
Lending Interaction Wings to Recommender Systems
with Conversational Agents

Jiarui Jin1,†, Xianyu Chen1, Fanghua Ye2, Mengyue Yang2, Yue Feng2,
Weinan Zhang1,‡, Yong Yu1, Jun Wang2,‡

1Shanghai Jiao Tong University, 2University College London
{jinjiarui97,wnzhang,xianyujun,yyu}@sjtu.edu.cn

{fanghua.ye.19,mengyue.yang.20,yue.feng.20,jun.wang}@ucl.ac.uk

Abstract

Recommender systems trained on offline historical user behaviors are embracing
conversational techniques to online query user preference. Unlike prior conversa-
tional recommendation approaches that systemically combine conversational and
recommender parts through a reinforcement learning framework, we propose CORE,
a new offline-training and online-checking paradigm that bridges a COnversational
agent and REcommender systems via a unified uncertainty minimization framework.
It can benefit any recommendation platform in a plug-and-play style. Here, CORE
treats a recommender system as an offline relevance score estimator to produce an
estimated relevance score for each item; while a conversational agent is regarded as
an online relevance score checker to check these estimated scores in each session.
We define uncertainty as the summation of unchecked relevance scores. In this
regard, the conversational agent acts to minimize uncertainty via querying either
attributes or items. Based on the uncertainty minimization framework, we derive
the expected certainty gain of querying each attribute and item, and develop a
novel online decision tree algorithm to decide what to query at each turn. We
reveal that CORE can be extended to query attribute values, and we establish a new
Human-AI recommendation simulator supporting both open questions of querying
attributes and closed questions of querying attribute values. Experimental results
on 8 industrial datasets show that CORE could be seamlessly employed on 9 popular
recommendation approaches, and can consistently bring significant improvements,
compared against either recently proposed reinforcement learning-based or classi-
cal statistical methods, in both hot-start and cold-start recommendation settings. We
further demonstrate that our conversational agent could communicate as a human
if empowered by a pre-trained large language model, e.g., gpt-3.5-turbo.

1 Introduction

Recommender systems are powerful tools to facilitate users’ information seeking [28, 38, 4, 20, 22,
21, 52, 51]; however, most prior works solely leverage offline historical data to build a recommender
system. The inherent limitation of these recommendation approaches lies in their offline focus on
users’ historical interests, which would not always align with users’ present needs. As intelligent
conversational assistants (a.k.a., chat-bots) such as ChatGPT and Amazon Alexa, have entered the
daily life of users, these conversational techniques bring an unprecedented opportunity to online obtain
users’ current preferences via conversations. This possibility has been envisioned as conversational
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An Example of CORE: an Offline-training and 
Online-checking Framework  

I build an online decision tree 
according to your estimation.

I will offline update estimations for 
Hotel A, Hotel B, Hotel C, Hotel D.

(b) Online Decision Tree to Decide What to 
Query (Either an Attribute or an Item)

Figure 1: An illustrated example of CORE, an offline-training and online-checking framework, where a recom-
mender system operates as an offline relevance score estimator (colored in green), while a conversational agent
acts as an online relevance score checker (colored in blue). Concretely, given a matrix of candidate items, as
shown in (a), the recommender system could offline assign an estimated relevance score to each item, and then
the conversational agent would online check these scores by querying either items or attributes, depicted in (b).

recommender systems and has inspired a series of conversational recommendation methods [26, 30,
44]. Unfortunately, all of these approaches try to model the interactions between users and systems
using a reinforcement learning-based framework, which inevitably suffers from data insufficiency
and deployment difficulty, because most recommendation platforms are based on supervised learning.

In this paper, we propose CORE that can bridge a COnversational agent and REcommender systems
in a plug-and-play style. In our setting, a conversational agent can choose either to query (a.k.a., to
recommend) an item (e.g., Hotel A) or to query an attribute (e.g., Hotel Level), and the user should
provide their corresponding preference. Here, the goal of the conversational agent is to find (a.k.a., to
query) an item that satisfies the user, with a minimal number of interactions.

We formulate the cooperation between a conversational agent and a recommender system into a novel
offline-training and online-checking framework. Specifically, CORE treats a recommender system
as an offline relevance score estimator that offline assigns a relevance score to each item, while a
conversational agent is regarded as an online relevance score checker that online checks whether
these estimated relevance scores could reflect the relevance between items and the user’s current
needs. Here, “checked items” means those items, we can certainly say that they can not satisfy the
user according to already queried items and attributes. We introduce a new uncertainty metric defined
as the summation of estimated relevance scores of those unchecked items. Then, the goal of our
conversational agent can be formulated as minimizing the uncertainty via querying items or attributes
during the interactions. To this end, we derive expected certainty gain to measure the expectation
of uncertainty reduction by querying each item and attribute. Then, during each interaction, our
conversational agent selects an item or an attribute with the maximum certainty gain, resulting in an
online decision tree algorithm. We exemplify the above process in Figure 1.

Notice that users usually do not hold a clear picture of their preferences on some attributes (i.e.,
attribute IDs), e.g., what Hotel Level they need, instead, they could have a clear preference on
a specific value of an attribute (i.e., attribute value), e.g., Hotel Level=5 is too expensive for a
student user. Also, asking an open question of querying attributes could result in an unexpected
answer, e.g., a user answers 3.5 to Hotel Level. In this regard, querying attribute values leading to
closed questions (i.e., Yes or No questions) could be a better choice. We reveal that CORE could be
directly applied to the above querying strategies. We also develop a new Human-AI recommendation
simulator that supports both querying attributes and attribute values.

In practice, we extend CORE to handle continuous attributes and to consider the dependence among
attributes. Moreover, we demonstrate that our conversational agent could straightforwardly be em-
powered by a pre-trained language model, e.g., gpt-3.5-turbo, to communicate as a human. Note
that CORE poses no constraint on recommender systems, only requiring the estimated relevance scores.
Therefore, CORE can be seamlessly applied to any recommendation platform. We conduct experiments
on 8 industrial datasets (including both tabular data, sequential behavioral data and graph-structured
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data) with 9 popular recommendation approaches (e.g., DeepFM [20], DIN [52]). Experimental
results show that CORE can bring significant improvements in both hot-start recommendation (i.e., the
recommender system is offline trained) and cold-start recommendation (i.e., the recommender system
is not trained) settings. We compare CORE against recently proposed reinforcement learning based
methods and classical statistical methods, and CORE could consistently show better performance.

2 Bridging Conversational Agents and Recommender Systems

2.1 Problem Formulation

Let U denote a set of users, V = {v1, . . . , vM} be a set of M items, X = {x1, . . . , xN} be a set of
N attributes (a.k.a., features) of items. We consider a recommender system as a mapping function,
denoted as ΨRE : U × V → R that assigns an estimated relevance score to each item regarding a
user. Then, during each online session, a conversational agent also can be formulated as a mapping
function, denoted as ΨCO : U ×A → R that chooses either an item or an attribute to query user, and
A = V ∪ X denotes the action space of the conversational agent. For convenience, we focus on the
most favorite item of the given user in each session. In other words, our goal is to identify the item
that will receive the first click when all items are equally presented. We call this item as target item.

For this purpose, ΨRE(·) acts as an offline estimator to produce an estimated relevance distribution
of items regarding each user through offline training on previous behavioral data; while ΨCO(·)
operates as an online checker to check whether these estimated scores fit the user’s current needs
through online interactions. Here, “checked items” denote those items that can not be the target
item according to queried items and attributes. For example, as Figure 1 illustrates, after querying
Breakfast Service, we have items Hotel C and Hotel D checked. We introduce uncertainty as
the summation of estimated relevance scores of unchecked items. Formally, we have:

Definition 1 (Uncertainty and Certainty Gain). For the k-th turn, we define uncertainty, denoted
as Uk, to measure how many estimated relevance scores are still unchecked, i.e.,

Uk := SUM({ΨRE(vm)|vm ∈ Vk}), (1)

where ΨRE(vm)1 outputs the estimated relevance score for item vm, Vk is the set of all the unchecked
items after k interactions, and Vk is initialized as V0 = V . Then, the certainty gain of k-th interaction
is defined as ∆Uk := Uk−1 − Uk, i.e., how many relevance scores are checked at the k-th turn. Since
our goal is to find the target item, if ΨCO(·) successfully finds one at the k-th turn, then we set all the
items checked, namely Uk = 0.

In this regard, our conversational agent is to minimize Uk at each k-th turn via removing those
checked items from Vk. Considering that online updating ΨRE(·) is infeasible in practice due to the
high latency and computation costs, the objective of ΨCO(·) can be expressed as:

min
Ψ∗

RE

K, s.t., UK = 0, (2)

where K is the number of turns, and Ψ∗
RE means that the recommender system is frozen. To this end,

the design of our conversational agent could be organized as an uncertainty minimization problem.

2.2 Comparisons to Previous Work

Bridging conversational techniques and recommender systems has become an appealing solution to
model the dynamic preference and weak explainability problems in recommendation task [15, 26],
where the core sub-task is to dynamically select attributes to query and make recommendations
upon the corresponding answers. Along this line, the main branch of previous studies is to combine
the conversational models and the recommendation models from a systematic perspective. Namely
conversational and recommender models are treated and learned as two individual modules [30,
2, 44, 48] in the system. The system is developed from a single-turn conversational recommender
system [5, 6, 47] to a multiple-turn one [49]. To decide when to query attributes and when to
make recommendations (i.e., query items), recent papers [30, 31, 44, 30] develop reinforcement

1In this paper, as our conversational agent only faces one user u ∈ U in each session, we omit the input u in
mapping functions Ψ·(·)s for simplicity.
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learning-based solutions, which are innately suffering from insufficient usage of labeled data and
high complexity costs of deployment. However, reinforcement learning approaches often demand
a substantial number of training samples, a condition referred to as data insufficiency, and require
operating within a relatively compact action space. Instead, our conversational agent can be regarded
as a generalist agent that can query either items or attributes. In addition, our querying strategy is
derived based on the uncertainty minimization framework, which only requires estimated relevance
scores from the recommender system. Hence, CORE can be straightforwardly applied to any supervised
learning-based recommendation platform, in a plug-and-play way, free of meticulous reward function
design in reinforcement learning methods. CORE is more friendly to open-world scenarios especially
when training data is limited.

We present the connections to other previous work (e.g., decision tree algorithms) in Appendix A5.

3 Making the Conversational Agent a Good Uncertainty Optimizer

3.1 Building an Online Decision Tree

As described in Section 2.1, the aim of our conversational agent is to effectively reduce uncertainty
via querying either items or attributes. The core challenge is how to decide which item or attribute to
query. To this end, we begin by introducing expected certainty gain to measure the expectation of
how much uncertainty could be eliminated by querying each item and each attribute. Then, we can
choose an item or an attribute with the maximum expected certainty gain to query.

Formally, let Xk denote the set of unchecked attributes after k interactions. Then, for each k-th turn,
we define aquery as an item or an attribute to query, which is computed following:

aquery = argmax
a∈Vk−1∪Xk−1

ΨCG(query(a)), (3)

where ΨCG(·) denotes the expected certainty gain of querying a, and a can be either an unchecked
item (from Vk−1) or an unchecked attribute (from Xk−1).

ΨCG(·) for Querying an Item. We first consider the case where a ∈ Vk−1. Let v∗ denote the target
item in the session. Since we only need to find one target item, therefore, if a ∈ Vk−1, we can derive:

ΨCG(query(a)) = v∗) · Pr(a = v∗) + ΨCG(a ̸= v∗) · Pr(a ̸= v∗)

=
( ∑

vm∈Vk−1

ΨRE(vm)
)
· Pr(a = v∗) + ΨRE(a) · Pr(a ̸= v∗), (4)

where a = v∗ and a ̸= v∗ denote that queried a is the target item and not. If a = v∗, the session is
done, and therefore, the certainty gain (i.e., ΨCG(a = v∗)) is the summation of all the relevance scores
in Vk−1. Otherwise, only a is checked, and the certainty gain (i.e., ΨCG(a ̸= v∗)) is the relevance
score of a, and we have Vk = Vk−1\{a} and Xk = Xk−1.

Considering that a being the target item means a being the most relevant item, we leverage the user’s
previous behaviors to estimate the user’s current preference. With relevance scores estimated by
ΨRE(·), we estimate Pr(a = v∗) as:

Pr(a = v∗) =
ΨRE(a)

SUM({ΨRE(vm)|vm ∈ Vk−1})
, (5)

and Pr(a ̸= v∗) = 1− Pr(a ̸= v∗).

ΨCG(·) for Querying an Attribute. We then consider the case where a ∈ Xk−1. For each queried
attribute a, letWa denote the set of all the candidate attribute values, and let w∗

a ∈ Wa denote the
user preference on a, e.g., a is Hotel Level, w∗

a is 3. Then, if a ∈ Xk−1, we have:

ΨCG(query(a)) =
∑

wa∈Wa

(
ΨCG(wa = w∗

a) · Pr(wa = w∗
a)
)
, (6)

where wa = w∗
a means that when querying a, the user’s answer (represented by w∗

a) is wa, ΨCG(wa =
w∗

a) is the certainty gain when wa = w∗
a happens, and Pr(wa = w∗

a) is the probability of wa = w∗
a

occurring. If wa = w∗
a holds, then all the unchecked items whose value of a is not equal to wa should

be removed from Vk−1, as they are certainly not satisfying the user’s needs.

4



Formally, let Vavalue=wa denote the set of all the items whose value of a is equal to wa, and let
Vavalue ̸=wa denote the set of rest items. Then, ΨCG(wa = w∗

a) can be computed as:

ΨCG(wa = w∗
a) = SUM({ΨRE(vm)|vm ∈ Vk−1 ∩ Vavalue ̸=wa

}), (7)

which indicates that the certainty gain, when wa is the user’s answer, is the summation of relevance
scores of those items not matching the user preference.

To finish ΨCG(query(a)), we also need to estimate Pr(wa = w∗
a). To estimate the user preference on

attribute a, we leverage the estimated relevance scores given by ΨRE(·) as:

Pr(wa = w∗
a) =

SUM({ΨRE(vm)|vm ∈ Vk−1 ∩ Vavalue=wa
})

SUM({ΨRE(vm)|vm ∈ Vk−1})
. (8)

In this case, we remove Vk−1 ∩ Vavalue ̸=w∗
a

from Vk−1, namely we have Vk = Vk−1 \ Vavalue ̸=w∗
a
. As

attribute a is checked, we have Xk = Xk−1\{a}. Here, w∗
a is provided by the user after querying a.

By combining Eqs. (4), (6), and (7), we can derive a completed form of ΨCG(query(a)) for a ∈
Vk−1 ∪ Xk−1 (See Appendix A1.1 for details). Then, at each k-th turn, we can always follow Eq. (3)
to obtain the next query aquery. As depicted in Figure 1(b), the above process results in an online
decision tree, where the nodes in each layer are items and attributes to query, and the depth of the tree
is the number of turns (see Appendix A4.3 for visualization of a real-world case).

3.2 From Querying Attributes to Querying Attribute Values

We note that the online decision tree introduced above is a general framework; while applying it to
real-world scenarios, there should be some specific designs.

ΨCG(·) for Querying an Attribute Value. One implicit assumption in the above online decision tree
is that the user’s preference on queried attribute a always falls into the set of attribute values, namely
w∗

a ∈ Wa holds. However, it can not always hold, due to (i) a user would not have a clear picture
of an attribute, (ii) a user’s answer would be different from all the candidate attribute values, e.g.,
a is Hotel Level, w∗

a = 3.5, andWa = {3, 5}, as shown in Figure 1(a). In these cases, querying
attributes would not be a good choice. Hence, we propose to query attribute values instead of attribute
IDs, because (i) a user is likely to hold a clear preference for a specific value of an attribute, e.g.,
a user would not know an actual Hotel Level of her favoring hotels, but she clearly knows she
can not afford a hotel with Hotel Level=5, and (ii) since querying attribute values leads to closed
questions instead of open questions, a user only needs to answer Yes or No, therefore, avoiding the
user’s answer to be out of the scope of all the candidate attribute values.

Formally, in this case, A =Wx ×Xk−1 which indicates we need to choose a value wx ∈ Wx where
x ∈ Xk−1. In light of this, we compute the expected certainty gain of querying attribute value wx as:

ΨCG(query(x) = wx) = ΨCG(wx = w∗
x) · Pr(wx = w∗

x) + ΨCG(wx ̸= w∗
x) · Pr(wx ̸= w∗

x), (9)

where w∗
x ∈ Wx denotes the user preference on attribute x. Here, different from querying attributes,

a user would only respond with Yes (i.e., wx = w∗
x) or No (i.e., wx ̸= w∗

x). Therefore, we only need
to estimate the certainty gain for the above two cases. ΨCG(wx = w∗

x) can be computed following
Eq. (7) and ΨCG(wx ̸= w∗

x) can be calculated by replacing Vxvalue ̸=wx with Vxvalue=wx . Pr(wx = w∗
x)

is estimated in Eq. (8) and Pr(wx ̸= w∗
x) = 1 − Pr(wx = w∗

x). In this case, if all the values of x
have been checked, we have Xk = Xk−1\{x}; otherwise, Xk = Xk−1; and Vk = Vk−1 \ Vxvalue ̸=wx

if receiving Yes from the user, Vk = Vk−1 \ Vxvalue=wx , otherwise.

We reveal the connection between querying attributes (i.e., querying attribute IDs) and querying
attribute values in the following proposition.

Proposition 1. For any attribute x ∈ Xk−1, ΨCG(query(x)) ≥ ΨCG(query(x) = wx) holds for all
the possible wx ∈ Wx.

This proposition shows that if users could give a clear preference for the queried attribute and their
preferred attribute value is one of the candidate attribute values, then querying attributes would be
an equivalent or a better choice than querying attribute values. In other words, querying attributes
and querying attribute values can not operate on the same attributes (otherwise, ΨCO(·) would always
choose to query attributes). Therefore, we can combine querying items and querying attribute values
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Algorithm 1 CORE for Querying Items and Attributes

Input: A recommender system ΨRE(·), an item set V , an attribute set X , an offline dataset D.
Output: Updated recommender system ΨRE(·), up-to-date dataset D.

1: Train ΨRE(·) on D. ▷ Offline-Training
2: for each session (i.e., the given user) do
3: Initialize k = 1 and V0 = V , X0 = X .
4: repeat
5: Compute aquery following Eq. (3) for querying items and attributes or following Eq. (10)

for querying items and attribute values. ▷ Online-Checking
6: Query aquery to the user and receive the answer. ▷ Online-Checking
7: Generate Vk and Xk from Vk−1 and Xk−1. ▷ Online-Checking
8: Go to next turn: k ← k + 1.
9: until Querying the target item or k > KMAX where KMAX is the maximal number of turns.

10: Collect session data and add to D.
11: end for
12: Update ΨRE(·) using data in D. ▷ Offline-Training

by setting the action space to A =Wx ×Xk−1 ∪ Vk−1. Then, we can re-formulate Eq. (3) as:

aquery = argmax
a∈{wx,v}

(
max

wx∈Wx where x∈Xk−1

ΨCG(query(x) = wx), max
v∈Vk−1

ΨCG(query(v))
)
. (10)

In the context of querying attribute values, we further reveal what kind of attribute value is an ideal
one in the following theorem.
Proposition 2. In the context of querying attribute values, an ideal choice is always the one that can
partition all the unchecked relevance scores into two equal parts (i.e., the ideal wx ∈ Wx, x ∈ Xk−1

is the one that makes ΨCG(wx = w∗
x) = SUM({ΨRE(vm)|vm ∈ Vk−1})/2 hold), if it is achievable.

And the certainty gain in this case is ΨCG(query(x) = wx) = SUM({ΨRE(vm)|vm ∈ Vk−1})/2.

Then, we consider the bound of the expected number of turns. To get rid of the impact of ΨRE(·), we
introduce a cold-start setting [43], where ΨRE(·) knows nothing about the user, and equally assigns
relevance scores to all M items, resulting in ΨRE(vm) = 1/M holds for any vm ∈ V .
Lemma 1. In the context of querying attribute values, suppose that ΨRE(vm) = 1/M holds for any
vm ∈ V , then the expected number of turns (denoted as K̂) is bounded by logM+1

2 ≤ K̂ ≤ (M+1)/2.

Here, the good case lies in that our conversational agent is capable of finding an attribute value to
form an ideal partition at each turn, while the bad case appears when we can only check one item at
each turn. We provide detailed proofs of Propositions 1 and 2, and Lemma 1 in Appendix A1.2.

ΨCG(·) for Querying Attributes in Large Discrete or Continuous Space. All the above querying
strategies are designed in the context that for each attribute, the range of its candidate values is a
“small” discrete space, namely |Wx| ≪ |Vk−1| where x ∈ Xk−1. When it comes to cases whereWx

is a large discrete space or a continuous space, then either querying attribute x or any attribute value
wx ∈ Wx would not be a good choice. For example, let x be Hotel Price, then when querying
x, the user would not respond with an accurate value, and querying x=one possible value could be
ineffective. To address this issue, we propose to generate a new attribute value wx and query whether
the user’s preference is not smaller than it or not. Formally, we have:

ΨCG(query(x) ≥ wx) = ΨCG(wx ≥ w∗
x) · Pr(wx ≥ w∗

x) + ΨCG(wx < w∗
x) · Pr(wx < w∗

x), (11)

where x ∈ Xk−1 and wx can be either in or out ofWx. Compared to querying attribute values (i.e.,
Eq. (9)), the new action space is A = R×Xk−1. Notice that Proposition 2 is also suitable for this
case (see detailed description in Appendix A2.1), where the best partition is to divide the estimated
relevance scores into two equal parts. Therefore, we produce wx by averaging all the candidate
attribute values weighted by the corresponding relevance scores. Formally, for each x ∈ Xk−1, we
compute wx as:

wx = AVERAGE({ΨRE(vm) · wvm |vm ∈ Vk−1}), (12)
where wvm

is the value of attribute x in item vm, e.g., in Figure 1(a), let a be Hotel Level, and vm
be Hotel A, then wvm = 3.
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Do you require Breakfast Service?Query Breakfast 
Service

Conversational 
Agent

Question 
Generator

Answer 
Extractor User

I do not care about Breakfast 
Service, and I really want a hotel 

with a Shower. 

Breakfast Service: Not 
Care

Shower: Yes
Hotel Level: Not Know

Chat-bot Empowered Conversational Agent

Empowered 
Conversational 

Agent

(a) 

(b) 

(c) 

Figure 2: We illustrate the empowerment of our conversational agent through the utilization of a pre-trained
chat-bot. In this context, the red box signifies the chat-bot-empowered conversational agent. To accomplish this,
we input the output queries produced by the original conversational agent, such as Breakfast Service into the
question generator, as depicted in (a). In (b), a user is expected to input the generated question in a free-text
format and provide the corresponding answer in a free-text format. Subsequently, in (c), the answer extractor
extracts key information from the user’s response and provides it to the original conversational agent.

In this case, Xk = Xk−1, and Vk = Vk−1 \ Vxvalue<wx
if receiving Yes from the user when querying

whether user preference is not smaller than wx, Vk = Vk−1 \ Vxvalue≥wx
otherwise. Vxvalue<wx

is the
set of all the items whose value of x is smaller than wx and Vxvalue≥wx

is the set of the rest items.

3.3 Plugging the Conversational Agent into Recommender Systems

Overall Algorithm. We begin by summarizing CORE for querying items and attributes or querying
items and attribute values in Algorithm 1. From the algorithm, we can clearly see that our ΨCO(·) puts
no constraints on ΨRE(·) and only requires the estimated relevance scores from ΨRE(·), therefore, CORE
can be seamlessly integrated into any recommendation platform. We note that in a conversational
agent, querying attributes and querying attribute values can be compatible, but can not simultaneously
operate on the same attribute, due to Proposition 1. See Appendix A2.3 for a detailed discussion.

Making ΨCG(·) Consider Dependence among Attributes. We notice that the above formulations
of either querying attributes or querying attribute values, does not consider the dependence among
attributes (e.g., as Figure 1(a) shows, attribute Hotel Level can largely determine attribute Shower
Service). To address this issue, we take ΨCG(·) in Eq. (6) as an example (see detailed descriptions
of the other ΨCG(·)s in Appendix A2.2), and re-formulate it as:

ΨD
CG(query(a)) =

∑
a′∈Xk−1

(
ΨCG(query(a′)) · Pr(query(a′)|query(a))

)
, (13)

where a ∈ Xk−1, and Pr(query(a′)|query(a)) measures the probability of the user preference
on a determining the user preference on a′. Compared to ΨCG(query(a)), ΨD

CG(query(a)) further
considers the impact of querying attribute a on other attributes. To estimate Pr(query(a′)|query(a)),
we develop two solutions. We notice that many widely adopted recommendation approaches are
developed on factorization machine (FM) [38], e.g., DeepFM [20]. Therefore, when applying these
FM-based recommendation approaches, one approach is to directly adopt their learned weight for
each pair of attributes (a, a′) as the estimation of Pr(query(a′)|query(a)). When applying CORE to
any other recommendation method (e.g., DIN [52]), we develop a statistics-based approach that does
estimations by computing this conditional probability ΨD

CG(query(a)) based on the given candidate
items. We leave the detailed computations of ΨD

CG(query(a)) in both ways in Appendix A2.2.

Empowering ΨCO(·) to Communicate with Humans. When applying CORE into real-world scenar-
ios, users may provide a Not Care attitude regarding the queried attributes or queried attribute values.
In these cases, we generate Vk and Xk by Vk = Vk−1 and Xk = Xk−1\{a}, because querying a is
non-informative. To capture the user’s different attitudes on queried items and attributes or attribute
values, we can incorporate a pre-trained large language model (LLM) (e.g., gpt-3.5-turbo) in
ΨCO(·). As our online-checking part does not require training, simply plugging an LLM would not
cause the non-differentiable issue. In light of this, we exemplify some task-specific prompts to
enable the conversational agent to (i) produce questions by prompting queried items and attributes,
and (ii) extract the key messages from the user’s answers. As shown in Figure 2, a conversational
agent consisting of an LLM-chat-bot and our online decision tree algorithm would communicate like
humans. We also provide some case studies of the conversational agent in the context of a question
generator and an answer extractor. See Appendix A4.2 for a detailed description.
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4 Experiments

4.1 Experimental Configurations

Table 1: Results comparison in the context of querying
attributes. See Table A1 for the full version.

ΨRE(·) ΨCO(·)
Amazon

T@3 S@3 T@5 S@5

COLD
START

ME 3.04 0.98 5.00 1.00

CORE 2.88 1.00 2.87 1.00
CORE+D 2.84 1.00 2.86 1.00

FM

AG 2.76 0.74 2.97 0.83
CRM 3.07 0.98 3.37 1.00
EAR 2.98 0.99 3.13 1.00
CRIF 2.84 1.00 2.64 1.00

UNICORN 2.65 1.00 2.45 1.00

CORE 2.17 1.00 2.16 1.00
CORE+D 2.14 1.00 2.14 1.00

We summarize different experimental settings
as follows. (i) We design two different quering
strategies regarding attributes (shown in line 5
in Algorithm 1). One is querying attributes
(i.e., attribute IDs); and the other is querying
attribute values. (ii) We introduce two different
recommender system settings. One is the hot-
start setting (shown in line 1 in Algorithm 1)
that initializes the estimated relevance scores of
items by a given pre-trained recommender sys-
tem; and the other is the cold-start setting where
those estimated relevance scores are uniformly
generated (corresponding to the case where the
recommender system knows nothing about the
given user). Because the conversational agent
ΨCO(·) operates in a dynamic process, we de-
velop a new simulator to simulate the Human-AI recommendation interactions, which consists of a
conversational agent and a user agent. Specifically, for each user, we use her browsing log as session
data, and treat all the items receiving positive feedback (e.g., chick) as target items. Then, for each
k-th turn, when the conversational agent queries an attribute x ∈ Xk−1, the user agent returns a
specific attribute value if all the target items hold the same value for x; otherwise, the user agent
returns Not Care. When the conversational agent queries an attribute value wx ∈ Wx, the user agent
returns Yes if at least one target item holds wx as the value of attribute x; otherwise, returns No.

For each experimental setting, we first set KMAX, and then evaluate the performance in terms of the
average turns needed to end the sessions, denoted as T@KMAX (where for each session, if ΨCO(·)
successfully queries the target item within KMAX turns, then return the success turn; otherwise, we
enforce ΨCO(·) to query an item at (KMAX + 1)-th turn, if succeeds, return KMAX + 1, otherwise return
KMAX + 3); and the average success rate, denoted as S@KMAX (where for each session, if ΨCO(·) does
not successfully query the target item within KMAX turns, then we enforce ΨCO(·) to query an item
after KMAX turns, if succeeds, return 1, otherwise return 0).

To verify CORE can be applied to a variety of recommendation platforms, we conduct evaluations on
three tubular datasets: Amazon [8, 33], LastFM [9] and Yelp [12], three sequential datasets: Taobao
[10], Tmall [11] and Alipay [7], two graph-structured datasets: Douban Movie [35, 53] and Douban
Book [35, 53]. The recommendation approaches used in this paper, i.e., ΨRE(·)s, include FM [38],
DEEP FM [20], PNN [37], DIN [52], GRU [23], LSTM [18], MMOE [32], GCN [27] and GAT [46].
We also use COLD START to denote the cold-start recommendation setting. The conversational
methods used in this paper, i.e., ΨCO(·)s, include (i) Abs Greedy (AG) always queries an item with
the highest relevance score at each turn; (ii) Max Entropy (ME) always queries the attribute with
the maximum entropy in the context of querying attributes, or queries the attribute value of the
chosen attribute, with the highest frequency in the context of querying attribute values; (iii) CRM
[44], (iv) EAR [30], (v) CRIF [25], (vi) UNICORN [13]. Here, AG can be regarded as a strategy of
solely applying ΨRE(·). Both CRM and EAR are reinforcement learning based approaches, originally
proposed on the basis of FM recommender system. Thus, we also evaluate their performance
with hot-start FM-based recommendation methods, because when applying them to a cold-start
recommendation platform, their strategies would reduce to a random strategy. Consider that ME is a
ΨCO(·), independent of ΨRE(·) (namely, the performance of hot-start and cold-start recommendation
settings are the same); and therefore, we only report their results in the cold-start recommendation
setting. We further introduce a variant of CORE, denoted as CORE+D where we compute and use ΨD

CG(·)s
instead of ΨCG(·)s in line 5 in Algorithm 1.

We provide detailed descriptions of datasets and data pre-processing, simulation design, baselines,
and implementations in Appendix A3.1, A3.2, A3.3, and A3.4.
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Table 2: Results comparison of querying attribute values on tabular datasets. See Table A2 for the full version.

ΨRE(·) ΨCO(·)
Amazon LastFM Yelp

T@3 S@3 T@5 S@5 T@3 S@3 T@5 S@5 T@3 S@3 T@5 S@5

COLD
START

AG 6.47 0.12 7.83 0.23 6.77 0.05 8.32 0.14 6.65 0.08 8.29 0.13
ME 6.50 0.12 8.34 0.16 6.84 0.04 8.56 0.11 6.40 0.15 8.18 0.20

CORE 6.02 0.25 6.18 0.65 5.84 0.29 5.72 0.74 5.25 0.19 6.23 0.65
CORE+D 6.00 0.26 6.01 0.67 5.79 0.30 5.70 0.75 5.02 0.21 6.12 0.68

FM

AG 2.76 0.74 2.97 0.83 4.14 0.52 4.67 0.64 3.29 0.70 3.39 0.81
CRM 4.58 0.28 6.42 0.38 4.23 0.34 5.87 0.63 4.12 0.25 6.01 0.69
EAR 4.13 0.32 6.32 0.42 4.02 0.38 5.45 0.67 4.10 0.28 5.95 0.72
CRIF 4.34 0.28 6.24 0.45 3.98 0.58 4.11 0.76 4.07 0.31 6.02 0.70

UNICORN 4.43 0.30 6.15 0.52 4.00 0.54 7.56 0.11 4.40 0.25 5.38 0.77

CORE 3.26 0.83 3.19 0.99 3.79 0.72 3.50 0.99 3.14 0.84 3.20 0.99
CORE+D 3.16 0.85 3.22 1.00 3.75 0.74 3.53 1.00 3.10 0.85 3.23 1.00

DEEP
FM

AG 3.07 0.71 3.27 0.82 3.50 0.68 3.84 0.79 3.09 0.74 3.11 0.88
CRM 4.51 0.29 6.32 0.40 4.18 0.38 5.88 0.63 4.11 0.23 6.02 0.71
EAR 4.47 0.30 6.35 0.43 4.01 0.37 5.43 0.69 4.01 0.32 5.74 0.75

CORE 3.23 0.85 3.22 0.99 3.47 0.81 3.34 1.00 2.98 0.93 3.11 1.00

PNN AG 3.02 0.74 3.10 0.87 3.44 0.67 3.53 0.84 2.83 0.77 2.82 0.91

CORE 3.01 0.88 3.04 0.99 3.10 0.87 3.20 0.99 2.75 0.88 2.76 1.00

Table 3: Results comparison of querying attribute values on sequential datasets. See Table A3 for the full version.

ΨRE(·) ΨCO(·)
Taobao Tmall Alipay

T@3 S@3 T@5 S@5 T@3 S@3 T@5 S@5 T@3 S@3 T@5 S@5

COLD
START

AG 6.30 0.15 7.55 0.27 6.80 0.04 8.54 0.09 6.47 0.11 7.95 0.19
ME 6.43 0.14 7.82 0.29 6.76 0.05 8.50 0.12 6.71 0.07 8.46 0.11

CORE 5.42 0.39 5.04 0.89 6.45 0.13 7.38 0.37 5.98 0.25 6.17 0.65

DIN AG 2.71 0.85 2.83 0.95 4.14 0.51 4.81 0.59 3.10 0.82 3.35 0.85

CORE 2.45 0.97 2.54 1.00 4.12 0.64 4.16 0.89 3.25 0.83 3.32 0.96

GRU AG 2.80 0.80 2.64 0.97 3.82 0.56 4.40 0.64 3.17 0.83 3.29 0.87

CORE 2.31 0.98 2.44 1.00 3.81 0.72 3.91 0.92 3.10 0.84 3.11 0.96

LSTM AG 2.60 0.85 2.52 0.97 4.73 0.41 5.63 0.49 3.43 0.78 3.27 0.89

CORE 2.37 0.97 2.49 1.00 4.58 0.55 4.36 0.90 3.03 0.84 3.16 0.97

MMOE AG 3.04 0.75 2.98 0.92 4.10 0.54 4.56 0.62 3.58 0.83 3.90 0.92

CORE 2.48 0.96 2.60 1.00 3.92 0.65 4.19 0.85 3.21 0.91 3.17 0.98

4.2 Experimental Results

We report our results of querying attributes and items in Table 1, and the results of querying attribute
values and items in Tables 2, and 3, 4, and summarize our findings as follows.

Reinforcement learning based methods work well in querying items and attributes but perform
poorly in querying items and attribute values. By comparing Table 1 to Table 2, we can see a huge
performance reduction of CRM and EAR. One possible explanation is that compared to attribute IDs,
the action space of querying attribute values is much larger. Thus, it usually requires much more
collected data to train a well-performed policy.

T@KMAX could not align with S@KMAX. A higher success rate might not lead to fewer turns, and
ME gains a worse performance than AG in some cases in the cold-start recommendation setting. The
main reason is that although querying an attribute value can obtain an equivalent or more certainty
gain than querying an item at most times, however, only querying (a.k.a., recommending) an item
could end a session. Therefore, sometimes, querying an attribute value is too conservative. It explains
why CORE outperforms AG in terms of S@3 but gets a lower score of T@3 in the Amazon dataset
and FM recommendation base.

Our conversational agent can consistently improve the recommendation performance in terms
of success rate. CORE can consistently outperform AG, in terms of success rate, especially for the
cold-start recommendation setting. As AG means solely using recommender systems, it indicates
that ΨCO(·) can consistently help ΨRE(·). One possible reason is that our uncertainty minimization
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Table 4: Results comparison of querying attribute values on graph datasets. See Table A4 for the full version.

ΨRE(·) ΨCO(·)
Douban Movie Douban Book

T@3 S@3 T@5 S@5 T@3 S@3 T@5 S@5

COLD
START

AG 6.52 0.11 7.94 0.21 6.36 0.15 7.68 0.26
ME 6.60 0.10 8.16 0.21 6.40 0.15 8.04 0.24

CORE 5.48 0.38 4.84 0.94 5.96 0.26 5.08 0.92

GAT AG 3.75 0.63 3.65 0.87 3.56 0.64 3.41 0.87

CORE 2.89 0.91 2.97 1.00 2.80 0.92 2.91 1.00

GCN AG 3.21 0.69 3.33 0.83 3.20 0.71 3.18 0.89

CORE 2.76 0.92 2.81 1.00 2.85 0.91 2.85 1.00

Table 5: Result comparisons in the context of querying attribute values and items on tabular datasets, where we
reduce the 50% training data of FM and DEEP FM.

ΨRE(·) ΨCO(·)
Amazon LastFM

T@3 S@3 T@5 S@5 T@3 S@3 T@5 S@5

FM

CRIF 5.14 0.18 6.78 0.41 4.98 0.33 6.34 0.56

UNICORN 5.13 0.23 6.89 0.42 5.01 0.34 5.94 0.45

CORE 3.86 0.73 3.98 0.80 3.99 0.65 4.04 0.86

DEEP
FM

CRIF 5.42 0.39 5.98 0.57 4.61 0.53 4.46 0.67

UNICORN 4.34 0.45 5.12 0.62 4.35 0.45 4.67 0.65

CORE 3.96 0.78 4.23 0.85 3.75 0.72 3.83 0.86

framework unifies querying attribute values and items. In other words, AG is a special case of CORE,
where only querying items is allowed.

Considering Dependence among attributes is helpful. Comparisons between CORE and CORE+D
reveal that considering the dependence among attributes could improve the performance of CORE in
most cases.

Figure 3: Comparisons of CORE and AG with dif-
ferent KMAX in both cold-start and hot-start settings.

We further investigate the impact of KMAX by assign-
ing KMAX = 1, 3, 5, 7, 9 and reporting the results of
CORE and AG on Amazon dataset in the context of
the cold-start and hot-start recommendation settings
in Figure 3. The results further verify the superiority
of CORE, especially with a cold-start ΨRE(·).
Our conversational agent is more stable when the
training data is limited. For further assessment of
CORE’s stability in comparison to the baseline meth-
ods, we conducted an evaluation by randomly select-
ing a subset of the training set comprising only 50%
of the samples. The results of this evaluation are pre-
sented in Table 5. The table clearly demonstrates that
CORE exhibits a higher level of stability in its per-
formance when compared to existing reinforcement
learning-based frameworks.

We also provide a case study of incorporating an LLM into CORE to handle free-text inputs and output
human language Appendix A4.2, where we provide detailed prompts. We further offer a visualization
of an online decision tree in A4.3.

5 Conclusions and Future Work

In this paper, we propose CORE that can incorporate a conversational agent into any recommendation
platform in a plug-and-play fashion. Empirical results verify that CORE outperforms existing rein-
forcement learning-based and statistics-based approaches in both the setting of querying items and
attributes, and the setting of querying items and attribute values. In the future, it would be interesting
to evaluate CORE in some online real-world recommendation platforms.
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A1 Conversational Agent Design on Uncertainty Minimization Framework

A1.1 Detailed Deviations

This paper introduces a conversational agent built upon the recommender system to interact with a
human user. We begin by summarizing the interaction principles, taking Figure 1 as an example.

Definition A1 (Conversational Agent and Human User Interactions). Our conversational agent
is designed to act in the following four ways.

(i) Query an item v ∈ Vk−1, where Vk−1 is the set of unchecked items after k − 1 interactions (e.g.,
recommend Hotel A to the user).

(ii) Query an attribute x ∈ Xk−1, whereXk−1 is the set of unchecked attributes after k−1 interactions
(e.g., query what Hotel Level does the user want).

(iii) Query whether the user’s preference on an attribute x ∈ Xk−1 is equal to a specific attribute
value wx ∈ Wx whereWx is the set of values of attribute x (e.g., query whether the user likes a
hotel with Hotel Level=5).

(iv) Query whether the user’s preference on an attribute is not smaller than a specific value wx ∈ R
(e.g., query whether the user likes a hotel with Hotel Level≥3.5).

The human user is supposed to respond in the following ways.

(i) For queried item v, the user should answer Yes (if v satisfies the user) or No (otherwise) (e.g.,
answer Yes, if the user likes Hotel A).

(ii) For queried attribute x, the user should answer her preferred attribute value, denoted as w∗
x ∈ Wx

(e.g., answer 3 for queried attribute Hotel Level), or answer Not Care to represent that any
attribute value works.

(iii) For queried attribute value wx, the user should answer Yes (if wx matches the user preference)
or No (otherwise) (e.g., answer Yes, if the user wants a hotel with Hotel Level=5), or answer
Not Care to represent that any attribute value works.

(iv) For queried attribute value wx, the user should answer Yes (if the user wants an item whose
value of attribute x is not smaller than wx) or No (otherwise) (e.g., answer Yes, if the user wants
a hotel with Hotel Level=5), or answer Not Care to represent that any attribute value works.

Then, we separately describe the key concepts, including uncertainty, certainty gain, and expected
certainty gain, introduced in this paper.

Definition A2 (Uncertainty). For the k-th turn, we define uncertainty, denoted as Uk, to measure
how many estimated relevance scores are still unchecked, which can be formulated as:

Uk := SUM({ΨRE(vm)|vm ∈ Vk}), (14)

where ΨRE(vm) outputs the estimated relevance score for item vm. The above equation tells us that
the uncertainty of each turn is decided by the unchecked items.

It is straightforward to derive the certainty gain, as the uncertainty reduction at each turn.

Definition A3 (Certainty Gain). For the k-th turn, we define certainty gain of k-th interaction as:

∆Uk := Uk−1 − Uk = SUM({ΨRE(vm)|vm ∈ ∆Vk}), (15)

where ∆Vk = Vk−1 \ Vk. For simplicity, we use a to denote the k-th action of the conversational
agent. According to the Human-AI interactions introduced in Definition A1, we can derive:

∆Vk =



Vk, a ∈ Vk−1 and the answer to querying (i) is Yes,
{a}, a ∈ Vk−1 and the answer to querying (i) is No,

Vavalue ̸=w∗
a
∩ Vk−1, a ∈ Xk−1 and the answer to querying (ii) is w∗

a,
Vxvalue ̸=wx

∩ Vk−1, a ∈ Wx where x ∈ Xk−1 and the answer to querying (iii) is Yes,
Vxvalue=wx

∩ Vk−1, a ∈ Wx where x ∈ Xk−1 and the answer to querying (iii) is No,
Vxvalue<wx

∩ Vk−1, a ∈ R, x ∈ Xk−1 and the answer to querying (iv) is Yes,
Vxvalue≥wx

∩ Vk−1, a ∈ R, x ∈ Xk−1 and the answer to querying (iv) is No.
∅, the answer to querying either (ii), (iii) or (iv) is Not Care,

(16)
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where Vavalue ̸=w∗
a

is the set of unchecked items whose value of attribute a is not equal to the user
answer w∗

a, Vxvalue ̸=wx is the set of unchecked items whose value of attribute x is not equal to the
queried attribute value wx, Vxvalue=wx , a subset of Vk−1, is the set of unchecked items whose value of
attribute x is equal to the queried attribute value wx, Vxvalue<wx

is the set of unchecked items whose
value of attribute x is smaller than the queried attribute value wx, Vxvalue≥wx

is the set of unchecked
items whose value of attribute x is not smaller than the queried attribute value wx.

To estimate the certainty gain from taking each possible action, we introduce the expected certainty
gain as follows.
Definition A4 (Expected Certainty Gain). For the k-th turn, we define expected certainty gain to
estimate ∆Uk on ΨCO(·) taking a different action.

ΨCG(·) =


Eq. (4), a ∈ Vk−1, i.e., querying (i),
Eq. (6), a ∈ Xk−1, i.e., querying (ii),
Eq. (9), a ∈ Wx, i.e., querying (iii),
Eq. (11), a ∈ R, x ∈ Xk−1, i.e., querying (iv).

(17)

Then, at each turn, we can compute the candidate action, getting the maximum expected certainty
gain, as the action to take, denoted as aquery. In practice, as shown in Proposition 1, for each attribute,
querying attribute IDs, i.e., (ii), and querying attribute values, i.e., (iii), is not compatible. And, (iv)
is particularly designed for a large discrete or continuous value space, which can be regarded as a
specific attribute value generation engineering for (iii) (i.e., using Eq. (12) to directly compute the
queried value for each attribute), and thus, we treat (iv) as a part of (iii). Therefore, we organize two
querying strategies. One is querying (i) and (ii), whose objective can be formulated as Eq. (3). The
other one is querying (i) and (iii), and the objective can be written as Eq. (10).

Besides Vk, we further summarize the update of Xk as follows. Similarly, we can define ∆Xk :=
Xk−1 \ Xk, then ∆Xk can be written as:

∆Xk =

{ {a}, querying (ii),
{x}, querying either (iii) or (iv), and there is no unchecked attribute value in x,
∅, querying either (i) or (iv).

(18)
Based on the above, CORE runs as Algorithm 1 shows.

Remark. One of the advantages of querying attribute values, compared to querying attributes, is
that the user’s answer to queried attribute would be out of the candidate attribute values (i.e.,Wx

for queried attribute x). We are also aware that one possible solution is that the conversational agent
would list all the candidate attribute values in the query. However, we argue that this approach would
work only when the number of candidate values is small (namely, |Wx| is small) such as attributes
Color and Hotel Level, but can not work when there are many candidate values, e.g., attribute
Brand, since listing all of them would significantly reduce the user satisfaction.

A1.2 Proofs

Proposition A1. For any attribute x ∈ Xk−1, ΨCG(query(x)) ≥ ΨCG(query(x) = wx) holds for
all the possible value wx ∈ Wx.

Proof. For consistency, we re-formulate Eq. (6) as:

ΨCG(query(x)) =
∑

wx∈Wx

(
ΨCG(wx = w∗

x) · Pr(wx = w∗
x)
)
, (19)

where x is the queried attribute, and w∗
x represents the user preference on x (corresponding to the

notations a and w∗
a respectively). We can also re-write ΨCG(wx = w∗

x) as:

ΨCG(w
′
x = w∗

x) =SUM({ΨRE(vm)|vm ∈ Vk−1 ∩ Vxvalue ̸=w′
x
})

=
∑

w′′
x∈Wx\{w′

x}

(
SUM({ΨRE(vm)|vm ∈ Vk−1 ∩ Vxvalue=w′′

x
})
)

=
∑

w′′
x∈Wx\{w′

x}

ΨCG(w
′′
x ̸= w∗

x) ≥ ΨCG(wx ̸= w∗
x),

(20)
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where wx is an arbitrary attribute value inWx\{w′
x}. The above equation is built upon the simple

fact that after an attribute x, the answer of the user preferring w′
x is equivalent to the answer of the

user not preferring all the other w′′
xs, which can remove all the unchecked items whose value is equal

to any w′′
x . Thus, the expected certainty gain of knowing the user preferring w′

x is not smaller than
knowing the user not preferring any one wx ∈ Wx\{w′

x}, and the equality holds only in the case
whereWx = {wx, w

′
x}, namely there are only two candidate attribute values.

Based on the above equations, we can derive:

ΨCG(query(x)) =
∑

wx∈Wx

(
ΨCG(wx = w∗

x) · Pr(w′
x = w∗

x)
)

=ΨCG(wx = w∗
x) · Pr(wx = w∗

x) +
∑

w′
x∈Wx\{wx}

(
ΨCG(w

′
x = w∗

x) · Pr(w′
x = w∗

x)
)

≥ΨCG(wx = w∗
x) · Pr(wx = w∗

x) +
∑

w′
x∈Wx\{wx}

(
ΨCG(wx ̸= w∗

x) · Pr(w′
x = w∗

x)
)

≥ΨCG(wx = w∗
x) · Pr(wx = w∗

x) + ΨCG(wx ̸= w∗
x) ·

∑
w′

x∈Wx\{wx}

(
Pr(w′

x = w∗
x)
)

≥ΨCG(wx = w∗
x) · Pr(wx = w∗

x) + ΨCG(wx ̸= w∗
x) · Pr(wx ̸= w∗

x)

≥ΨCG(query(x) = wx).

(21)

Since we put no constraint on x ∈ Xk−1, thus it proves the proposition.

Proposition A2. In the context of querying attribute values, an ideal choice is always the one that can
partition all the unchecked relevance scores into two equal parts (i.e., the ideal wx ∈ Wx, x ∈ Xk−1

is the one that makes ΨCG(wx = w∗
x) = SUM({ΨRE(vm)|vm ∈ Vk−1})/2 hold), if it is achievable.

And the certainty gain in this case is ΨCG(query(x) = wx) = SUM({ΨRE(vm)|vm ∈ Vk−1})/2.

Proof. Without loss of generalizability, in the context of querying attribute values, we recap the
formulation of ΨCG(query(x) = wx), shown in Eq. (9) as:

ΨCG(query(x) = wx) = ΨCG(wx = w∗
x) · Pr(wx = w∗

x) + ΨCG(wx ̸= w∗
x) · Pr(wx ̸= w∗

x)

=SUM({ΨRE(vm)|vm ∈ Vk−1 ∩ Vavalue ̸=wa
}) · SUM({ΨRE(vm)|vm ∈ Vk−1 ∩ Vavalue=wa})

SUM({ΨRE(vm)|vm ∈ Vk−1})

+ SUM({ΨRE(vm)|vm ∈ Vk−1 ∩ Vavalue=wa}) ·
SUM({ΨRE(vm)|vm ∈ Vk−1 ∩ Vavalue ̸=wa

})
SUM({ΨRE(vm)|vm ∈ Vk−1})

=RYES ·
R−RYES

R
+ (R−RYES) ·

RYES

R
,

(22)

where we use RYES to denote SUM({ΨRE(vm)|vm ∈ Vk−1 ∩ Vavalue ̸=wa
}), the expected certainty gain

of the event wx = w∗
x happening (i.e., the user answers Yes to querying wx), and use R to denote the

summation of relevance scores of all the unchecked items, i.e., SUM({ΨRE(vm)|vm ∈ Vk−1}). For
convenience, we use Ψ to denote ΨCG(query(x) = wx). Then, Ψ can be regarded as a function of
RYES. Namely, RYES is the independent variable and Ψ is the dependent variable.

To maximize Ψ, we have:
∂Ψ

∂RYES

=
2

R
· (R− 2 ·RYES) = 0. (23)

Therefore, we have RYes = R/2, and in this case, Ψ = R/2. Then, we can reach the conclusion that
the ideal partition is the one dividing all the unchecked relevance scores, i.e., R, into two equal parts;
and in this case, ΨCG(query(x) = wx) = R/2 = SUM({ΨRE(vm)|vm ∈ Vk−1})/2, which indicates
that querying wx can check half of the relevance scores in expectation.

Lemma A1. In the context of querying attribute values, suppose that ΨRE(vm) = 1/M holds for any
vm ∈ V , then the expected number of turns (denoted as K̂) is bounded by logM+1

2 ≤ K̂ ≤ (M+1)/2.

Proof. We begin by considering the best case. According to Proposition 2, if we can find an attribute
value wx, where querying wx can partition the unchecked relevance scores into two equal parts, then
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we can build a binary tree, where we can check M/2k at the k-th turn. Therefore, we have:

1 + 2 + · · ·+ 2K̂−1 = M, (24)

which derives K̂ = logM+1
2 . In the worst case, we only can query one item during one query. Then,

the expected number of turns is:

K̂ = 1 · 1

M
+ 2 · (1− 1

M
) · 1

M − 1
+ · · ·+M ·

M−1∏
i=0

(1− 1

M − i
) · 1 =

M + 1

2
. (25)

Combining Eqs. (24) and (25) together, we can draw logM+1
2 ≤ K̂ ≤ (M + 1)/2.

A2 Plugging the Conversational Agent into Recommender Systems

A2.1 ΨCG(·) for Querying Attributes in Large Discrete or Continuous Space

The main idea of our conversational agent is to recursively query the user to reduce uncertainty. The
core challenge is that there exist some cases where querying any attribute values or items can not
effectively reduce uncertainty. Most of these cases occur when some key attributes have a large
discrete space or a continuous space, leading to a broad decision tree. Formally, for a key attribute
x ∈ Xk−1, a “small” discrete space usually means |Wx| ≪ |Vk−1|. For example, for attribute Hotel
Price, then querying x, the user would not respond with an accurate value, and querying x=one
possible value could be ineffective.

To address this issue, we propose to find a wx ∈ R instead of wx ∈ Wx, and then we can query
whether the user’s preference is not smaller than it or not, i.e., query(x) ≥ wx instead of whether
the user’s preference is equal to wx or not, i.e., query(x) = wx. Then, the expected certainty gain,
in this case, can be written as:

ΨCG(query(x) ≥ wx) = ΨCG(wx ≥ w∗
x) · Pr(wx ≥ w∗

x) + ΨCG(wx < w∗
x) · Pr(wx < w∗

x), (26)

where
ΨCG(wx ≥ w∗

x) = SUM({ΨRE(vm)|vm ∈ Vx<wx
∩ Vk−1}),

ΨCG(wx < w∗
x) = SUM({ΨRE(vm)|vm ∈ Vx≥wx

∩ Vk−1}),
(27)

where Vx≥wx is the set of items whose value of attribute x is not smaller than wx, and Vx<wx is the
set of the rest items, namely Vx≥wx

∪ Vx<wx
= Vk−1; and

Pr(wx ≥ w∗
x) =

SUM({ΨRE(vm)|vm ∈ Vx≥wx
∩ Vk−1})

SUM({ΨRE(vm′)|vm′ ∈ Vk−1})
,

Pr(wx < w∗
x) =

SUM({ΨRE(vm)|vm ∈ Vx<wx ∩ Vk−1})
SUM({ΨRE(vm′)|vm′ ∈ Vk−1})

.

(28)

Therefore, the same as query(x) = wx, query(x) ≥ wx also divides the unchecked items into two
parts, and the user is supposed to answer Yes or No, corresponding to either one of the two parts.
Then, Proposition 2 also works here. Namely, for each attribute x ∈ Xk−1, the oracle wx, denoted as
wO

x, is the one that can partition the relevance scores into two equal parts. Formally, we have:

wO
x = argmin

wx∈R

∥∥∥SUM({ΨRE(vm)|vm ∈ Vx≥wx ∩ Vk−1})−
SUM({ΨRE(vm′)|vm′ ∈ Vk−1})

2

∥∥∥. (29)

Since it is infeasible to find an exact oracle one, we approximate wO
x as:

wx = AVERAGE({ΨRE(vm) · wvm |vm ∈ Vk−1}), (30)

where wvm is the value of attribute x in item vm. It indicates that our estimation is the average of the
attribute values for the items in Vk−1 weighted by their relevance scores.
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A2.2 Making ΨCG(·) Consider Dependence among Attributes

The following techniques allow CORE to take the dependence among attributes into account. We
provide two ways, where one requires an FM-based recommender system, while the other one poses
no constraint.

Taking ΨCG(·) in Eq. (6) as an example, we re-formulate Eq. (6) as, when a ∈ Xk−1, and then we can
compute ΨCG(query(a)) as:

ΨD
CG(query(a)) =

∑
a′∈A

(
ΨCG(query(a′)) · Pr(query(a′)|query(a))

)
, (31)

where we use ΨD
CG(·) to denote this variant of ΨCG(·).

Estimation from a Pre-trained FM-based Recommender System. If our recommender system
applies a factorization machine (FM) based recommendation approach, then we can directly adopt
the learned weights as the estimation of Pr(query(a′)|query(a)) in Eq. (31). Taking DeepFM [20]
as an example, we begin by recapping its FM component:

yFM = w0 +

N∑
n=1

wnxn +

N∑
n=1

N∑
n′=n+1

⟨vn,vn′⟩xnxn′ , (32)

where the model parameters should be estimated in the recommender system (in line 1 in Algorithm 1),
including w0 ∈ R, w ∈ RN , V ∈ RN×D and D is the dimension of embedding. And, ⟨·, ·⟩ is the dot
product of two vectors of size D, defined as ⟨vi,vj⟩ =

∑D
d=1 vid ·vjd. In this regard, for each pair of

attributes (e.g., (a, a′) in Eq. (31)), we can find the corresponding normalized ⟨vn,vn′⟩/|vn| · |vn′ |
as the estimation of Pr(query(a′)|query(a)).
Estimation in a Statistical Way. If applying any other recommendation approach to the recommender
system, we design a statistical way. We first decompose ΨD

CG(query(a)) according to Eq. (6):

ΨD
CG(query(a)) =

∑
wa∈Wa

(
ΨD

CG(wa = w∗
a) · Pr(wa = w∗

a)
)
, (33)

where we define ΨD
CG(wa = w∗

a) as:

ΨD
CG(wa = w∗

a) =
∑
a′∈A

∑
wa′∈Wa′

(
ΨCG(wa′ = w∗

a′) · Pr(wa′ = w∗
a′ |wa = w∗

a)
)
, (34)

where Pr(wa′ = w∗
a′ |wa = w∗

a) measures the probability of how likely getting the user’s preference
on attribute a (i.e., wa = w∗

a) determinates the user’s preference on other attributes (i.e., wa′ = w∗
a′ ).

For example, in Figure 1, if the user’s preference on attribute Hotel Level is 5 (i.e., a is Hotel
Level, wa is 5 and the user’s answer is Yes), then we could be confident to say that the user
preference on attribute Shower Service is Yes (i.e., a′ is Shower Service, wa′ is Yes, and the
user’s answer is Yes), i.e., Pr(wa′ = w∗

a′ |wa = w∗
a) is close to 1.

We estimate Pr(wa′ = w∗
a′ |wa = w∗

a) by using the definition of the conditional probability:

Pr(wa′ = w∗
a′ |wa = w∗

a) =
|V(avalue=wa)∧(a′

value=wa′ ) ∩ Vk−1|
|Vavalue=wa ∩ Vk−1|

, (35)

where Vavalue=wa
is the set of items whose value of a equals wa, and V(avalue=wa)∧(a′

value=wa′ ) is the
set of items whose value of a equals wa and value of a′ equals wa′ . By incorporating Eqs. (34) and
(35) into Eq. (33), we can compute ΨD

CG(query(a)) for any a ∈ Xk−1.

Extensions to Other Cases. Besides querying attributes, we also introduce another querying strategy
to query attribute values. Formally, we can have:

ΨD
CG(query(x) = wa) = ΨD

CG(wx = w∗
x) · Pr(wx = w∗

x) + ΨD
CG(wx ̸= w∗

x) · Pr(wx ̸= w∗
x), (36)

where ΨD
CG(wx = w∗

x) can be computed by Eq. (34), and the formulation of ΨD
CG(wx ̸= w∗

x) could
be directly extended from Eq. (34) by replacing ΨCG(wx = w∗

x) with ΨCG(wx ̸= w∗
x), and replacing

Pr(wa′ = w∗
a′ |wa = w∗

a) with Pr(wa′ ̸= w∗
a′ |wa ̸= w∗

a). Pr(wa′ ̸= w∗
a′ |wa ̸= w∗

a) could
be computed by replacing Vavalue=wa

with Vavalue ̸=wa
, and replacing V(avalue=wa)∧(a′

value=wa′ ) with
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V(avalue ̸=wa)∧(a′
value ̸=wa′ ). Vavalue ̸=wa is the set of items whose value of a does not equal wa, and

V(avalue ̸=wa)∧(a′
value ̸=wa′ ) is the set of items whose value of a does not equal wa and value of a′ does

not equal wa′ .

Then, we have made our conversational agent consider the dependence among attributes for cases (ii)
and (iii), summarized in Definition A1. There is no need to consider the dependence in case (i), and,
as concluded in Appendix A1.1, (iv) can be regarded as a special engineering technique in (iii), and
thus, one just needs to follow the same way to handle case (iv).

A2.3 Overall Algorithm

We summarize the overall algorithm in Algorithm 1. CORE follows an offline-training-and-online-
checking paradigm, where offline-training is represented in lines 1 and 12, and online-checking is
represented in lines 5, 6 and 7.

As shown in line 5, there are two querying settings, i.e., querying items and attributes, and querying
items and attribute values. We note that querying attributes and querying attribute values can be
compatible, but can not simultaneously operate on the same attribute. We recap that Proposition 1
says that for each attribute, assuming users could give a clear answer showing their preference,
querying an attribute can always obtain certainty gain not smaller than querying any attribute value of
the attribute.

Therefore, in practice, we would select those attributes that are likely to receive a clear preference
from users (e.g., attributes Category, Brand) in the setting of querying items and attributes, and
use the rest of attributes (e.g., attribute Price) in the setting of querying items and attribute values.
Also, as stated at the end of Appendix A1.1, we can further select several attributes with a small
space of attribute values, use them in the setting of querying items and attributes, and list all the
candidate attribute values in the queries. In this regard, for any attribute, since the space of attribute
values is changing in the context of querying attribute values, then we may transfer from the setting
of querying attribute values to querying attributes, when there are few unchecked candidate attribute
values.

All the above operations need careful feature engineering, which should be task-specific and dataset-
specific. We argue that this is out of the scope of this paper, and we leave it for future work.

A3 Experimental Configuration

A3.1 Dataset Descriptions and Data Pre-processing

We summarize the datasets used in this paper as follows.

• Amazon dataset [8, 33] is a dataset collected by Amazon from May 1996 to July 2014. There are
1,114,563 reviews of 133,960 users and 431,827 items and 6 attributes.

• LastFM dataset [9] is a dataset collected from Lastfm, a music artist recommendation platform.
There are 76,693 interactions of 1,801 users and 7,432 items and 33 attributes.

• Yelp dataset [12] is a dataset collected from Yelp, a business recommendation platform. There
are 1,368,606 interactions of 27,675 users and 70,311 items and 590 attributes. We follow [30] to
create 29 (parents) attributes upon 590 original attributes, and we use the newly created ones in our
experiments.

• Taobao dataset [10] is a dataset collected by Taobao from November 2007 to December 2007.
It consists of 100,150,807 interactions of 987,994 users and 4,162,024 items with an average
sequence length of 101 and 4 attributes.

• Tmall dataset [11] is a dataset collected by Tmall from May 2015 to November 2015. It consists
of 54,925,331 interactions of 424,170 users and 1,090,390 items with an average length of 129 and
9 attributes.

• Alipay dataset [7] is a dataset collected by Alipay, from July 2015 to November 2015. There are
35,179,371 interactions of 498,308 users and 2,200,191 items with an average sequence length of
70 and 6 attributes.

• Douban Movie dataset [35, 53] is a dataset collected from Douban Movie, a movie recommenda-
tion platform. There are 1,278,401 interactions of 2,712 users and 34,893 items with 4 attributes.
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Table A1: Results comparison in the context of querying attributes and items on tabular datasets.

ΨRE(·) ΨCO(·)
Amazon LastFM Yelp

T@3 S@3 T@5 S@5 T@3 S@3 T@5 S@5 T@3 S@3 T@5 S@5

COLD
START

AG 6.47 0.12 7.83 0.23 6.77 0.05 8.32 0.14 6.65 0.08 8.29 0.13
ME 3.04 0.98 5.00 1.00 3.00 1.00 5.00 1.00 3.00 1.00 5.00 1.00

CORE 2.88 1.00 2.87 1.00 2.73 1.00 2.75 1.00 2.92 1.00 2.94 1.00
CORE+D 2.84 1.00 2.86 1.00 2.74 1.00 2.73 1.00 2.90 1.00 2.91 1.00

FM

AG 2.76 0.74 2.97 0.83 4.14 0.52 4.67 0.64 3.29 0.70 3.39 0.81
CRM 3.07 0.98 3.37 0.83 2.98 0.99 3.43 1.00 3.08 0.98 3.12 0.96
EAR 2.98 0.99 3.13 1.00 3.02 1.00 3.51 1.00 2.94 1.00 3.02 0.99

CORE 2.17 1.00 2.16 1.00 2.06 1.00 2.07 1.00 2.09 1.00 2.10 1.00
CORE+D 2.14 1.00 2.14 1.00 2.05 1.00 2.05 1.00 2.10 1.00 2.08 1.00

DEEP
FM

AG 3.07 0.71 3.27 0.82 3.50 0.68 3.84 0.79 3.09 0.74 3.11 0.88
CRM 2.68 0.99 2.99 0.99 2.94 0.99 3.05 0.99 2.92 1.00 2.99 1.00
EAR 2.70 1.00 2.88 1.00 2.95 1.00 3.21 0.98 2.87 1.00 2.97 1.00
CRIF 2.84 1.00 2.64 1.00 2.78 0.99 2.81 1.00 2.93 0.99 2.01 0.99

UNICORN 2.65 1.00 2.45 1.00 2.87 1.00 2.90 1.00 2.88 1.00 2.92 1.00

CORE 2.07 1.00 2.06 1.00 2.07 1.00 2.08 1.00 2.06 1.00 2.07 1.00
CORE+D 2.08 1.00 2.02 1.00 2.05 1.00 2.03 1.00 2.03 1.00 2.06 1.00

PNN

AG 3.02 0.74 3.10 0.87 3.44 0.67 3.53 0.84 2.83 0.77 2.82 0.91

CORE 2.71 1.00 3.00 1.00 2.05 1.00 2.06 1.00 2.15 1.00 2.16 1.00
CORE+D 2.68 1.00 2.98 1.00 2.07 1.00 2.02 1.00 2.08 1.00 2.11 1.00

• Douban Book dataset [35, 53] is a dataset collected from Douban Book, a book recommendation
platform. There are 96,041 interactions of 2,110 users and 6,777 items with 5 attributes.

In summary, our paper includes three tubular datasets (i.e., Amazon, LastFM, Yelp), three sequential
datasets (i.e., Taobao, Tmall, Alipay), and two graph-structured datasets (i.e., Douban Book, Douban
Movie). First, we follow the common setting of recommendation evaluation [22, 39] that reduces the
data sparsity by pruning the users that have less than 10 historical interactions and the users that have
at least 1 positive feedback (e.g., clicks in Taobao). We construct each session by sampling one user
and 30 items from her browsing log (if less than 30 items, we randomly sample some items that are
not browsed, as the items receive negative feedback, into the session). During sampling, we manage
the ratio of the number of items receiving positive feedback and the number of negative feedback
falls into the range from 1:10 to 1:30. We use a one-to-one mapping function to map all the attribute
values into a discrete space to operate. From those attributes with continuous spaces, we directly
apply our proposed method introduced in Section 3.2.

A3.2 Simulator Design

As summarized in Definition A1, there are two main agents in our simulator, namely a conversational
agent and a user agent. The conversational agent is given the set of candidate items (i.e., V), and the
set of candidate attributes (i.e., X ) (together with their candidate values, i.e.,Wx for every x ∈ X ).
Then, at k-th turn, the conversational agent is supposed to provide an action of querying, either one
from (i), (ii), (iii) and (iv) shown in Definition A1, and the user agent is supposed to generate the
corresponding answer and derive the set of unchecked items (i.e., Vk), and the set of unchecked
attributes (i.e., Xk) (together with the unchecked values of each attribute x). LetWk

x be the set of the
unchecked values of x, then its update function is simple. Firstly, we assignW0

x =Wx, and we can
further define ∆Wk

x =Wk−1
x \Wk

x , then ∆Wk
x can be written as:

∆Wk
x =

{
{wx}, querying (iii), and selecting an attribute value in x,
∅, otherwise. (37)

For simplicity, we omit the above update in the main text.

From the above description, we know that the conversational agent and the user agent are communicat-
ing through exchanging the set of unchecked items and unchecked attributes (and unchecked attribute
values). We also develop a port function in the conversational agent that leverages a pre-trained
large language model to generate the human text for each action. See Appendix A4.2 for detailed
descriptions and examples.
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Table A2: Results comparison of querying attribute values and items on tabular datasets.

ΨRE(·) ΨCO(·)
Amazon LastFM Yelp

T@3 S@3 T@5 S@5 T@3 S@3 T@5 S@5 T@3 S@3 T@5 S@5

COLD
START

AG 6.47 0.12 7.83 0.23 6.77 0.05 8.32 0.14 6.65 0.08 8.29 0.13
ME 6.50 0.12 8.34 0.16 6.84 0.04 8.56 0.11 6.40 0.15 8.18 0.20

CORE 6.02 0.25 6.18 0.65 5.84 0.29 5.72 0.74 5.25 0.19 6.23 0.65
CORE+D 6.00 0.26 6.01 0.67 5.79 0.30 5.70 0.75 5.02 0.21 6.12 0.68

FM

AG 2.76 0.74 2.97 0.83 4.14 0.52 4.67 0.64 3.29 0.70 3.39 0.81
CRM 4.58 0.28 6.42 0.38 4.23 0.34 5.87 0.63 4.12 0.25 6.01 0.69
EAR 4.13 0.32 6.32 0.42 4.02 0.38 5.45 0.67 4.10 0.28 5.95 0.72
CRIF 4.34 0.28 6.24 0.45 3.98 0.58 4.11 0.76 4.07 0.31 6.02 0.70

UNICORN 4.43 0.30 6.15 0.52 4.00 0.54 7.56 0.11 4.40 0.25 5.38 0.77

CORE 3.26 0.83 3.19 0.99 3.79 0.72 3.50 0.99 3.14 0.84 3.20 0.99
CORE+D 3.16 0.85 3.22 1.00 3.75 0.74 3.53 1.00 3.10 0.85 3.23 1.00

DEEP
FM

AG 3.07 0.71 3.27 0.82 3.50 0.68 3.84 0.79 3.09 0.74 3.11 0.88
CRM 4.51 0.29 6.32 0.40 4.18 0.38 5.88 0.63 4.11 0.23 6.02 0.71
EAR 4.47 0.30 6.35 0.43 4.01 0.37 5.43 0.69 4.01 0.32 5.74 0.75

CORE 3.23 0.85 3.22 0.99 3.47 0.81 3.34 1.00 2.98 0.93 3.11 1.00
CORE+D 3.16 0.87 3.21 1.00 3.45 0.83 3.30 1.00 2.97 0.94 3.10 1.00

PNN

AG 3.02 0.74 3.10 0.87 3.44 0.67 3.53 0.84 2.83 0.77 2.82 0.91

CORE 3.01 0.88 3.04 0.99 3.10 0.87 3.20 0.99 2.75 0.88 2.76 1.00
CORE+D 3.00 0.92 3.04 1.00 3.05 0.88 3.12 1.00 2.74 0.88 2.76 1.00

A3.3 Baseline Descriptions

We first summarize the recommendation approaches, denoted as ΨRE(·), used in this paper as follows.

• COLD START denotes the cold-start setting, where all the relevance scores of items are uniformly
generated. In other words, for the item set V = {vm}Mm=1, we set the relevance score for each item
vm ∈ V by ΨRE(vm) = 1/M .

• FM [38] is a factorization machine-based recommendation method working on tabular data, which
considers the second-order interactions among attributes (i.e., feature fields).

• DEEP FM [20] combines an FM component and a neural network component together to produce
the final prediction.

• PNN [37] includes an embedding layer to learn a representation of the categorical data and a
product layer to capture interactive patterns among categories.

• DIN [52] designs a deep interest network that uses a local activation unit to adaptively learn the
representation of user interests from historical behaviors.

• GRU [23] applies a gated recurrent unit (GRU) to encode the long browsing histories of users.
• LSTM [18] applies a long short term memory unit (LSTM) to encode the historical browsing logs

of users.
• MMOE [32] develops a multi-gate mixture-of-experts that can model the user’s multiple behaviors

by sharing the expert sub-models across all the behaviors.
• GCN [27] designs a graph convolutional network that learns representations of nodes (either users

or items) by passing and aggregating their neighborhood information.
• GAT [46] designs a graph attention network that adopts an attention mechanism to consider the

different contributions from the neighbor nodes in representing the central nodes (either users or
items).

We then summarize the conversational techniques, denoted as ΨCO(·), used in this paper as follows.

• AG (Abs Greedy) always queries an item with the highest relevance score at each turn, which is
equivalent to solely using the recommender system as a conversational agent.

• ME (Max Entropy) always generates a query in the attribute level. In the setting of querying items
and attributes, it queries the attribute with the maximum entropy, which can be formulated as:

aquery = argmax
x∈Xk−1

∑
wx∈Wx

( |Vxvalue=wx ∩ Vk−1|
|Vk−1|

log
|Vxvalue=wx ∩ Vk−1|

|Vk−1|

)
. (38)
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In the setting of querying items and attribute values, we first apply Eq. (38) to obtain the chosen
attribute and then we select the attribute value with the highest frequency of the chose attribute as:

aquery = argmax
wx∈Wx

|Vxvalue=wx
∩ Vk−1|, (39)

where xx is computed following Eq. (38). To evaluate the success rate, during the evaluation turn,
we apply AG after employing ME.

• CRM [44] integrates the conversational component and the recommender component by feeding
the belief tracker results to an FM-based recommendation method. It is originally designed for the
single-round setting, and we follow [30] to extend it to the multiple-round setting.

• EAR [30] consists of three stages, i.e., the estimation stage to build predictive models to estimate
user preference on both items and attributes based on an FM-based recommendation approach, the
action stage to determine whether to query attributes or recommend items, the reflection stage to
update the recommendation method.

• CRIF [25] formulates the conversational recommendation scheme as a four-phase process consist-
ing of offline representation learning, tracking, decision, and inference. In the inference module,
by fully utilizing the relation between users’ attribute-level and item-level feedback, CRIF can
explicitly deduce users’ implicit preferences.

• UNICORN [13] formulate the conversational recommendation problem as a unified policy learning
task. UNICORN uses a dynamic weighted graph-based enforcement learning method to learn a
policy to select the action at each conversation turn, either asking an attribute or recommending
items.

The proposed methods are listed as follows.

• CORE is our proposed method calculating ΨCG(·)s in line 5 in Algorithm 1.
• CORE+D is a variant of CORE that computes ΨD

CG(·)s instead of ΨCG(·)s, making ΨD
CG(·)s consider the

dependence among attributes.

A3.4 Implementation Details

For each recommendation approach, we directly follow their official implementations with the
following hyper-parameter settings. The learning rate is decreased from the initial value 1× 10−2 to
1×10−6 during the training process. The batch size is set as 100. The weight for the L2 regularization
term is 4 × 10−5. The dropout rate is set as 0.5. The dimension of embedding vectors is set as
64. For those FM-based methods (i.e., FM, DEEP FM), we build a representation vector for each
attribute. We treat it as the static part of each attribute embedding, while the dynamic part is the
representation of attribute values stored in the recommendation parameters. In practice, we feed the
static and dynamic parts together as a whole into the model. After the training process, we store the
static part and use it to estimate the dependence among attributes, as introduced in Appendix A2.2.
All the models are trained under the same hardware settings with 16-Core AMD Ryzen 9 5950X
(2.194GHZ), 62.78GB RAM, NVIDIA GeForce RTX 3080 cards.

A4 Additional Experimental Results

A4.1 Performance Comparisons

We conduct the experiment in two different experimental settings. One is the setting of querying
items and attributes, and the other is the setting of querying items and attribute values. We report
the results of the former setting on tabular datasets (i.e., Amazon, LastFM, Yelp) in Table A1, and
also report the results of the latter setting on these tabular datasets in Table A2. We also evaluate the
performance of CORE in sequential datasets and graph-structured datasets, and report their results in
Table A3 and Table A4 respectively.

By combining these tables, our major findings are consistent with those shown in Section 4.2.
Moreover, we also note that the performance of CORE in querying items and attributes is close to
the oracle, and thus considering the dependence among attributes in CORE+D does not bring much
improvement.
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Table A3: Results comparison of querying attribute values and items on sequential datasets.

ΨRE(·) ΨCO(·)
Taobao Tmall Alipay

T@3 S@3 T@5 S@5 T@3 S@3 T@5 S@5 T@3 S@3 T@5 S@5

COLD
START

AG 6.30 0.15 7.55 0.27 6.80 0.04 8.54 0.09 6.47 0.11 7.95 0.19
ME 6.43 0.14 7.82 0.29 6.76 0.05 8.50 0.12 6.71 0.07 8.46 0.11

CORE 5.42 0.39 5.04 0.89 6.45 0.13 7.38 0.37 5.98 0.25 6.17 0.65
CORE+D 5.41 0.40 5.05 0.90 6.34 0.17 7.14 0.40 5.91 0.28 6.12 0.68

FM

AG 3.03 0.70 3.17 0.81 3.57 0.58 4.32 0.61 2.99 0.84 3.20 0.87

CORE 3.01 0.87 2.95 1.00 3.53 0.69 4.14 0.86 3.37 0.90 3.29 0.97
CORE+D 3.02 0.88 2.91 1.00 3.50 0.71 4.11 0.87 3.32 0.91 3.14 0.97

DEEP
FM

AG 2.99 0.72 2.93 0.89 4.38 0.46 5.23 0.52 3.03 0.83 3.22 0.87

CORE 2.73 0.92 2.78 0.99 4.31 0.62 4.43 0.84 3.17 0.87 3.18 0.97
CORE+D 2.68 0.94 2.80 1.00 4.13 0.65 4.42 0.85 3.12 0.87 3.17 0.97

PNN

AG 2.93 0.76 2.87 0.92 3.98 0.52 4.60 0.61 3.18 0.88 2.94 0.91

CORE 2.51 0.98 2.64 1.00 3.20 0.64 4.11 0.90 3.19 0.88 3.15 0.98
CORE+D 2.48 0.98 2.61 1.00 3.20 0.65 4.02 0.94 3.18 0.88 3.11 0.98

DIN

AG 2.71 0.85 2.83 0.95 4.14 0.51 4.81 0.59 3.10 0.82 3.35 0.85

CORE 2.45 0.97 2.54 1.00 4.12 0.64 4.16 0.89 3.25 0.83 3.32 0.96
CORE+D 2.44 0.97 2.50 1.00 4.10 0.66 4.12 0.91 3.22 0.85 3.30 0.97

GRU

AG 2.80 0.80 2.64 0.97 3.82 0.56 4.40 0.64 3.17 0.83 3.29 0.87

CORE 2.31 0.98 2.44 1.00 3.81 0.72 3.91 0.92 3.10 0.84 3.11 0.96
CORE+D 2.96 0.99 2.40 1.00 3.78 0.74 3.90 0.93 3.10 0.84 3.12 0.95

LSTM

AG 2.60 0.85 2.52 0.97 4.73 0.41 5.63 0.49 3.43 0.78 3.27 0.89

CORE 2.37 0.97 2.49 1.00 4.58 0.55 4.36 0.90 3.03 0.84 3.16 0.97
CORE+D 2.30 0.98 2.49 1.00 4.56 0.57 4.34 0.91 3.05 0.85 3.18 0.97

MMOE

AG 3.04 0.75 2.98 0.92 4.10 0.54 4.56 0.62 3.58 0.83 3.90 0.92

CORE 2.48 0.96 2.60 1.00 3.92 0.65 4.19 0.85 3.21 0.91 3.17 0.98
CORE+D 2.46 0.97 2.61 1.00 3.90 0.66 4.20 0.84 3.19 0.89 3.12 0.99

Table A4: Results comparison of querying attribute values and items on graph datasets.

ΨRE(·) ΨCO(·)
Douban Movie Douban Book

T@3 S@3 T@5 S@5 T@3 S@3 T@5 S@5

COLD
START

AG 6.52 0.11 7.94 0.21 6.36 0.15 7.68 0.26
ME 6.60 0.10 8.16 0.21 6.40 0.15 8.04 0.24

CORE 5.48 0.38 4.84 0.94 5.96 0.26 5.08 0.92
CORE+D 5.45 0.40 4.81 0.94 5.91 0.28 4.98 0.94

GAT

AG 3.75 0.63 3.65 0.87 3.56 0.64 3.41 0.87

CORE 2.89 0.91 2.97 1.00 2.80 0.92 2.91 1.00
CORE+D 2.87 0.92 2.96 1.00 2.81 0.93 2.90 1.00

GCN

AG 3.21 0.69 3.33 0.83 3.20 0.71 3.18 0.89

CORE 2.76 0.92 2.81 1.00 2.85 0.91 2.85 1.00
CORE+D 2.74 0.93 2.80 1.00 2.83 0.93 2.78 1.00

A4.2 Incorporating Our Conversational Agent with a Frozen Chat-bot

With the development of pre-trained large language models (LLMs), chat-bots built based on these
LLMs are capable of communicating like humans, which is a powerful tool to allow our conversational
agent to extract the key information from the user’s free text feedback and generate free text for
querying attributes and items. Concretely, chat-bot can act as either a question generator or a answer
extractor. As shown in Figure 2, if our conversational agent decides to query attribute breakfast
service, then the command passes to the question generator to generate a free text question “Do
you require breakfast service?” The user answers the question by free text “I do not care about
breakfast service, and I really want a hotel with shower”, and then the answer extractor extracts
the user preference on the given answer, namely the user does not care about attribute breakfast
service and gives positive feedback on attribute shower.
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For this purpose, we follow a short OpenAI tutorial2 for prompt engineering to design the following
prompts based on gpt-3.5-turbo model.

# Load the API key and relevant Python libaries.
import openai
import os

def get_completion(prompt, model="gpt-3.5-turbo"):
messages = [{"role": "user", "content": prompt}]
response = openai.ChatCompletion.create(

model=model,
messages=messages,
temperature=0, # this is the degree of randomness of the model’s output

)
return response.choices[0].message["content"]

We first evaluate using an LLM as a question generator by an example of generating a question to
query an attribute, e.g., breakfast service.

# Large language model as question generator.
text = f"""
Attribute, Breakfast Service, Hotel
"""
prompt = f"""
You will be provided with text delimited by triple quotes.
If it starts with the word "item", it denotes an item,
then you should generate a text to recommend the item to the user.
Otherwise, it denotes an attribute,
then you should generate a text to query the user’s preference on the attribute.
You should be gentle.
‘‘‘{text}‘‘‘
"""
response = get_completion(prompt)
print(response)

The following is the corresponding output provided by the LLM.

Good day! May I ask for your preference regarding breakfast service in a hotel?
Would you like to have a complimentary breakfast or do you prefer to have the
option to purchase breakfast at the hotel restaurant?

We then evaluate using an LLM as a question generator by an example of generating a question to
query (i.e., recommend) an item, e.g., hotel A.

# Large language model as question generator.
text = f"""
Item, Hotel A
"""
prompt = f"""
You will be provided with text delimited by triple quotes.
If it starts with the word "item", it denotes an item,
then you should generate a text to recommend the item to the user.
Otherwise, it denotes an attribute,
then you should generate a text to query the user’s preference on the attribute.
You should be gentle.
‘‘‘{text}‘‘‘
"""
response = get_completion(prompt)
print(response)

2https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/
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The following is the corresponding output provided by the LLM.

Great choice! Hotel A is a wonderful option. Would you like me to provide more
information about the hotel or help you book a room?

Also, we evaluate using an LLM as an answer extractor by an example of extracting the user
preference on attributes, e.g., breakfast service, hotel level, and shower.

text = f"""
I do not care about breakfast service, and I really want a hotel with a shower.
"""
prompt = f"""
You will be provided with text delimited by triple quotes.
If you can infer the user preference on attributes,
then re-write the text in the following format:
[attribute name]: [user perference]
Attribute names include Breakfast Service, Hotel Level, and Shower.
User preference includes Yes to denote the positive preference, No to denote the
negative preference, and Not Care to denote the user does not care.
If you can not infer the user preference on attributes,
then re-write the text in the following format:
[attribute name]: Not Know
‘‘‘{text}‘‘‘
"""
response = get_completion(prompt)
print(response)

The following is the corresponding output by the LLM.

Breakfast Service: Not Care
Hotel Level: Not Know
Shower: Yes

Similarly, we also can evaluate using an LLM as a question generator by an example of generating a
question to query an attribute value, e.g., Hotel Level=5.

# Large language model as question generator.
text = f"""
Attribute, Hotel Level is 5, Hotel
"""
prompt = f"""
You will be provided with text delimited by triple quotes.
If it starts with the word "item", it denotes an item \
then you should generate a text to recommend the item to the user.
Otherwise, it denotes an attribute \
then you should generate a text to query the user’s preference on the attribute.
You should be gentle.
‘‘‘{text}‘‘‘
"""
response = get_completion(prompt)
print(response)

The following is the corresponding output by the LLM.

Excuse me, may I ask for your preference on hotel level? Would you prefer a
5-star hotel or are you open to other options?

According to Definition A1, we have exemplified querying (i), (ii), and (iii) in the above examples.
We further evaluate querying (iv). Namely, we evaluate using an LLM as a question generator by an
example of generating a question to query whether the user preference is not smaller than an attribute
value, e.g., Hotel Level not smaller than 3.

26



Query Attribute Value: 
whether Children's Books or not

Query Item:
whether 0001061100 or not 

Query Attribute Value:
whether Price is not smaller 

than $5.5 or not 

Query Item:
whether 0001062395 or not 

Yes No

Yes

Yes

Yes

No

No

No

Figure A1: An illustrated example of an online decision tree in the setting of querying items and attribute values,
where the target item is 0001062395.

# Large language model as question generator.
text = f"""
Attribute, Hotel Level is not smaller than 3, Hotel
"""
prompt = f"""
You will be provided with text delimited by triple quotes.
If it starts with the word "item", it denotes an item \
then you should generate a text to recommend the item to the user.
Otherwise, it denotes an attribute \
then you should generate a text to query the user’s preference on the attribute.
You should be gentle.
‘‘‘{text}‘‘‘
"""
response = get_completion(prompt)
print(response)

The following is the corresponding output by the LLM.

Excuse me, may I ask for your preference on hotel level? Would you prefer a
hotel with a level of 3 or higher?

We note that if there are too many attribute IDs (or too many attribute values) in the use case, then it
might need to further incorporate some hierarchical designs [3] and ambiguous matching [45] into
the above system, which is out of the scope of this paper, and we leave it for future work.

A4.3 Visualization and Case Study

We investigate a case in Amazon dataset in the setting of querying items and attribute values, where
the target item is 0001062395. We depict the online decision tree in Figure A1. From the figure, we
can see that the conversational agent first queries a value of attribute Category, then queries (i.e.,
recommends) an item 000161100; and after that, it queries another attribute, i.e., Price, and finally
queries an item 0001062395.

Compared to Figure 1(b), this example seems like a chain. The main reason is that in practice, the
user would give the corresponding answer to the query at each turn. Therefore, the binary tree (in the
setting of querying items and attribute values) would reduce to a chain.
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From this case, we also can observe that our conversational agent is capable of jointly considering
the items and attributes to search for the target items in the session.

A5 Connections to Existing Approaches

A5.1 Connections to Conversational Recommender Systems

Bridging recently emerged conversational techniques and recommender systems becomes an appeal-
ing solution to model the dynamic preference and weak explainability problems in recommendation
task [15, 26], where the core sub-task is to dynamically select attributes to query and make recom-
mendations upon the corresponding answers. Along this line, one popular direction is to build a
conversational recommender system, which combines the conversational models and the recommen-
dation models from a systematic perspective. In other words, these models are treated and learned as
two individual modules [30, 2, 44, 48]. For example, compared to previous literature [5, 6, 47], recent
work [49] builds the systems upon the multiple turn scenarios; unfortunately, it does not investigate
when to query attributes and when to make recommendations (i.e., query items). To solve this issue,
prior works [30, 31] develop reinforcement learning-based solutions. However, all these previous
methods based on a reinforcement learning framework are innately suffering from insufficient usage
of labeled data and high complexity costs of deployment.

Instead, CORE can be seamlessly adopted to any recommendation method (especially those widely
adopted supervised learning-based recommendation methods), and is easy to implement due to our
conversational strategy based on the uncertainty minimization theory.

A5.2 Connections to (Offline) Decision Tree Algorithms

Decision tree algorithms [24] such as ID3 and C4.5 were proposed based on information theory,
which measures the uncertainty in each status by calculating its entropy. If we want to directly adopt
the entropy measurement for the conversational agent, then one possible definition of entropy is

Hk = −
∑
y∈Y

( |Vyvalue=y ∩ Vk|
|Vk|

log
|Vyvalue=y ∩ Vk|

|Vk|

)
, (40)

where Hk is the empirical entropy for k-th turn, Y is the set of all the labels, and Vyvalue=y is the set of
items whose label is y. For convenience, we call this traditional decision tree as offline decision tree.

The main difference between the previous offline decision tree and our online decision tree lies in
that our online decision tree algorithm does not have labels to measure the “uncertainty”, instead,
we have access to the estimated relevance scores given by recommender systems. We also note
that directly using the user’s previous behaviors as the labels would lead to a sub-optimal solution,
because (i) offline labels in collected data are often biased and can only cover a small number of
candidate items, and (ii) offline labels only can reflect the user’s previous interests, but the user’s
preferences are always shifting.

To this end, we measure the uncertainty in terms of the summation of the estimated relevance scores
of all the unchecked items after previous (k − 1) interactions. Formally, we define our uncertainty as:

Uk = SUM({ΨRE(vm)|vm ∈ Vk}), (41)

where ΨRE(·) denotes the recommender system. Similar to the information gain in the offline decision
tree, we then derive the definition of certainty gain (as described in Definition 1), and formulate the
conversational agent into an uncertainty minimization framework.

A5.3 Connections to Recommendation Approaches to Addressing Cold-start Issue

Cold-start issues are situations where no previous events, e.g., ratings, are known for certain users or
items [29, 43]. Commonly, previous investigations have revealed that the more (side) information, the
better the recommendation results. In light of this, roughly speaking, there are two main branches to
address the cold-start problem. One direction is to combine the content information into collaborative
filtering to perform a hybrid recommendation [1, 19, 36, 42], and a recent advance [34, 50] proposes
to further combine the cross-domain information to the recommender system. The other direction
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is to incorporate an active learning strategy into the recommender system [14, 40], whose target is
to select items for the newly-signed users to rate. For this purpose, representative methods include
the popularity strategy [17], the coverage strategy [16], and the uncertainty reduction strategy [41],
where the first one selects items that have been frequently rated by users, the second one selects items
that have been highly co-rated with other items, and the third one selects items that can help the
recommender system to better learn the user preference.

Integrating the conversational agent with the recommender system offers a promising solution to
address the cold start issue by effectively leveraging user interactions. This approach allows for
querying additional information from users, thereby enhancing the system’s understanding of their
preferences and requirements.

A distinctive aspect of our conversational agent’s strategy compared to existing active learning strate-
gies, lies in its primary objective. While active learning strategies aim to improve the recommender
system’s performance, our conversational agent prioritizes meeting the user’s immediate needs during
the ongoing session. Consequently, the offline-training and online-checking paradigm employed in
our approach assigns higher relevance scores to items that are considered "uncertain." This diverges
from conventional settings where uncertainty estimation is typically conducted independently of
relevance estimation.

By incorporating the conversational agent into recommender system, we leverage user interactions
to gather more comprehensive information, which can effectively address the challenges associated
with cold-start scenarios. Our primary focus is to provide an optimal user experience in real-time
rather than solely optimizing the recommender system’s accuracy. This novel paradigm emphasizes
the importance of uncertainty estimation in relevance estimation, setting our approach apart from
traditional methods.
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