
Dataset Depth Width Learning Rate Epochs Delta Gamma Optimizer
Adult 2 256 0.001 50 0.02 0.025 Adam (momentum=0.9)
Credit 2 256 0.01 50 0.02 0.025 Adam (momentum=0.9)
German 2 256 0.0025 50 0.02 0.025 Adam (momentum=0.9)
Income 2 256 0.001 50 0.02 0.025 Adam (momentum=0.9)
Coverage 2 256 0.001 50 0.02 0.025 Adam (momentum=0.9)
Employ 2 256 0.001 50 0.02 0.025 Adam (momentum=0.9)

Table 2: Hyperparameters for the base model of each dataset. We keep all parameters across models
the same with the exception of learning rate which is fine-tuned according to best accuracy on a
validation set.

A Experimental Details

In this section, we report the hyperparameters of each base model used in our paper, details in Table 2.
The only hyperparameter that is tuned is done per dataset using a 10% validation split. The best
learning rate is then chosen after a grid search over 20 evenly spaced values. We have chosen a model
architecture that is considerably larger than what is used by previous certification works in order
to understand if the claimed scalability benefits of our method holds in practice over a half dozen
datasets and compared to real-world distribution shifts. Indeed, we find in the main text that despite
our base model being considerably larger than previous works, we are able to get strong IF and DIF
guarantees despite the models size. In our further experiments, we keep all hyperparameters constant
unless otherwise noted. For example, in our exploration of increased width we only vary the width
holding all other hyperparameters in Table 2 constant.

B Additional Experimental Ablations

In this section, we report further experimental abalations that validate the effectiveness of our
proposed method. We start by studying the empirical convergence of our approach to the true global
optimal value which is computed numerically. We then provide an extended analysis of a real world
distribution shift which stems from population shift over time (specifically between 2015 and 2022).
Finally, we report on the scalability of our proposed F-IBP training method where we find that it has
remarkable scalability benefits.

Figure 4: Convergence analysis for subgradient methods solution to Equation (5). Blue line plots the
value of the optimization problem over a fixed number of iterations while the red dashed line indicates
the numerically optimal solution to the optimization problem. We consider the Income dataset on
networks trained with various levels of DIF regularization. From left to right we run our convergence
analysis on neural networks trained with SGD, SenSR, F-IBP, L-DIF, and U-DIF regularization.
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Numerical Error
Income Employ Coverage

SGD -0.0143 0.03706 0.113219
SenSR 0.06885 0.03659 -0.033412
F-IBP 0.00820 -0.00098 0.022244

L-DRO 0.05840 -0.00132 0.018893
U-DRO -0.0021 0.008271 -0.007846

Table 3: For each combination of regularization method and Folktables dataset we compare the error
between a subgradient solution to Equation (5) and the numerically optimal value. Positive entries
indicates that the solution found by the subgradient method was greater than that of the numerical
algorithm and visa versa for negative entries. We highlight that on average the actual value of the
optimization was roughly 0.3, therefore error on the order of 1e-2 is acceptable.

B.1 Convergence Experiments

In Section E we provide proofs that solving for a global optimum of Equation (5) is a true upper
bound to the DIF violation and that any suitable subgradient algorithms should converge to a global
optimum in finite time. In this Section, we discuss the experimental convergence of our U-DIF
algorithm to the global optimum. In order to approximately compute the true global optimum,
we use the following numerical scheme. We assume we would like to compute the DIF violation
according to � = 0.1 and � = 0.05 (exact numbers vary by network and are given in Figure 4).
We further assume that we are given 50 individuals to compute the DIF i.e., n = 50. We start by
evaluating the function I(f✓, x(i), � + '(i,k)) for each individual and for each k 2 [K] (we choose
k = 500) values of ' evenly spaced between 0.0 and 2.4 as this (more generally (n�)� �) is an upper
bound to the radius that any one individual can have without breaking the Wasserstein constraint.
After evaluating I(f✓, x(i), � + 'i,k) for each of the k-many '(i,k) values for all individuals, we
exhaustively enumerate all possible assignments of {'(i,k)}50i=1 such that 1/50

P50
i=1 '

(i) is less than
or equal to 0.05 (�). As K ! 1, this produces an exact computation of the global maximum of
Equation (5).

Once a numerical solution has been computed, we run our U-DIF optimization using the method of
Hu et al. (2020) and we plot the results for the Income dataset in Figure 4. We find that regardless of
how the neural network is trained, our algorithm quickly converges to the global optimum assignment
of {'(i)}ni=1. We note that in the center plot of Figure 4, corresponding to the F-IBP trained
network, we converge to a value slightly below the global optimum; however, this is within the
expected convergence error. In order to better understand this expected convergence error, we run
the experiment from Figure 4 across each of the folktables datasets, and report the numerical error
of our U-DIF computed value in Table 3. Only in cases where the value reported is negative do we
converge to something smaller than the value produced by the numerical solution, and in each case
the numerical error of the subgradient procedure converges to within tolerable error as theoretically
expected.

B.2 Extended results on real-world shifts

In this Section we briefly describe Figure 5 which presents a complementary empirical study to that
of Figure 3 in the main text. In the far left hand side of Figure 5 we plot the Wasserstein distance
between pairs of datasets that differ only in the year the data was collected. For the Folktables
datasets this varies between 2015 and 2021. We find that the data shift over time is less severe than
the data shift over geographic location. Again we use the upper quartile of these distributions as the
value that we would like to certify. In Figure 5 (b)-(e) we plot the distribution of IF violation for an
observed temporal shift as a box plot. For each dataset, we observe that more strict DIF regularization
corresponds to better performance with respect to empirical DIF violations. Moreover, in Figure 5
(b)-(e) we plot our computed upper and lower DIF bounds. We find, as in the main text, that our
lower-bound tightly tracks the empirically observed worst-case DIF violation, while our upper bound
is a sound over-estimate of the DIF violation.
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Income Employ Coverage
D. Par. Eq. Od Eq. Op IF. Par D. Par Eq. Od Eq. Op IF. Par D. Par Eq. Od Eq. Op IF. Par

SGD 0.074 0.027 0.006 0.000 0.012 0.103 0.003 0.011 0.006 0.023 0.0082 0.012
SenSR 0.009 0.139 0.037 0.021 0.049 0.156 0.017 0.041 0.055 0.112 0.074 0.009
F-IBP 0.013 0.081 0.014 0.000 0.030 0.119 0.0009 0.042 0.033 0.070 0.055 0.008
L-DIF 0.021 0.157 0.020 0.000 0.016 0.092 0.001 0.042 0.032 0.069 0.054 0.006
U-DIF 0.000 0.094 0.004 0.000 0.009 0.082 0.002 0.000 0.028 0.064 0.054 0.000

Table 4: Affect of IF training on measures of group fairness. For each metric lower is better. We
specifically provide computations of demographic parity (D. Par), equalized odds (Eq. Od), equalized
opportunity (Eq. Op), and IF parity (IF. Par). More often than not, we find that DIF training improves
measures group fairness; though in some instances makes group fairness considerably worse.

B.3 Extended scalability results

In Figure 6 we report the computational time required by our proposed F-IBP method as well as
the computational times reported by Benussi et al. (2022). We highlight that the times reported by
Benussi et al. (2022) utilize a multi-GPU machine while our experiments are conducted using only
a consumer-grade laptop. Despite a considerable compute disadvantage, our methods never takes
longer than 5 minutes to train neural networks with more than 4000 neurons whereas the training
required by the MILP procedure can take up to 10 hours to train a 64 neuron NN. This impressive
scalability improvement underscores the value of our proposed method.

B.4 Impact on Group Fairness

While individual fairness is a flexible and key measure of fairness, it is currently the case that no one
fairness metric alone captures a complete picture of model bias (Fazelpour & Lipton, 2020). In this
section, we briefly report on the effect of our proposed training method on group fairness notions. In
Table 4, we report common group fairness notions such as demographic parity, equalized odds, and
equalized opportunity for each of our trained models. Additionally we consider IF parity which is
taken as the difference in average local individual fairness violation of the model w.r.t the majority
group (men) and the minority group (women). Across these metrics, we find that more often than not
DIF training also has a positive effect on group fairness. While this is not always the case, Table 4
clearly establishes that DIF training methods do not necessarily exacerbate other forms of model bias.

C Extended Related Works

In the main text, Section 2 describes the context of our contribution relative to the literature on
guarantees for individual fairness (local and global) as well as works related to distributionally robust
fairness. In this section, we describe some works in distributional robustness that have a strong
relationship to our contribution. In Sinha et al. (2017) the authors provide an initial certificate of
distributional robustness under many of the same assumptions as our method e.g., restricting to
Wasserstein distances between Dirac measures. However, their bound is derived based on a Taylor
expansion and relies upon a knowing the value of global Lipschitz constants of the neural network.
Our method, on the other hand, makes no such assumptions on the value of Lipschitz constants.
Indeed, our bound relies on the Hölder continuity of the I function; however, we do not rely on
any knowledge of value of the constants for which the Hölder condition holds. The requirement
of the Hölder condition is a practical consideration in order to ensure that our bounds converge
globally with subgradient methods. Using branch and bound would solve our optimization problem
without any continuity assumption on I, albeit at greater computational complexity. For further
works focusing on distributional robustness when using the Wasserstien distance, we point interested
readers to Blanchet & Murthy (2016) and Mohajerin Esfahani & Kuhn (2018). Since the submission
of this work, (Doherty et al., 2023) has investigated individual fairness in the context of Bayesian
neural networks and find that uncertainty benefits individual fairness, perhaps due to its relationship
to adversarial robustness (Carbone et al., 2020).
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(a) (b) (c) (d) (e)

Figure 5: Evaluating our bounds versus real-world distribution shifts. Column (a): An empirical
distribution of Wasserstein distances between the distribution of individuals from different pairs of
years, we certify w.r.t the upper quartile of these distributions. Columns (b) - (e): We plot the local
fairncess certificates (LFC) for each of the shifted dataset using a boxplot. We then plot our lower
bound on the worst-case DIF violation as a blue triangle and our upper bound on the worst-case DIF
violation as a red triangle.

Figure 6: Computational time comparison between MILP training times reported in (Benussi et al.,
2022) (plotted as stars) and F-IBP (plotted as circles) demonstrates our methods considerable
advantage in scalability.

D Detailed Computations

In this section we first describe how fair distance metrics are computed. We then provide the details
for the exact computations of IBP and finally, an analysis of the bound presented in Theorem 5.1.

D.1 Computing Fair Distance Metrics

In this subsection we breifly describe methods to compute dfair metrics. Below, we describe two
popular forms of dfair and how they are computed. In this work, we assume that the dfair is always
given by the SenSR metric.

Weighted `p metric A weighted `p metric for a vector x in Rn takes the form:
�Pn�1

i=0 �ixp
�1/p

where � is the weight vector. In John et al. (2020) the �i is set to 0 for sensitive features and 1 for
non-sensitive features. In this work, we attempt to capture the intra-correlation between sensitive and
non-sensitive features by setting the weight of non-sensitive features i to be �i = 1/|⇢i,j | where ⇢i,j
is the Pearson correlation coefficient between the feature i and the sensitive feature j.

SenSR metric While weighted `p metrics are intuitive they may be seen as overly simple. In
Yurochkin et al. (2019), the authors propose the SenSR metric (abbreviated as SR). Assuming only a
single sensitive attribute, the SR metric is a Mahalanobis metric computed by first learning a logistic
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regression model to predict the sensitive attribute (xsens) from the n � 1 non-sensitive attributes
(xnonsens,i8i 2 [n� 1]), e.g., x̂sens = exp(aTj xnonsens + bj)/

PK
j=0 exp(a

T
j xnonsens + bj). Taking each

vector aj to be the column of a matrix A, we have that the sensitive subspace matrix S is given by
S = I � Pran(A) where Pran(A) is the orthogonal projector of the span of A. We then take S to be
the matrix for a fair Mahalanobis metric dfair = dS(x, y) =

p
(x� y)>S�1(x� y).

D.2 IBP Computations

Given a NN f✓ and an interval [xL, xU ] computed according to Theorem 5.1, interval bound prop-
agation proceeds by computing an interval over outputs [yL, yU ] such that 8x 2 [xL, xU ], yL 
f✓(x)  yU . Ultimately, computing the largest difference inside of [yL, yU ] will allow us to certify
local IF. The output bounds, [yL, yU ], can be computed by performing a forward pass through the
neural network with interval bound propagation (IBP). We adopt the notation for IBP proposed in
Gowal et al. (2018) where zk,L and zk,U are the lower and upper bound on the inputs to the kth layer
of the neural we can propagate this interval from layer k to k + 1 as follows:

zkµ = (zk,L + zk,U )/2, zkr = (zk,U � zk,L)/2 (6)

⇣kµ = W k+1zkµ + bk+1, ⇣kr = |W k+1|zkr (7)

zk+1,L = �(⇣kµ � ⇣kr ), zk+1,U = �(⇣kµ + ⇣kr ) (8)

By passing the input interval [xL, xU ] through the above equations, as z0,L and z0,U respectively, we
arrive at sound upper and lower bounds of the logits of the network. For the final activation, in our
case the softmax, we can compute the lower and upper bounds on the softmax output for class i with:

�K,L
i =

ez
K,L
i

ez
K,L
i +

P
j 6=i e

zK,U
j

, (9)

�K,U
i =

ez
K,U
i

ez
K,U
i +

P
j 6=i e

zK,L
j

(10)

Finally, we have that for a c-class classification network that maxi2[c]

�
�K,U
i � �K,L

i

�
 ✏ implies

that local individual fairness is satisfied and constitutes a local individual fairness certificate for the
network f✓ at x.

D.3 IBP Analysis

Any non-exact approximation of S can grow exponentially loose as the number of positive eigenvalues
increases. For instance, even if we approximate S with a hyper-rectangle aligned with the major axes
of S, as done in (Benussi et al., 2022; Ruoss et al., 2020), the ratio of volume of the � Mahalanobis
ball ({x 2 Rn | dS(x)  �}) and volume of hyper-rectangle is given by ⇡d/2

�(d/2+1)

Q
j|�j>0 �j to

4d/2
Q

j|�j>0 �j , where �j is the jth eigenvalue of S, and d is the number of positive eigenvalues
of S. It is not hard to see that the ratio of volumes decrease super-exponentially. Our method, an
approximation aligned with the cannonical axis shares this quality. We confirm the super-exponential
decrease in volume ratio with Monte-Carlo estimation in Figure 7. Since this ratio decreases super-
exponentially, the constraint imposed by an approximating orthotope could be too stringent when d is
large.

E Proofs

In this section, we first prove Theorem 5.1. We then show how Equation (1) and Equation (3) are
equivalent given that the Wasserstein ball is over Dirac measures. Next, we provide a straight-forward
proof that a global optima for Equation (5) is a sound upper bound on Equation (3). Lastly, we prove
that the local IF function, I is Hölder continuous, therefore suitably chosen subgradient methods
should converge to the global solution.
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Figure 7: Visualization of our orthotope approximation. Top Left: Synthetic 2D data samples. Top

Right: Unit ellipse with respect to the Mahalanobis distance computed on the data (blue) and our
over-approximation of this ellipse (red). Bottom: The tightness (ratio of unit ellipse volume and
approximation volume) computed for 20 random matrices with different dimensions. The super-
exponential decrease of this approximation is discussed in Section D.3.

E.1 Proof of Theorem 5.1

Theorem E.1. Given a positive semi-definite matrix S 2 Rm⇥m, a feature vector x0 2 Rm, and
a similarity theshold �, all vectors x00 2 Rn satisfying dS(x0, x00)  � are contained within the
axis-aligned orthope: h

x0 � �
p
d, x0 + �

p
d
i

where d = diag(S), the vector containing the elements along the diagonal of S.

Proof. Consider the case of � = 1. The width of the desired interval along the ith dimension can
be obtained by solving maxx00 eTi (x

00 � x0) s.t. dS(x0, x00)  1 where ei is the ith canonical basis
vector. Let S = RTR where R is the matrix square root of S, we can re-write the optimization in
the rotated space by change of variables, u := RT (x00 � x0). W.r.t. u the optimization becomes
maxu RT

i u s.t. ||u||  1 where Ri is the ith column of R. The solution of this optimization problem
is then RT

i Ri/||Ri|| =
p
RT

i Ri =
p
Si,i. Generalizing to each dimension i we have the boundp

diag(S), as desired. Because S�1 is a linear transformation this bound remains sound when
scaled by � or translated to be centered at an arbitrary feature vector x. Proof of results related to
Theorem 5.1 can be found in Emrich et al. (2013); Alger (2020).

Lemma 2. Computing IBP w.r.t. the interval [x0 � �
p
d, x0 + �

p
d] from Theorem 5.1 results in a

sound over-approximation of the individual fairness violation as defined in Definition 1.

Proof. IBP produces output bounds [yL, yU ] such that 8x00 2 [x0 � �
p
d, x0 + �

p
d], f✓(x00) 2

[yL, yU ]. By taking ✏ = |yU � yL|, we can certify that 8x00 s.t. dfair(x0, x00)  � =) |f✓(x0) �
f✓(x00)|  ✏ which is exactly the condition needed to prove that local individual fairness holds
according to Definition 1.

E.2 Equivalence between Equation (1) and Equation (3) for Dirac Measures

Here we briefly describe the equivolence between Equation (1) and Equation (3) when both distribu-
tions are Dirac measures, i.e., distributions given by a set of observed samples {x(i)}ni=1. In this case,
the reference distribution, P̂ , has support {�x(i)}ni=1 where �x(i) is the Dirac function at location
x(i), and we assume each observed sample has equivalent probability 1/n. We then would like to
measure the p�Wasserstein distance between P̂ 0 and another distribution. We make the assumption
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that the other distribution is also a Dirac measure. In this case, the p�Wasserstein distance between
P̂ and another Dirac measure Q̂ with samples {z(i)}ni=1 is known to be given by:

Wp(P̂ , Q̂) := inf
⇡

⇣ nX

i=1

||x(i) � z⇡(i)||p
⌘1/p

where ⇡ is the set of all permutations of the set [n]. Without loss of generality, one can express Q̂
as being given by a set of perturbation vectors �(i) such that the elements of Q̂ are defined to be
{x(i)+�(i)}ni=1. In this case, it is clear that the p�Wasserstein distance is simply

Pn
i=1(||�(i)||p)1/p.

Further, this makes it straight-forward to see that all distributions Q̂ that are within a p�Wasserstein
ball around P̂ satisfy the constraint that

Pn
i=1(||�(i)||p)1/p < �. Taking both sides to the pth power,

we notice that this is precisely the constraint in Equation (1). Thus, the Q̂ maximizing Equation (3)
corresponds to the Dirac measure maximizing Equation (1), as desired.

Alternate and general proof

Theorem E.2. Inputs from a distribution that is within � p-Wasserstein distance from the source empir-
ical distribution P̂ (x) =

Pn
i=1 �(x = xi) must be contained in the region given by

Pn
i=1 B(xi, �i)

where �i > 0,
Pn

i=1 �
p
i  �p. In other words, the constraint in (3) over-constraints and therefore

satisfies the constraints of (1).

Proof. Target distributions Q that are � distance within the source distribution must satisfy the
following constraint for all possible joint distributions: ⌧(P̂ , Q) over distributions P̂ , Q.

Wp(P̂ , Q) =

 
inf

⇠⌧(P̂ ,Q)
E(x,y)⇠[d(x, y)

p]

!1/p

Since P̂ is an empirical distribution, minimum over joint distributions is obtained when an instance y
sampled from Q is coupled with a closest point in P̂ denoted q(y, P̂ ) = argmini2[1,n] d(xi, y). We
therefore have the following simplified expression for Wp.

Wp(P̂ , Q) = Ey⇠Q[d(q(y, P̂ ), y)p]1/p

We denote by �i the maximum distance between xi and any point that is sampled from Q that is
coupled with xi, i.e.

�i , max
y⇠Q

d(q(y, P̂ ) = xi, y)

The definition of �i leads to an upper bound on the Wp distance as follows.

Wp(P̂ , Q) = Ey⇠Q[d(q(y, P̂ ), y)p]1/p


X

i

⇣
Pr(q(y, P̂ ) = xi)�

p
i

⌘1/p


 
(
X

i

Pr(q(y, P̂ ) = xi))(
X

i

�pi )

!1/p

= (
X

i

�pi )
1/p

Following the definition of �i, the support of Q (i.e. set of all points with non-zero probability)
must be contained in [n

i=1B(xi, �i), which in itself is contained in
P

i B(xi, �i) with the additional
constraint that

P
i �

p
i  �p

E.3 Proof that Global Maximum of Equation (5) is a Certificate

Recall:
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Theorem 5.2 Given an optimal assignment of {'(i)}ni=1 in Equation (5), the corresponding ✏
is a sound upper-bound on the DIF violation of the model and therefore, is a certificate that no
�-Wasserstien distribution shift can cause the individual fairness of the model to exceed ✏.

Proof. Let the set of vectors {�?(i)}ni=1 represent the global maximizing assignment of Equa-
tion (3). Let {'?(i)}ni=1 be the set of real values such that '?(i) = ||�?(i)||. From Theorem
5.2 we have that for each i that I(f✓, x(i) + �?(i), �)  I(f✓, x(i), � + '?(i)), thus we have thatPn

i=1 I(f✓, x(i) + �?(i), �) 
Pn

i=1 I(f✓, x, � + '?(i)). Given that {'?(i)}ni=1 is a feasible assign-
ment of the optimization problem and that it upper-bounds the maximum of Equation (3), we have
that the global maximum of Equation (5), must be an upper bound on Equation (3). This is due to the
fact that either {'?(i)}ni=1 is the maximizing assignment, or a the global maximum returns a value
larger than that returned by {'?(i)}ni=1 which would also be an upper bound to Equation (3).

E.4 Proof I is Hölder Continuous (therefore globabally converges)

Let xi denote a training instance in the original distribution, x(1)
i ,x(2)

i denote the points in the
neighbourhood of xi such that

x(1)
i = xi + 'i

x(2)
i = argmax

x2B�(x
(1)
i )

|f(x)� f(x(1)
i )|.

We have the following inequality for the absolute difference between function values at x(1)
i and x(2)

i .

|f✓(x(1)
i )� f✓(x(2)

i )|  |f✓(x(1)
i )� f✓(xi) + f✓(xi)� f✓(x(2)

i )|

|f✓(x(1)
i )� f✓(xi)|+ |f✓(xi)� f✓(x(2)

i )|
2I[f✓;xi,'i + �]

which follows because |x(2)
i � xi|  |x(1)

i � xi|+ |x(2)
i � xi|  'i + �

where I is as defined above

i.e.I[f✓;x, �] , max
x̂2B�(x)

|f✓(x̂)� f✓(x)|

Note that the inequality |f✓(x(1)
i )� f✓(x(2)

i )|  2I[f✓;xi,'i + �] holds for any arbitrary value of
xi and 'i.

Therefore eq3a becomes,

I(f✓;x(1)
i , �)  2I[f✓;xi,'i + �]

=) 1

n

nX

i=1

I(f✓;x(1)
i , �)  2

n

nX

i=1

I(f✓;xi,'i + �)

The upper bound on the RHS can be obtained easily since gi('i) = I(f✓;xi, � + 'i) is quasiconvex,
which is easily seen by noting that any monotonic function is quasiconvex.

Moreover, if f is C-lipschitz, then
P

i gi('i) satisfies Holder condition of order p for p=1. The proof
is as follows.
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|
X

i

g('(1)
i )�

X

i

g('(2)
i )| 

X

i

|I(f✓;xi,'
(1)
i )� I(f✓;xi,'

(2)
i )|

=
X

i

|f✓(x(1)
i )� f✓(xi)|� I(f✓;xi,'

(2)
i )

where WLOG, we assume '(2)
i  '(1)

i


X

i

|f✓(
d
x(1)
i )± C('(1)

i � '(2)
i )� f✓(xi)|� I(f✓;xi,'

(2)
i )

where dx(1)
i = P

'(2)
i
['(1)

i ]


X

i

|f✓(
d
x(1)
i )� f✓(xi)|� I(f✓;xi,'

(2)
i ) + C('(1)

i � '(2)
i )


X

i

I(f✓;xi,'
(2)
i )� I(f✓;xi,'

(2)
i ) + C('(1)

i � '(2)
i )

=
X

i

C('(1)
i � '(2)

i )

= C|'(1) � '(2)|

where x(1)
i = argmax

x2B(xi,'
(1)
i )

|f✓(x)� f✓(xi)|

and P'(x) is an operator to project a vector x into B(x,')

Bounded optimization of quasiconvex functions that satisfy Holder condition of order p is shown to
converge to global optimum when using exact or in-exact subgradient optimization methods in Hu
et al. (2020).
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