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Abstract

U-Nets are a go-to neural architecture across numerous tasks for continuous signals
on a square such as images and Partial Differential Equations (PDE), however their
design and architecture is understudied. In this paper, we provide a framework
for designing and analysing general U-Net architectures. We present theoretical
results which characterise the role of the encoder and decoder in a U-Net, their
high-resolution scaling limits and their conjugacy to ResNets via precondition-
ing. We propose Multi-ResNets, U-Nets with a simplified, wavelet-based encoder
without learnable parameters. Further, we show how to design novel U-Net ar-
chitectures which encode function constraints, natural bases, or the geometry of
the data. In diffusion models, our framework enables us to identify that high-
frequency information is dominated by noise exponentially faster, and show how
U-Nets with average pooling exploit this. In our experiments, we demonstrate how
Multi-ResNets achieve competitive and often superior performance compared to
classical U-Nets in image segmentation, PDE surrogate modelling, and generative
modelling with diffusion models. Our U-Net framework paves the way to study the
theoretical properties of U-Nets and design natural, scalable neural architectures
for a multitude of problems beyond the square.

1 Introduction

U-Nets (see Figure 1) are a central architecture in deep learning
for continuous signals. Across many tasks as diverse as image
segmentation [1, 2, 3, 4, 5], Partial Differential Equation (PDE)
surrogate modelling [6, 7] and score-based diffusion models [8, 9,
10, 11, 12], U-Nets are a go-to architecture yielding state-of-the-
art performance. In spite of their enormous success, a framework
for U-Nets which characterises for instance the specific role of
the encoder and decoder in a U-Net or which spaces these operate
on is lacking. In this work, we provide such a framework for
U-Nets. This allows us to design U-Nets for data beyond a square
domain, and enable us to incorporate prior knowledge about a
problem, for instance a natural basis, functional constraints, or
knowledge about its topology, into the neural architecture.

Bottleneck

The importance of preconditioning. We begin by illustrating
the importance of the core design principle of U-Nets: precon- .
ditioning. Preconditioning informally means that initialising an (Delf.. D). If B; = Id‘l’g’ this is a
optimisation problem with a ‘good’ solution greatly benefits learn- Multi-ResNet (see Def. 3).

ing [13, 14]. Consider a synthetic example using ResNets [15] which are natural in the context of

Figure 1: A resolution 2 U-Net
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U-Nets as we will show in §2.3: we are interested in learning a ground-truth mapping w : V — W
and w(v) = v? over V = [~1,1] and W = R using a ResNet R***(v) = RP™(v) + R(v) where
Rrre R :V — W. In Figure 2 [Left] we learn a standard ResNet with RP*®(v) = v on a grid of
values from V' x W, i.e. with inputs v; € V and regression labels w; = w(v;) = vf. In contrast,
we train a ResNet with RP™(v) = |v| [Right] with the same number of parameters and iterations.
Both networks have been purposely designed to be weakly expressive (see Appendix B.5 for details).
The standard ResNet [Left] makes a poor approximation of the function, whilst the other ResNets
[Right] approximation is nearly perfect. This is because RP™(v) = |v| is a ‘good’ initial guess
or preconditioner for w(v) = v2, but RP*®(v) = v is a ‘bad’ one. This shows the importance of
encoding good preconditioning into a neural network architecture and motivates us studying how
preconditioning is used in U-Net design.

In this paper, we propose a mathematical framework : -
for designing and analysing general U-Net architec- > -
tures. We begin with a comprehensive definition of a / . s
U-Net which characterises its components and iden- A
tifies its self-similarity structure which is established S
via preconditioning. Our theoretical results delineate
the role of the encoder and decoder and identify the T et around) T e
subspaces they operate on. We then focus on ResNets |~ == &= reconaiionen = A= 1] preconditonen
as natural building blocks for U-Nets that enable flex- ' N '

ible preconditioning from lower-resolutions inputs. Figure 2: The importance of preconditioning.
Our U-Net framework paves the way to designing U-Nets which can model distributions over com-
plicated geometries beyond the square, for instance CW-complexes or manifolds, or diffusions on
the sphere [16], without any changes to the diffusion model itself (see Appendix A). It allows us to
enforce problem-specific constraints through the architecture, such as boundary conditions of a PDE
or a natural basis for a problem. We also analyse why U-Nets with average pooling are a natural
inductive bias in diffusion models.

More specifically, our contributions are as follows: (a) We provide the first rigorous definition of
U-Nets, which enables us to identify their self-similarity structure, high-resolution scaling limits, and
conjugacy to ResNets via preconditioning. (b) We present Multi-ResNets, a novel class of U-Nets
over a hierarchy of orthogonal wavelet spaces of L?(X), for compact domain X, with no learnable
parameters in its encoder. In our experiments, Multi-ResNets yield competitive and often superior
results when compared to a classical U-Net in PDE modelling, image segmentation, and generative
modelling with diffusion models. We further show how to encode problem-specific information into
a U-Net. In particular, we design U-Nets incorporating a natural basis for a problem which enforces
boundary conditions on the elliptic PDE problem, and design and demonstrate proof-of-concept
experiments for U-Nets with a Haar wavelet basis over a triangular domain. (c) In the context of
diffusion models, we analyse the forward process in a Haar wavelet basis and identify how high-
frequency information is dominated by noise exponentially faster than lower-frequency terms. We
show how U-Nets with average pooling exploit this observation, explaining their go-to usage.

2 U-Nets: Neural networks via subspace preconditioning

The goal of this section is to develop a mathematical framework for U-Nets which introduces
the fundamental principles that underpin its architecture and enables us to design general U-Net
architectures. All theoretical results are proven in Appendix A. We commence by defining the U-Net.

2.1 Anatomy of a U-Net

Definition 1. U-Net. Let V' and W be measurable spaces. A U-NetUd = (V,W,E, D, P,Uy)

comprises six components:

1. Encoder subspaces: V = (V;)52, are nested subsets of V' such that lim; ,, V; = V.

2. Decoder subspaces: W = (W;)$2,, are nested subsets of W such that lim;_,., W; = W.

3. Encoder operators: € = (E;)2, where E; : V; — V; denoted E;(v;) = 0;.

4. Decoders operators: D = (D;)52, where D; : W;_1 x V; — W, at resolution ¢ denoted
D;(w;—_1|v;). The v; component is called the skip connection.



5. Projection operators: P = (P;)?2,, where P; : V — V,, such that P;(v;) = v; forv; € V;.
6. Bottleneck: Uy is the mapping Uy : Vo — Wy, enabling a compressed representation of the input.

The U-Net of resolution ¢ is the mapping U; : V; — W, defined through the recursion (see Figure 3):

We illustrate the Definition of a U-Net in Figure 1. Definition 1 includes
a wide array of commonly used U-Net architectures, from the seminal
U-Net [1], through to modern adaptations used in large-scale diffusion
models [8, 9, 10, 11, 12], operator learning U-Nets for PDE modelling
[6, 7], and custom designs on the sphere or graphs [17, 18]. Our
framework also comprises models with multiple channels (for instance
RGB in images) by choosing V; and W; for a given resolution 7 to be
product spaces V; = ®iw=1 Vixand Wy = ®2{=1 W, , for M channels
when necessary?. Remarkably, despite their widespread use, to the best
of our knowledge, our work presents the first formal definition of a
U-Net. Definition 1 not only expands the scope of U-Nets beyond
problems confined to squared domains, but also naturally incorporates problem-specific information
such as a natural basis, boundary conditions or topological structure as we will show in §3.2 and
3.3. This paves the way for designing inherently scalable neural network architectures capable of
handling complicated geometries, for instance manifolds or CW-complexes. In the remainder of the
section, we discuss and characterise the components of a U-Net.

Figure 3: Recursive struc-
ture of a U-Net.

Encoder and decoder subspaces. We begin with the spaces in V' and W which a U-Net acts
on. Current literature views U-Nets as learnable mappings between input and output tensors. In
contrast, this work views U-Nets and their encoder and decoder as operators on spaces that must be
chosen to suit our task. In order to perform computations in practice, we must restrict ourselves to
subspaces V; and W; of the potentially infinite-dimensional spaces V' and W. For instance, if our
U-Net is modelling a mapping between images, which can be viewed as bounded functions over a
squared domain X = [0, 1], it is convenient to choose V' and W as subspaces of L?(X), the space of
square-integrable functions [19, 20] (see Appendix C). Here, a data point w; in the decoder space W
is represented by the coefficients ¢; j where w; = 3 ¢; je; j and {e; ; }; is a (potentially orthogonal)
basis for W;. We will consider precisely this case in §3.1. The projected images on the subspace
V;, W; are still functions, but piece-wise constant ones, and we store the values these functions obtain
as ‘pixel’ tensors in our computer [20] (see Figure 22 in Appendix A).

Role of encoder, decoder, projection operators. In spite of their seemingly symmetric nature
and in contrast to common understanding, the roles of the encoder and decoder in a U-Net are
fundamentally different from each other. The decoder on resolution ¢ learns the transition from W,_;
to W; while incorporating information from the encoder on V; via the skip connection. The encoder
E; can be viewed as a change of basis mapping on the input space V; at resolution 7 and is not directly
tied to the approximation the decoder makes on W;. This learned change of basis facilitates the
decoder’s approximation on W;. In §3.1, we will further extend our understanding of the encoder and
discuss its implications for designing U-Nets. The projection operators serve to extract a compressed
input. They are selected to suit task-specific needs, such as pooling operations (e.g. average pooling,
max pooling) in the context of images, or orthogonal projections if V' is a Hilbert space. Note that
there is no embedding operator?, the operator facilitating the transition to a higher-resolution space,
explicitly defined as it is invariably the natural inclusion of W,;_; into W;.

Self-similarity of U-Nets via preconditioning. The key design principle of a U-Net is precondi-
tioning. The U-Net of resolution 7 — 1, U;_; makes an approximation on W;_; which is input of
and preconditions U;. Preconditioning facilitates the transition from W, _; to W; for the decoder. In
the encoder, the output of P;_; F; is the input of U;_;. When our underlying geometry is refinable
(such as a square), we may use a refinable set of basis functions. In the standard case of a U-Net
with average pooling on a square domain, our underlying set of basis functions are (Haar) wavelets
(see §2.3) — refinable basis functions defined on a refinable geometry. This preconditioned design of

*Implementation wise this corresponds to taking the Kronecker product across the spaces V; 5 and W x,
respectively.

3In practice, if we for instance learn a transposed convolution operation, it can be equivalently expressed as a
standard convolution operation composed with the natural inclusion operation.



U-Nets reveals a self-similarity structure (see Figure 3) inherent to the U-Net when the underlying
space has a refinable geometry. This enables both an efficient multi-resolution approximation of
U-Nets [20] and makes them modular, as a U-Net on resolution ¢ — 1 is a coarse approximation for a
U-Net on resolution 7. We formalise this notion of preconditioning in Proposition 1 in §2.3.

2.2 High-resolution scaling behavior of U-Nets

Given equation (1), it is clear that the expressiveness of a U-Net I/ is governed by the expressiveness
of its decoder operators D. If each D; is a universal approximator [21], then the corresponding
U-Nets U; likewise have this property. Assuming we can represent any mapping U; : V; — W, asa
U-Net, our goal now is to comprehend the role of increasing the resolution in the design of I/, and to
discern whether any function U : V' — W can be represented as a high-resolution limit lim;_, o, U; of
a U-Net. We will explore this question in the context of regression problems of increasing resolution.

To obtain a tractable answer, we focus on choosing W' as a Hilbert space, that is W equipped with an
inner product. This allows us to define VV as an increasing sequence of orthogonal subspaces of W.
Possible candidates for orthogonal bases include certain Fourier frequencies, wavelets (of a given
order) or radial basis functions. The question of which basis is optimal depends on our problem and
data at hand: some problems may be hard in one basis, but easy in another. In §4, Haar wavelets are a
convenient choice. Let us define S as infinite resolution data in V' x W and S; as the finite resolution
projection in V; x W; comprising of (v;, w;) = (P;(v), Q;(w)) for each (v, w) € S. Here, P; is the
U-Net projection onto V;, and @; : W +— W; is the orthogonal projection onto W;. Assume U;* and
U* are solutions to the finite and infinite resolution regression problems ming, ¢ 7, £;(U;|S;) and
mingex L(U|S) respectively, where F; and F represent the sets of measurable functions mapping
V; — W, and V — W. Let £; and £ denote the L? losses:

1 1
Li(Ui|8:)? = )] Z Jwi — Us(i)[|?,  L(UIS)? = 1] Z [w —U(v)]*.
U (w;,v,)€S; (w,v)€S

The following result analyses the relationship between U;* and U* as i — oo where L;); and L,; are
the losses above conditioned on resolution j (see Appendix A).

Theorem 1. Suppose U; and U* are solutions of the L* regression problems above. Then,
L;;(U) < L;(U*) with equality as i — oo. Further, if Q;U* is V;-measurable, then U} = Q;U*
minimises L;.

Theorem 1 states that solutions of the finite resolution regression problem converge to solutions of the
infinite resolution problem. It also informs us how to choose V; relative to W;. If we have a V where
for the decoders on W, the W,; component of U™, Q;U*, relies solely on the input up to resolution ,
then the prediction from the infinite-dimensional U-Net projected to W; can be made by the U-Net of
resolution ¢. The optimal choice of V; must be expressive enough to encode the information necessary
to learn the W, component of U*. This suggests that if V; lacks expressiveness, we risk efficiency
in learning the optimal value of U;". However, if Vj is too expressive, no additional information is
gained, and we waste computational effort. Therefore, we should choose V; to encode the necessary
information for learning information on resolution 7. For example, when modelling images, if we are
interested in low-resolution features on W;, high-resolution information is extraneous, as we will
further explore in §4 in the context of diffusion models.

2.3 U-Nets are conjugate to ResNets

Next, our goal is to understand why ResNets are a natural choice in U-Nets. We will uncover a
conjugacy between U-Nets and ResNets. We begin by formalising ResNets in the context of U-Nets.

Definition 2. ResNet, Residual U-Nets. Given a measurable space X and a vector space Y,
a mapping R : X — Y is defined as a ResNet preconditioned on RP*® : X — Y if R(z) =
RP™(x) + R*S(x), where R**%(z) = R(x) — RP™(x) is the residual of R. A Residual U-Net is a
U-Net U where W, V are sequences of vector spaces, and the encoder and decoder operators £, D
are ResNets preconditioned on EY*°(v;) = v; and DY (w;_1|v;) = w;_1, respectively.

A preconditioner initialises a ResNet, then the ResNet learns the residual relative to it. The difficulty
of training a ResNet scales with the deviation from the preconditioner, as we saw in our synthetic
experiment in §1. In U-Nets, ResNets commonly serve as encoder and decoder operators. In encoders,



preconditioning on the identity on V; allow the residual encoder F;°° to learn a change of basis for
Vi, which we will discuss in more detail in §3.1. In decoders, preconditioning on the identity on the
lower resolution subspace W;_1 allows the residual decoder D}® to learn from the lower resolution
and the skip connection. Importantly, ResNets can compose to form new ResNets, which, combined
with the recursion (1), implies that residual U-Nets are conjugate to ResNets.

Proposition 1. If U is a residual U-Net, then U; is a ResNet preconditioned on U“(v;) =
Ui—l(ﬁi—l), where 177;_1 = F)z—l(Ez(Uz))

Proposition 1 states that a U-Net at resolution ¢ is a ResNet preconditioned on a U-Net of lower
resolution. This suggests that U;“® learns the information arising from the resolution increase. We
will discuss the specific case E; = Idy,, and UP™(v;) = U;—1(P;—1(v;)) in §3.1. Proposition 1 also
enables us to interpret lim; ., U; from §2.2 as a ResNet’s ‘high-resolution’ scaling limit. This is
a new scaling regime for ResNets, different to time scaled Neural ODEs [22], and warrants further
exploration in future work. Finally, we provide an example of the common Residual U-Net.

Example 1. Haar Wavelet Residual U-Net. A Haar wavelet residual U-Net U is a residual U-Net
where: V = W = L?(X), V; = W; are multi-resolution Haar wavelet spaces (see Appendix C.3),
and P; = projy, is the orthogonal projection.

We design Example 1 with images in mind, noting that similar data over a squared domain such as
PDE (see §5) are also applicable to this architecture. We hence choose Haar wavelet [23] subspaces
of L?(X), the space of square integrable functions and a Hilbert space, and use average pooling as
the projection operation P; [20]. Haar wavelets will in particular be useful to analyse why U-Nets are
a good inductive bias in diffusion models (see §4). U-Net design and their connection to wavelets has
also been studied in [24, 25, 26].

3 Generalised U-Net design

In this section, we provide examples of different problems for which our framework can define
a natural U-Net architecture. Inspired by Galerkin subspace methods [27], our goal is to use our
framework to generalise the design of U-Nets beyond images over a square. Our framework also
enables us to encode problem-specific information into the U-Net, such as a natural basis or boundary
conditions, which it no longer needs to learn from data, making the U-Net model more efficient.

3.1 Multi-ResNets

A closer look at the U-Net encoder. To characterise a U-Net in Definition 1, we must in particular
choose the encoder subspaces V. This choice depends on our problem at hand: for instance, if
the inputs are images, choosing Haar wavelet subspaces is most likely favourable, because we can
represent and compress images in a Haar wavelet basis well, noting that more complex (orthogonal)
wavelet bases are possible [28, 29]. What if we choose V unfavourably? This is where the encoder
comes in. While the encoder subspaces ) define an initial basis for our problem, the encoder learns a
change of basis map to a new, implicit basis 9; = F;(v;) which is more favourable. This immediately
follows from Eq. (1) since U; acts on V; through ©;. The initial subspaces ) can hence be viewed as
a prior for the input compression task which the encoder performs.

Given our initial choice of the encoder subspaces V), the question whether and how much work the
encoders £ have to do depends on how far away our choice is from the optimal choice V for our
problem. This explains why the encoders E; are commonly chosen to be ResNets preconditioned
on the identity E'™® = Idy,, allowing the residual encoder Ef to learn a change of basis. If we
had chosen the optimal sequence of encoder subspaces, the residual operator would not have to do
any work; leaving the encoder equal to the precondition E; = Idy,. It also explains why in practice,
encoders are in some cases chosen significantly smaller than the decoder [30], as a ResNet encoder
need not do much work given a good initial choice of V. It is precisely this intuition which motivates
our second example of a U-Net, the Multi-Res(olution) Res(idual) Network (Multi-ResNet).

Definition 3. Multi-ResNets. A Multi-ResNet is a residual U-Net with encoder E; = Idy;.

Example 2. Haar Wavelet Multi-ResNets. A Haar Wavelet Multi-ResNet is a Haar Wavelet
Residual U-Net with encoder F; = Idy,.



We illustrate the Multi-ResNet, a novel U-Net architecture, in Figure 1 where we choose E; = Idy;.
Practically speaking, the Multi-ResNet simplifies its encoder to have no learnable parameters, and
simply projects to V; on resolution ¢. The latter can for the example of Haar wavelets be realised
by computing a multi-level Discrete Wavelet Transform (DWT) (or equivalently average pooling)
over the input data [20]. Multi-ResNets allow us to save the parameters in the encoder, and instead
direct them to bolster the decoder. In our experiments in §5.1, we compare Multi-ResNets to Residual
U-Nets and find that for PDE surrogate modelling and image segmentation, Multi-ResNets yield
superior performance to Residual U-Nets as Haar wavelets are apparently a good choice for V, while
for other problems, choosing Haar wavelets is suboptimal. Future work should hence investigate how
to optimally choose V for a problem at hand. To this end, we will discuss natural bases for } and W
for specific problems in the remainder of this section.

3.2 U-Nets which guarantee boundary conditions

Next, our main goal is to show how to design U-Nets which choose WV in order to encode constraints
on the output space directly into the U-Net architecture. This renders the U-Net more efficient as
it no longer needs to learn the constraints from data. We consider an example from PDE surrogate
modelling, approximating solutions to PDE using neural networks, a nascent research direction where
U-Nets already play an important role [6], where our constraints are given boundary conditions and
the solution space of our PDE. In the elliptic boundary value problem on X = [0, 1] [31], the task is
to predict a weak (see Appendix A) PDE solution w from its forcing term f given by

Au= f, u(0) = u(1) =0, o)

where u is once weakly differentiable when the equation is viewed in its weak form, f € L?(X) and
Aw is the Laplacian of u. In contrast to Examples 1 and 2, we choose the decoder spaces as subspaces
of W = H}, the space of one weakly differentiable functions with nullified boundary condition, a
Hilbert space (see Appendix A), and choose V' = L?(X), the space of square integrable functions.
This choice ensures that input and output functions of our U-Net are in the correct function class for
the prescribed problem. We now want to choose a basis to construct the subspaces } and W of V' and
W. For V, just like in Multi-ResNets in Example 2, we choose V; to be the Haar wavelet space of
resolution 7, an orthogonal basis. For VW, we also choose a refinable basis, but one which is natural
to H{. In particular, we choose W; = span{¢y ; : j < k,k =1,...,2""1} where

orj(z) = ¢(2Fx + j/2F), d(w) =2z - 1jp,1/2) (%) + (2 — 22) - 1j1/2,1)(7). 3)

This constructs an orthogonal basis of H, illustrated in Figure 4, which emulates our design choice
in Section 3.1 where the orthogonal Haar wavelet basis was beneficial as W was L?-valued. Each
®r,; obeys the regularity and boundary conditions of our PDE, and consequently, an approximate
solution from our U-Net obeys these functional constraints as well.
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Figure 4: Refinement of an orthogonal basis for H} = span{¢o.o, $1,0, #1,1}. We visualise the
graphs of basis functions defined in (3): [Left] ¢0,0 = ¢, [Top Right] ¢1 ¢, and [Bottom Right] ¢ ;.
When increasing resolution, steeper triangular-shaped basis functions are constructed.

These constraints are encoded into the U-Net architecture and hence need not be learned from data.
This generalised U-Net design paves the way to broaden the application of U-Nets, analogous to the
choice of bases for Finite Element [32] or Discontinuous Galerkin methods [33].
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Figure 5: U-Nets encoding the topological structure of a problem. [Left] A refinable Haar wavelet
basis with basis functions on a right triangle, ¢; j—o = Lreq — Lpie. [Right] A sphere and a Mobius
strip meshed with a Delaunay triangulation [35, 36]. Figures and code as modified from [37].

3.3 U-Nets for complicated geometries

Our framework further allows us to design U-Nets which encode the geometry of the input space right
into the architecture. This no longer requires to learn the geometric structure from data and enables
U-Nets for complicated geometries. In particular, we are motivated by fessellations, the partitioning
of a surface into smaller shapes, which play a vital role in modelling complicated geometries across
a wide range of engineering disciplines [34]. We here focus on U-Nets on a triangle due to the
ubiquitous use of triangulations, for instance in CAD models or simulations, but note that our design
principles can be applied to other shapes featuring a self-similarity property. We again are interested
in finding a natural basis for this geometry, and characterise key components of our U-Net.

In this example, neither W nor V are selected to be L?(X) valued on the unit square (or rectangle)
X. Instead, in contrast to classical U-Net design in literature, W = V = LQ(A), where A is a
right-triangular domain illustrated in Figure 5 [Left]. Note that this right triangle has a self-similarity
structure in that it can be constructed from four smaller right triangles, continuing recursively. A
refinable Haar wavelet basis for this space can be constructed by starting from ¢; o = Lreq — Lpjye for
7 = 0 as illustrated in Figure 5 [Left]. This basis can be refined through its self-similarity structure
to define each subspace from these basis functions via W; = V; = Span{¢y; : j < k, k =
1,...,271} (see Appendix A for details). In §5.2, we investigate this U-Net design experimentally.
In Appendix A we sketch out how developing our U-Net on triangulated manifolds enables score-
based diffusion models on a sphere [16] without any adjustments to the diffusion process itself.
This approach can be extended to complicated geometries such as manifolds or CW-complexes as
illustrated in Figure 5 [Right].

4 Why U-Nets are a useful inductive bias in diffusion models

U-Nets are the go-to neural architecture for diffusion models particularly on image data, as demon-
strated in an abundance of previous work [8, 9, 10, 11, 12, 38, 39, 40, 41]. However, the reason
why U-Nets are particularly effective in the context of diffusion models is understudied. Our U-Net
framework enables us to analyse this question. We focus on U-Nets over nested Haar wavelet
subspaces V = W that increase to V' = W = L?([0, 1]), with orthogonal projection Q; : W + W;
on to W; corresponding to an average pooling operation ); [42] (see Appendix C). U-Nets with
average pooling are a common choice for diffusion models in practice, for instance when modelling
images [8, 9, 38, 39, 40]. We provide theoretical results which identify that high-frequencies in a
forward diffusion process are dominated by noise exponentially faster, and how U-Nets with average
pooling exploit this in their design.

Let X € W be an infinite resolution image. For each resolution ¢ define the image X; = Q; X € W;
on 2° pixels which can be described by X; = >, X"y, where ® = {¢y : k =1,...,2'} is the

standard (or ‘pixel’) basis. The image X is a projection of the infinite resolution image X to the
finite resolution 7. We consider the family of denoising processes { X;(t)}52,, where for resolution i,

the process X;(t) = >, XZ-(k) (t)ér € W; is initialised at X; and evolves according to the denoising
diffusion forward process (DDPM, [8]) at each pixel XZ.(’C) (t) = V1-— atXi(k) + Jage®) for
standard Gaussian noise £(*). We now provide our main result (see Appendix A for technical details).

Theorem 2. Fortimet > O0andj > 4, Q; X;(t) 4 Xi(t). Furthermore if X;(t) = Zj':o )/(:(j)(t)-ggj,

be the decomposition of X;(t) in its Haar wavelet frequencies (see Appendix C). Each component
X (t) of the vector has variance 29~! relative to the variance of the base Haar wavelet frequency.
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Figure 6: PDE modelling and image segmentation with a Multi-ResNet. [Left,Middle] Rolled
out PDE trajectories (ground-truth, prediction, L2-error) from the Navier-Stokes [Left], and the
Shallow Water equation [Middle]. Figure and code as modified from [6, Figure 1]. [Right] MRI
images from WMH with overlayed ground-truth (green) and prediction (blue) mask.

Theorem 2 analyses the noising effect of a forward diffusion process in a Haar wavelet basis. It states
that the noise introduced by the forward diffusion process is more prominent in the higher-frequency
wavelet coefficients (large k), whereas the lower-frequency coefficients (small k) preserves the signal.
Optimal recovery of the signal in such scenario has been investigated in [43], where soft thresholding
of the wavelet coefficients provides a good L? estimator of the signal and separates this from the data.
In other words, if we add i.i.d. noise to an image, we are noising the higher frequencies faster than
the lower frequencies. In particular, high frequencies are dominated by noise exponentially faster. It
also states that the noising effect of our diffusion on resolution ¢, compared to the variance of the base
frequency ¢ = 0, blows up the higher-frequency details as ¢ — oo for any positive diffusion time.

We postulate that U-Nets with average pooling exploit precisely this observation. Recall that the
primary objective of a U-Net in denoising diffusion models is to separate the signal from the noise
which allows reversing the noising process. In the ’learning noise’ or € recovery regime, the network
primarily distinguishes the noise from the signal in the input. Yet, our analysis remains relevant, as it
fundamentally pertains to the signal-to-noise ratio. Through average pooling, the U-Net discards those
higher-frequency subspaces which are dominated by noise, because average pooling is conjugate
to projection in a Haar wavelet basis [20, Theorem 2]. This inductive bias enables the encoder and
decoder networks to focus on the signal on a low enough frequency which is not dominated by noise.
As the subspaces are coupled via preconditioning, the U-Net can learn the signal which is no longer
dominated by noise, added on each new subspace. This renders U-Nets a computationally efficient
choice in diffusion models and explains their ubiquitous use in this field.

S Experiments

We conduct three main experimental analyses: (A) Multi-ResNets which feature an encoder with no
learnable parameters as an alternative to classical Residual U-Nets, (B) Multi-resolution training and
sampling, (C) U-Nets encoding the topological structure of triangular data. We refer to Appendix B.4
for our Ablation Studies, where a key result is that U-Nets crucially benefit from the skip connections,
hence the encoder is successful and important in compressing information. We also analyse the
multi-resolution structure in U-Nets, and investigate different orthogonal wavelet bases. These
analyses are supported by experiments on three tasks: (1) Generative modelling of images with
diffusion models, (2) PDE Modelling, and (3) Image segmentation. We choose these tasks as U-Nets
are a go-to and competitive architecture for them. We report the following performance metrics with
mean and standard deviation over three random seeds o