 

Query Item:
whether 0001062395 or not 

Yes No

Yes

Yes

Yes

No

No

No

Figure A2: An illustrated example of an online decision tree in the setting of querying items and attribute values,
where the target item is 0001062395.

example of generating a question to query whether the user preference is not smaller than an attribute904

value, e.g., Hotel Level not smaller than 3.905

# Large language model as question generator.906

text = f"""907

Attribute, Hotel Level is not smaller than 3, Hotel908

"""909

prompt = f"""910

You will be provided with text delimited by triple quotes.911

If it starts with the word "item", it denotes an item \912

then you should generate a text to recommend the item to the user.913

Otherwise, it denotes an attribute \914

then you should generate a text to query the user’s preference on the attribute.915

You should be gentle.916

‘‘‘{text}‘‘‘917

"""918

response = get_completion(prompt)919

print(response)920

The following is the corresponding output by the LLM.921

Excuse me, may I ask for your preference on hotel level? Would you prefer a922

hotel with a level of 3 or higher?923

We note that if there are too many attribute IDs (or too many attribute values) in the use case, then it924

might need to further incorporate some hierarchical designs [3] and ambiguous matching [44] into925

the above system, which is out of the scope of this paper, and we leave it for future work.926

A4.3 Visualization and Case Study927

We investigate a case in Amazon dataset in the setting of querying items and attribute values, where928

the target item is 0001062395. We depict the online decision tree in Figure A2. From the figure, we929

can see that the conversational agent first queries a value of attribute Category, then queries (i.e.,930

recommends) an item 000161100; and after that, it queries a continuous attribute, i.e., Price, and931

finally queries an item 0001062395.932
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Compared to Figure 1(b), this example seems like a chain. The main reason is that in practice, the933

user would give the corresponding answer to the query at each turn. Therefore, the binary tree (in the934

setting of querying items and attribute values) would reduce to a chain.935

From this case, we also can observe that our conversational agent is capable of jointly considering936

the items and attributes to search for the target items in the session.937

A5 Connections to Existing Approaches938

A5.1 Connections to Conversational Recommender Systems939

Bridging recently emerged conversational techniques and recommender systems becomes an appeal-940

ing solution to model the dynamic preference and weak explainability problems in recommendation941

task [14, 24], where the core sub-task is to dynamically select attributes to query and make recom-942

mendations upon the corresponding answers. Along this line, one popular direction is to build a943

conversational recommender system, which combines the conversational models and the recommen-944

dation models from a systematic perspective. In other words, these models are treated and learned as945

two individual modules [28, 2, 29, 43, 47]. For example, compared to previous literature [5, 6, 46],946

recent work [48] builds the systems upon the multiple turn scenarios; unfortunately, it does not947

investigate when to query attributes and when to make recommendations (i.e., query items). To solve948

this issue, prior works [28–30] develop reinforcement learning solutions. However, all these previous949

methods based on reinforcement learning framework are innately suffering from insufficient usage of950

labeled data and high complexity costs of deployment.951

Instead, CORE can be seamlessly adopted to any recommendation method (especially those widely952

adopted supervised learning based recommendation methods), and is easy-to-implement due to our953

conversational strategy based on the uncertainty minimization theory.954

A5.2 Connections to (Offline) Decision Tree Algorithms955

Decision tree algorithms [23] such as ID3 and C4.5 proposed based on information theory, which956

measure the uncertainty in each status by calculating its entropy. If we want to directly adopt the957

entropy measurement for the conversational agent, then one possible definition of entropy is958

Hk = −
∑
y∈Y

( |Vyvalue=y ∩ Vk|
|Vk|

log
|Vyvalue=y ∩ Vk|

|Vk|

)
, (40)

where Hk is the empirical entropy for k-th turn, Y is the set of all the labels, and Vyvalue=y is the set of959

items whose label is y. For convenience, we call this traditional decision tree as offline decision tree.960

The main difference between the previous offline decision tree and our online decision tree lies in961

that our online decision tree algorithm does not have labels to measure the “uncertainty”, instead,962

we have access to the estimated relevance scores given by recommender systems. We also note that963

directly using the user’s previous behaviors as the labels would lead to a sub-optimal solution, due to964

(i) offline labels in collected data that are often biased and can only cover a small number of candidate965

items, and (ii) offline labels only can reflect the user’s previous interests, but the user’s preferences966

are always shifting.967

To this end, we measure the uncertainty in terms of the summation of the estimated relevance scores968

of all the unchecked items after previous (k − 1) interactions. Formally, we define our uncertainty as:969

Uk = SUM({ΨRE(vm)|vm ∈ Vk}), (41)

where ΨRE(·) denotes the recommender system. Similar to the information gain in the offline decision970

tree, we then derive the definition of certainty gain (as described in Definition 1), and formulate the971

conversational agent into an uncertainty minimization framework.972

A5.3 Connections to Recommendation Approaches to Address Cold-start Issue973

Cold-start issues are situations where no previous events, e.g., ratings, are known for certain users or974

items [27, 42]. Commonly, previous investigations have revealed that the more (side) information,975

the better recommendation results. In light of this, roughly speaking, there are two main branches to976
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address the cold-start problem. One direction is to combine the content information into collaborative977

filtering to perform a hybrid recommendation [1, 18, 35, 41], and a recent advance [33, 49] proposes978

to further combine the cross-domain information to the recommender system. The other direction979

is to incorporate an active learning strategy into the recommender system [13, 39], whose target is980

to select items for the newly-signed users to rate. For this purpose, representative methods include981

the popularity strategy [16], the coverage strategy [15], and the uncertainty reduction strategy [40],982

where the first one selects items that have frequently rated by users, the second one selects items983

that have been highly co-rated with other items, and the third one selects items that can help the984

recommender system to better learn the user preference.985

The main reason that our plugging the conversational agent into the recommender system could986

address the cold-start issue, also can be explained as querying more information from users. The987

major difference between our conversational agent’s strategy and the above active learning strategies988

is that our goal is not to gain a better recommender system but to meet the user’s needs in the current989

session. Therefore, in our offline-training and online-checking paradigm, the items receiving the990

high estimated relevance scores are “uncertain” ones, which is pretty different from previous settings991

(where the uncertainty is usually estimated independently of the relevance estimation).992
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