
A The calculation of Dispersion Score

Our proposed approach, Dispersion Score, can be calculated as shown in Algorithm 1.

Algorithm 1 OOD Error Estimation via Dispersion Score

Input: OOD test dataset D̃ = {x̃i}mi=1, a trained model f (feature extractor fg and classifier f!)
Output: The dispersion score
for each OOD instance x̃i do

Obtain feature representation via z̃i = fg(x̃i).
Obtain pseudo labels via ỹ0i = argmax f!(zi)

end for
Calculate cluster centroids {µ̃j}kj=1 using pseudo labels ỹ0i, with µ̃j =

1
mj

Pmj

i=1 zi · {ỹ0i = j}
Calculate the feature center of all instances by µ̄ = 1

m

Pm
i=1 zi

Calculate Dispersion Score S(D̃) via Equation (4)

B Related work

Predicting generalization. Since the generalization capability of deep networks under distribution
shifts is a mysterious desideratum, a surge of researches pay attention to estimate the generalization
capability from two directions.

1) Some works aim to measure generalization gap between training and test accuracy with only
training data [Corneanu et al., 2020, Jiang et al., 2019, Neyshabur et al., 2017, Unterthiner et al.,
2020, Yak et al., 2019, Martin and Mahoney, 2020]. For example, the model-architecture-based
method [Corneanu et al., 2020] summarizes the persistent topological map of a trained model to
formulate its inner-working function, which represents the generalization gap. Margin distribution
[Jiang et al., 2019] measures the gap by gauging the distance between training examples and the
decision boundary. However, those methods are designed for the identical distribution between the
training and test dataset, being vulnerable to distribution shift.

2) Some studies try to estimate generalization performance on a specific OOD test dataset without
annotation during evaluation. Many of them utilize softmax outputs of the shifted test dataset to form
a quantitative indicator of OOD error [Guillory et al., 2021, Jiang et al., 2021, Guillory et al., 2021,
Garg et al., 2022]. However, those methods are unreliable across diverse distribution shifts due to
the overconfidence problem [Wei et al., 2022]. Another popular direction considers the negative
correlation between distribution difference and model’s performance in the space of features [Deng
and Zheng, 2021] or parameters [Yu et al., 2022]. Nevertheless, common distribution distances
practically fail to induce stable error estimation under distribution shift [Guillory et al., 2021], and
those methods are usually computationally expensive. Unsupervised loss such as agreement among
multiple classifiers [Jiang et al., 2021, Madani et al., 2004, Platanios et al., 2016, 2017] and data
augmentation [Deng et al., 2021] is also employed for OOD error prediction, which requires specific
model structures during training. In this work, we focus on exploring the connection between feature
separability and generalization performance under distribution shift, which is training-free and does
not have extra requirements for datasets and model architectures.

Exploring Feature distribution in deep learning. In the literature, feature distribution has been
widely studied in domain adaptation [Ben-David et al., 2006, Pan et al., 2010, Zhuang et al., 2015,
Tzeng et al., 2017], representation learning [Bengio et al., 2013, HaoChen et al., 2021, Ming et al.,
2023, Huang et al., 2021], OOD generalization [Li et al., 2018, Chen et al., 2021, Wang et al., 2021],
and noisy-label learning [Zhu et al., 2021, 2022]. Domain adaptation methods usually learn a domain-
invariant feature representation by narrowing the distribution distance between the two domains with
certain criteria, such as maxinum mean discrepancy (MMD) [Pan et al., 2010], Kullback-Leibler (KL)
divergence [Zhuang et al., 2015], central moment discrepancy (CMD) [Zellinger et al., 2017], and
Wasserstein distance [Lee and Raginsky, 2017]. InfoNCE [Huang et al., 2021] shows a key factor of
contrastive learning that the distance between class centers should be large enough. In learning with
noisy labels, it has been shown that the feature clusterability can be used to estimate the transition
matrix [Zhu et al., 2021]. To the best of our knowledge, we are the first to analyze the connection
between feature separability and the final accuracy on OOD data.
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C Sensitivity analysis: pseudo labels

Here, we conduct a sensitivity analysis by using ground-truth labels in our method. Table 5 illustrates
that the performance with pseudo labels is comparable with the performance using ground-truth labels.
This phenomenon is consistent with the previous method - ProjNorm [Yu et al., 2022], shown in
Table 8 of their paper. The reason behind this could be that the trained model is capable of identifying
certain semantic information from most corrupted examples, thereby retaining their representations
in a cluster. Thus, the separability of feature clusters can serve as an indicator of the final prediction
performance for corruption perturbations. Additionally, we provide a failure case of feature clusters
separability for adversarial perturbations in Appendix F.

Table 5: Comparison of Dispersion Score with pseudo labels and true labels on CIFAR10, CIFAR100
and TinyImageNet. The best results are highlighted in bold.

Dataset Network Pseudo labels True labels
R2 ⇢ R2 ⇢

CIFAR 10

ResNet18 0.968 0.990 0.979 0.989
ResNet50 0.987 0.990 0.985 0.991

WRN-50-2 0.961 0.988 0.945 0.987
Average 0.972 0.990 0.970 0.989

CIFAR 100

ResNet18 0.952 0.988 0.915 0.989
ResNet50 0.953 0.985 0.959 0.989

WRN-50-2 0.980 0.991 0.978 0.995
Average 0.962 0.988 0.950 0.991

TinyImageNet

ResNet18 0.966 0.986 0.937 0.985
ResNet50 0.977 0.990 0.954 0.995

WRN-50-2 0.968 0.986 0.977 0.994
Average 0.970 0.987 0.956 0.991

D More results on class-imbalance settings

This section provides elaborated outcomes of training-free benchmarks under the setting of class
imbalance, serving as a complement to the results presented in Table 3.

Table 6: Summary of prediction performance on Imbalanced CIFAR-10C and CIFAR-100C for
training-free benchmarks, where R2 refers to coefficients of determination, and ⇢ refers to Spearman
correlation coefficients (higher is better)

Dataset Network Rotation ConfScore Entropy AgreeScore ATC Fréchet
R2 ⇢ R2 ⇢ R2 ⇢ R2 ⇢ R2 ⇢ R2 ⇢

CIFAR 10

ResNet18 0.767 0.922 0.823 0.965 0.841 0.969 0.669 0.922 0.830 0.966 0.966 0.983
ResNet50 0.787 0.946 0.870 0.975 0.887 0.977 0.765 0.953 0.883 0.975 0.916 0.975

WRN-50-2 0.829 0.968 0.915 0.986 0.913 0.986 0.823 0.972 0.922 0.986 0.866 0.977
Average 0.794 0.945 0.869 0.976 0.880 0.977 0.752 0.949 0.878 0.976 0.916 0.979

CIFAR 100

ResNet18 0.769 0.944 0.872 0.988 0.840 0.985 0.858 0.979 0.905 0.988 0.905 0.972
ResNet50 0.847 0.964 0.875 0.986 0.826 0.978 0.832 0.973 0.880 0.986 0.855 0.979

WRN-50-2 0.930 0.981 0.976 0.993 0.980 0.993 0.944 0.981 0.981 0.994 0.889 0.988
Average 0.849 0.963 0.908 0.989 0.882 0.985 0.878 0.978 0.922 0.989 0.883 0.980

E Partial OOD error prediction

In previous experiments, a common assumption is that the test set contains instances from all classes.
To further explore the flexibility of our method on OOD test set, we introduce a new setting called
partial OOD error prediction, where the label space for the test set is a subset of the label space for
the training data.
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Here, we train ResNet18 and ResNet50 on both CIFAR-10 and CIFAR-100 with 10 and 100 categories,
respectively. Different from previous settings, we evaluate the prediction performance on CIFAR-10C
and CIFAR-100C with the first 50% of categories. The numerical results are shown in Tabel 7.

Table 7: Summary of prediction performance on partial sets of CIFAR-10C and CIFAR-100C, where
R2 refers to coefficients of determination, and ⇢ refers to Spearman correlation coefficients (higher is
better). The best results are highlighted in bold.

Dataset Network Rotation ConfScore Entropy AgreeScore ATC Frechet ProjNorm Ours
R2 ⇢ R2 ⇢ R2 ⇢ R2 ⇢ R2 ⇢ R2 ⇢ R2 ⇢ R2 ⇢

CIFAR 10

ResNet18 0.578 0.896 0.795 0.982 0.826 0.984 0.615 0.931 0.802 0.981 0.842 0.941 0.770 0.968 0.935 0.985
ResNet50 0.719 0.939 0.885 0.993 0.892 0.993 0.787 0.976 0.887 0.993 0.757 0.953 0.856 0.967 0.950 0.992
Average 0.649 0.918 0.841 0.987 0.859 0.989 0.701 0.954 0.845 0.987 0.800 0.947 0.813 0.968 0.942 0.988

CIFAR 100

ResNet18 0.876 0.946 0.922 0.985 0.902 0.980 0.904 0.971 0.943 0.986 0.894 0.972 0.770 0.968 0.935 0.985
ResNet50 0.923 0.967 0.917 0.980 0.890 0.975 0.915 0.976 0.932 0.983 0.837 0.978 0.856 0.967 0.950 0.992
Average 0.899 0.956 0.920 0.983 0.896 0.978 0.909 0.973 0.938 0.984 0.866 0.975 0.813 0.968 0.942 0.989

From the results, we could observe that our method is more robust than existing methods in the
setting of partial OOD error prediction. For example, ProjNorm suffers from the incomplete test
dataset during the self-training process, with a dramatic drop from around 0.950 to around 0.810
for R2 of CIFAR-10C and CIFAR-100C on average. Contrastively, our method still achieves high
accuracy in predicting OOD errors, maintaining an average R2 value of 0.950.

F Adversarial vs. Corruption robustness.

In previous analysis, we show the superior performance of dispersion score on predicting the accuracy
on OOD test sets with different corruptions. Here, we surprisingly find that feature dispersion can
effectively demonstrate the difference between adversarial and corruption robustness.

Table 8: Prediction performance measured by MSE against adversarial attack of different methods.
The linear regression model is estimated on CIFAR-10C, and is used to predict the adversarial
examples with perturbation size ✏ varying from 0.25 to 8.0. “True Dispersion” refers to the dispersion
score with feature normalization using ground-truth labels. The best results are highlighted in bold.

ConfScore Entropy ATC ProjNorm Dispersion True Dispersion

CIFAR-10 0.933 0.892 0.906 0.847 1.359 0.483

Table 8 shows the prediction performance of different methods under adversarial attacks. “True
Dispersion" refers to the dispersion score with feature normalization using ground-truth labels. In
particular, we generate adversarial samples attacked by projected gradient descent (PGD) using
untargeted attack [Kurakin et al., 2016] on the test set of CIFAR-10 with 10 steps and perturbation
size ✏ ranging from 0.25 to 8.0. While the vanilla Dispersion score leads to poor performance, we
note that the variant of Dispersion score with ground-truth labels performs much better than previous
methods. This phenomenon is different from the conclusion of the sensitivity analysis of pseudo
labels in predicting corruption robustness (See Appendix C), where the variant of true labels cannot
outperform our method.

To understand the reasons behind the performance disparity of feature dispersion between adversarial
and corruption robustness, we present the t-SNE visualization of features for adversarial attack of
CIFAR-10 test set with various perturbation sizes in Figure 7. Compared to Figure 3, the results indi-
cate that adversarial perturbations increase the distance between different clusters, whereas corruption
perturbations decrease the separability of the clusters. In other words, adversarial perturbations
decrease the test accuracy in a different way: assigning instances to the wrong groups and enlarging
the distance among those groups. Therefore, feature dispersion using pseudo labels cannot be an
effective method in the adversarial setting. We hope this insight can inspire specific designed methods
based on feature dispersion for predicting adversarial errors in the future.
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(a) ✏=0.0 k pseudo (b) ✏=2.0 k pseudo (c) ✏=8.0 k pseudo (d) ✏=8.0 k true

Figure 7: t-SNE visualization of feature representation on adversarial attack of CIFAR-10 test set
with perturbation size ✏ ranging from 0.25 to 8.0.

G Performance on realistic datasets

To verify the effectiveness of Dispersion Score on realistic datasets, we conduct experiments on PACS
[Li et al., 2017], Office-31 [Saenko et al., 2010] and Office-Home [Venkateswara et al., 2017] with
ResNet-18, ResNet-50 and WRN-50-2 using normalization. Table 9 is the numerical results, from
which we can observe that our method outperforms the other baselines on datasets with natural shifts.

Table 9: Performance comparison of all approaches on PACS, Office-31 and Office-Home, where R2

refers to coefficients of determination, and ⇢ refers to Spearman correlation coefficients (higher is
better). The best results are highlighted in bold.

Dataset Network
Rotation ConfScore Entropy AgreeScore ATC Fréchet ProjNorm Dispersion

R2 ⇢ R2 ⇢ R2 ⇢ R2 ⇢ R2 ⇢ R2 ⇢ R2 ⇢ R2 ⇢

PACS

ResNet18 0.823 0.895 0.595 0.755 0.624 0.755 0.624 0.832 0.514 0.650 0.624 0.804 0.161 0.420 0.843 0.846

ResNet50 0.861 0.923 0.071 0.070 0.062 0.056 0.463 0.622 0.192 0.266 0.463 0.622 0.245 0.587 0.827 0.867

WRN-50-2 0.865 0.902 0.646 0.678 0.629 0.671 0.377 0.858 0.753 0.832 0.558 0.832 0.475 0.650 0.896 0.937
Average 0.850 0.907 0.437 0.501 0.438 0.494 0.488 0.771 0.486 0.583 0.549 0.753 0.294 0.552 0.855 0.883

Office-31

ResNet18 0.753 0.943 0.470 0.829 0.322 0.714 0.003 0.086 0.844 0.943 0.144 0.257 0.099 0.429 0.834 0.943
ResNet50 0.371 0.829 0.486 0.829 0.355 0.829 0.012 0.464 0.533 0.486 0.035 0.257 0.241 0.429 0.878 0.943

WRN-50-2 0.578 0.600 0.525 0.714 0.425 0.714 0.003 0.257 0.405 0.943 0.035 0.143 0.147 0.143 0.798 0.829
Average 0.567 0.790 0.936 0.494 0.790 0.367 0.752 0.006 0.269 0.594 0.790 0.219 0.162 0.333 0.836 0.905

Office-Home

ResNet18 0.823 0.930 0.795 0.909 0.762 0.881 0.055 0.147 0.571 0.615 0.606 0.755 0.065 0.203 0.821 0.811

ResNet50 0.851 0.944 0.770 0.895 0.742 0.853 0.027 0.217 0.487 0.734 0.607 0.685 0.169 0.476 0.841 0.860

WRNt-50-2 0.823 0.958 0.742 0.874 0.696 0.846 0.132 0.406 0.384 0.643 0.589 0.706 0.173 0.531 0.897 0.937
Average 0.832 0.944 0.769 0.893 0.734 0.860 0.071 0.256 0.481 0.664 0.601 0.716 0.135 0.403 0.853 0.869
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