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Abstract

Transformer neural networks can exhibit a surprising capacity for in-context learn-
ing (ICL) despite not being explicitly trained for it. Prior work has provided a
deeper understanding of how ICL emerges in transformers, e.g., through the lens of
mechanistic interpretability, Bayesian inference, or by examining the distributional
properties of training data. However, in each of these cases, ICL is treated largely
as a persistent phenomenon; namely, once ICL emerges, it is assumed to persist
asymptotically. Here, we show that the emergence of ICL during transformer
training is, in fact, often transient. We train transformers on synthetic data designed
so that both ICL and in-weights learning (IWL) strategies can lead to correct pre-
dictions. We find that ICL first emerges, then disappears and gives way to IWL, all
while the training loss decreases, indicating an asymptotic preference for IWL. The
transient nature of ICL is observed in transformers across a range of model sizes
and datasets, raising the question of how much to “overtrain” transformers when
seeking compact, cheaper-to-run models. We find that L2 regularization may offer
a path to more persistent ICL that removes the need for early stopping based on
ICL-style validation tasks. Finally, we present initial evidence that ICL transience
may be caused by competition between ICL and IWL circuits.

1 Introduction

In-context learning (ICL) is the ability of a model to use inputs at inference time to adapt its behavior,
without weight updates, in order to solve tasks not present during training. The first examples of
this behavior in neural networks were observed in architectures specifically designed and trained for
few-shot learning, the capacity to learn a desired behavior from only a few examples [1–3].2 Training
in these cases involved shuffling the labels corresponding to input exemplars on each “episode” so
that, to perform well on the training set, the model had to recall exemplar-label mappings from
context to make future predictions. At test time, novel exemplar-label mappings were provided, and
the network had to use these to classify query exemplars.

Research on ICL changed with the development of the transformer [5]. Brown et al. [6] first
observed that a transformer-based language model, GPT-3, trained auto-regressively at sufficient
scale, exhibited ICL without any specific effort of the authors to promote it via the training objective
or data. Since then, a large body of literature has studied [7–12] or reported [13–15] examples of ICL
in transformers trained at scale.

∗Co-first authors; direct correspondence to aaditya.singh.21@ucl.ac.uk and scychan@google.com
†Co-senior authors
2Few-shot learning can also be implemented via methods that apply gradient updates [e.g., 4], but we focus

on implementations of ICL that do not require any weight updates.
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(a) In-context learning.
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(b) In-weights learning.
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(c) Train log loss.
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Figure 1: In-context learning is transient, shown for our “default” settings: 12 layers, embedding
dimension of 64, trained on 1,600 classes, with 20 exemplars per class. All training sequences are
bursty (see Figure 2a for details). Chan et al. [10] found these settings to strongly incentivize ICL,
but did not observe ICL transience (see Figure 3), as they did not train long enough. (a) ICL evaluator
accuracy. (b) IWL evaluator accuracy. We note that, while accuracy on train sequences is 100%,
accuracy on the IWL evaluator is very slowly increasing, as the test sequences are out-of-distribution.
See Appendix B for further investigation. (c) Training log loss. Two colors indicate two seeds used
for experiments.

These compelling findings have sparked a surge of research into the phenomenon of emergent
capabilities in large neural networks. Nonetheless, recent work has shown that ICL is not a guaranteed
outcome of training transformers. Chan et al. [10] found that specific properties that are typical
of language data, such as burstiness and its highly skewed distribution, play an important role in
emergent ICL in transformers. When trained on data without these properties, Chan et al. [10] found
that transformers tend to resort to in-weights learning (IWL). In the IWL regime, the transformer
relies on information stored in the weights of the model, rather than new information provided
in-context.3 Importantly, ICL and IWL often appear to be in opposition, with ICL emerging most
readily when training data has a large number of tokens or classes and when that data is bursty, with
items appearing in clusters rather than being uniformly distributed.

Such controlled studies based on known data-generating distributions are critical for better under-
standing the ICL phenomenon in transformers. At the same time, a complementary body of work
studies emergence in massive models trained directly on organic web-scale data, with the takeaway
that impressive capabilities such as ICL are more likely to emerge in large models trained on more
data [14, 17–19]. However, this reliance on massive models poses serious practical challenges, such
as how to innovate rapidly, how to train energy-efficiently and in low-resource settings, and how to
run efficiently at deployment. Thus, a growing line of research [20–22] has focused on achieving
comparable performance (including emergent ICL) in smaller transformer models.

Overtraining is currently the favored approach for training small yet performant transformers. These
small models are trained on more data, possibly with repetition, beyond what is prescribed by scaling
laws and compute budget [13, 15]. At its core, overtraining relies on an assumption that is implicit in

3We also note that ICL and IWL are not so cleanly distinguishable in many cases: ICL can depend at least
partially on information stored in-weights, and behavior that looks like IWL may still fact using context naively,
e.g., via simple copying biases [16].
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(a) Example sequences and outputs.
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Figure 2: An overview of our setup. (a) Example sequences during training, ICL evaluation, and IWL
evaluation. Example outputs are colored green when correct and red when incorrect. Note that for
train sequences, ICL and IWL strategies both result in the correct answer. On ICL eval sequences,
the IWL prediction is incorrect. ICL is required to remap exemplars to the randomized 0 or 1 labels.
On IWL eval sequences, there are no matching exemplar-label pairs in context, so IWL is necessary.
(b) Model schematic. Training and evaluation focuses on the predicted label for the final exemplar.

most (if not all) recent explorations of ICL in LLMs: persistence. That is, it is assumed that once a
given model has been trained sufficiently for an ICL-dependent capacity to emerge, that capacity will
be retained as training progresses, provided the training loss continues to decrease.

Here, we show that the general assumption of persistence is false. We do so by adapting a standard
image-based few-shot dataset [23], which allows us to evaluate ICL carefully under controlled
conditions. We characterize simple cases where ICL emerges, only to be subsequently lost while
the model’s loss continues to decrease. In other words, while ICL is well-known to be an emergent
phenomenon, we should also think of it as a potentially transient effect (Section 3, Figure 1). We find
this transience occurs across a range of model sizes (Section 4.1), dataset sizes (Section 4.2), and
dataset types (Section 4.3), though we do identify some properties (Section 4.4) that can postpone
transience. In Section 5, we study ways to alleviate this risk, and show that regularization may offer a
path to persistent ICL. In Section 6, we present preliminary evidence that ICL transience is caused by
competition with IWL circuits.

In general, if networks are trained carelessly for longer and longer, we find that ICL can disappear as
readily as it emerges, leaving models without capabilities that we are increasingly expecting to find
in modern AI systems.

2 Experimental Setup

2.1 Dataset construction

In order to study the transience of ICL across a range of model and dataset sizes in a controlled
fashion, we use a synthetic data-generation process inspired by Chan et al. [10], which allows us
to properly assess in-context versus in-weights learning. Our data generators are primarily built
from the Omniglot dataset, a standard benchmark for few-shot learning, which consists of images of
handwritten characters from different alphabets [23, MIT License]. The Omniglot dataset consists of
1623 character classes, with 20 exemplars each. In experiments with more than 1,600 classes, we
construct additional image exemplars by applying rotations and flips of the original Omniglot images.

Inputs to the transformer model are sequences of exemplars and labels. We use 8 exemplar-label pairs
(the “context”) followed by one “query” exemplar, for an input sequence length of 17 (Figure 2a).
The model is trained to minimize the loss in predicting the label for the query exemplar (Figure 2b).

To explore the generality of our results, we also extend to exemplars derived from language model
token embeddings. We use pre-trained token embeddings from the LLaMa family [15] of large
language models, which use a vocabulary size of 32,000 tokens. We extract the input embedding
matrices from all four open-source LLaMa 1 models. We then subset and cluster [24] these token
embeddings to form 3,200 classes of 5 tokens each. For each LLaMa model size, we construct two
such datasets, with different clustering seeds. The full procedure is described in Appendix C.
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(a) In-context learning. (b) In-weights learning.

Figure 3: (Reproduced with permission from Chan et al. [10].) It was previously shown that ICL
can be transient (purple and red curves) when transformers are trained on data that is only weakly
conducive to ICL (e.g., with low levels of burstiness). P(bursty) indicates the fraction of training
sequences that are bursty. All curves in this figure train on a dataset with 1,600 classes and 20
exemplars. Note the x-axis scale: At this number of iterations, there is no sign of ICL transience for
the highest level of burstiness, but our experiments are run for a much larger number of steps. We
also note that, when P(bursty) < 1, some of the sequences during training are of the same form as the
IWL evaluation sequences. As a result, the IWL evaluator is less out-of-distribution, which is why
the accuracies in (b), when P(bursty) < 1, are so high.

Training sequences. The training task (see top row in Figure 2a) can be solved via ICL or IWL.
The context for each training sequence contains 3 exemplar-label pairs from the query class (“bursty”
sequences), which prior work has found to incentivize ICL [10]). Bursty sequences allow the network
to look for matching exemplars in-context to output a label for the query example, an example of ICL.
To avoid repetition biases, the training context also includes 3 exemplar-label pairs from a distinct,
distractor class. We keep exemplar-label mappings fixed across sequences, so the network could
learn a mapping from exemplars to labels in-weights (without needing to find matching exemplars
in-context). This design allows us to observe whether the model prefers ICL or IWL at different
points in time, as a function of model size or in response to the properties of the training data.

Evaluation sequences. We follow Chan et al. [10] and construct two kinds of evaluation sequences
that measure the extent to which a trained network relies on ICL versus IWL. To evaluate ICL (see
second row of Figure 2a), we use sequences with 4 exemplar images from each of two classes, but
we set the class labels to either 0 or 1 at random for each sequence (unlike during training, where the
exemplar-label mappings are fixed). Accuracy on this evaluator is measured across 0 and 1 as possible
outputs (so chance-level accuracy is 50%). As these labels were not associated with these exemplars
during training, the only way to achieve above-chance accuracy on this evaluator is for the network to
refer back to the context and copy the label corresponding to matching exemplars. To evaluate IWL
(see third row of Figure 2a), we use sequences where none of the context exemplars come from the
same class as the query, but all of the exemplar-label mappings are the same as during training. In
this case, ICL is not useful (as there are no matching exemplars in-context), so the network must rely
on exemplar-label mappings stored in-weights (IWL) for above-chance accuracy. Other evaluation
techniques for ICL and IWL are considered in Appendix B.

2.2 Model details

For our transformer model, the “default” settings consist of 12 layers, with an embedding dimension
of 64 and an additive, sinusoidal positional encoding scheme [5]. Each element of the sequence is
passed through an embedder, either a standard embedding layer for the label tokens, a ResNet encoder
for the exemplar images, or a simple linear layer for exemplars created from LLaMa tokens. (Figure
2b). Both embedders are trained jointly with the network. In our experiments, we vary multiple
aspects of this architecture and observe the effect on the transience of ICL. All experiments were
run with 2 seeds and used the Adam optimizer [25]. We did not observe qualitative differences in
behavior between seeds. We ran most experiments for 5e7 iterations, but truncated some early when
signs of transience were clear. More details (e.g., specific hyperparameter choices, and links to code)
can be found in Appendix A.
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(a) In-context learning.
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(b) In-weights learning.
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Figure 4: (a-b) ICL is transient regardless of model depth, with no clear trend of peak height or peak
onset. Decay slopes are roughly similar across model sizes.

3 In-context learning is transient

Figure 1a shows that ICL is transient even when using data-distributional settings previously found
by Chan et al. [10] to strongly incentivize ICL. We annotate various aspects of the ICL curve, such as
the peak height, peak onset, and decay slope. Prior work [10] stopped training at 5e5 training steps,
before peak onset. Training for much longer in an identical setting leads to the disappearance of ICL.
Notably, ICL is slowly replaced by IWL (as seen by the steadily increasing accuracy on the IWL
evaluator, Figure 1b), all while the training loss continues to decrease (Figure 1c).

Chan et al. [10] found some transient ICL in other data regimes, such as when some small percentage
of sequences are non-bursty, where the context does not contain the query (Figure 3). In these
settings, the eventual rise of IWL is to be expected, as ICL cannot minimize the loss on the non-bursty
sequences. Notably, our results (Figure 1) show surprisingly that ICL transience extends even to cases
where ICL is “sufficient” to fully solve the training task (such as when the context always contains a
relevant exemplar-label mapping that can be used). When comparing to the results from Chan et al.
[10] (Figure 3), we see that higher levels of burstiness lead to a higher peak height and gentler decay
slope. When training for fewer iterations, it might appear that ICL is persistent, but our results from
training longer in Figure 1 demonstrate that ICL is actually transient.

4 In-context learning is transient across settings

4.1 Effect of model size

We investigate whether the ICL transience effect is modulated by model size, given the current
prevalence of extremely large transformer models. We find that there is no consistent effect of model
depth on ICL transience (Figure 4a-b). In fact, deeper models can lead to lower peak heights (e.g.,
the 18-layer model has a lower peak height than the 12-layer model). Notably, the decay slope is
similar across different model depths, indicating that the ICL is unlikely to persist simply by scaling
model depth.

We also experiment with the width of the model in Section 6, which sheds some light on the causes
of ICL transience.

4.2 Scaling dataset size

Next, we investigate the effects of dataset size on ICL transience. There are two primary ways of
varying the dataset size: increasing the number of exemplars per class (a form of increasing in-class
variation), or increasing the number of classes.

Chan et al. [10] found that in-class variation was crucial for ICL to emerge, and we find a similar
trend. When the number of exemplars per class is increased (from 10 to 15 to 20) while keeping the
number of classes fixed, we see an increase in ICL peak height (Figure 5a). However, despite higher
peak heights, we also see steeper decay slopes, indicating that increasing in-class variation is unlikely
to make ICL persistent.
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(a) In-context learning.
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(b) In-weights learning.
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Figure 5: In-class variation improves ICL, as previously known and seen here by the higher peak
heights, but ICL is nonetheless transient across settings.

(a) In-context learning.
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(b) In-weights learning.
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Figure 6: Effect of dataset size on ICL transience. Increasing the number of classes leads to higher
ICL peak height and a more gradual decay slope. Despite the number of exemplar-label pairs being
the same in the purple and red curves, we note that the ICL and IWL behavior is very different when
we increase the number of classes (purple) versus the in-class variation (red). Also, note that chance
level performance for IWL differs slightly: 1/12,800 for the other curve (purple), and 1/1,600 for the
1,600 classes lines (red and orange).

When increasing the number of classes, we again find a similar trend to Chan et al. [10] with peak
heights increasing (Figure 6a). In this case, we also find that decay slopes become more gradual.
To better illustrate the differences between increasing in-class variation and increasing the number
of classes, we do another experiment where the total number of exemplar-label pairs is fixed to
12, 800×20 = 1, 600×160 = 256, 000, with one run having more classes and less in-class variation,
and another run having fewer classes and more in-class variation. We find that increasing the number
of classes is a more effective way to promote ICL (higher peak height, shallower decay slope) than
increasing the in-class variation, perhaps due to each class appearing less often during training. This
result also indicates that, beyond a certain point, in-class variation actually hurts ICL performance
(lower peak height, steeper decay slope, as seen in Figure 6a). To conclude, ICL remains transient as
we increase the number of classes, but training for longer and longer becomes necessary to make it
go away, given the shallower decay slope.

4.3 Extending to language model token embeddings

To explore the generality of our results, we replaced the image exemplars with exemplars derived
from language-model token embeddings (procedure described fully in Appendix C). On all of these

(a) In-context learning. (b) In-weights learning.

Figure 7: ICL is transient across a range of input datasets, derived from clusterings of LLaMa 1
token embeddings from the four different sizes. Error bars indicate standard error across two possible
datasets derived from each model’s embedding matrix. Further results can be found in Appendix C.
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token-embedding derived datasets, we find that whenever ICL emerges, it is subsequently transient
(Figure 7). Furthermore, the peak height is lower than in our other experiments. In terms of timing,
the peak onset as well as subsequent transience occurs on a quicker timescale (note the shorter x-axis
scale in Figure 7). These results also further corroborate our findings on dataset size (Section 4.2),
as the constructed token embedding-label dataset is smaller (3, 200 × 5 = 16, 000 exemplar-label
pairs, as opposed to 1, 600× 20 = 32, 000 pairs in our Omniglot experiments), so we would expect
lower heights and sharper decay slopes. Overall, these experiments are a promising step towards
connecting our findings to natural language, and demonstrate that the transience phenomenon is not
limited to image-based exemplar-label datasets.

4.4 Changing the data distribution

Until now, we have trained on data for which the marginal distribution over classes was uniform.
However, a common property of naturalistic data is a Zipfian (power-law) skew [26]. Zipfian data
contains a few “common” classes that appear very often, and many “rare” classes that appear less
often than they would if the class distribution were uniform. In Section 4.2, we found that more
classes (corresponding to each class appearing less often) led to shallower decay slopes. We explored
whether data with a Zipfian distribution could play a similar role in reducing the transience of ICL.

Indeed, in Figure 8, we find this to be the case. We implemented different levels of skew across
data classes according to a Zipfian distribution p(X = x) ∝ x−α (x corresponds to the rank of an
input class—e.g., α = 0 corresponds to a uniform distribution). At Zipf exponent α = 1, we find a
severely delayed ICL peak onset, thereby delaying the subsequent transience, and a shallow decay
slope following this delayed onset (similar to that seen with a large number of classes in Figure
6a). Furthermore, corroborating the findings of Chan et al. [10], we find that stopping training early,
when using skewed distributions, can lead to a combination of ICL and IWL in the same network (as
evidenced by the increased IWL at Zipf exponent α = 1 as compared to Zipf exponent α = 0, Figure
8b). However, it is important to note that if the Zipfian exponent is too extreme (e.g., α = 2), ICL
does not emerge at all, and the network uses IWL to solve the task. We conclude that moderately
skewed Zipfian data does not eliminate transience, but mitigates it by necessitating training for an
even longer time to observe transience (similar to when there is a large number of classes).

(a) In-context learning.
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(b) In-weights learning.
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Figure 8: ICL transience as a function of dataset skew, implemented across classes in accordance
with a Zipfian distribution. (a) A moderate Zipf exponent of 1 leads to a significant delay of ICL peak
onset followed by a shallow decay slope, implying models would need to be trained for even longer
to get full transience. However, an extreme level of skew (Zipf exponent 2) leads to the complete
loss of ICL altogether. (b) IWL, evaluated on the same skewed distribution over query classes as in
the training data (thus high accuracy on Zipf exponent 2 is not unexpected, as the IWL test set is
dominated by a small number of classes).

5 Regularization may eliminate ICL transience

If we consider that ICL is a more generally useful solution than IWL, then ICL transience is, in
a sense, the opposite of the grokking phenomenon, where a model changes from a less to a more
general solution after long periods of training [27]. Regularization (or implicit regularization) may
help to drive grokking [28, 29] (and some work even shows an impact of dataset size as well [30],
analogous to what we find above). Thus, would we see regularization mitigating the ICL transience
phenomenon?

7



(a) In-context learning.
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(b) In-weights learning.
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Figure 9: L2 regularization potentially eliminates ICL transience. Increasing regularization decreases
ICL transience, at least up to a point. Regularization also seems to lead instead to IWL transience.
(Note that the y-axis in Figure 9b is zoomed in so that IWL transience is visible.)

We see in Figure 9 that this is indeed the case, with L2 regularization seeming to even eliminate
ICL transience entirely, at least on the timescales that we tested. Without any regularization, we see
transient ICL as before. However, as we add increasing levels of L2 regularization, we see that the
decay slope of ICL performance goes to 0. On the other hand, we actually observe some transience of
in-weights learning (purple and maroon curves, Figure 9b). These results indicate that the ICL circuit
is a lower norm solution than the IWL circuit. Thus, regularization may offer a path to persistent ICL.
However, with values of regularization that are too high (> 0.0001), the network is over-regularized
and ICL transience returns, but, notably, IWL accuracy never rises above zero either (see Appendix
D for more train loss curves and more extreme values of regularization).

6 ICL transience may be caused by competition with IWL circuits

We performed initial investigations to understand the origins of ICL transience: why does ICL fade
when the IWL solution emerges? Do the ICL and IWL circuits compete with each other for resources,
for example, in the transformer’s residual stream [16]? If so, we would expect wider transformers
with larger embedding size (and therefore greater residual stream capacity) to be less afflicted by ICL
transience. In Figure 10a, we see that this is the case: Greater model embedding sizes lead to higher
peak heights and gentler decay slopes. However, one confound to consider is that larger embedding
may just independently enhance ICL abilities (as they enhance IWL abilities, Figure 10b), rather than
reduce competition between circuits.

To better understand how scaling the embedding dimension enhances ICL and IWL, we trained
models on data that could be solved via ICL only or IWL only, rather than being solvable by both
strategies. For ICL-only training, we used the same type of sequences used in our ICL evaluator,
where the network must use ICL to solve the query-prediction task. For IWL-only training, we used
the same type of sequences used in our IWL evaluator, where the network must use IWL to solve
the query-prediction task. Figure 10d shows that larger embedding dimensions enhance the model’s
ability to perform IWL, but do not consistently help ICL (Figure 10c). Thus, these results indicate
that the increased peak height and shallower decay slope in Figure 10a are likely due to decreased
competitive interactions with IWL circuits, rather than an enhancement of ICL capabilities.

We arrived at convergent evidence by building on the regularization experiments from Section 5.
We applied weight decay selectively to either the ResNet embedding layers, the MLP layers, or the
self-attention layers. When we applied weight decay to only the self-attention layers, ICL was still
transient. When we applied weight decay to the MLP or ResNet layers, however, ICL transience was
mitigated (Appendix Figure 16). These results can be interpreted in light of prior work indicating
that in-weights information is stored in MLP layers [31, 32]. By selectively penalizing this behavior,
we enable ICL to persist, thus providing convergent evidence that – when no weight decay is applied
– ICL fades due to competition with IWL circuits.

7 Related Work

This work builds on several papers that seek to understand in-context learning by analyzing small
networks and/or controlled data sources. Xie et al. [7] consider an implicit definition of ICL (defined
in terms of the model’s loss) and show that the effect can be framed as a form of Bayesian inference.
Chan et al. [10] show via experimentation with controlled synthetic datasets that, e.g., the bursty and
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(a) In-context learning.
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(b) In-weights learning.
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(c) In-context learning, when training on data that
only supports in-context learning.
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(d) In-weights learning, when training on data that only
supports in-weights learning.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
# train steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

chance

Embed dim
32
64
128

Figure 10: (a-b) We find a trend that wider models (larger embedding sizes) have higher ICL peak
heights and more gradual decay slopes. (c-d) However, when we trained on data that allowed us to
specifically elicit each type of learning, we found that embedding size was only consistently helpful
for enhancing IWL, indicating that mitigation of ICL transience is likely due to decreased interaction
between the two circuits, as opposed to an enhancement of ICL capabilities.

Zipfian nature of text data could play an important role in the emergence of ICL. Many other works
consider how ICL can be used to learn certain function classes using synthetic data, and how ICL
may be implementing a form of gradient descent to accomplish this [33–35].

As with the aforementioned work, here we do not experiment directly with billion-parameter trans-
formers trained on web-scale corpora. Nonetheless, our work should be of relevance to studies
that aim to derive ICL in increasingly small and compact text-based language models. By training
language models of many different sizes on different amounts of data, Hoffmann et al. [13] identified
a relationship between the amount of training and model size that appeared compute-optimal with
respect to the training loss. This correspondence motivated Chinchilla, a 70B-parameter language
model whose downstream performance (on tasks that require ICL) was comparable to far larger
models. More recently, Touvron et al. [15] took this further, “overtraining” smaller models to achieve
lower training loss according to a given, inference-time, compute budget. Perez et al. [36] point
out that in such work, tasks that require ICL are typically included in the models’ validation set in
order to optimise hyperparameters directly for ICL. Our results indicate that, without appropriate
validation and early stopping, training for a long time may eventually lead to ICL gradually disap-
pearing, perhaps even without recognition from model developers. A large number of “classes” or
Zipfian data distributions (both properties of natural language [37]) can mitigate this by delaying the
disappearance. Moreover, regularization may completely eliminate this risk. Indeed, Hoffmann et al.
[13] find that the use of optimizers with weight decay [38] leads to models that perform better, but
this benefit only manifests at later stages of training (perhaps when ICL would otherwise decay).

8 Discussion

In-context learning is often transient. The key insight of this work is the empirical finding that,
if in-context learning (ICL) emerges in a transformer network, it may not necessarily persist as the
model continues to be trained. That is, while ICL is often emergent, it may be in many cases also
be transient (Section 3). In fact, since the loss of ICL is gradual, its creeping disappearance may
not even be known to model developers. This emphasizes the importance of evaluating appropriate
validation metrics over the course of training [e.g., 39]. Furthermore, these results suggest that it
may be desirable to stop training some transformer models before a compute budget is reached—to
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preserve ICL—even if training losses are still decreasing. This would need to be ascertained on a
case-by-case basis. Other methods for preventing the disappearance of ICL, like regularization, may
also be critical for delivering flexible, in-context learners.

What are strategies for mitigating ICL transience? In Section 4, we found that data distributional
properties (increasing the number of classes, adding a Zipfian skew) can strengthen ICL and postpone
the transience of ICL, and so can increasing embedding size (and least in the ranges we tested).
The fact that most transformers are trained on language, which naturally has both of these data-
distributional properties [37], may explain why ICL transience hasn’t been documented in LLMs
yet. However, as the trend of overtraining continues, there’s a risk of losing these impressive ICL
capabilities. We found that the most robust method to make ICL persistent was L2 regularization
(Section 5).

Why does ICL emerge at all, if it is not asymptotically preferred? Since GPT-3 [6], the emergence
of ICL has become an expected phenomenon in large-scale transformer models. Our experiments
underline how curious it is that ICL emerges in such models given that it does not seem to be
asymptotically preferred. Possible explanations may concern optimization quirks (similar to the
slingshot mechanism proposed as an explanation for grokking [29]) or perhaps lottery tickets con-
tained in common initialization methods [28, 40] that incentivize ICL (when trained with relevant
data-distributional properties). Future work could explore these possible explanations by considering
the effect of alternate optimizers or initialization schemes on the transience of ICL.

Given that ICL does emerge, why does it fade in favor of IWL? On our training data, either
ICL or IWL can reach good performance. While we do not know for certain why ICL emerges in a
network, the question remains of why it fades if it is a viable strategy to solve the training task. Our
results in Section 6 suggest that part of the explanation may lie in a competition between IWL and
ICL circuits for resources in the transformer residual stream [16]. Under the assumption that IWL is
asymptotically preferred, this competition would explain why ICL fades after emerging.

Why is IWL asymptotically preferred over ICL, when both solve the task? Induction heads [9]
are a possible circuit that may be responsible for ICL, and comprise of two interacting components:
finding a match in-context, then copying some token forward. The match operation is fundamentally
limited by the softness of the attention operation [41–43]. On the other hand, IWL relies on learning
the exemplar-label mapping in-weights, which we show is feasible in Figure 10d. We postulate—and
hope to investigate in future work—the possibility that although ICL and IWL can achieve perfect
accuracy on the task, this “imperfect match” to prior context asymptotically incentivizes solutions
(when training with cross-entropy loss, as is standard) that do not rely as much on context and instead
learn in-weights.

How do we get ICL and IWL to co-exist asymptotically in the same model? Large language
models clearly show a co-existence of ICL and IWL. Chan et al. [10] found that training on Zipfian
data allows the network to perform ICL on rare classes, but learn common classes in-weights.
Regularization was the best strategy we found to make ICL persistent, but it leads to little-or-no IWL.
Given our results, the only effective way currently to get co-existence of ICL and IWL appears to
be stopping training at the right time. Future work could investigate other factors that may restore
co-existent ICL and IWL, even asymptotically.

Limitations and future directions. Perhaps the most significant limitation is that our experiments
were not performed on large language models, one of the most important applications of transformers.
Our training resources limited our ability to perform such experiments in the current work, but we
believe that this is a necessary future step, to understand the full import of the current results. As
a first step toward this, we demonstrated ICL transience on datasets with language model token
embeddings (Section 4.3), but our datasets are still restricted to the exemplar-label setup. It would
also be interesting to explore the effect of context length: For a given train or inference budget, a
system designer could trade off between longer context (possibly enabling better ICL) and a larger
model (possibly enabling better IWL). We also note that our definitions of ICL and IWL are relatively
specific, and many more important mechanisms are likely at play in transformers—for example,
contextual information could be used in conjunction with IWL to narrow down possible outputs
via copying [16], which we find some preliminary evidence of in Appendix B. Future work could
investigate more mechanistic explanations of ICL transience, the tradeoff between ICL and IWL, and
additional recipes for reducing ICL transience.
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A Model and training procedure details

All experiments used the same model and training procedure unless stated otherwise. The transformer
[5] consisted of 12 layers with am embedding dimension of 64 and 8 heads. The images were
embedded by a ResNet [44] with two blocks per group and channels per group (16, 32, 32, 64).
The ResNet embedder was learnt jointly and not pre-trained. The integer labels were embedded
using a standard embedding layer. The input embeddings were augmented with a standard sinusoidal
positional encoding [5] with timescale 30 (as our sequences are all length 17). Experiments were
run for up to 5e7 training steps with batch size 32, on 16 TPU v2 or v3 cores. They were trained
using Adam [25] (with default parameters of β1 = 0.9, β2 = 0.999) and a learning rate schedule
with a linear warmup up to a maximum learning rate of 3e-4 at 4,000 steps, followed by an inverse
square root decay. L2 regularization was implemented by adding the squared weights of the model
(excluding batch norm parameters) to the loss term. All experiments were run with 2 seeds each. In
all figures, (shaded) error bars indicate standard deviation around the mean.

Also, we note that, despite the long training times, all our experiments are still in the <1 epoch regime,
due to the combinatorial nature of our dataset. We estimate there are over 1, 600× 1, 599× (1, 598×
1, 597/2)× (8!/(3!× 3!))× (209) = 1.87× 1027 possible training sequences, of which our model
sees a maximum of 32× 5× 107 = 6.4× 108.

Source code can be found at github.com/google-deepmind/emergent_in_context_learning
and github.com/aadityasingh/icl-transience.

B Alternate evaluation metrics

While the primary evaluations used throughout the paper are inspired by the ICL and IWL evaluators
of Chan et al. [10], we did consider a few alternate evaluators. Prior work has shown that transformers
are prone to simple copying biases [16] and that the importance of few-shot exemplars might be
more in their format rather than correctness [8, 11]. To account for copying biases, we introduce the
“IWL-copy-available” evaluator, wherein we randomly replace one of the labels with the true label.
Note that, during training, the correct label always appears in context, which may incentivize the
formation of such naive copying circuits. To perform a stricter test of ICL performance, we thus take
inspiration from the “flipped-ICL” evaluation in Wei et al. [11].

For clarity, we illustrate some abbreviated example sequences below:

• Train: X 23 Y 24 X 23 X 23 A 0 Y 24 B 1 Y 24 X ?. Note there are 3 instances of X 23, 3
instances of Y 24, and one instance each of A 0, B 1. Exemplar X is always associated to
label 23 through training, Y to 24, A to 0, and B to 1.

• IWL eval (in main text): A 0 C 2 F 5 B 1 Y 24 D 3 H 7 X ?. Niether the exemplar nor label
appears in context.

• IWL-copy-available eval: A 0 C 2 F 5 B 23 Y 24 D 3 H 7 X ?. We randomly replace one of
the labels with the desired answer label. Note, this task allows the network to benefit from
copying, but still provides no information in-context to learn that X should map to 23.

• ICL eval (in main text): X 0 X 0 Y 1 X 0 Y 1 Y 1 X 0 Y 1 X ?. Both X and Y’s labels are
replaces with 0/1. Note, we also tried using other pairs of labels for the ICL evaluator (e.g.,
15/20), but found little variance across this choice.

• flipped-ICL eval: X 24 X 24 Y 23 X 24 Y 23 Y 23 X 24 Y 23 X ?. Note, if the network
outputs 24 here, it demonstrates in-context learning, as it must be using the exemplar-label
from context. Alternatively, if the network outputs 23, it demonstrates in-weights learning, as
its ignoring the exemplar-label mapping provided in context. Accuracy=1 on this evaluator
means the network is doing ICL, Accuracy=0 means the network is doing IWL.

Following the results of Section 4.3, which showed that fixed embeddings exhibit transience on shorter
timescales, we conducted some experiments using the above evaluators on a dataset of fixed omniglot
embeddings by preprocessing all images through a Imagenet-pretrained-and-frozen Resnet18 encoder
[44, 45]. Like the main paper, we considered datasets with either 1,600 or 12,800 classes, with 20
exemplars per class. We did not run these experiments as long as those in the main paper, as the
purpose was to test the new evaluators.
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Figure 11: Results of alternate evaluators on fixed embedding Omniglot data. Note the shorter
x-axis scale. (a) ICL evaluator, same as main text. (b) IWL evaluator, same as main text. (c)
flipped-ICL evaluator. Note how signs of transience are visible sooner on this stricter measure. (d)
IWL-copy-available evaluator. Similarly, IWL-copy-available starts growing sooner than the main
IWL evaluator, offering earlier indications of transience

As seen in Figure 11, the alternate evaluators’ asymptotic behaviors largely mirror the evaluators
used by Chan et al. [10]. That said, there are some interesting differences. For example, under the
flipped-ICL evaluator, models trained on 1,600 classes are never able to fully override the mapping of
exemplars to labels seen in training (as evidenced by accuracy remaining below 0.5). However, at the
scale of 12,800 classes, models are able to (accuracy goes above 0.5 before decaying). Intriguingly,
these results may connect to Wei et al. [11], except in the sense of a more diverse dataset rather than
a larger parameter count, leading a model to “do in-context learning differently”.

With respect to transience, we do still observe it in both cases. For 1,600 classes, the increase in
performance indicates the network may be overriding its exemplar-label mapping on some sequences,
but this fledgling ability is short-lived. For 12,800 classes, while the shallow decay slope makes
transience on the standard ICL evaluator not visible due to the short timescale (note, ICL is still
transient at this # of classes, as shown in Figure 5a), transience is clearly visible on the flipped-ICL
eval.

Furthermore, we see that there is indeed an effect of copying in our networks, as seen by the improved
performance of models on the IWL-copy-available evaluator as compared to the IWL evaluator.

For a clearer comparison to prior work on synthetic datasets, we opted to use the same evaluators as
Chan et al. [10] in this work, but hope the above analysis shows the importance of good evaluators in
diagnosing ICL transience.

C Construction of LLaMa-based exemplar-label datasets

In this section, we provide more detail as to the procedure used to construct the fixed embedding
datasets used in Section 4.3.

C.1 Constructing datasets

We save the token embedding matrix for each LLaMa v1 model. These have dimensions 32,000
×dmodel, where dmodel = 4096, 5120, 6656, 8192 for the 7B, 13B, 30B, and 70B, LLaMa models,
respectively. To go from these raw embeddings to “classes” that we can use in our setup, we perform
the following steps:

1. Subselect: Many tokens correspond to individual bytes or characters from non-English
languages. We observed that the statistics of these token embeddings are often different than
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(a) In-context learning. (b) In-weights learning.

Figure 12: A model initialization seed for which no ICL emerges on LLaMa-derived datasets

the others, so we remove these tokens. Specifically, we use tokens 259 to 29,870, inclusive,
for a total of 29,612 tokens.

2. Cluster: We cluster the token embeddings using K-means clustering and cosine distance
using the FAISS library [24]. As FAISS does not offer a valid minimum number of points
per cluster, we first cluster into 2400 (or 4800) clusters, then pick all clusters that have more
than 10 (or 5) points. This gives us at least 1,600 (or 3,200) clusters. We randomly pick the
actual 1,600 (or 3,200) clusters.

3. Select from cluster: Many of these clusters contain more than 10 (or 5) points. To maximize
in-class variation, we pick the furthest 10 (or 5) points from the cluster centroid. Thus, we
have our 1,600 classes of 10 examples, or 3,200 classes of 5 examples.

Note that step 2 is highly dependent on the random seed used to initialize cluster centroids. We run
the above procedure for all 4 LLaMa models on 2 random seeds.

C.2 Example clusters

If we map the embeddings back to tokens, we can get a sense of what various clusters may represent.
Many clusters cover similar tokens, but some clusters can be more semantic or even multilingual! We
show some extracted clusters (for 3,200 classes, 5 embeddings per class, on the 70B LLaMa) below:

_erm | _room | rm | _Room | _rm
_utter | _extremely | _partially | _entirely | Comple
hover | _mysqli | gz | RGB | rgb
async | _predicate | Observer | _deleg | _delegate
ive | ous | _cable | rable | ible
FLAG | _flag | _Flag | flag | Flag
_specified | _provided | _supplies | _supply | _supplied
ring | _dent | dent | _rent | RENT
_Derby | _Dit | _pedig | _ort | _Ort
_Britain | _England | _Madrid | _Spanish | Espagne

C.3 The difficulty of emergent ICL

We observed that ICL emergence was more sensitive to model initialization when using LLaMa token
embeddings as exemplars. An example seed where ICL did not emerge at all (for 3,200 classes, 5
exemplars per class) is shown in Figure 12. However, in all cases where ICL did emerge (even to
a small degree), we found it to be transient (Figures 7, 13). Furthermore, the results presented in
Section 4.3 are averaged over two different clustering seeds (see step 2 above), which yield different
output datasets. ICL is transient across all 8 datasets tested.

At 1,600 classes, with 10 exemplars per class, we found mild ICL emergence, as shown in Figure 13.
We found that 3,200 classes were necessary to get any strong ICL, which is shown in Figure 7.
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(a) In-context learning. (b) In-weights learning.

Figure 13: Mild emergence and subsequent transience of ICL on a model trained on the LLaMa
derived datasets with 1,600 classes and 10 exemplars per class.

D Additional regularization results

(a) In-context learning.
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(b) In-weights learning.
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Figure 14: For extreme values of L2 regularization (>1e-04), the model seems to be over-regularized:
We observe a return to ICL transience, as well as poor performance on IWL.
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Figure 15: Total train loss (including L2 penalty) for a sampling of experiments. Regularization
seems to make the training loss smoother, as well as causing train loss to plateau at a higher value
(rather than continuing to drop).
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(a) In-context learning, decay = 1e-5
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(b) In-context learning, decay = 1e-4

(d) In-weight learning, decay = 1e-4(c) In-weight learning, decay = 1e-5
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Figure 16: Selectively applying weight decay to different sets of network weights reveals that IWL
relies on MLP layers. When we apply weight decay only to self-attention layers (blue), ICL is still
transient. When we only apply weight decay to MLP layers, ICL transience is mitigated (red). These
results can be interpreted in light of prior work indicating that in-weights information is stored in
MLP layers [31, 32]. By selectively penalizing this behavior, we enable ICL to persist, thus providing
convergent evidence that – when no weight decay is applied – ICL fades due to competition with
IWL circuits.
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