
A Unified Framework for U-Net Design and Analysis

Christopher Williams ∗1 Fabian Falck ∗,1,2 George Deligiannidis 1

Chris Holmes 1,2 Arnaud Doucet 1 Saifuddin Syed 1

1University of Oxford 2The Alan Turing Institute
{williams,fabian.falck,deligian,cholmes, doucet,saifuddin.syed}@stats.ox.ac.uk

Abstract

U-Nets are a go-to neural architecture across numerous tasks for continuous signals
on a square such as images and Partial Differential Equations (PDE), however their
design and architecture is understudied. In this paper, we provide a framework
for designing and analysing general U-Net architectures. We present theoretical
results which characterise the role of the encoder and decoder in a U-Net, their
high-resolution scaling limits and their conjugacy to ResNets via precondition-
ing. We propose Multi-ResNets, U-Nets with a simplified, wavelet-based encoder
without learnable parameters. Further, we show how to design novel U-Net ar-
chitectures which encode function constraints, natural bases, or the geometry of
the data. In diffusion models, our framework enables us to identify that high-
frequency information is dominated by noise exponentially faster, and show how
U-Nets with average pooling exploit this. In our experiments, we demonstrate how
Multi-ResNets achieve competitive and often superior performance compared to
classical U-Nets in image segmentation, PDE surrogate modelling, and generative
modelling with diffusion models. Our U-Net framework paves the way to study the
theoretical properties of U-Nets and design natural, scalable neural architectures
for a multitude of problems beyond the square.

1 Introduction

Bottleneck

Skip connection

Skip connection

Figure 1: A resolution 2 U-Net
(Def. 1). If Ei = IdVi , this is a
Multi-ResNet (see Def. 3).

U-Nets (see Figure 1) are a central architecture in deep learning
for continuous signals. Across many tasks as diverse as image
segmentation [1, 2, 3, 4, 5], Partial Differential Equation (PDE)
surrogate modelling [6, 7] and score-based diffusion models [8, 9,
10, 11, 12], U-Nets are a go-to architecture yielding state-of-the-
art performance. In spite of their enormous success, a framework
for U-Nets which characterises for instance the specific role of
the encoder and decoder in a U-Net or which spaces these operate
on is lacking. In this work, we provide such a framework for
U-Nets. This allows us to design U-Nets for data beyond a square
domain, and enable us to incorporate prior knowledge about a
problem, for instance a natural basis, functional constraints, or
knowledge about its topology, into the neural architecture.

The importance of preconditioning. We begin by illustrating
the importance of the core design principle of U-Nets: precon-
ditioning. Preconditioning informally means that initialising an
optimisation problem with a ‘good’ solution greatly benefits learn-
ing [13, 14]. Consider a synthetic example using ResNets [15] which are natural in the context of

∗Equal contribution.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

U-Nets as we will show in §2.3: we are interested in learning a ground-truth mapping w : V 7→W
and w(v) = v2 over V = [−1, 1] and W = R using a ResNet Rres(v) = Rpre(v) + R(v) where
Rpre, R : V 7→ W . In Figure 2 [Left] we learn a standard ResNet with Rpre(v) = v on a grid of
values from V ×W , i.e. with inputs vi ∈ V and regression labels wi = w(vi) = v2i . In contrast,
we train a ResNet with Rpre(v) = |v| [Right] with the same number of parameters and iterations.
Both networks have been purposely designed to be weakly expressive (see Appendix B.5 for details).
The standard ResNet [Left] makes a poor approximation of the function, whilst the other ResNets
[Right] approximation is nearly perfect. This is because Rpre(v) = |v| is a ‘good’ initial guess
or preconditioner for w(v) = v2, but Rpre(v) = v is a ‘bad’ one. This shows the importance of
encoding good preconditioning into a neural network architecture and motivates us studying how
preconditioning is used in U-Net design.

Figure 2: The importance of preconditioning.

In this paper, we propose a mathematical framework
for designing and analysing general U-Net architec-
tures. We begin with a comprehensive definition of a
U-Net which characterises its components and iden-
tifies its self-similarity structure which is established
via preconditioning. Our theoretical results delineate
the role of the encoder and decoder and identify the
subspaces they operate on. We then focus on ResNets
as natural building blocks for U-Nets that enable flex-
ible preconditioning from lower-resolutions inputs.
Our U-Net framework paves the way to designing U-Nets which can model distributions over com-
plicated geometries beyond the square, for instance CW-complexes or manifolds, or diffusions on
the sphere [16], without any changes to the diffusion model itself (see Appendix A). It allows us to
enforce problem-specific constraints through the architecture, such as boundary conditions of a PDE
or a natural basis for a problem. We also analyse why U-Nets with average pooling are a natural
inductive bias in diffusion models.

More specifically, our contributions are as follows: (a) We provide the first rigorous definition of
U-Nets, which enables us to identify their self-similarity structure, high-resolution scaling limits, and
conjugacy to ResNets via preconditioning. (b) We present Multi-ResNets, a novel class of U-Nets
over a hierarchy of orthogonal wavelet spaces of L2(X), for compact domain X, with no learnable
parameters in its encoder. In our experiments, Multi-ResNets yield competitive and often superior
results when compared to a classical U-Net in PDE modelling, image segmentation, and generative
modelling with diffusion models. We further show how to encode problem-specific information into
a U-Net. In particular, we design U-Nets incorporating a natural basis for a problem which enforces
boundary conditions on the elliptic PDE problem, and design and demonstrate proof-of-concept
experiments for U-Nets with a Haar wavelet basis over a triangular domain. (c) In the context of
diffusion models, we analyse the forward process in a Haar wavelet basis and identify how high-
frequency information is dominated by noise exponentially faster than lower-frequency terms. We
show how U-Nets with average pooling exploit this observation, explaining their go-to usage.

2 U-Nets: Neural networks via subspace preconditioning

The goal of this section is to develop a mathematical framework for U-Nets which introduces
the fundamental principles that underpin its architecture and enables us to design general U-Net
architectures. All theoretical results are proven in Appendix A. We commence by defining the U-Net.

2.1 Anatomy of a U-Net

Definition 1. U-Net. Let V and W be measurable spaces. A U-Net U = (V,W, E ,D,P, U0)
comprises six components:

1. Encoder subspaces: V = (Vi)
∞
i=0 are nested subsets of V such that limi→∞ Vi = V .

2. Decoder subspaces: W = (Wi)
∞
i=0 are nested subsets of W such that limi→∞Wi = W .

3. Encoder operators: E = (Ei)
∞
i=1 where Ei : Vi 7→ Vi denoted Ei(vi) = ṽi.

4. Decoders operators: D = (Di)
∞
i=1 where Di : Wi−1 × Vi 7→ Wi at resolution i denoted

Di(wi−1|vi). The vi component is called the skip connection.

2

5. Projection operators: P = (Pi)
∞
i=0, where Pi : V 7→ Vi, such that Pi(vi) = vi for vi ∈ Vi.

6. Bottleneck: U0 is the mapping U0 : V0 7→W0, enabling a compressed representation of the input.

The U-Net of resolution i is the mapping Ui : Vi 7→Wi defined through the recursion (see Figure 3):

Ui(vi) = Di(Ui−1(Pi−1(ṽi))|ṽi), i = 1, 2, (1)

Figure 3: Recursive struc-
ture of a U-Net.

We illustrate the Definition of a U-Net in Figure 1. Definition 1 includes
a wide array of commonly used U-Net architectures, from the seminal
U-Net [1], through to modern adaptations used in large-scale diffusion
models [8, 9, 10, 11, 12], operator learning U-Nets for PDE modelling
[6, 7], and custom designs on the sphere or graphs [17, 18]. Our
framework also comprises models with multiple channels (for instance
RGB in images) by choosing Vi and Wi for a given resolution i to be
product spaces Vi =

⊗M
k=1 Vi,k andWi =

⊗M
k=1Wi,k forM channels

when necessary2. Remarkably, despite their widespread use, to the best
of our knowledge, our work presents the first formal definition of a
U-Net. Definition 1 not only expands the scope of U-Nets beyond
problems confined to squared domains, but also naturally incorporates problem-specific information
such as a natural basis, boundary conditions or topological structure as we will show in §3.2 and
3.3. This paves the way for designing inherently scalable neural network architectures capable of
handling complicated geometries, for instance manifolds or CW-complexes. In the remainder of the
section, we discuss and characterise the components of a U-Net.

Encoder and decoder subspaces. We begin with the spaces in V and W which a U-Net acts
on. Current literature views U-Nets as learnable mappings between input and output tensors. In
contrast, this work views U-Nets and their encoder and decoder as operators on spaces that must be
chosen to suit our task. In order to perform computations in practice, we must restrict ourselves to
subspaces Vi and Wi of the potentially infinite-dimensional spaces V and W . For instance, if our
U-Net is modelling a mapping between images, which can be viewed as bounded functions over a
squared domain X = [0, 1]2, it is convenient to choose V and W as subspaces of L2(X), the space of
square-integrable functions [19, 20] (see Appendix C). Here, a data point wi in the decoder space Wi

is represented by the coefficients ci,j where wi =
∑
j ci,jei,j and {ei,j}j is a (potentially orthogonal)

basis for Wi. We will consider precisely this case in §3.1. The projected images on the subspace
Vi,Wi are still functions, but piece-wise constant ones, and we store the values these functions obtain
as ‘pixel’ tensors in our computer [20] (see Figure 22 in Appendix A).

Role of encoder, decoder, projection operators. In spite of their seemingly symmetric nature
and in contrast to common understanding, the roles of the encoder and decoder in a U-Net are
fundamentally different from each other. The decoder on resolution i learns the transition from Wi−1
to Wi while incorporating information from the encoder on Vi via the skip connection. The encoder
Ei can be viewed as a change of basis mapping on the input space Vi at resolution i and is not directly
tied to the approximation the decoder makes on Wi. This learned change of basis facilitates the
decoder’s approximation on Wi. In §3.1, we will further extend our understanding of the encoder and
discuss its implications for designing U-Nets. The projection operators serve to extract a compressed
input. They are selected to suit task-specific needs, such as pooling operations (e.g. average pooling,
max pooling) in the context of images, or orthogonal projections if V is a Hilbert space. Note that
there is no embedding operator3, the operator facilitating the transition to a higher-resolution space,
explicitly defined as it is invariably the natural inclusion of Wi−1 into Wi.

Self-similarity of U-Nets via preconditioning. The key design principle of a U-Net is precondi-
tioning. The U-Net of resolution i − 1, Ui−1 makes an approximation on Wi−1 which is input of
and preconditions Ui. Preconditioning facilitates the transition from Wi−1 to Wi for the decoder. In
the encoder, the output of Pi−1Ei is the input of Ui−1. When our underlying geometry is refinable
(such as a square), we may use a refinable set of basis functions. In the standard case of a U-Net
with average pooling on a square domain, our underlying set of basis functions are (Haar) wavelets
(see §2.3) – refinable basis functions defined on a refinable geometry. This preconditioned design of

2Implementation wise this corresponds to taking the Kronecker product across the spaces Vi,k and Wi,k,
respectively.

3In practice, if we for instance learn a transposed convolution operation, it can be equivalently expressed as a
standard convolution operation composed with the natural inclusion operation.

3

U-Nets reveals a self-similarity structure (see Figure 3) inherent to the U-Net when the underlying
space has a refinable geometry. This enables both an efficient multi-resolution approximation of
U-Nets [20] and makes them modular, as a U-Net on resolution i− 1 is a coarse approximation for a
U-Net on resolution i. We formalise this notion of preconditioning in Proposition 1 in §2.3.

2.2 High-resolution scaling behavior of U-Nets

Given equation (1), it is clear that the expressiveness of a U-Net U is governed by the expressiveness
of its decoder operators D. If each Di is a universal approximator [21], then the corresponding
U-Nets Ui likewise have this property. Assuming we can represent any mapping Ui : Vi 7→Wi as a
U-Net, our goal now is to comprehend the role of increasing the resolution in the design of U , and to
discern whether any function U : V →W can be represented as a high-resolution limit limi→∞ Ui of
a U-Net. We will explore this question in the context of regression problems of increasing resolution.

To obtain a tractable answer, we focus on choosing W as a Hilbert space, that is W equipped with an
inner product. This allows us to defineW as an increasing sequence of orthogonal subspaces of W .
Possible candidates for orthogonal bases include certain Fourier frequencies, wavelets (of a given
order) or radial basis functions. The question of which basis is optimal depends on our problem and
data at hand: some problems may be hard in one basis, but easy in another. In §4, Haar wavelets are a
convenient choice. Let us define S as infinite resolution data in V ×W and Si as the finite resolution
projection in Vi ×Wi comprising of (vi, wi) = (Pi(v), Qi(w)) for each (v, w) ∈ S . Here, Pi is the
U-Net projection onto Vi, and Qi : W 7→Wi is the orthogonal projection onto Wi. Assume U∗i and
U∗ are solutions to the finite and infinite resolution regression problems minUi∈Fi

Li(Ui|Si) and
minU∈F L(U |S) respectively, where Fi and F represent the sets of measurable functions mapping
Vi 7→Wi and V 7→W . Let Li and L denote the L2 losses:

Li(Ui|Si)2 :=
1

|Si|
∑

(wi,vi)∈Si

‖wi − Ui(vi)‖2, L(U |S)2 :=
1

|S|
∑

(w,v)∈S

‖w − U(v)‖2.

The following result analyses the relationship between U∗i and U∗ as i→∞ where Li|j and L|j are
the losses above conditioned on resolution j (see Appendix A).
Theorem 1. Suppose U∗i and U∗ are solutions of the L2 regression problems above. Then,
Li|j(U∗i) ≤ L|j(U∗) with equality as i→∞. Further, if QiU∗ is Vi-measurable, then U∗i = QiU

∗

minimises Li.

Theorem 1 states that solutions of the finite resolution regression problem converge to solutions of the
infinite resolution problem. It also informs us how to choose Vi relative to Wi. If we have a V where
for the decoders onW , the Wi component of U∗, QiU∗, relies solely on the input up to resolution i,
then the prediction from the infinite-dimensional U-Net projected to Wi can be made by the U-Net of
resolution i. The optimal choice of Vi must be expressive enough to encode the information necessary
to learn the Wi component of U∗. This suggests that if Vi lacks expressiveness, we risk efficiency
in learning the optimal value of U∗i . However, if Vi is too expressive, no additional information is
gained, and we waste computational effort. Therefore, we should choose Vi to encode the necessary
information for learning information on resolution i. For example, when modelling images, if we are
interested in low-resolution features on Wi, high-resolution information is extraneous, as we will
further explore in §4 in the context of diffusion models.

2.3 U-Nets are conjugate to ResNets

Next, our goal is to understand why ResNets are a natural choice in U-Nets. We will uncover a
conjugacy between U-Nets and ResNets. We begin by formalising ResNets in the context of U-Nets.
Definition 2. ResNet, Residual U-Nets. Given a measurable space X and a vector space Y ,
a mapping R : X → Y is defined as a ResNet preconditioned on Rpre : X → Y if R(x) =
Rpre(x) +Rres(x), where Rres(x) = R(x)−Rpre(x) is the residual of R. A Residual U-Net is a
U-Net U whereW,V are sequences of vector spaces, and the encoder and decoder operators E ,D
are ResNets preconditioned on Epre

i (vi) = vi and Dpre
i (wi−1|vi) = wi−1, respectively.

A preconditioner initialises a ResNet, then the ResNet learns the residual relative to it. The difficulty
of training a ResNet scales with the deviation from the preconditioner, as we saw in our synthetic
experiment in §1. In U-Nets, ResNets commonly serve as encoder and decoder operators. In encoders,

4

preconditioning on the identity on Vi allow the residual encoder Eres
i to learn a change of basis for

Vi, which we will discuss in more detail in §3.1. In decoders, preconditioning on the identity on the
lower resolution subspace Wi−1 allows the residual decoder Dres

i to learn from the lower resolution
and the skip connection. Importantly, ResNets can compose to form new ResNets, which, combined
with the recursion (1), implies that residual U-Nets are conjugate to ResNets.

Proposition 1. If U is a residual U-Net, then Ui is a ResNet preconditioned on Upre
i (vi) =

Ui−1(ṽi−1), where ṽi−1 = Pi−1(Ei(vi)).

Proposition 1 states that a U-Net at resolution i is a ResNet preconditioned on a U-Net of lower
resolution. This suggests that U res

i learns the information arising from the resolution increase. We
will discuss the specific case Ei = IdVi

, and Upre(vi) = Ui−1(Pi−1(vi)) in §3.1. Proposition 1 also
enables us to interpret limi→∞ Ui from §2.2 as a ResNet’s ‘high-resolution’ scaling limit. This is
a new scaling regime for ResNets, different to time scaled Neural ODEs [22], and warrants further
exploration in future work. Finally, we provide an example of the common Residual U-Net.

Example 1. Haar Wavelet Residual U-Net. A Haar wavelet residual U-Net U is a residual U-Net
where: V = W = L2(X), Vi = Wi are multi-resolution Haar wavelet spaces (see Appendix C.3),
and Pi = projVi

is the orthogonal projection.

We design Example 1 with images in mind, noting that similar data over a squared domain such as
PDE (see §5) are also applicable to this architecture. We hence choose Haar wavelet [23] subspaces
of L2(X), the space of square integrable functions and a Hilbert space, and use average pooling as
the projection operation Pi [20]. Haar wavelets will in particular be useful to analyse why U-Nets are
a good inductive bias in diffusion models (see §4). U-Net design and their connection to wavelets has
also been studied in [24, 25, 26].

3 Generalised U-Net design

In this section, we provide examples of different problems for which our framework can define
a natural U-Net architecture. Inspired by Galerkin subspace methods [27], our goal is to use our
framework to generalise the design of U-Nets beyond images over a square. Our framework also
enables us to encode problem-specific information into the U-Net, such as a natural basis or boundary
conditions, which it no longer needs to learn from data, making the U-Net model more efficient.

3.1 Multi-ResNets

A closer look at the U-Net encoder. To characterise a U-Net in Definition 1, we must in particular
choose the encoder subspaces V . This choice depends on our problem at hand: for instance, if
the inputs are images, choosing Haar wavelet subspaces is most likely favourable, because we can
represent and compress images in a Haar wavelet basis well, noting that more complex (orthogonal)
wavelet bases are possible [28, 29]. What if we choose V unfavourably? This is where the encoder
comes in. While the encoder subspaces V define an initial basis for our problem, the encoder learns a
change of basis map to a new, implicit basis ṽi = Ei(vi) which is more favourable. This immediately
follows from Eq. (1) since Ui acts on Vi through ṽi. The initial subspaces V can hence be viewed as
a prior for the input compression task which the encoder performs.

Given our initial choice of the encoder subspaces V , the question whether and how much work the
encoders E have to do depends on how far away our choice is from the optimal choice Ṽ for our
problem. This explains why the encoders Ei are commonly chosen to be ResNets preconditioned
on the identity Epre

i = IdVi
, allowing the residual encoder Eres

i to learn a change of basis. If we
had chosen the optimal sequence of encoder subspaces, the residual operator would not have to do
any work; leaving the encoder equal to the precondition Ei = IdVi

. It also explains why in practice,
encoders are in some cases chosen significantly smaller than the decoder [30], as a ResNet encoder
need not do much work given a good initial choice of V . It is precisely this intuition which motivates
our second example of a U-Net, the Multi-Res(olution) Res(idual) Network (Multi-ResNet).

Definition 3. Multi-ResNets. A Multi-ResNet is a residual U-Net with encoder Ei = IdVi .

Example 2. Haar Wavelet Multi-ResNets. A Haar Wavelet Multi-ResNet is a Haar Wavelet
Residual U-Net with encoder Ei = IdVi

.

5

We illustrate the Multi-ResNet, a novel U-Net architecture, in Figure 1 where we choose Ei = IdVi .
Practically speaking, the Multi-ResNet simplifies its encoder to have no learnable parameters, and
simply projects to Vi on resolution i. The latter can for the example of Haar wavelets be realised
by computing a multi-level Discrete Wavelet Transform (DWT) (or equivalently average pooling)
over the input data [20]. Multi-ResNets allow us to save the parameters in the encoder, and instead
direct them to bolster the decoder. In our experiments in §5.1, we compare Multi-ResNets to Residual
U-Nets and find that for PDE surrogate modelling and image segmentation, Multi-ResNets yield
superior performance to Residual U-Nets as Haar wavelets are apparently a good choice for V , while
for other problems, choosing Haar wavelets is suboptimal. Future work should hence investigate how
to optimally choose V for a problem at hand. To this end, we will discuss natural bases for V andW
for specific problems in the remainder of this section.

3.2 U-Nets which guarantee boundary conditions

Next, our main goal is to show how to design U-Nets which chooseW in order to encode constraints
on the output space directly into the U-Net architecture. This renders the U-Net more efficient as
it no longer needs to learn the constraints from data. We consider an example from PDE surrogate
modelling, approximating solutions to PDE using neural networks, a nascent research direction where
U-Nets already play an important role [6], where our constraints are given boundary conditions and
the solution space of our PDE. In the elliptic boundary value problem on X = [0, 1] [31], the task is
to predict a weak (see Appendix A) PDE solution u from its forcing term f given by

∆u = f, u(0) = u(1) = 0, (2)

where u is once weakly differentiable when the equation is viewed in its weak form, f ∈ L2(X) and
∆u is the Laplacian of u. In contrast to Examples 1 and 2, we choose the decoder spaces as subspaces
of W = H1

0, the space of one weakly differentiable functions with nullified boundary condition, a
Hilbert space (see Appendix A), and choose V = L2(X), the space of square integrable functions.
This choice ensures that input and output functions of our U-Net are in the correct function class for
the prescribed problem. We now want to choose a basis to construct the subspaces V andW of V and
W . For V , just like in Multi-ResNets in Example 2, we choose Vj to be the Haar wavelet space of
resolution j, an orthogonal basis. ForW , we also choose a refinable basis, but one which is natural
toH1

0. In particular, we choose Wi = span{φk,j : j ≤ k, k = 1, . . . , 2i−1} where

φk,j(x) = φ(2kx+ j/2k), φ(x) = 2x · 1[0,1/2)(x) + (2− 2x) · 1[1/2,1](x). (3)

This constructs an orthogonal basis ofH1
0, illustrated in Figure 4, which emulates our design choice

in Section 3.1 where the orthogonal Haar wavelet basis was beneficial as W was L2-valued. Each
φk,j obeys the regularity and boundary conditions of our PDE, and consequently, an approximate
solution from our U-Net obeys these functional constraints as well.

0.5 1

0.5

1

x

0.5 1

0.5

1

x

0.5 1

0.5

1

x

Figure 4: Refinement of an orthogonal basis for H1
0 = span{φ0,0, φ1,0, φ1,1}. We visualise the

graphs of basis functions defined in (3): [Left] φ0,0 = φ, [Top Right] φ1,0, and [Bottom Right] φ1,1.
When increasing resolution, steeper triangular-shaped basis functions are constructed.

These constraints are encoded into the U-Net architecture and hence need not be learned from data.
This generalised U-Net design paves the way to broaden the application of U-Nets, analogous to the
choice of bases for Finite Element [32] or Discontinuous Galerkin methods [33].

6

W0 W1

Figure 5: U-Nets encoding the topological structure of a problem. [Left] A refinable Haar wavelet
basis with basis functions on a right triangle, φi,j=0 = 1red − 1blue. [Right] A sphere and a Möbius
strip meshed with a Delaunay triangulation [35, 36]. Figures and code as modified from [37].

3.3 U-Nets for complicated geometries

Our framework further allows us to design U-Nets which encode the geometry of the input space right
into the architecture. This no longer requires to learn the geometric structure from data and enables
U-Nets for complicated geometries. In particular, we are motivated by tessellations, the partitioning
of a surface into smaller shapes, which play a vital role in modelling complicated geometries across
a wide range of engineering disciplines [34]. We here focus on U-Nets on a triangle due to the
ubiquitous use of triangulations, for instance in CAD models or simulations, but note that our design
principles can be applied to other shapes featuring a self-similarity property. We again are interested
in finding a natural basis for this geometry, and characterise key components of our U-Net.

In this example, neither W nor V are selected to be L2(X) valued on the unit square (or rectangle)
X. Instead, in contrast to classical U-Net design in literature, W = V = L2(4), where 4 is a
right-triangular domain illustrated in Figure 5 [Left]. Note that this right triangle has a self-similarity
structure in that it can be constructed from four smaller right triangles, continuing recursively. A
refinable Haar wavelet basis for this space can be constructed by starting from φi,0 = 1red − 1blue for
j = 0 as illustrated in Figure 5 [Left]. This basis can be refined through its self-similarity structure
to define each subspace from these basis functions via Wi = Vi = Span{φk,j : j ≤ k, k =
1, . . . , 2i−1} (see Appendix A for details). In §5.2, we investigate this U-Net design experimentally.
In Appendix A we sketch out how developing our U-Net on triangulated manifolds enables score-
based diffusion models on a sphere [16] without any adjustments to the diffusion process itself.
This approach can be extended to complicated geometries such as manifolds or CW-complexes as
illustrated in Figure 5 [Right].

4 Why U-Nets are a useful inductive bias in diffusion models

U-Nets are the go-to neural architecture for diffusion models particularly on image data, as demon-
strated in an abundance of previous work [8, 9, 10, 11, 12, 38, 39, 40, 41]. However, the reason
why U-Nets are particularly effective in the context of diffusion models is understudied. Our U-Net
framework enables us to analyse this question. We focus on U-Nets over nested Haar wavelet
subspaces V =W that increase to V = W = L2([0, 1]), with orthogonal projection Qj : W 7→Wi

on to Wi corresponding to an average pooling operation Qi [42] (see Appendix C). U-Nets with
average pooling are a common choice for diffusion models in practice, for instance when modelling
images [8, 9, 38, 39, 40]. We provide theoretical results which identify that high-frequencies in a
forward diffusion process are dominated by noise exponentially faster, and how U-Nets with average
pooling exploit this in their design.

Let X ∈W be an infinite resolution image. For each resolution i define the image Xi = QiX ∈Wi

on 2i pixels which can be described by Xi =
∑
kX

(k)
i φk, where Φ = {φk : k = 1, . . . , 2i} is the

standard (or ‘pixel’) basis. The image Xi is a projection of the infinite resolution image X to the
finite resolution i. We consider the family of denoising processes {Xi(t)}∞i=1, where for resolution i,
the process Xi(t) =

∑
kX

(k)
i (t)φk ∈Wi is initialised at Xi and evolves according to the denoising

diffusion forward process (DDPM, [8]) at each pixel X(k)
i (t) :=

√
1− αtX(k)

i +
√
αtε

(k) for
standard Gaussian noise ε(k). We now provide our main result (see Appendix A for technical details).

Theorem 2. For time t ≥ 0 and j ≥ i,QiXj(t)
d
= Xi(t). Furthermore ifXi(t) =

∑i
j=0 X̂

(j)(t)·φ̂j ,
be the decomposition of Xi(t) in its Haar wavelet frequencies (see Appendix C). Each component
X̂(j)(t) of the vector has variance 2j−1 relative to the variance of the base Haar wavelet frequency.

7

Figure 6: PDE modelling and image segmentation with a Multi-ResNet. [Left,Middle] Rolled
out PDE trajectories (ground-truth, prediction, L2-error) from the Navier-Stokes [Left], and the
Shallow Water equation [Middle]. Figure and code as modified from [6, Figure 1]. [Right] MRI
images from WMH with overlayed ground-truth (green) and prediction (blue) mask.

Theorem 2 analyses the noising effect of a forward diffusion process in a Haar wavelet basis. It states
that the noise introduced by the forward diffusion process is more prominent in the higher-frequency
wavelet coefficients (large k), whereas the lower-frequency coefficients (small k) preserves the signal.
Optimal recovery of the signal in such scenario has been investigated in [43], where soft thresholding
of the wavelet coefficients provides a good L2 estimator of the signal and separates this from the data.
In other words, if we add i.i.d. noise to an image, we are noising the higher frequencies faster than
the lower frequencies. In particular, high frequencies are dominated by noise exponentially faster. It
also states that the noising effect of our diffusion on resolution i, compared to the variance of the base
frequency i = 0, blows up the higher-frequency details as i→∞ for any positive diffusion time.

We postulate that U-Nets with average pooling exploit precisely this observation. Recall that the
primary objective of a U-Net in denoising diffusion models is to separate the signal from the noise
which allows reversing the noising process. In the ’learning noise’ or ε recovery regime, the network
primarily distinguishes the noise from the signal in the input. Yet, our analysis remains relevant, as it
fundamentally pertains to the signal-to-noise ratio. Through average pooling, the U-Net discards those
higher-frequency subspaces which are dominated by noise, because average pooling is conjugate
to projection in a Haar wavelet basis [20, Theorem 2]. This inductive bias enables the encoder and
decoder networks to focus on the signal on a low enough frequency which is not dominated by noise.
As the subspaces are coupled via preconditioning, the U-Net can learn the signal which is no longer
dominated by noise, added on each new subspace. This renders U-Nets a computationally efficient
choice in diffusion models and explains their ubiquitous use in this field.

5 Experiments

We conduct three main experimental analyses: (A) Multi-ResNets which feature an encoder with no
learnable parameters as an alternative to classical Residual U-Nets, (B) Multi-resolution training and
sampling, (C) U-Nets encoding the topological structure of triangular data. We refer to Appendix B.4
for our Ablation Studies, where a key result is that U-Nets crucially benefit from the skip connections,
hence the encoder is successful and important in compressing information. We also analyse the
multi-resolution structure in U-Nets, and investigate different orthogonal wavelet bases. These
analyses are supported by experiments on three tasks: (1) Generative modelling of images with
diffusion models, (2) PDE Modelling, and (3) Image segmentation. We choose these tasks as U-Nets
are a go-to and competitive architecture for them. We report the following performance metrics with
mean and standard deviation over three random seeds on the test set: FID score [44] for (1), rollout
mean-squared error (r-MSE) [6] for (2), and the Sørensen–Dice coefficient (Dice) [45, 46] for (3).
As datasets, we use MNIST [47], a custom triangular version of MNIST (MNIST-Triangular) and
CIFAR10 [48] for (1), Navier-stokes and Shallow water equations [49] for (2), and the MICCAI
2017 White Matter Hyperintensity (WMH) segmentation challenge dataset [50, 51] for (3). We provide
our PyTorch code base at https://github.com/FabianFalck/unet-design. We refer to Appendices B, and
D for details on experiments, further experimental results, the datasets, and computational resources
used.

8

https://github.com/FabianFalck/unet-design

Table 1: Quantitative performance of the (Haar wavelet) Multi-ResNet compared to a classical (Haar
wavelet) Residual U-Net on two PDE modelling and an image segmentation task.

Dataset Neural architecture # Params. r-MSE ↓ / Dice ↑

N
av

ie
r-

st
ok

es
1
2
8
×

1
2
8 Residual U-Net 34.5 M 0.0057± 2 · 10−5

Multi-ResNet, no params. added in dec. (ours) 15.7 M 0.0107± 9 · 10−5

Multi-ResNet, saved params. added in dec. (ours) 34.5 M 0.0040± 2 · 10−5

Sh
al

lo
w

w
at

er
9
6
×

1
9
2 Residual U-Net 34.5 M 0.1712± 0.0005

Multi-ResNet, no params. added in dec. (ours) 15.7 M 0.4899± 0.0156
Multi-ResNet, saved params. added in dec. (ours) 34.5 M 0.1493± 0.0070

W
M

H
2
0
0
×

2
0
0 Residual U-Net 2.2 M 0.8069± 0.0234

Multi-ResNet, no params. added in dec. (ours) 1.0 M 0.8190± 0.0047
Multi-ResNet, saved params. added in dec. (ours) 2.2 M 0.8346± 0.0388

5.1 The role of the encoder in a U-Net

MNIST CIFAR10

32 x 32 (at 20 K iter.) 16 x 16 (at 15 K iter.)

8 x 8 (at 10 K iter.) 4 x 4 (at 5 K iter.)

32 x 32 (at 1 M iter.) 16 x 16 (at 150 K iter.)

8 x 8 (at 100 K iter.) 4 x 4 (at 50 K iter.)

Figure 7: Preconditioning enables multi-
resolution training and sampling of diffusion
models.

In §3.1 we motivated Multi-ResNets, Residual U-
Nets with identity operators as encoders over Haar
wavelet subspaces V = W of V = W = L2(X).
We analysed the role of the encoder as learning a
change of basis map and found that it does not need
to do any work, if V , the initial basis, is chosen
optimally for the problem at hand. Here, we put
exactly this hypothesis derived from our theory to
a test. We compare classical (Haar wavelet) Resid-
ual U-Nets with a (Haar wavelet) Multi-ResNet. In
Table 1, we present our results quantified on tra-
jectories from the Navier-stokes and Shallow
water PDE equations unrolled over several time
steps and image segmentation as illustrated in Fig-
ure 6. Our results show that Multi-ResNets have
competitive and sometimes superior performance
when compared to a classical U-Net with roughly the
same number of parameters. Multi-ResNets outper-
form classical U-Nets by 29.8%, 12.8% and 3.4%
on average over three random seeds, respectively. In
Appendix B.1, we also show that U-Nets outperform
FNO [52], another competitive architecture for PDE
modelling, in this experimental setting.

For the practitioner, this is a rather surprising result. We can simplify classical U-Nets by replacing
their parameterised encoder with a fixed, carefully chosen hierarchy of linear transformation as
projection operators Pi, here a multi-level Discrete Wavelet Transform (DWT) using Haar wavelets,
and identity operators for Ei. This ‘DWT encoder’ has no learnable parameters and comes at
almost no computational cost. We then add the parameters we save into the decoder and achieve
competitive and—on certain problems—strictly better performance when compared with a classical
U-Net. However, as we show for generative modelling with diffusion models in Appendix B.1,
Multi-ResNets are competitive with, yet inferior to Residual U-Nets, because the initial basis which V
imposes is suboptimal and the encoder would benefit from learning a better basis. This demonstrates
the strength of our framework in understanding the role of the encoder and when it is useful to
parameterise it, which depends on our problem at hand. It is now obvious that future empirical work
should explore how to choose V (andW) optimally, possibly eliminating the need of a parameterised
encoder, and also carefully explore how to optimally allocate and make use of the (saved) parameters
in Multi-ResNets [53, 54].

9

5.2 Staged training enables multi-resolution training and inference

Figure 8: U-Nets encode the geo-
metric structure of data.

Having characterised the self-similarity structure of U-Nets in
§2, a natural idea is to explicitly train the U-Net U on resolution
i − 1 first, then train the U-Net on resolution i while precon-
ditioning on Ui−1, continuing recursively. Optionally, we can
freeze the weights of Ui−1 upon training on resolution i − 1.
We formalise this idea in Algorithm 1. Algorithm 1 enables
training and inference of U-Nets on multiple resolutions, for
instance when several datasets are available. It has two ad-
ditional advantages. First, it makes the U-Net modular with
respect to data. When data on a higher-resolution is available,
we can reuse our U-Net pretrained on a lower-resolution in a
principled way. Second, it enables to checkpoint the model
during prototyping and experimenting with the model as we
can see low-resolution outputs of our U-Net early.

In Figure 7 we illustrate samples from a DDPM diffusion model
[8] with a Residual U-Net trained with Algorithm 1. We use im-
ages and noise targets on multiple resolutions (CIFAR10/MNIST:
{4 × 4, 8 × 8, 16 × 16, 32 × 32}) as inputs during each training stage. We observe high-fidelity
samples on multiple resolutions at the end of each training stage, demonstrating how a U-Net trained
via Algorithm 1 can utilise the data available on four different resolutions. It is also worth noting
that training with Algorithm 1 as opposed to single-stage training (as is standard practice) does not
substantially harm performance of the highest-resolution samples: (FID on CIFAR10: staged training:
8.33± 0.010; non-staged training: 7.858± 0.250). We present results on MNIST, Navier-Stokes
and Shallow water, with Multi-ResNets, and with a strict version of Algorithm 1 where we freeze
Eθi and Dθ

i after training on resolution i in Appendix B.2.

5.3 U-Nets encoding topological structure
Algorithm 1 Multi-resolution training and sam-
pling via preconditioning.

Require: Boolean FREEZE.
1: for i← {1, . . . , J} do
2: if i > 1 then
3: Precondition on Ui−1.
4: Train Ui
5: if FREEZE is True then
6: Freeze Eθ

i and Dθ
i (fix parameters).

In §3.3, we showed how to design U-Nets with a
natural basis on a triangular domain, which encodes
the topological structure of a problem into its archi-
tecture. Here, we provide proof-of-concept results
for this U-Net design. In Figure 8, we illustrate
samples from a DDPM diffusion model [8] with a
U-Net where we choose V andW as Haar wavelet
subspaces of W = V = L2(4) (see §3.3), ResNet
encoders and decoders and average pooling. The
model was trained on MNIST-Triangular, a custom version of MNIST with the digit and support
over a right-angled triangle. While we observe qualitatively correct samples from this dataset, we note
that these are obtained with no hyperparameter tuning to improve their fidelity. This experiment has a
potentially large scope as it paves the way to designing natural U-Net architectures on tessellations of
complicated geometries such as spheres, manifolds, fractals, or CW-complexes.

6 Conclusion

We provided a framework for designing and analysing U-Nets. Our work has several limitations: We
put particular emphasis on Hilbert spaces as the decoder spaces. We focus on orthogonal wavelet
bases, in particular of L2(X) or L2(4), while other bases could be explored (e.g. Fourier frequencies,
radial basis functions). Our framework is motivated by subspace preconditioning, with requires
the user to actively design and choose which subspaces they wish to precondition on. Our analysis
of signal and noise concentration in Theorem 2 has been conducted for a particular, yet common
choice of denoising diffusion model, with one channel, and with functions supported on one spatial
dimension only, but can be straight-forwardly extended with the use of a Kronecker product. Little to
no tuning is performed how to allocate the saved parameters in Multi-ResNet in §5.1. We design and
empirically demonstrate U-Nets on triangles, while one could choose a multitude of other topological
structures. Lastly, future work should investigate optimal choices of U for domain-specific problems.

10

Acknowledgments and Disclosure of Funding

Christopher Williams acknowledges support from the Defence Science and Technology (DST) Group
and from a ESPRC DTP Studentship. Fabian Falck acknowledges the receipt of studentship awards
from the Health Data Research UK-The Alan Turing Institute Wellcome PhD Programme (Grant Ref:
218529/Z/19/Z), and the Enrichment Scheme of The Alan Turing Institute under the EPSRC Grant
EP/N510129/1. Chris Holmes acknowledges support from the Medical Research Council Programme
Leaders award MC_UP_A390_1107, The Alan Turing Institute, Health Data Research, U.K., and the
U.K. Engineering and Physical Sciences Research Council through the Bayes4Health programme
grant. Arnaud Doucet acknowledges support of the UK Defence Science and Technology Laboratory
(Dstl) and EPSRC grant EP/R013616/1. This is part of the collaboration between US DOD, UK
MOD and UK EPSRC under the Multidisciplinary University Research Initiative. Saifuddin Syed
and Arnaud Doucet also acknowledge support from the EPSRC grant EP/R034710/1.

The authors report no competing interests.

This research is supported by research compute from the Baskerville Tier 2 HPC service. Baskerville
is funded by the EPSRC and UKRI through the World Class Labs scheme (EP/T022221/1) and the
Digital Research Infrastructure programme (EP/W032244/1) and is operated by Advanced Research
Computing at the University of Birmingham.

References
[1] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for

biomedical image segmentation. In International Conference on Medical Image Computing
and Computer-assisted Intervention, pages 234–241. Springer, 2015.

[2] Nahian Siddique, Sidike Paheding, Colin P Elkin, and Vijay Devabhaktuni. U-net and its
variants for medical image segmentation: A review of theory and applications. Ieee Access,
9:82031–82057, 2021.

[3] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang.
Unet++: A nested u-net architecture for medical image segmentation. In Deep Learning
in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th
International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in
Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4, pages
3–11. Springer, 2018.

[4] Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias Heinrich, Kazunari Misawa,
Kensaku Mori, Steven McDonagh, Nils Y Hammerla, Bernhard Kainz, et al. Attention u-net:
Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999, 2018.

[5] Zoe Landgraf, Fabian Falck, Michael Bloesch, Stefan Leutenegger, and Andrew J Davison.
Comparing view-based and map-based semantic labelling in real-time slam. In 2020 IEEE
International Conference on Robotics and Automation (ICRA), pages 6884–6890. IEEE, 2020.

[6] Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized
pde modeling. arXiv preprint arXiv:2209.15616, 2022.

[7] Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani,
Dirk Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine
learning. Advances in Neural Information Processing Systems, 35:1596–1611, 2022.

[8] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840–6851, 2020.

[9] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
International Conference on Learning Representations, 2021.

[10] Alex Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. arXiv
preprint arXiv:2102.09672, 2021.

11

[11] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10684–10695, 2022.

[12] Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
bridge with applications to score-based generative modeling. In Advances in Neural Information
Processing Systems, volume 34, 2021.

[13] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–
276, 1998.

[14] Shun-ichi Amari, Jimmy Ba, Roger Grosse, Xuechen Li, Atsushi Nitanda, Taiji Suzuki, Denny
Wu, and Ji Xu. When does preconditioning help or hurt generalization? arXiv preprint
arXiv:2006.10732, 2020.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[16] Valentin De Bortoli, Emile Mathieu, Michael Hutchinson, James Thornton, Yee Whye Teh, and
Arnaud Doucet. Riemannian score-based generative modeling. arXiv preprint arXiv:2202.02763,
2022.

[17] Fenqiang Zhao, Zhengwang Wu, Li Wang, Weili Lin, John H Gilmore, Shunren Xia, Dinggang
Shen, and Gang Li. Spherical deformable u-net: Application to cortical surface parcellation and
development prediction. IEEE transactions on medical imaging, 40(4):1217–1228, 2021.

[18] Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine learning,
pages 2083–2092. PMLR, 2019.

[19] Emilien Dupont, Yee Whye Teh, and Arnaud Doucet. Generative models as distributions of
functions. arXiv preprint arXiv:2102.04776, 2021.

[20] Fabian Falck, Christopher Williams, Dominic Danks, George Deligiannidis, Christopher Yau,
Chris C Holmes, Arnaud Doucet, and Matthew Willetts. A multi-resolution framework for
u-nets with applications to hierarchical vaes. volume 35, pages 15529–15544, 2022.

[21] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

[22] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

[23] Alfred Haar. Zur theorie der orthogonalen funktionensysteme. Georg-August-Universitat,
Gottingen., 1909.

[24] Jong Chul Ye, Yoseob Han, and Eunju Cha. Deep convolutional framelets: A general deep
learning framework for inverse problems. SIAM Journal on Imaging Sciences, 11(2):991–1048,
2018.

[25] Z. Ramzi, K. Michalewicz, JL. Starck, et al. Wavelets in the deep learning era. J Math Imaging
Vis, 65:240–251, 2023.

[26] P. Liu, H. Zhang, K. Zhang, L. Lin, and W. Zuo. Multi-level wavelet-cnn for image restoration.
In Proceedings of the IEEE conference on computer vision and pattern recognition workshops,
pages 773–782, 2018.

[27] William H Reed and Thomas R Hill. Triangular mesh methods for the neutron transport equation.
Technical report, Los Alamos Scientific Lab., N. Mex.(USA), 1973.

[28] Kamrul Hasan Talukder and Koichi Harada. Haar wavelet based approach for image compression
and quality assessment of compressed image. arXiv preprint arXiv:1010.4084, 2010.

[29] Stéphane Mallat. A Wavelet Tour of Signal Processing. Elsevier, 1999.

12

[30] Rewon Child. Very deep vaes generalize autoregressive models and can outperform them on
images. arXiv preprint arXiv:2011.10650, 2020.

[31] Shmuel Agmon. Lectures on elliptic boundary value problems, volume 369. American
Mathematical Soc., 2010.

[32] Susanne C Brenner, L Ridgway Scott, and L Ridgway Scott. The mathematical theory of finite
element methods, volume 3. Springer, 2008.

[33] Bernardo Cockburn, George E Karniadakis, and Chi-Wang Shu. The development of discontinu-
ous Galerkin methods. Springer, 2000.

[34] Barry Boots, Kokichi Sugihara, Sung Nok Chiu, and Atsuyuki Okabe. Spatial tessellations:
concepts and applications of voronoi diagrams. 2009.

[35] Boris Delaunay. Sur la sphère vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i
Estestvennyka Nauk, 7(793-800):1–2, 1934.

[36] Der-Tsai Lee and Bruce J Schachter. Two algorithms for constructing a Delaunay triangulation.
International Journal of Computer & Information Sciences, 9(3):219–242, 1980.

[37] Aryan Verma. Triangulations Using Matplotlib. https://www.scaler.com/topics/
matplotlib/matplotlib-triangulation/.

[38] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv
preprint arXiv:2011.13456, 2020.

[39] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In
Advances in Neural Information Processing Systems, volume 34, 2021.

[40] Diederik P. Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational Diffusion Models.
In Advances in Neural Information Processing Systems, volume 34, 2021.

[41] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al.
Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint
arXiv:2205.11487, 2022.

[42] Florentin Guth, Simon Coste, Valentin De Bortoli, and Stephane Mallat. Wavelet score-based
generative modeling. arXiv preprint arXiv:2208.05003, 2022.

[43] David L Donoho. De-noising by soft-thresholding. IEEE transactions on information theory,
41(3):613–627, 1995.

[44] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

[45] Thorvald A Sorensen. A method of establishing groups of equal amplitude in plant sociology
based on similarity of species content and its application to analyses of the vegetation on danish
commons. Biol. Skar., 5:1–34, 1948.

[46] Lee R Dice. Measures of the amount of ecologic association between species. Ecology,
26(3):297–302, 1945.

[47] Yann LeCun, Corinna Cortes, and C. J. Burges. MNIST handwritten digit database. http:
//yann.lecun.com/exdb/mnist/, 2010.

[48] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[49] Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized
pde modeling. arXiv preprint arXiv:2209.15616, 2022.

13

https://www.scaler.com/topics/matplotlib/matplotlib-triangulation/
https://www.scaler.com/topics/matplotlib/matplotlib-triangulation/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

[50] Hugo J Kuijf, J Matthijs Biesbroek, Jeroen De Bresser, Rutger Heinen, Simon Andermatt,
Mariana Bento, Matt Berseth, Mikhail Belyaev, M Jorge Cardoso, Adria Casamitjana, et al.
Standardized assessment of automatic segmentation of white matter hyperintensities and results
of the wmh segmentation challenge. IEEE transactions on medical imaging, 38(11):2556–2568,
2019.

[51] Hongwei Li, Gongfa Jiang, Jianguo Zhang, Ruixuan Wang, Zhaolei Wang, Wei-Shi Zheng,
and Bjoern Menze. Fully convolutional network ensembles for white matter hyperintensities
segmentation in mr images. NeuroImage, 183:650–665, 2018.

[52] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differen-
tial equations. arXiv preprint arXiv:2010.08895, 2020.

[53] William Peebles and Saining Xie. Scalable diffusion models with transformers. arXiv preprint
arXiv:2212.09748, 2022.

[54] Allan Jabri, David Fleet, and Ting Chen. Scalable adaptive computation for iterative generation.
arXiv preprint arXiv:2212.11972, 2022.

[55] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

[56] Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo.
Reliable fidelity and diversity metrics for generative models. In International Conference on
Machine Learning, pages 7176–7185. PMLR, 2020.

[57] Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly. As-
sessing generative models via precision and recall. Advances in neural information processing
systems, 31, 2018.

[58] Michael F Barnsley. Fractals everywhere. Academic press, 2014.

[59] Christoph Bandt, Nguyen Hung, and Hui Rao. On the open set condition for self-similar fractals.
Proceedings of the american mathematical society, 134(5):1369–1374, 2006.

[60] Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. simple diffusion: End-to-end diffusion
for high resolution images. arXiv preprint arXiv:2301.11093, 2023.

[61] Jens Behrmann, Will Grathwohl, Ricky TQ Chen, David Duvenaud, and Jörn-Henrik Jacobsen.
Invertible residual networks. In International Conference on Machine Learning, pages 573–582.
PMLR, 2019.

[62] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ronneberger.
3d u-net: learning dense volumetric segmentation from sparse annotation. In Medical Image
Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference,
Athens, Greece, October 17-21, 2016, Proceedings, Part II 19, pages 424–432. Springer, 2016.

[63] Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Petersen, and Klaus H Maier-Hein. nnu-net:
a self-configuring method for deep learning-based biomedical image segmentation. Nature
methods, 18(2):203–211, 2021.

[64] Fabian Isensee, Jens Petersen, Andre Klein, David Zimmerer, Paul F Jaeger, Simon Kohl, Jakob
Wasserthal, Gregor Koehler, Tobias Norajitra, Sebastian Wirkert, et al. nnu-net: Self-adapting
framework for u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486,
2018.

[65] Simon Kohl, Bernardino Romera-Paredes, Clemens Meyer, Jeffrey De Fauw, Joseph R Ledsam,
Klaus Maier-Hein, SM Eslami, Danilo Jimenez Rezende, and Olaf Ronneberger. A probabilistic
u-net for segmentation of ambiguous images. Advances in neural information processing
systems, 31, 2018.

14

[66] Patrick Esser, Ekaterina Sutter, and Björn Ommer. A variational u-net for conditional appearance
and shape generation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 8857–8866, 2018.

[67] Thorsten Falk, Dominic Mai, Robert Bensch, Özgün Çiçek, Ahmed Abdulkadir, Yassine
Marrakchi, Anton Böhm, Jan Deubner, Zoe Jäckel, Katharina Seiwald, et al. U-net: deep
learning for cell counting, detection, and morphometry. Nature methods, 16(1):67–70, 2019.

[68] Zhengxin Zhang, Qingjie Liu, and Yunhong Wang. Road extraction by deep residual u-net.
IEEE Geoscience and Remote Sensing Letters, 15(5):749–753, 2018.

[69] Nahian Siddique, Paheding Sidike, Colin Elkin, and Vijay Devabhaktuni. U-net and its variants
for medical image segmentation: theory and applications. arXiv preprint arXiv:2011.01118,
2020.

[70] Nabil Ibtehaz and M Sohel Rahman. Multiresunet: Rethinking the u-net architecture for
multimodal biomedical image segmentation. Neural networks, 121:74–87, 2020.

[71] Mert Lostar and Islem Rekik. Deep hypergraph u-net for brain graph embedding and classifica-
tion. arXiv preprint arXiv:2008.13118, 2020.

[72] Wenchong He, Zhe Jiang, Chengming Zhang, and Arpan Man Sainju. Curvanet: Geometric
deep learning based on directional curvature for 3d shape analysis. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
2214–2224, 2020.

[73] Ingrid Daubechies. Ten lectures on wavelets. SIAM, 1992.

[74] Michele Benzi. Preconditioning techniques for large linear systems: a survey. Journal of
computational Physics, 182(2):418–477, 2002.

[75] A. J. Wathen. Preconditioning. Acta Numerica, 24:329–376, 2015.

[76] Ke Chen. Matrix preconditioning techniques and applications, volume 19. Cambridge Univer-
sity Press, 2005.

[77] Eli Turkel. Preconditioning techniques in computational fluid dynamics. Annual Review of
Fluid Mechanics, 31(1):385–416, 1999.

[78] Wolfgang Dahmen and Angela Kunoth. Multilevel preconditioning. Numerische Mathematik,
63(1):315–344, 1992.

[79] O Axclsson and Panayot S Vassilevski. Algebraic multilevel preconditioning methods. i.
Numerische Mathematik, 56(2-3):157–177, 1989.

[80] Owe Axelsson and Panayot S Vassilevski. Algebraic multilevel preconditioning methods, ii.
SIAM Journal on Numerical Analysis, 27(6):1569–1590, 1990.

[81] Li Zhang, Hengyuan Ma, Xiatian Zhu, and Jianfeng Feng. Preconditioned score-based genera-
tive models. arXiv preprint arXiv:2302.06504, 2023.

[82] Lukas Biewald. Experiment tracking with weights and biases, 2020. Software available from
wandb.com.

[83] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems,
pages 8024–8035, 2019.

[84] Fergal Cotter. Uses of complex wavelets in deep convolutional neural networks. PhD thesis,
University of Cambridge, 2020.

15

[85] Gregory Lee, Ralf Gommers, Filip Waselewski, Kai Wohlfahrt, and Aaron O’Leary. Pywavelets:
A python package for wavelet analysis. Journal of Open Source Software, 4(36):1237, 2019.

[86] William Falcon and The PyTorch Lightning team. PyTorch Lightning, March 2019.

[87] J. D. Hunter. Matplotlib: A 2D graphics environment. Computing in Science & Engineering,
9(3):90–95, 2007.

[88] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, et al. Array
programming with NumPy. Nature, 585(7825):357–362, 2020.

[89] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[90] pyyaml contributors. pyyaml. https://github.com/yaml/pyyaml, 2006.

[91] tqdm contributors. Imageio. https://github.com/tqdm/tqdm, 2022.

[92] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[93] Guido Van Rossum. The Python Library Reference, release 3.8.2. Python Software Foundation,
2020.

[94] OpenAI. Gpt-4 technical report, 2023.

16

https://github.com/yaml/pyyaml
https://github.com/tqdm/tqdm

Appendix for A Unified Framework for U-Net Design and Analysis

A Theoretical Details and Technical Proofs

A.1 Proofs of theoretical results in the main text

Theorem 1 Suppose U∗i and U∗ are solutions of the L2 regression problem. Then, Li|j(U∗i)2 ≤
L|j(U∗)2 with equality as i→∞. Further, if QiU∗ is Vi-measurable, then U∗i = QiU

∗ minimises
Li.

Proof. Let U = (V,W, E ,D,P, U0) be a U-Net in canonical form, that is where each encoder map
Ei in E is set to be the identity map, and further assume W is a Hilbert space with W being a
sequence of subspaces spanned by orthogonal basis vectors for W . For a V -valued random variable
v, define the σ-algebra

Hj := σ(Pjv) = σ(vj). (4)

Now the filtration

H1 ⊂ H2 ⊂ · · · (5)

increases toH := σ(v). These are the σ-algebras generated by vj . For data w ∈W , we may define
the losses

L2
i|j(Ui|j) :=

1

|S|
∑

(wi,vj)∈S

‖wi − Ui|j(vj)‖2, (6)

for Ui|j : Vj 7→ Wi where wi = Qiw. Let Fi|j be the set of measurable functions from Vj to Wi,
then the conditional expectation E(wi|vj) is given by the solution of the regression problem

E(wi|vj) = arg min
Ui|j∈Fi|j

L2
i|j(Ui|j), (7)

where the conditioning is respect to the σ-algebraHj for the response variable wi. For a fixed i < i′

and any j > 0 we have that

L2
i′|j(Ui′|j) =

1

|S|
∑

(wi′ ,vj)∈S

‖wi′ − Ui′|j(vj)‖2 (8)

=
1

|S|
∑

(wi′ ,vj)∈S

(
‖Qi(wi′ − Ui′|j(vj))‖2 + ‖Q⊥i (wi′ − Ui′|j(vj))‖2

)
(9)

= L2
i|j(QiUi′|j) +

1

|S|
∑

(wi′ ,vj)∈S

‖Q⊥i (wi′ − Ui′|j(vj))‖2. (10)

Any Ui′|j admits the parameterisation Ui′|j = Ui|j + U⊥,ii′|j where Ui|j is in Fi|j and U⊥,ii′|j ∈ Fi′|j
and vanishes on Wi. Under this parameterisaiton we gain

L2
i′|j(Ui′|j) = L2

i|j(Ui|j) +
1

|S|
∑

(wi′ ,vj)∈S

‖Q⊥i (wi′ − U⊥,ii′|j (vj))‖2, (11)

and further,

arg min
Ui′|j∈Fi′|j

L2
i′|j(Ui′|j) = arg min

Ui|j∈Fi|j

L2
i|j(Ui,j) + arg min

U⊥,i

i′|j

1

|S|
∑

(wi′ ,vj)∈S

‖Q⊥i (wi′ − U⊥,ii′|j (vj))‖2.

(12)

In particular, when i′ →∞, if we define L|j to be the loss on W then

arg min
U|j∈F|j

L2
|j(U|j) = arg min

Ui|j∈Fi|j

L2
i|j(Ui|j) + arg min

U⊥,i
|j

∑
(w,vj)∈S

‖Q⊥i (w − U⊥,i|j (vj))‖2. (13)

17

So for any j, we have that Li|j(U∗i|j) ≤ L|j(U
∗
|j). Further, as i→∞, the truncation error∑

(w,vj)∈S

‖Q⊥i (w − U⊥,i|j (vj))‖2, (14)

tends to zero. Now assume that QiU∗ is Vi-measurable then QiU∗ ∈ Fi|j and if this did not
minimise Li|j , then choosing the minimiser of Li|j and constructing U = U∗i + U⊥,i will have
L2(U) < L2(U∗), contradicting U∗ being optimal.

Proposition 1 If U is a residual U-Net, thenUi is a ResNet preconditioned onUpre
i (vi) = Ui−1(ṽi−1),

where ṽi−1 = Pi−1(Ei(vi)).

Proof. For a ResNet R(vi) = Rpre(vi) + Rres(vi) select Rpre(vi) = Ui−1(ṽi−1) where ṽi−1 =
Pi−1(Ei(vi)).

Theorem 2 For time t ≥ 0 and j ≥ i, QiXj(t)
d
= Xi(t). Furthermore ifXi(t) =

∑i
j=0 X̂

(j)(t) · φ̂j ,
be the decomposition of Xi(t) in its Haar wavelet frequencies (see Appendix C). Each component
X̂(j)(t) of the vector has variance 2j−1 relative to the variance of the base Haar wavelet frequency.

Proof. Let Xi ∈ Vi represented in the standard basis Φ = {φk : k = 1, . . . , 2i} giving

Xi =
∑
k

X
(k)
i φk. (15)

To transform this into its Haar wavelet representation where average-pooling is conjugate to basis
projection, we can use the map Ti : Vi 7→ Vi defined by

Ti = ΛiHi, (16)

where Hi is the Haar-matrix on resolution i and Λi is a diagonal scaling matrix with entries

(Λi)k,k = 2−i+j−1, if k ∈ {2j−1, . . . , 2j}, (17)

for j > 0 and equal to 2−i for the initial case j = 0. For example, the matrix for a four-pixel image is

2−2 ·

1 0 0 0
0 1 0 0
0 0 21 0
0 0 0 21

1 1 1 1

1 1 −1 −1
1 −1 0 0
0 0 1 −1

 = Λ2H2. (18)

Now given the vector of coefficients Xi = (X
(k)
i)2

i

k=1, the coefficients in the Haar frequencies can
be given by

X̂i := Ti(Xi). (19)

We define the vectors

(X̂j)k = (Ti(Xi))k+2j−1 , (20)

for j ∈ {1, . . . , 2j−1}. Now we may write Xi in terms of its various frequency components as

Xi =

i∑
j=0

X̂(j) · φ̂j . (21)

Suppose that Xi is a time varying random variable on Vi that evolve according to

X
(k)
i (t) :=

√
1− αtX(k)

i +
√
αtε

(k), (22)

18

when represented in its pixel basis where ε(k) is a standard normally distributed random variable. We
may represent Xi in its frequencies, with a random and time dependence on the coefficient vectors,

Xi =

i∑
j=0

X̂(j)(t) · φ̂j . (23)

To analyse the variance of X̂(j)(t), we may analyse the variance of a standard normally distributed ran-
dom vector εi = (εk)2

i

k=1 under the mapping Ti. Due to the symmetries in the matrix representation
for Ti, the variance for each element of X̂(j)(t) is the same, and by direct computation

VAR (Tiεi)k = 2−i+j−1 for i > 0, k ∈ {2j−1, . . . , 2j}, (24)

and 2−i for when i = 0. To see this note that
VAR (Tiεi) = VAR(ΛiHiεi) = Λ2

iVAR(Hiεi), (25)
as Λi is a diagonal matrix. Now each of the elements of εi are independent and normally distributed,
so if (Hi)k,: is the kth row of Hi, then

VAR(Hiεi)k = VAR((Hi)k,:εi) = ‖(Hi)k,:‖0, (26)
where ‖(Hi)k,:‖0 is the amount of non-zero elements of (Hi)k,: as each entry of Hi is 0, or
±1. For (Hi)k,: where k ∈ {2j−1, . . . , 2j} there are 2i−j+1 entries. Further, in this position
we have (Λi)k = 2−i+j−1, so putting this together finishes the count. Now see that for the
evolution of X(k)

i (t), the random part of Eq. (22) is simply a Gaussian random vector multiplied
by
√
αt. Therefore we have that VARX(k)

i (t) = αt2
−i+j−1. To get the relative frequency, for k

we divide this variance by the variance of the base frequency, the zeroth resolution. This yields
αt2
−i+j−1/αt2

−i = 2j−1.

Now we show how the diffusion on a given resolution i can be embedded into a higher resolution of
i+ 1, which maintains consistency with the projection map Qi. Define the diffusion on i+ 1 to be

X
(k)
i+1(t) :=

√
1− αtX(k)

i+1 +
√

2αtε
(k) (27)

Let X̂(j)
i (t) be the Haar coefficients for the inital diffusion defined on resolution i and X̂(j)

i (t) be
the coefficients defined on resolution i+ 1. Both of these random vectors are linear transformations
of Gaussian random vectors, so we need only confirm that the means and variances on the first j

entries agree to show that these are equal in distribution. If X(k)
i =

X
(k)
i+1+X

(k+1)
i+1

2 , that is the initial
data on resolution i+ 1 averages to the initial data on resolution i, then by construction the means of
the random vectors X̂(j)

i (t) and X̂(j)
i+1(t) agree for the first i resolutions. Note that the variances for

the components of the noise for either process are 2−i+j−1 when the diffusion on i+ 1 is given by
Eq. (27). In general, for the process on i+ ` to embed into our original diffusion on resolution i we
require scaling the noise term by a factor of 2`/2. Again, this shows that the noising process on a
frequency i has the natural extension noising the high-frequency components exponentially faster
than the reference frequency i.

We may comment on how this is represented in its natural sequence space. Assume that Xi ∈ Vi ⊂
L2([0, 1]). There is a natural mapping from Vi to `2 defined by

`2 := {s|
∞∑
k=0

s2k <∞} (28)

through the mapping π : L2([0, 1]) 7→ `2 via

π(Xi) = (X̂(1), X̂(2), . . .). (29)
For elements Xi ∈ Vi the image of π is not surjective and has image contained in `00 — the set
of infinite sequences which eventually are zero. In this case we have a finite dimensional mapping.
Theorem 2 simply states that the forward noising process in a diffusion model, under transformation
into its Haar basis, has variance

VAR (πXi)k = 2−i+j−1 for i > 0, k ∈ {2j−1, . . . , 2j}, (30)
implying that the sequence image of the datum has monotonically increasing variance in the Haar
wavelet sequence space.

19

A.2 Diffusions on the sphere.

Suppose that we have L2(X) valued data on the globe and we would like to form a diffusion model
on this domain. Instead of constructing a local change of coordinate system over a manifold and
projecting our diffusion to a square domain[16], we could simply design our U-Net to encode our
geometry. As an example of this, we can take a standard triangulation of the globe, then apply our
triangular basis U-Net directly to our data.

For the data on the globe, we could then choose a resolution i to refine our triangular domain to, see
Figure 9 for a refinement level of i = 2 which could be used to tessellate the globe. For each ‘triangle
pixel’ in our refinement, we could define the diffusion process

X i
t =
√

1− α̃X i
0 +
√
α̃εi, (31)

where i is a string of length i+ 1 encoding which triangle on the globe the pixel is in, then which
‘triangular pixel’ we are in. We can construct Haar wavelets on the triangle (see Figure 3.3), and
hence create natural projection maps in L2 over this domain. In this case W0 is the span of constant
functions over each large triangle for the tessellation of the globe, and each Wi is W0 along with the
span of the wavelets of resolution i over each triangle. Like in the standard diffusion case, we choose
Vi = Wi and can use the mapping given in Section 5.2 to construct the natural U-Net design for this
geometry, and for this basis. Similarly, for any space that we can form a triangulation for, we can
use this construction to create the natural Haar wavelet space for this geometry, define a diffusion
analogously, and implement the natural U-Net design for learning.

11
14

13

12

42
44

43

41

21

23

24
22

31
34

32

33

Figure 9: Triangulation of the globe with a self-similar triangle which admits a Haar wavelet basis.
Upon refinement through the self-similarity of the triangle we receive finer and finer approximations
of the globe, and of functions over it.

A.3 U-Nets on Finite Elements

PDE surrogate modelling is a nascent research direction in machine learning research. We have seen
in our PDE experiment (see Section 5) that our Multi-ResNet design outperforms Residual U-Nets
on a square domain. We would like to mimic this in more general geometries and function spaces.
Here, we will show on the unit interval how to design a U-Net over basis functions which enforce
boundary constraints and smoothness assumptions, mimicking the design of Finite Elements used for
PDE solvers.

Recall our model problem

∆u = f, u(0) = u(1) = 0, (32)

which when multiplied by a test function φ ∈ H1
0([0, 1]) and integrated over the domain puts the

equation into its weak form, and by integration by parts

−〈φ′, u′〉H1
0

=

∫
φf, (33)

we recover the standard bilinear representation of Laplaces equation. Now if our solution u ∈
H1

0([0, 1]) and we have an orthogonal basis {φi,k} forH1
0([0, 1]), then the coefficients for the basis

elements of the solution can be solved by finding the solution of a linear system with a diagonal

20

mass matrix. Thus, in this way, the information needed to solve the linear system up to some finite
resolution i, only depends on data up to that resolution in this weak form. This is a Galerkin truncation
of the PDE used for forward solvers on finite resolutions, but also gives us the ideal assumptions we
need for the construction of our U-Net (the measurability constraint in Theorem 1).

For an explicit example, we may make an orthogonal basis for H1
0([0, 1]) with the initial basis

function [Left] of Figure 4 and its refined children on the [Right] of Figure 4.

In general we can refine further and create a basis of resolution i through

φk,j(x) = φ(2kx+ j/2k), φ(x) = 2x · 1[0,1/2)(x) + (2− 2x) · 1[1/2,1](x),

which are precisely the integrals of the Haar wavelets up to a given resolution. We would again
construct Wi in our U-Net as the span of the first resolution i basis functions, where we now have
additionally encoded the boundary constraints and smoothness requirements of our PDE solution into
our U-Net design.

21

B Additional experimental details and results

In this section, we provide further details on our experiments, and additional experimental results.

Model and training details. We used slightly varying U-Net architectures on the different tasks.
While we refer to our code base for details, they generally feature a single residual block per resolution
for Ei and Di, with 2 convolutional layers, and group normalisation. We in general choose Pi as
average pooling. We further use loss functions and other architectural components which are standard
for the respective tasks. This outlined U-Net architecture often required us to make several changes
to the original repositories which we used. This may also explain small differences to the results that
these repositories reported; however, our results are comparable. When using Algorithm 1 during
staged training, we require one ‘head’ and ‘tail’ network on each resolution which processes the input
and output respectively, and hence increases the number of parameters of the overall model relative
to single-stage training.

Hyperparameters and hyperparameter tuning. We performed little to no hyperparameter tuning
in our experiments. In particular, we did not perform a search (e.g. grid search) over hyperparameters.
In general, we used the hyperparameters of the original repositories as stated in Appendix D, and
changed them only when necessary, for instance to adjust the number of parameters so to enable a
fair comparison. There is hence a lot of potential to improve the performance of our experiments,
for instance of the Multi-ResNet, or the U-Net on triangular data. We refer to our code repository
for specific hyperparameter choices and further details, in particular the respective hyperparam.py
files.

Evaluation and metrics. We use the following three performance metrics in our experimental
evaluation: FID score [44], rollout mean-squared-error (r-MSE) [6], and Sørensen–Dice coefficient
(Dice) [45, 46]. As these are standard metrics, we only highlight key points that are worth noting.
We compute the FID score on a holdout dataset not used during training, and using an evaluation
model where weights are updated with the training weights using an exponential moving average (as
is common practice). The r-MSE is computed as an MSE over pieces of the PDE trajectory against
its ground-truth. Each piece is predicted in an autoregressive fashion, where the model receives the
previous predicted piece and historic observations as input [6]. All evaluation metrics are in general
computed on the test set and averaged over three random seeds after the same number of iterations
in each table, if not stated otherwise. The results are furthermore not depending on these reported
evaluation metrics: in our code base, we compute and log a large range of other evaluation metrics,
and we typically observe similar trends as in those reported.

22

B.1 Analysis 1: The role of the encoder in a U-Net

In this section, we provide further experimental results analysing the role of the encoder, and hence
Residual U-Nets with Multi-ResNets. We realise the Multi-ResNet by replacing the parameterised
encoder with a multi-level Discrete Wavelet Transform (DWT). More specifically, the skip connection
on resolution j relative to the input resolution is computed by taking the lower-lower part of the DWT
at level j (LLj), and then inverting LLj to receive a coarse, projected version of the original input
image.

Generative modelling with diffusion models. In Table 2, we analyse the role of the encoder in
generative modelling with diffusion models. Following our analysis on PDE modelling and image
segmentation, we compare (Haar wavelet) Residual U-Nets with (Haar wavelet) Multi-ResNets where
we add the saved parameters in the encoder back into the decoder. We report performance in terms
of an exponential moving average FID score [55] on the test set. In contrast to the other two tasks,
we find that diffusion models benefit from a parameterised encoder. In particular, the Multi-ResNet
does not outperform the Residual U-Net with approximately the same number of parameters, as is
the case in the other two tasks. Referring to our theoretical results in §3.1, the input space of Haar
wavelets may be a suboptimal choice for diffusion models, requiring an encoder learning a suitable
change of basis. A second possibility is the FID score itself, which is a useful, yet flawed metric
to quantify the fidelity and diversity of images [56, 57]. To underline this point, in Figure 10 we
compare samples from two runs with the Residual U-Net and Multi-ResNet as reported in Table 2.
We observe that it is very difficult to tell “by eye” which model produces higher quality samples, in
spite of the differences in FID. A third possibility is that the allocation of the saved parameters is
suboptimal. We demonstrate the importance of beneficially allocating the saved parameters in the
decoder in the context of PDE modelling below.

Table 2: Quantitative performance of the (Haar wavelet) Multi-ResNet compared to a classical (Haar
wavelet) Residual U-Net in generative modelling with diffusion models on CIFAR10. We report FID
on the test set.

Dataset Neural architecture # Params. FID ↓

C
IF

A
R

10
3
2
×

3
2 Residual U-Net 35.5 M 7.86± 0.25

Multi-ResNet, no params. added in dec. (ours) 25.8 M 14.87± 0.50
Multi-ResNet, saved params. added in dec. (ours) 32.4 M 12.44± 0.22

Residual U-Net
(35.5 M Parameters)

Multi-ResNet
(32.4 M Parameters)

Figure 10: Samples of a DDPM-type diffusion model with a Residual U-Net [Left] and a Multi-
ResNet [Right]. We trained both models for 1.2 M iterations at which we obtained the samples.

23

Lastly, we present Figure 7 from the main text at a larger resolution in Figure 11.

MNIST CIFAR10

32 x 32 (at 20 K iter.) 16 x 16 (at 15 K iter.)

8 x 8 (at 10 K iter.) 4 x 4 (at 5 K iter.)

32 x 32 (at 1 M iter.) 16 x 16 (at 150 K iter.)

8 x 8 (at 100 K iter.) 4 x 4 (at 50 K iter.)
Figure 11: Preconditioning enables multi-resolution training and sampling of diffusion models. We
train a diffusion model [8] with a Residual U-Net architecture using Algorithm 1 with four training
stages and no freezing on CIFAR10. This Figure is identical with Figure 7, but larger.

PDE modelling. We further present additional quantitative results comparing the (Haar wavelet)
Multi-ResNet with (Haar wavelet) Residual U-Nets on our PDE modelling tasks. These shall
highlight the importance of allocating the saved parameters in Multi-ResNets to achieve competitive
performance. In Table 3, we compare two versions of allocating the parameters we save in Multi-
ResNets, which have no parameters in their encoder, on the Navier-stokes and Shallow water
PDE modelling datasets, respectively. In ‘v1’, also presented in the main text in Table 1 but repeated
for ease of comparison, we add the saved parameters by increasing the number of residual blocks per
resolution. This in effect corresponds to more discretisation steps of the underlying ODE on each
resolution [20]. In ‘v2’, we add the saved parameters by increasing the number of hidden channels in
the ResNet.

Our results show that ‘v1’ performs significantly better than ‘v2’. In particular, ‘v2’ does not
outperform the Residual U-Net on the two PDE modelling tasks. This indicates that the design
choice of how to allocate parameters in D matters for the performance of Multi-ResNets. We note
that in our experiments, beyond this comparison, we did not explore optimal ways of allocating
parameters in Multi-ResNets. Hence, future work should explore this aspect thoroughly with large-
scale experiments. Due to its ‘uni-directional’, ‘asymmetric’ structure, the Multi-ResNet may further

24

be combined with a direction of transformer-based architectures which aim at outperforming and
replacing the U-Net [53, 54]. With reference to our earlier presented, inferior results with diffusion
models, it is possible that merely designing a better decoder would make Multi-ResNets superior to
classical Residual U-Nets for diffusion models.

Table 3: Quantitative performance of the (Haar wavelet) Multi-ResNet compared to a classical
(Haar wavelet) Residual U-Net on two PDE modelling. This table is an augmented version of Table
1 in the main text, where ‘v1’ indicates the run from the main text, a Multi-ResNet with saved
parameters added in the encoder, and ‘v2’ indicates an alternative parameter allocation. We report
Mean-Squared-Error over a rolled out trajectory in time (r-MSE) on the test set, rounded to four
decimal digits.

Dataset Architecture # Params. r-MSE ↓

N
av

ie
r-

st
ok

es
1
2
8
×

1
2
8 Residual U-Net 34.5 M 0.0057± 2 · 10−5

Multi-ResNet, no params. added in dec. (ours) 15.7 M 0.0107± 9 · 10−5

Multi-ResNet, saved params. added in dec. v1 (ours) 34.5 M 0.0040± 2 · 10−5

Multi-ResNet, saved params. added in dec. v2 (ours) 34.6 M 0.0093± 5 · 10−5

Sh
al

lo
w

w
at

er
9
6
×

1
9
2 Residual U-Net 34.5 M 0.1712± 0.0005

Multi-ResNet, no params. added in dec. (ours) 15.7 M 0.4899± 0.0156
Multi-ResNet, saved params. added in dec. v1 (ours) 34.5 M 0.1493± 0.0070
Multi-ResNet, saved params. added in dec. v2 (ours) 34.6 M 0.3811± 0.0091

In Figure 12 we illustrate the full prediction of our Haar wavelet Multi-ResNet when modelling a
PDE trajectory simulated from the Navier-stokes and Shallow water equations, respectively,
corresponding to its truncated version in Figure 6 [Left]. We unroll the trajectories over five timesteps
for which we predict the current state. Note that we train the Multi-ResNet by predicting the next
time step in the trajectory only. We do not condition on previous timesteps.

Figure 12: PDE modelling and image segmentation with a Wavelet-encoder Multi-ResNet. Rolled
out PDE trajectories (ground-trouth, prediction, L2-error between ground-truth and prediction) from
the Navier-Stokes [top], and the Shallow-Water equation [bottom]. This is the complete version
of the truncated Figure 6 [Left] showing further timesteps for the trajectory. Figure and code as
modified from [6, Figure 1].

25

We also present results comparing our Multi-ResNet, Residual U-Nets and the Fourier Neural
Operator (FNO) [52], another competitive model for PDE modelling, in Table 4. We compare models
of similar size in terms of parameter count. We also present the same comparison in PDEArena [6] in
Table 5 for reference, noting that our experimental configuration slightly differs. Both tables indicate
that U-Nets outperform FNO.

Table 4: Quantitative performance of an FNO model compared to U-Nets. We compare the FNO
model to a (Haar wavelet) Multi-ResNets and classical (Haar wavelet) Residual U-Nets with similar
number of parameters, on two PDE modelling tasks.

Dataset Neural architecture # Params. r-MSE ↓

N
av

ie
r-

st
ok

es
1
2
8
×

1
2
8 Residual U-Net 34.5 M 0.0057± 2 · 10−5

Multi-ResNet, saved params. added in dec. 34.5 M 0.0040± 2 · 10−5

FNO 128-8 mode8 (new) 33.7 M 0.0253± 0.0

Sh
al

lo
w

w
at

er
9
6
×

1
9
2 Residual U-Net 34.5 M 0.1712± 0.0005

Multi-ResNet, saved params. added in dec. 34.5 M 0.1493± 0.0070
FNO 128-8 mode8 (new) 33.7 M 1.2333± 0.0115

Table 5: Experimental results as reported in PDEArena [6]): Quantitative performance of an FNO
model, in comparison to U-Nets of similar size. Values as reported in Table 8 in [7] (5200 trajectories)
for Navier-Stokes, and in [Table 2 in [7] (5600 trajectories)] for Shallow water. Here, U-Net 2015
64 clearly outperforms FNO 128-8 mode8. This result is consistent across different numbers of
trajectories (dataset sizes), and different data configurations (e.g. velocity function formulation vs.
vorticity stream function formulation on Shallow water) in the several tables reported in [7].

Dataset Neural architecture # Params. r-MSE ↓
Navier-
stokes
128×128

U-Net 2015 64 31 M 0.01386± 0.00004
FNO 128-8 mode8 33.7 M 0.03836± 0.00037

Shallow
water
96 × 192

U-Net 2015 64 31 M 0.1026± 0.0161
FNO 128-8 mode8 33.7 M 0.8549± 0.0124

26

Image segmentation. In Figure 13, we present further MRI images with overlayed ground-truth
(green) and prediction (blue) masks, augmenting Figure 6 [Right] in the main text. The predictions
are obtained from our best-performing Multi-ResNet. Note that some MRI images do not contain any
ground-truth lesions.

Figure 13: MRI images from WMH with overlayed ground-truth masks (green) and predictions (blue)
obtained from our best-performing Multi-ResNet model.

27

B.2 Analysis 2: Staged training enables multi-resolution training and inference

We begin by providing further experimental details. For each dataset, we train each res-
olution for the following number of iterations/epochs: MNIST [5K, 5K, 5K, 5K] iterations,
CIFAR10 [50K, 50K, 50K, 450K] iterations, Navier-Stokes [5, 5, 5, 35] epochs, Shallow water
[2, 2, 2, 14] epochs.

Generative modelling with diffusion models. In Figs. 14 and 15, we illustrate samples of a
diffusion model (DDPM) trained on MNIST with Algorithm 1, with and without freezing, respectively.
These samples show that in both cases, the model produces reasonable samples. Algorithm 1 with
freezing has the advantage that the final model can produce samples on all resolutions, instead of only
the intermediate models at the end of each training stage. Preliminary tests showed that as perhaps
expected, freezing lower-resolution U-Net weights tends to produce worse performance in terms
of quantitative metrics measured on the highest resolution. In particular, in Figure 16 we compare
samples and FID scores from a DDPM model trained on CIFAR10, with and without freezing. As
can be clearly seen from both the FID score and the quality of the samples, training with Algorithm 1
but without the freezing option produces significantly better samples. This is why we did not further
explore the freezing option.

MNIST

32 x 32 (at 20 K iter.) 16 x 16 (at 15 K iter.)

8 x 8 (at 10 K iter.) 4 x 4 (at 5 K iter.)

Figure 14: Staged training of Multi-ResNets enables multi-resolution training and sampling of
diffusion models. We train a diffusion model [8] with a Residual U-Net architecture using Algorithm
1 with four training stages and with freezing on MNIST corresponding to Figure 7. We show samples
at the end of each training stage.

PDE modelling. In Table 6, we investigate Residual U-Nets and Multi-ResNets using Algorithm 1
on Navier-Stokes and Shallow water. We here find that staged training makes the runs perform
substantially worse. In particular, the standard deviation is higher, and some runs are outliers with
particularly poor performance. This is in contrast to our experiments on generative modelling with
diffusion models where staged training had only an insignificant impact on the resulting performance.
We note that we have not further investigated this question, and believe that there are a multitude
of ways which could be attempted to stabilise and improve the performance of staged training, for
instance in PDE modelling, which we leave for future work.

28

MNIST

32 x 32 (at 20 K iter.) 16 x 16 (at 15 K iter.)

8 x 8 (at 10 K iter.) 4 x 4 (at 5 K iter.)

Figure 15: Staged training of Multi-ResNets enables multi-resolution training and sampling of
diffusion models. We train a diffusion model [8] with a Residual U-Net architecture using Algorithm
1 with four training stages and no freezing on MNIST corresponding to Figure 7. We show samples at
the end of each training stage.

Algorithm 1 w/ freezing
FID: 59.8

Algorithm 1 w/o freezing
FID: 8.2

Figure 16: A comparison of samples of a DDPM model [8] with a Residual U-Net trained with
Algorithm 1 with [Right] and without [Left] freezing.

Table 6: Staged training with Algorithm 1 on Navier-Stokes and Shallow water. Quantitative
performance of the (Haar wavelet) Multi-ResNet compared to a classical (Haar wavelet) Residual
U-Net.

Dataset Neural architecture # Params. r-MSE ↓
Navier-stokes
128× 128

Residual U-Net 37.8 M 0.0083± 0.0034
Multi-ResNet, saved params. added in dec. (ours) 37.8 M 0.0105± 0.0102

Shallow water
96× 192

Residual U-Net 37.7 M 0.4640± 0.4545
Multi-ResNet, saved params. added in dec. (ours) 37.7 M 0.7715± 0.8327

29

B.3 Analysis 3: U-Nets encoding topological structure

Experimental details. We begin by discussing MNIST-Triangular, the dataset we used in this
experiment. In a nutshell, MNIST-Triangular is constructed by shifting the MNIST 28 × 28
dimensional squared digit into the lower-left half of a 64×64 squared image with similar background
colour as in MNIST in that lower-left half of triangular shape. In the upper-right half, we use a
gray background colour to indicate that the image is supported only on the lower-left of the squared
image. We illustrate MNIST-Triangular in Figure 17. We note that MNIST-Triangular has more
than four times the number of pixels compared to MNIST, yet we trained our DDPM U-Net with
hyperparameters and architecture for MNIST without hyperparameter tuning, explaining their perhaps
slightly inferior sample quality in Figure 8.

Figure 17: Example images from the MNIST-Triangular dataset.

To process the data into the subspacesW = (Wi) given in Section 3.3, we need to formulate the
‘triangular pixels’ shown in Figure 3.3. To do this we use the self-similarity property of the triangular
domain to divide the data into a desired resolution. For each image, we then sample the function
value at the center of our triangular pixel and store this in a lexicographical ordering corresponding
to the codespace address [58] (e.g. ‘21’) of that pixel. In Figure 18 we illustrate the coding map at
depth two.

Once we have made this encoding map, we are able to map our function values into an array and
perform the projections on V = W by push-forwarding through projection of the Haar wavlets on
the triangle to our array through the lexicographic ordering used. For instance, we show in Figure 19

22

24
21 23

42
12 44

41
32

11
14

13
43

31

34

33

11 12 21 22
13 14 23 24
31 32 41 42
33 34 43 44

encoding map

Figure 18: The coding map from the triangular Haar wavelets to their code-space addresses. Such a
construction can always be made on a self-similar object with certain separation properties, such as
the Open Set Condition [59].

30

Figure 19: An example of the encoding map taking data from a triangular domain and mapping it to
an array of each ‘triangular pixel’ value under lexicographical ordering.

the array, plotted as an image, revealing that this processing is inherently different to diffusions on a
square domain.

This transformation, when defined on the infinite resolution object, is discontinuous on a dense set of
4, yet encodes all of the necessary data to perform a diffusion model over in our triangular MNIST
model seen in Figure 8. This is because the transformation we are using is still continuous almost
everywhere, and so the parts of the signal that we are losing accounts for a negligible amount of the
function approximation in the diffusion process.

31

B.4 Ablation studies

In several ablation studies, we further analysed Multi-ResNets and our experimental results. We
present these below.

B.4.1 Ablation 1: The importance of skip connections in U-Nets

We begin by presenting a key result. As Multi-ResNets perform a linear transformation in the
encoder, which significantly reduces its expressivity, one might hypothesise that the skip connections
in a U-Net can be removed entirely. Our results show that skip connections are crucial in U-Nets,
particularly in Multi-ResNets.

In Table 7 we compare Residual U-Nets and Multi-ResNets with and without skip connections fo-
cussing on PDE Modelling (Navier-stokes and Shallow water). The ‘without skip connections’
case is practically realised by feeding zero tensors along the skip connections. This has the benefit of
requiring no change to the architecture enabling a fair comparison, while feeding no information via
the skip connections as if they had been removed. We find that performance significantly deteriorates
when using no skip connections. This effect is particularly strong in Multi-ResNets. Multi-ResNets
cannot compensate the lack of skip connections by learning the encoder in such a way that represen-
tations learned on the lowest resolution space V0 account for not having access to higher-frequency
information via the skip connections when approximating the output via Di in the output space Wi

on a higher resolution space. This result shows that the encoder actually compresses the information
which it provides to the decoder. The decoder crucially depends on this compressed input.

Table 7: Skip connections in U-Nets are crucial. We compare two Multi-ResNets, (Haar wavelet)
Residual U-Nets and (Haar wavelet) Multi-ResNets, with and without skip connections, focussing on
the two PDE modelling datasets (Navier-Stokes and Shallow water).

Neural architecture # Params. r-MSE ↓

N
av

ie
r-

st
ok

es
1
2
8
×

1
2
8 Residual U-Net w/ skip con. 34.5 M 0.0057± 2 · 10−5

Residual U-Net w/o skip con. 34.5 M 0.0078± ·10−5

Multi-ResNet w/ skip con. 34.5 M 0.0040± 2 · 10−5

Multi-ResNet w/o skip con. 34.5 M 0.0831± 0.1080

Sh
al

lo
w

w
at

er
1
2
8
×

1
2
8 Residual U-Net w/ skip con. 34.5 M 0.1712± 0.0005

Residual U-Net w/o skip con. 34.5 M 0.4950± 0.02384
Multi-ResNet w/ skip con. 34.5 M 0.1493± 0.0070
Multi-ResNet w/o skip con. 34.5 M 0.6302± 0.01025

B.4.2 Ablation 2: The importance of preconditioning in U-Nets

In this section, we are interested in analysing the importance of preconditioning across subspaces
in U-Nets. To this end, we analyse whether and how much a U-Net benefits from the dependency
in the form of preconditioning between its input and output spaces V and W . In Table 8, we
compare a Residual U-Net with multiple subspaces with a ResNet with only one subspace on
Navier-Stokes and Shallow water, respectively. We obtain the ResNet on a single subspace
from the Residual U-Net by replacing Pi as well as the (implicit) embedding operations with identity
operators, and additionally feed zeros across the skip connections. This is because the function of
the skip connections is superfluous due to them not being able to feed a compressed representation
of the input. We note that the performance of the ResNet can potentially be improved by allocating
the number of channels different to the increasing and decreasing choice in a U-Net, but we have
not explored this. We further train on Shallow water for 10 epochs evaluating on the test set, and
on Navier-Stokes for approximately 400 K iterations evaluating on the validation set. This is due
to significantly longer running times of the ResNets constructed as outlined above. We note that
performance decreases very slowly after this point, and the trend of this experiment is unambiguously
clear, not requiring extra training time.

The results in Table 8 show that preconditioning via the U-Net’s self-similarity structure is a key
reason for their empirical success. The Residual U-Net on multiple subspaces outperforms the ResNet

32

on a single subspace by a large margin. This also justifies the focus of studying preconditioning in
this work.

Table 8: On the effect of subspace preconditioning vs. a plain ResNet. Quantitative performance of
the (Haar Wavelet) Residual U-Net over multiple input and output subspaces compared to a ResNet
on a single subspace, both trained on Navier-Stokes and Shallow water.

Dataset Neural architecture # Params. r-MSE ↓

Navier-stokes
128× 128

Residual U-Net (multiple subspaces) 34.5 M 0.0086± 9.7 · 10−5

ResNet (one subspace) 34.5 M 0.3192± 0.0731

Shallow water
96× 192

Residual U-Net (multiple subspaces) 34.5 M 0.3454± 0.02402
ResNet (one subspace) 34.5 M 2.9443± 0.2613

B.4.3 Ablation 3: On the importance of the wavelet transform in Multi-ResNets

In Table 9 we analyse the effect of different wavelets for the DWT we compute in Pi. We selected
examples from different wavelet families, all of them being orthogonal. A good overview of
different wavelets which can be straight-forwardly used to compute DWT can be found on this
URL: https://wavelets.pybytes.com/. On Navier-Stokes we analyse the effect of choosing
Daubechies 2 and 10 wavelets systematically over different random seeds. On Shallow water we
explore many different Wavelet families generally without computing random seeds. We find that the
Wavelets we choose for Pi have some, but rather little impact on model performance. We lastly note
that the downsampling operation has also been studied in [60] in the context of score-based diffusion
models.

Table 9: On the importance of choosing different wavelets for the Discrete Wavelet Transforms
(DWT) in Multi-ResNets. We report quantitative performance on the test set of Navier-Stokes and
Shallow water.

Dataset Neural architecture # Params. r-MSE ↓

Navier-stokes
128× 128

Multi-ResNet w/ Haar wavelet DWT 34.5 M 0.0040± 2 · 10−5

Multi-ResNet w/ Daubechies 2 DWT 34.5 M 0.0041± 3 · 10−5

Multi-ResNet w/ Daubechies 10 DWT 34.5 M 0.0068± 1.1 · 10−4

Shallow water
96× 192

Multi-ResNet w/ Haar wavelet DWT 34.5 M 0.1493± 0.0070
Multi-ResNet w/ Daubechies 2 DWT 34.5 M 0.1081
Multi-ResNet w/ Daubechies 10 DWT 34.5 M 0.1472
Multi-ResNet w/ Coiflets 1 DWT 34.5 M 0.1305
Multi-ResNet w/ Discrete Meyer DWT 34.5 M 0.1237

33

https://wavelets.pybytes.com/

B.5 On the importance of preconditioning in residual learning: Synthetic experiment

We begin by providing a second example with w(v) = v3 in Figure 20, corresponding to Figure 2
in §1. Note that in comparison to the problem w(v) = v2 in Figure 2, the effect of the two precon-
ditioners swaps in Figure 20: Using Rpre(v) = v as the preconditioner produces an almost perfect
approximation of the ground-truth function, while choosing Rpre(v) = |v| results in deteriorate
performance. This is because Rpre(v) = v is a ‘good’ initial guess for w(v) = v3, but a very ‘poor’
guess for w(x) = v2, and vice versa for Rpre(v) = |v|. This illustrates that the choice of using a
good preconditioner is problem-dependent, and can be crucial to solve an optimisation problem at
hand.

Figure 20: The importance of preconditioning. We learn the ground-truth functions w(v) = {v3}
using a ResNet Rres(v) = Rpre

` (v) + R(v) with preconditioners [Left] Rpre
1 (v) = v and [Right]

Rpre
2 (v) = |v|.

Having discussed the results of our synthetic experiment (see Figs. 2 and 20) which demonstrates
the importance of preconditioning, we here provide further details on the experimental setting. We
train a ResNet Rres(v) = Rpre

` (v) + R(v) over a grid of values {(vi, wi)}Ni=1 where vi ∈ [−1, 1],
wi = w(k)(vi), N = 50, and w(1)(v) = v2, w(2)(v) = v3, Rpre

` (v) = v,Rpre
` (v) = |v| depending

on the experiment scenario indicated by the superscripts (k, `), respectively. We do not worry about
generalisation in this example and use the same train and test distribution. This functional relationship
is easy to learn by any neural network R of sufficient size, which would overshadow the effect of
preconditioning. To construct a ResNet which is ‘just expressive enough’ to learn w(k), we constrain
the expressivity of R in two ways: First, we choose R to be a small fully-connected network with 3
linear layers (input, hidden, output) with [1, 20, 1] neurons, respectively, interleaved with the ReLU
activation function. Second, inspired by invertible ResNets [61], we normalize the weights θj of R
such that ‖θj‖ < 1 for all j where ‖ · ‖ is the Frobenius norm, and repeatedly apply R with D = 100
times via weight-sharing. In practice, ‖θj‖ will be close to 1, and as ‖θj‖ intuitively measures
the ‘step size’ of a neural network, we constrain the neural network to ‘100 steps of unit length’.
As an alternative, one could limit the maximum number of training steps, which would indirectly
constrain the model’s expressiveness. We note that our reported results are robust across a variety of
hyperparameter combinations leading to qualitatively the same conclusions.

34

C Background

C.1 Related work

U-Nets. The U-Net [1] is a go-to, state-of-the-art architecture across various research domains
and tasks. Among the most influential U-Net papers are U-Net++ [3] and Attention U-Net [4]
for image segmentation, 3D U-Net [62] for volumetric segmentation, U-Nets in diffusion models,
starting with the first high-resolution demonstration in DDPM [8], the nnU-Net [63, 64], a U-Net
which automatises parts of its design, a probabilistic U-Net [65], conditional U-Nets [66], U-Nets for
cell analysis detection and counting [67], and U-Nets for road extraction [68]. A large number of
adaptations and variants of the U-Net exist. We refer to [69] for an overview of such variants in the
context of image segmentation for which the U-Net was first invented. In particular, many U-Net
papers use a ResNet architecture. [70] find that a key improvement for the seminal U-Net [1] is to use
residual blocks instead of feed-forward convolutional layers. Beyond their use on data over a squared
domain, there exist custom implementations on U-Nets for other data types, for instance on the sphere
[17], on graphs [18, 71] or on more general, differentiable 3D geometries [72]. However, we note
that a framework which unifies their designs and details the components for designing U-Nets on
complicated data types and geometries is lacking. This paper provides such a framework.

Our work directly builds on and is motivated by the paper by Falck & Williams [20] which first
connected U-Nets and multi-resolution analysis [73]. This paper showed the link between U-Nets
and wavelet approximation spaces, specifically the conjugacy of Haar wavelet projection and average
pooling in the context of U-Nets, which our work crucially relies on. The design of U-Nets and their
connection to wavelets has also been studied in [25, 26]. Falck & Williams further analysed the
regularisation properties of the U-Net bottleneck under specific assumptions restricted to the analysis
of auto-encoders without skip connections, and argued by recursion what additional information is
carried across each skip without this being rigorously defined. Our work in this paper is however
augmenting their work in various ways. We list five notable extensions: First, we provide a unified
definition of U-Nets which goes beyond and encompasses the definition in [20], and highlights the
key importance of preconditioning in U-Nets as well as their self-similarity structure. Importantly,
this definition is not limited to orthogonal wavelet spaces as choices for V andW , hence enabling
the use of U-Nets for a much broader set of domains and tasks. Second, based on this definition,
our framework enables the design of novel architectures given a more thorough understanding of
the various components in a U-Net. This is demonstrated on the elliptic PDE problem and data over
a triangular domain. Third, we analyse the usefulness of the inductive bias of U-Nets in diffusion
models, a novel contribution. Fourth, our experiments with Multi-ResNets and multi-resolution
training and sampling, as well as on triangular data are novel. Fifth, [20] focusses particularly on
the application of U-Nets in hierarchical VAEs, which this work is not interested in in particular. In
summary, while [20] provided crucial components and ideas in U-Nets, our work is focused on a
framework for designing and analysing general U-Nets, which enables a wide set of applications
across various domains.

Miscellaneous. We further briefly discuss various unrelated works which use similar concepts as
those in this paper. Preconditioning, initialising a problem with prior information so to facilitate
solving it, is a widely used concept in optimisation across various domains [74, 75, 76, 77, 13, 14].
In particular, we refer to its use in multi-level preconditioning and Garlekin methods [78, 79, 80].
Preconditioning is also used in the context of score-based diffusion models [81]. Most notably,
preconditioning is a key motivation in the seminal paper on ResNets [15]. While preconditioning is a
loosely defined term, we use it in the context of this literature and its usage there.

The concept of ‘dimensionality reduction’ is widely popular in diffusion models beyond its use
in U-Nets. For instance, Stable Diffusion and Simple Diffusion both perform a diffusion in a
lower-dimensional latent space and experience performance gains [11, 60]. Stable Diffusion in
particular found that their model learns a “low-dimensional latent space in which high-frequency,
imperceptible details are abstracted away” [11]. It is this intuition that the U-Net formalises. Simple
Diffusion also features a multi-scale loss resembling the staged training in Algorithm 1. Another
paper worth pointing out learns score-based diffusion models over wavelet coefficients, demonstrating
that wavelets and their analysis can be highly useful in diffusion models [42].

35

C.2 Hilbert spaces

A Hilbert space is a vector space W endowed with an inner-product 〈·, ·〉 that also induces a complete
norm ‖·‖ via ‖w‖2 = 〈w,w〉. Due to the inner-product, we have a notion of two vectors w1, w2 ∈W
being orthogonal if 〈w1, w2〉 = 0.

In Section 3 we have paid special attention to two specific Hilbert spaces: L2([0, 1]) andH1
0([0, 1]).

1. the space L2([0, 1]) has as elements square-integrable functions and has an inner-product
given by

〈f, g〉L2 =

∫ 1

0

f(x)g(x)dx; and, (34)

2. the spaceH1
0([0, 1]) has as elements once weakly differentiable functions which vanish at

both zero and one, with inner-product given by

〈f, g〉H1
0

=

∫ 1

0

f ′(x)g′(x)dx, (35)

where f ′, g′ ∈ L2([0, 1]) are the weak derivatives of f and g respectively.

If we have a sequence {φk}∞k=0 of elements ofW which are pairwise orthogonal and spanW , then we
call this an orthogonal basis for W . Examples of orthogonal bases for both L2([0, 1]) andH1

0([0, 1])
are given in Section C.3.

C.3 Introduction to Wavelets

Wavelets are refinable basis functions for L2([0, 1]) which obey a self-similarity property in their
construction. There is a ‘mother’ and ‘father’ wavelet φ and ψ, of which the children wavelets are
derivative of the mother wavelet φ. For instance, in the case of Haar wavelets with domain [0, 1] we
have that ψ(x) = 1 and the mother and children wavelets given by

φk,j(x) = φ(2kx+ j/2k), φ(x) = 1[0,1/2)(x)− 1[1/2,1](x).

Under the L2-inner product, the family {φk,j}2
j ,∞
j=0,k=1 forms an orthogonal basis of L2([0, 1]).

Further, if we define the functions

φ̃k,j(x) =

∫ x

0

φk,j(y)dy, (36)

then each of these functions is in H1
0([0, 1]), and is further orthogonal with respect to the

H1
0-inner-product, bootstrapped from the orthogonality of the Haar wavelets.

The discrete encoding of the Haar basis can be given by the kronecker product

Hi =

(
1 1
1 −1

)
⊗Hi−1, H0 =

(
1 1
1 −1

)
. (37)

To move between the pixel basis and the Haar basis natural to average pooling, we use the mapping
defined on resolution i by Ti : Vi 7→ Vi through

Ti(vi) = ΛiHivi, (38)

where Hi is the Haar matrix above and Λi is a diagonal scaling matrix with entries

(Λi)k,k = 2−i+j−1, if k ∈ {2j−1, . . . , 2j}. (39)

To get this, we simply identify how to represent a piecewise constant function from its pixel by pixel
function values to be the coefficients of the Haar basis functions. For example, in one dimension
for an image with four pixels we can describe the function as the weighted sum of the four basis
functions [Right], that take values ±1 or zero. The initial father wavelet is set to be the average of the
four pixel values, and the coefficients of the mother and children wavelets are chosen to be the local
deviance’s of the averages from these function values, as seen in Figure 21.

For further details on wavelets, we refer to textbooks on this topic [73, 29].

36

Figure 21: Modelling a 1D image with four pixel values as the weighted sum of Haar wavelet
frequencies. The coefficients are such that the local averages of pixel values give the Haar wavelet at
a lower frequency, hence average pooling is conjugate to basis truncation here.

C.4 Images are functions

An image, here a gray-scale image with squared support, can be viewed as the graph of a function
over the unit square [0, 1]2 [20]. We visualise this idea in 22, referring to [20, Section 2] and [19]
for a more detailed introduction. Many other signals can likewise be viewed as It is hence natural to
construct our U-Net framework on function spaces, and have Ei and Di be operators on functions.

$�0XOWL�5HVROXWLRQ�)UDPHZRUN�IRU�8�1HWV�Z��$SSO��WR�+LHUDUFKLFDO�9$(V�����������)�)DOFN��&�:LOOLDPV��'�'DQNV��*�'HOLJLDQQLGLV��&�<DX��&�+ROPHV��$�'RXFHW��0�:LOOHWWV

,PDJHV�DUH�IXQFWLRQV

��Figure 22: Images modelled as functions.

D Code, computational resources, datasets, existing assets used

Code. We provide our code base as well as instructions to reproduce the key results in this
paper under MIT License at https://github.com/FabianFalck/unet-design. Our code base uses
code from four Github repositories which are subfolders. For our diffusion experiments on
MNIST and MNIST-Triangular, we directly build on top of the repository https://github.
com/JTT94/torch_ddpm. For our diffusion experiments on CIFAR10, we directly build on top of
the repository https://github.com/w86763777/pytorch-ddpm. For our PDE experiments on
Navier-Stokes and Shallow water, we use the repository https://github.com/microsoft/
pdearena [6]. For our image semgentation experiments on WMH, we are inspired by the repository

37

https://github.com/FabianFalck/unet-design
https://github.com/JTT94/torch_ddpm
https://github.com/JTT94/torch_ddpm
https://github.com/w86763777/pytorch-ddpm
https://github.com/microsoft/pdearena
https://github.com/microsoft/pdearena

https://github.com/hongweilibran/wmh_ibbmTum [51], but write the majority of code our-
selves. We note that the MIT License only pertains to the original code in our repository, and we
refer to these four repositories for their respective licenses.

We extended each of these repositories in various ways. We list key contributions below:

• We implemented several Residual U-Net architectures in the different repositories.
• We implemented Multi-ResNets in each repository.
• We implemented the staged training Algorithm (see Algorithm 1), as well as its strict version

which freezes parameters.
• We implemented logging with weights & biases, as well miscellaneous adjustments for

conveniently running code, for instance with different hyperparameters from the command
line.

Datasets. In our experiments, we use the following five datasets: MNIST [47], MNIST-Triangular,
a custom version of MNIST where data is supported on a triangle rather than a square, CIFAR10
[48], Navier-stokes, Shallow water [49], and the MICCAI 2017 White Matter Hyperinten-
sity (WMH) segmentation challenge dataset [50, 51]. These five datasets—with the exception of
MNIST-Triangular—have in common that data is presented over a square or rectangular domain,
possibly with several channels, and of varying resolutions. We refer to the respective repositories
above where these datasets have already been implemented. For MNIST-Triangular, we provide
our custom implementation and dataset class as part of our code base, referring to Appendix B.3
on how it is constructed. It is also worth noting that Navier-Stokes and Shallow Water require
considerable storage. On our hardware, the two datasets take up approximately 120 GB and 150 GB
unzipped, respectively.

Computational resources. This work made use of two computational resources. First, we used
two local machines with latest CPU hardware and one with an onboard GPU for development and
debugging purposes. Second, we had access to a large compute cluster with A100 GPU nodes and
appropriate CPU and RAM hardware. This cluster was shared with a large number of other users.

To reproduce a single run (without error bars) in any of the experiments, we provide approximate
run times for each dataset using the GPU resources: On MNIST and MNIST-Triangular, a single
run takes about 30 mins. On CIFAR10, a single run takes several days. On Navier-Stokes and
Shallow water, a single run takes approximately 1.5 days and 1 day, respectively.

Existing assets used. Our code base uses the following main existing assets: Weights&Biases [82]
(MIT License), PyTorch [83] (custom license), in particular the torchvision package,
pytorch_wavelets [84] (MIT License), PyWavelets [85] (MIT License), pytorch_lightning
[86] (Apache License 2.0), matplotlib [87] (TODO), numpy [88] (BSD 3-Clause License),
tensorboard [89] (Apache License 2.0), PyYaml [90] (MIT License), tqdm [91] (MPLv2.0 MIT
License), scikit-learn and sklearn [92] (BSD 3-Clause License), and pickle [93] (License
N/A). We further use Github Copilot for the development of code, and in few cases use ChatGPT
[94] as a writing aid.

38

https://github.com/hongweilibran/wmh_ibbmTum

	Introduction
	U-Nets: Neural networks via subspace preconditioning
	Anatomy of a U-Net
	High-resolution scaling behavior of U-Nets
	U-Nets are conjugate to ResNets

	Generalised U-Net design
	Multi-ResNets
	U-Nets which guarantee boundary conditions
	U-Nets for complicated geometries

	Why U-Nets are a useful inductive bias in diffusion models
	Experiments
	The role of the encoder in a U-Net
	Staged training enables multi-resolution training and inference
	U-Nets encoding topological structure

	Conclusion
	Theoretical Details and Technical Proofs
	Proofs of theoretical results in the main text
	Diffusions on the sphere.
	U-Nets on Finite Elements

	Additional experimental details and results
	Analysis 1: The role of the encoder in a U-Net
	Analysis 2: Staged training enables multi-resolution training and inference
	Analysis 3: U-Nets encoding topological structure
	Ablation studies
	Ablation 1: The importance of skip connections in U-Nets
	Ablation 2: The importance of preconditioning in U-Nets
	Ablation 3: On the importance of the wavelet transform in Multi-ResNets

	On the importance of preconditioning in residual learning: Synthetic experiment

	Background
	Related work
	Hilbert spaces
	Introduction to Wavelets
	Images are functions

	Code, computational resources, datasets, existing assets used

