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Abstract

Closed-form differential equations, including partial differential equations and
higher-order ordinary differential equations, are one of the most important tools
used by scientists to model and better understand natural phenomena. Discovering
these equations directly from data is challenging because it requires modeling
relationships between various derivatives that are not observed in the data (equation-
data mismatch) and it involves searching across a huge space of possible equations.
Current approaches make strong assumptions about the form of the equation and
thus fail to discover many well-known phenomena. Moreover, many of them
resolve the equation-data mismatch by estimating the derivatives, which makes
them inadequate for noisy and infrequent observations. To this end, we propose
D-CIPHER, which is robust to measurement artifacts and can uncover a new and
very general class of differential equations. We further design a novel optimization
procedure, CoLLie, to help D-CIPHER search through this class efficiently. Finally,
we demonstrate empirically that it can discover many well-known equations that
are beyond the capabilities of current methods.

1 Introduction

Scientists have been using mathematical equations to describe the world for centuries. In particular,
closed-form differential equations turned out to be one of the best tools to model physical phenomena.
A differential equation describes a relationship between a quantity and its derivatives (rates of change);
it is called closed-form if this relationship is described by a mathematical expression consisting of a
finite number of variables, constants, arithmetic operations, and some well-known functions (e.g.,
exponent, logarithm, trigonometric functions)1. Closed-form differential equations provide a general
description of reality in a concise representation that is amenable to closer inspection by scientists.
This renders them transparent and interpretable to human experts.

Discoveries of these equations required a thorough knowledge of the theory, strong mathematical
skills, substantial creativity, and good intuition. The goal of this work is to discover closed-form
differential equations directly from data thus accelerating the process of scientific discovery.

Challenges in discovering differential equations from data

• Partial and higher-order derivatives. Many algorithms [10, 42] can only identify Ordinary
Differential Equations (ODEs) which evolve only with respect to one variable (usually time). In
contrast, many natural phenomena are described by equations involving many variables (e.g.,
spatial coordinates) called Partial Differential Equations (PDEs). Many equations also involve
higher-order derivatives.

1Detailed discussion in Appendix A.2
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• Derivatives not observed. Discovering differential equations from data is challenging because
the derivatives are usually not observed in the dataset (equation-data mismatch [42]). This makes
verifying a candidate equation a non-trivial task. Most of the methods try to resolve this issue by
estimating the derivatives [10, 47]. However, derivative estimation is difficult, especially when the
data is sampled infrequently or with high noise [42, 35]. For an illustrative study, see Appendix F.

• Strong assumptions and constrained search space. The majority of algorithms for identifying
differential equations make many assumptions about the form of the equation. In particular, they
make the evolution assumption (defined and explained later) and assume that the equation can be
represented as a linear combination of prespecified functions and differential operators [10, 35].
However, many well-known equations, such as a forced harmonic oscillator or an inhomogeneous
wave equation, cannot be represented in that way.

Currently, a few algorithms tackle only some of these challenges. In particular, Weak SINDy [35] is
able to discover PDEs without estimating the derivative by utilizing a variational approach. However,
the form of the equation is constrained to be in a form amenable for a sparse regression algorithm. D-
CODE [42], on the other hand, uses a variational approach in conjunction with a symbolic regression
algorithm to discover closed-form ODEs. However, it cannot handle higher-order derivatives or
multiple independent variables, so it cannot be used to discover closed-form PDEs. The algorithms
that do not require the evolution assumption appeared in [33] and [23] but they require derivative
estimation and only consider equations represented as linear combinations of prespecified functions.

Contributions. In this work, we develop the Discovery of Closed-form Partial and Higher-order
Differential Equations in a Robust Way framework (D-CIPHER) that does not estimate the derivatives,
requires fewer assumptions, has a broader search space than previous techniques, and works for both
higher-order ODEs and PDEs. Our contributions are as follows:

• We examine the landscape of different types of PDEs from the discovery perspective. In particular,
we introduce new notions such as evolution form, evolution assumption, derivative-bound part, and
derivative-free part. We use them to describe what kinds of PDEs can be discovered with current
methods and to motivate our new class of differential equations. (Section 3)

• We propose a new general class of PDEs (Variational-Ready PDEs) that admit the variational
formulation (and thus allows to circumvent the derivative estimation). We also prove a theorem
that motivates a novel objective function. (Section 5)

• We use the novel objective function to develop D-CIPHER, a new algorithm that searches over the
Variational-Ready PDEs. (Section 6)

In addition to the main contributions above, we also develop a new optimization procedure (CoLLie)
to help D-CIPHER search through this space efficiently. (Section 7)

2 Preliminaries
In this section, we provide background information about PDEs and their variational formulation.

Notation and definitions. We denote the set {1, 2, . . . , n} as [n] and the set of non-negative integers
as N0. Throughout this paper we let M,N,K ∈ N be some natural numbers and let Ω ⊂ RM be
an open set inside RM . A comprehensive table with all symbols used in this work can be found in
Appendix A together with some definitions restated more formally.

Going beyond ODEs. The simplest differential equations are ordinary differential equations that
describe quantities that evolve with respect to only one independent variable, usually time. Most
methods assume that the ODE is explicit and can be represented as a system of first-order ODEs:

u̇j(t) = fj(t,u(t)) (1)
where u̇j represents the derivative of uj . Then the discovery problem is reduced to deciding the order
of the derivative (usually first or second) and the discovery of fj .

For PDEs, it is not enough to talk about the derivative, as we can take derivatives with respect to
different variables. We denote the mixed derivative as ∂α, where α ∈ NM

0 is called a multi-index,
and define it as ∂α = ∂α1

1 ∂α2
2 . . . ∂αM

M . Each ∂αi
i = ∂αi/∂xαi

i is a αth
i -order partial derivative with

respect to xi (the ith independent variable)2. We define the order of α as |α| =
∑M

i=1 αi. We call ∂α

non-trivial if |α| > 0.
2Throughout this work we assume that the functions we use are smooth enough for the equality of mixed

partials [50] to hold. In that case, any mixed derivative can be uniquely specified by a multi-index.
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A PDE of order K is any equation of the form

f(x,u(x), ∂[K]u(x)) = 0 ∀x ∈ Ω (2)

where ∂[K]u are all non-trivial mixed derivatives of all uj (j ∈ [N ]) up to the K th order. We call a
PDE closed-form if f is closed-form.

Variational formulation (VF) of PDEs is a way to describe PDEs without referring to their derivatives
[19]. It works as follows: we take a differential equation, we multiply it by a special testing function,
and integrate. Finally, we perform integration by parts to move the derivatives from the dependent
variable u onto the testing functions. E.g., for a homogeneous heat equation,

∂tu− θ∂2
xu = 0 ⇐⇒

∫
R2

(∂tu− θ∂2
xu)ϕ dtdx = 0 ∀ϕ ⇐⇒

∫
R2

−u∂tϕ+ θu∂2
xϕ dtdx = 0 ∀ϕ (3)

For more details, see Appendix A and B. By not depending on the derivatives, methods that utilize
VF are more robust to noise than their derivative-estimating counterparts [42, 35, 36].

3 Relaxing assumptions while staying robust to noise

Below, we introduce the evolution assumption (EA) and the linear combination (LC) assumption
made by the current discovery methods.

Evolution Assumption. Although there is no generally accepted notion of an explicit PDE (as is the
case for ODEs), we define an evolution form of a PDE to be an equation of the form

∂αuj(x) = f(x,u(x), ∂[K]/αu(x)) ∀x ∈ Ω (4)

where ∂[K]/α is ∂[K] with ∂α omitted, α is a known multi-index and j ∈ [N ]. Note that if M = 1
and |α| = K then Equation 4 becomes exactly the definition of an explicit ODE.

In fact, many algorithms for PDE discovery assume a particular evolution form [35]. We call it an
evolution assumption (EA). However, this assumption requires the knowledge of α and j which
might not be trivial. Usually, ∂α is assumed to be the first derivative with respect to time (∂t) [47]
but it is not the case for many well-known PDEs such as the wave equation or Gauss’s law.

Linear combinations. Current PDE discovery algorithms [47, 35, 12] consider PDEs that are linear
in parameters. That means the PDE can be represented as a linear combination of functions, i.e.,

P∑
p=1

θpfp(x,u(x), ∂
[K]u(x)) = 0 ∀x ∈ Ω (5)

where θp ∈ R for p ∈ [P ] are the only constants that are optimized. As there are lot of expressions that
cannot be put in that form, these algorithms fail to discover more complex equations. In particular, for
an unknown θ ∈ R functions such as sin(θxi), eθxi or 1

xi+θ cannot be learned by these algorithms.

How to relax these assumptions and still allow for variational formulation? Current methods
that utilize VF either assume that the PDE is in an LC form or they only work for explicit first-order
ODEs. Moreover, all of them also make the evolution assumption. Relaxing LC is not trivial because
not all PDEs admit VF. As in Equation 3, the PDE has to be a sum of terms for which the integration
by parts can be performed. Our crucial observation is that for any term that does not contain any
derivatives (and thus does not need to be integrated by parts) no additional constraints need to be put
in place. Due to the significance of these terms, we propose the following characterization of a PDE.

Derivative-bound part and derivative-free part. Any PDE can be expressed in the form

f(x,u(x), ∂[K]u(x))− g(x,u(x)) = 0 ∀x ∈ Ω (6)

where we collect all the terms with the derivatives into f(x,u(x), ∂[K]u(x)) and all terms without
the derivatives into g(x,u(x)). We call f the derivative-bound part and g the derivative-free part
(denoted also ∂-bound and ∂-free). ∂-free part can be evaluated directly given u, whereas the ∂-bound
part requires access to the derivatives. Note that for first-order ODEs, f is trivial and equal to u̇j .

Constraints on the derivative-bound part. Although VF does not require any constraints on the
∂-free part, we still need to put some constraints on the ∂-bound part for the integration by parts to
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Table 1: Columns correspond to challenges outlined in Section 1 and answer the following questions:
Can it discover PDEs? Does it avoid derivative estimation? Is the evolution assumption unnecessary
(Equation 4)? Can it discover any closed-form ∂-free part (Equation 6)?

Method PDEs No ∂ estimation No evolution assumption Any closed-form ∂-free part

SINDy [10] ✗ ✗ ✗ ✗
SINDy-implicit [33] ✗ ✗ ✓ ✗
PDE-FIND [47] ✓ ✗ ✗ ✗
PDE-Net 2.0 [29] ✓ ✗ ✗ ✗
WSINDy [35, 46] ✓ ✓ ✗ ✗
D-CODE [42] ✗ ✓ ✗ ✓
D-CIPHER ✓ ✓ ✓ ✓

work. This is what we do in Section 5, where we aim to define currently the broadest form of PDEs
that admit the variational formulation using the above characterization.

Optimization challenge. D-CIPHER does not need the evolution assumption and it can even
discover some PDEs that cannot be put into the evolution form. Moreover, unlike previous methods,
D-CIPHER is not limited to PDEs that can be represented as a linear combination of functions
(we describe the exact form we assume in Section 6). This makes the optimization problem much
harder as we search over all closed-form functions g and for each candidate, we try to find the best
counterpart f among the allowed expressions. This is very different from the previous approaches,
which either do not need to find f as they work only for first-order ODEs [42] or they constrain
equally both the ∂-bound part and ∂-free part to be a linear combination of some pre-specified
functions [35] (for more details, see Table 10, and Table 11 in Appendix F). One way we address this
challenge is by developing a new optimization procedure (Section 7).

4 Related works

Symbolic Regression. The goal of symbolic regression is to find a closed-form expression that best
models the given dataset both in terms of accuracy and simplicity. In contrast with the conventional
regression analysis which optimizes the parameters of a pre-specified model, symbolic regression
aims at discovering both the general structure and the parameters of the model. Most of the existing
work focuses on developing optimization algorithms. Genetic Programming [26] has been widely
used for that task [49]. A different strategy has been employed in AI Feynman [54, 55] that uses
neural networks to reduce the search space by identifying simplifying properties like symmetry or
separability. Optimization methods based on pre-trained neural networks [4, 20], reinforcement
learning [40], and Meijer-G functions [1, 13] have also been proposed.

Data-driven discovery of closed-form differential equations. Data-driven discovery of physical
laws is an established area of machine learning [6, 49]. The pioneering work in that area was SINDy
[10] that constrained the space of equations to linear combinations of functions from a predefined
library and used sparse regression to discover explicit ODEs. It was later extended to include
implicit ODEs [33, 23] and PDEs [47, 48]. Various other extensions were proposed by improving the
derivative estimation and the training procedure [45, 61], adding additional selection criteria [32]
and learning the library using genetic programming [34, 12, 62]. A different approach is taken by
[29] (an extension of [30]) which uses convolutional and symbolic neural networks. It is important
to note that all of these methods still assume the PDE to be a linear combination as discussed in
Section 3 (Equation 5) which significantly limits their search space. Some other developments are
based on Gaussian processes [44, 43] but they require the exact form of the PDE and only optimize
the parameters.

Variational approach. Recently, the variational approach has been used as a viable alternative
to derivative estimation. However, they have only been used for differential equations in a linear
combination form [35, 36, 46] or closed-form first-order ODEs [42]. Extending the variational
approach to closed-form PDEs is not trivial as PDEs are much more complex than ODEs and not all
closed-form PDEs admit the variational formulation. In fact, the approaches that learn the library
mentioned in the previous paragraph can produce exactly such terms which prohibits the use of
variational formulation. To address these challenges we use the new notions defined in Section 3 to
define a new and general class of PDEs in Section 5 that admit the variational formulation.
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5 Variational-Ready PDEs

In this section, we propose a new and very general class of PDEs, the Variational-Ready PDEs (VR-
PDEs), which can be characterized without referring to the derivative. The VR-PDEs allow arbitrary
∂-free part but make some minor restrictions on the ∂-bound part. These restrictions allow one to
use the variational formulation of PDEs to circumvent derivative estimation entirely. Despite the
minor restriction, VR-PDEs contain many well-known PDEs, including all linear PDEs, Maxwell’s
equations, and Navier-Stokes equations (additional examples provided in Appendix B).

To define the new class of PDEs, we need the following definition.
Definition 1 (Extended derivative and differential operator). Let α ∈ NM

0 , |α| ≤ K, be a multi-index.
Let h : RM+N → R and a : RM → R be smooth functions. An extended derivative E , denoted
(α, a, h), maps a vector field u : RM → RN to a function E [u] : RM → R defined as:

E [u](x) = a(x)∂α[h(x,u(x))] (7)
E is called closed-form if a and h are closed-form. We call E non-degenerate if |α| > 0.

Now, let (Ep)p∈[P ] be a finite sequence of non-degenerate extended derivatives. The extended
differential operator, denoted as E[P ] is an operator defined as:

E[P ][u](x) =

P∑
p=1

Ep[u](x) (8)

Remark. Any linear operator L =
∑

α∈A aα∂
α acting on uj is an extended differential operator.

Definition 2 (Variational-Ready PDE). Let E[P ] be an extended differential operator, and let g :

RM+N → R be a continuous function. We denote a Variational-Ready PDE (VR-PDE) by a pair(
E[P ], g

)
and define it as:

E[P ][u](x)− g(x,u(x)) = 0 ∀x ∈ Ω (9)

We extend the standard variational formulation of PDEs (Proposition 1 in Appendix B) from linear
PDEs to all VR-PDEs. The following definition is useful in further discussion.
Definition 3. Consider a field u : Ω → RN , and an extended derivative E = (α, a, h). Let
ϕ : Ω→ R be a testing function (CK function 3 with compact support). We define the functional

F(E ,u, ϕ) =
∫
Ω

h(x,u(x))(−1)|α|∂α[a(x)ϕ(x)]dx

We can now use this functional to formulate variational characterization of VR-PDEs.
Theorem 1. u : Ω→ RN , where uj ∈ CK , is a solution to a VR-PDE in Equation 9 if and only if

P∑
p=1

F(Ep,u, ϕ)−
∫
Ω

[g(x,u(x))ϕ(x)] dx = 0 (10)

for all testing functions ϕ : Ω→ R.

Proof. Appendix B.
This theorem motivates the variational loss function as we expect the left-hand side of Equation 10 to
be closer to 0 the closer the canditate PDE is to the true one. To calculate how well a set of vector
fields D = {u(d)}Dd=1 matches a VR-PDE

(
E[P ], g

)
we propose the following loss function.

L
(
E[P ], g

)
=

D∑
d=1

S∑
s=1

(
P∑

p=1

F(Ep,u(d), ϕs)−
∫
Ω

g(x,u(d)(x))ϕs(x)dx

)2

(11)

where {ϕs}Ss=1 is a set of predefined testing functions.

This novel loss function makes it possible to evaluate to what extent any VR-PDE matches the
observed data. This loss can be used as an optimization objective in any algorithm that searches over
some subspace of closed-form VR-PDEs. We propose D-CIPHER in Section 6 as an example of such
an algorithm.

3We say u : RM → R is in CK if ∂αu exists and is continuous for all |α| ≤ K.
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6 D-CIPHER

In this section, we formulate the problem of PDE discovery and then we introduce a novel algorithm
(D-CIPHER) to solve it. The diagram and pseudocode are presented in Figure 1 and in Appendix C.

Problem formulation We are given a dataset of observed fieldsD = {v(d)}Dd=1 with a finite sampling
grid G ⊂ Ω. Each v(d)(x) is a noisy measurement, i.e., v(d) : G → RN is defined as

v
(d)
j (x) = u

(d)
j (x) + ϵ

(d)
j (x) ∀x ∈ G ∀j ∈ [N ] (12)

where ϵ
(d)
j (x) is a realization of a zero-mean random variable (noise), each u

(d)
j : Ω→ R is a CK

function, and every true field u(d) is governed by the same closed-form PDE f . The task is to infer
the closed-form PDE, f , from the dataset D = {v(d)}Dd=1 and the sampling grid G. We assume that
f is inside the class of closed-form VR-PDEs (Section 5) and its ∂-bound part is inside a subspace of
extended differential operators spanned by a user-specified dictionary (see Step 1 below).

We propose an algorithm that consists of three steps. In the first step, we define the subspace of
closed-form VR-PDEs we want to search over to reflect our knowledge of the problem. In the second
step, we reconstruct the fields from noisy measurements. In the last step, we solve an optimization
problem using a modified symbolic regression algorithm. For more details, check Appendix C.

Step 1: Choose the form and incorporate prior knowledge. A human expert should encode
their prior knowledge of the problem into a dictionary of non-degenerate extended derivatives Q
= {Êp}p∈[P ]. We use this dictionary to search over a finite-dimensional subspace of closed-form
operators spanned by this set. In other words, we assume that the VR-PDE is of the form:

P∑
p=1

βpÊp[u](x)− g(x,u(x)) = 0 ∀x ∈ Ω (13)

where β ∈ RP , g is any closed-form function of M +N variables, and Êp = (αp, ap, hp).

For instance, a dictionary might include only the partial derivatives up to a certain order. For a 1+1
second-order equation that means Q = {∂t, ∂x, ∂tx, ∂2

t , ∂
2
x}. That is already enough to discover heat

and wave equations with any closed-form source. If, for instance, the user suspects the presence of
the advection term uux (as in the Burgers’ equation), the term ∂x(u

2) can be included in the library.

It’s important to note that we do not assume any particular form of g apart from being closed-form.

Step 2: Estimate the fields. As the dataset D consists of noisy and infrequently sampled fields, we
first need to estimate the "true" fields û(d) from v(d). Any choice of reconstruction algorithm can be
used and the user should choose it according to the problem setting and their domain knowledge.

Step 3: Optimize. We minimize the loss function in Equation 11 for the estimated fields {û(d)}Dd=1
among all PDEs of the form in Equation 13. We solve the following optimization problem:

min
g

min
||β||1=1

D∑
d=1

S∑
s=1

(
P∑

p=1

F(βpÊp, û(d), ϕs)−
∫
Ω

g(x, û(d)(x))ϕs(x)dx

)2

(14)

As we want to discover both g and β we cannot use the standard penalties on β such as the λ||β||2
or λ||β||1, as the loss would be minimized by g = 0 and β = 0. Therefore we put the constraint
||β||1 = 1. We choose the L1 norm to encourage sparsity in the coordinates of the vector β.

The inner minimization in Equation 14 can be rewritten as a constrained least-squares problem.

min
||β||1=1

∑
(d,s)∈[D]×[S]

(
β · z(d,s) − w(d,s)

)2
(15)

where Êp = (αp, ap, hp) and z(d,s) ∈ RP , w(d,s) ∈ R are defined as

z(d,s)p =

∫
Ω

hp(x, û
(d)(x))(−1)|αp|∂αp(ap(x)ϕs(x))dx

w(d,s) =

∫
Ω

g(x, û(d)(x))ϕs(x)dx

(16)
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We show the full derivation in Appendix C. z(d,s) can be precomputed at the beginning of the
algorithm without estimating the derivatives of the reconstructed fields. They can be easily calculated
if the derivatives of the testing functions ϕs and the derivatives of ap can be analytically computed.

As the optimization problem in Equation 15 has to be solved many times for different closed-form
expressions g, it poses some unique challenges. As standard approaches are not sufficiently fast, we
design a new heuristic algorithm to solve this problem, CoLLie, and describe it in the next section.

𝜙𝑠 𝑠=1
𝑆

Test functions

𝒗(𝑑)
d=1

D

ෝ𝒖(𝑑)
d=1

D

Step 2: Estimate the fields

መℰ𝑝 𝑝=1

𝑃 𝜕𝑡𝑢

𝜕𝑥
2𝑢

𝜕𝑡𝜕𝑥𝑢

𝜕𝑥 𝑢2

𝜕𝑡
2𝑢

Step 1: Choose the dictionary

𝒁 ∈ ℝ𝐷𝑆 × ℝ𝑃

Compute (Eq. 16)

Symbolic 
Regression e.g., log 𝑡 𝑒𝑥

2
sin(𝑢)

𝑔:ℝ𝑀+𝑁 → ℝ
𝒘 ∈ ℝ𝐷𝑆

Compute (Eq. 16)

CoLLie

Step 3: Optimization

min
𝜷 1=1

𝒁𝜷 −𝒘 2
Loss

Dataset

Figure 1: This diagram describes how the algorithm works. After the optimization procedure is
finished, we get the best found closed-form function g and use CoLLie to find the best vector β. The
found equation has the form

∑P
p=1 βpÊp[u](x)− g(x,u(x)) = 0

7 CoLLie

The problem in Equation 15 from the previous section can be formulated as follows. Given matrix
A ∈ Rm×n and vector b ∈ Rm, find a vector z ∈ Rn that minimizes ||Az − b||22 such that
||z||1 = 1. The task is challenging as the unit L1 sphere is not convex. A method that guarantees an
optimal solution is based on an observation that the (n− 1)-dimensional L1 sphere consists of 2n
(n− 1)-simplices (which are convex). Minimizing ||Az − b||22 on a simplex is a quadratic program
[8] with many available solvers [2, 51, 3]. However, that means that the computation time scales
exponentially with the number of dimensions. This is prohibitively long for the inner optimization
of our algorithm. Therefore, we design a heuristic algorithm CoLLie (Constrained L1 Norm Least
Squares) that finds an approximate solution but is significantly faster (Figure 2). We observe that
this optimization problem is related to the one encountered in LASSO. Denote z0 the solution that
minimizes ||Az − b||22 (no constraints). If ||z0|| ≥ 1, the problem is equivalent to finding λ (in
the Lagrangian form of LASSO, Equation 47) such that the LASSO solution has the norm 1. Least
Angle Regression (LARS) [17] is a popular algorithm used to minimize the LASSO objective that
computes complete solution paths. These paths show how the coefficients of the solution change
as λ moves from 0 to λmax (from no constraints to effectively imposing the solution to be 0). See
Figure 6 in Appendix D.2. CoLLie uses these solution paths to calculate the exact solution to the
optimization problem. The case 0 < ||z0|| < 1 is harder as it corresponds to λ < 0. CoLLie
addresses this challenge by extending the solution paths generated by LARS beyond λ = 0 for λ < 0.
We assume that the paths continue to be piecewise linear and keep their slope (Figure 6 in Appendix
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D.2). CoLLie then uses these assumptions to efficiently find an approximate solution. We provide a
detailed description of CoLLie in Appendix D.
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CoLLie
CVXOPT

Figure 2: We compare CoLLie with an algorithm that uses CVXOPT [2] to solve each of the convex
subproblems. We report the relative error between the loss obtained by CoLLie and the minimum
loss achieved by CVXOPT. Panels B and C show the averages and the distributions of relative errors.
The average relative error is below 0.005 and the bulk of the distribution is below 10−7. At the same
time CoLLie is orders of magnitude faster (Panel A).

.

8 Experiments

We perform a series of synthetic experiments to show how well D-CIPHER is able to discover some
well-known differential equations4 (Table 2). First, we demonstrate that D-CIPHER performs better
than current methods when discovering PDEs in a linear combination form (Section 8.1). Then we
demonstrate it can discover PDEs with a closed-form ∂-free part that cannot be expressed as a linear
combination and thus are beyond the capabilities of current methods (Section 8.2). We contrast
D-CIPHER with its ablated version where the derivatives are estimated and the standard MSE loss is
used instead of the variational loss (details in Appendix E.1). For additional information about the
experiments (e.g., implementation details, data generation, experimental settings) see Appendix E.

Table 2: Equations used in the experiments. "LC" column specifies if the equation can be represented
as a linear combination (Equation 5). "VR" column specifies if the PDE is Variational-Ready

Name Equation LC VR

Homogeneous heat equation ∂tu− θ1∂
2
xu = 0 ✓ ✓

Burger’s equation ∂tu+ u∂xu− θ1∂
2
xu = 0 ✓ ✓

Kuramoto-Sivashinsky equation ∂tu+ ∂2
xu+ ∂4

xu+ u∂xu = 0 ✓ ✓
Forced and damped harmonic oscillator ∂2

t + 2θ1θ2∂tu+ θ22u = θ3 sin(θ4t) ✗ ✓
SLM model (Appendix F.1) ∂tu+ ∂xu = −2eθ1xu ✗ ✓
Inhomogeneous heat equation ∂tu− θ1∂

2
xu = θ2e

θ3t ✗ ✓
Inhomogeneous wave equation ∂2

t u− θ1∂
2
xu = θ2e

t sin(θ3t) ✗ ✓

Evaluation metrics. To establish how well a discovered PDE matches the ground truth, we evaluate
its ∂-free and ∂-bound parts separately. For the ∂-free part, we assign a binary variable indicating
whether the correct functional form of the equation was recovered (please check Appendix E.8 for
details). For the ∂-bound part, we measure the RMSE between the found coefficients of β and the
target ones. We report the averages and standard deviations for both parts. We call the averages
respectively Success Probability and Average RMSE.

Implementation. We use B-Splines [15] as the testing functions and we estimate the fields in Step 2
of D-CIPHER with a Gaussian Process [60]. The outer optimization in Step 3 is performed using a
modified genetic programming algorithm [26] and the inner optimization by CoLLie (Section 7). We
also show additional experiments with different estimation algorithms in Appendix F.

8.1 Discovering Linear Combinations: comparison with other methods

We compare D-CIPHER against two variants of PDE-FIND [47] and WSINDy [46] (as implemented
in PySINDy library [24, 16]) with optimization performed by Stepwise Sparse Regression [7] or

4All experiment code can be found at https://github.com/krzysztof-kacprzyk/D-CIPHER
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Forward Regression Orthogonal Least-Squares [5]. We note that D-CIPHER is specifically designed
to discover PDEs that are beyond the capabilities of current methods, i.e., where the derivative-free
part can be any closed-form expression. Current methods are usually tested on equations where the
derivative-free part is trivial (identically equal to 0). Even though these algorithms are specialized
to discover these simpler kinds of equations, D-CIPHER performs better than (or equally well as)
PDE-FIND and WSINDy, regardless of the optimization algorithm, when tested on Burgers’ equation
the homogeneous heat equation, and Kuramoto–Sivashinsky equation (Figure 3). This demonstrates
gain from both the variational loss and the new optimization routine.

PDE-FIND (S)&(F)

PDE-FIND (S)&(F)

WSINDy (S)&(F)

PDE-FIND (S)&(F)

WSINDy (S)&(F)

Figure 3: Simulation results for the Burgers’ equation, homogeneous heat equation, and Ku-
ramoto–Sivashinsky equation. We report the Average RMSE of the ∂-bound part of the equation.
Note that some of the benchmarks overlap

.

8.2 Discovering equations beyond current methods

Forced and damped harmonic oscillator. As the oscillator is described by a second-order ODE, it
cannot be discovered by D-CODE [42]. D-CIPHER discovers the correct functional form of the ∂-free
part and achieves a low RMSE for the coefficients of β in most of the experimental settings. The
performance is higher than or comparable to the ablated version of D-CIPHER, thus demonstrating
gain from using the variational approach. We present the results in Figure 4.

10 3 10 2 10 1 100

Noise ratio ( R)
0.0

0.2

0.4

0.6

0.8

Su
cc

es
s P

ro
ba

bi
lit

y

0.1 0.2 0.3 0.4
Sampling interval ( t)

0.0
0.2
0.4
0.6
0.8

Su
cc

es
s P

ro
ba

bi
lit

y

1 5 10 15
Number of samples (D)

0.0
0.2
0.4
0.6
0.8

Su
cc

es
s P

ro
ba

bi
lit

y

10 3 10 2 10 1 100

Noise ratio ( R)

0.0

0.02

0.04

0.06

0.08

Av
g.

 R
M

SE

0.1 0.2 0.3 0.4
Sampling interval ( t)

0.0

0.02

0.04

0.06

0.08

Av
g.

 R
M

SE

1 5 10 15
Number of samples (D)

0.0

0.04

0.08

0.12

Av
g.

 R
M

SE

Forced and damped harmonic oscillator

D-CIPHER
Abl. D-CIPHER

Figure 4: Success probability of discovering the correct ∂-free part of the equation and the average
RMSE between the recovered ∂-bound part and the target one across different experimental settings.
We compare D-CIPHER against its ablated version (Abl. D-CIPHER).

Inhomogeneous heat equation. D-CIPHER is able to discover the correct equation even in settings
with very high noise. It performs better than the ablated version, thus showing the importance of the
variational objective. The result are presented in Table 3.

Table 3: We report the success probability of discovering the ∂-free part and the Average RMSE of
the ∂-bound part for the inhomogeneous heat equation. Standard deviations shown in brackets.

Method Success probability Average RMSE
σR = 0.05 0.1 0.2 σR = 0.05 0.1 0.2

D-CIPHER 0.64 (.07) 0.42 (.07) 0.12 (.05) 0.15 (.009) 0.21 (.007) 0.24 (.005)
Ablated D-CIPHER 0.46 (.07) 0.20 (.06) 0.04 (.03) 0.18 (.009) 0.24 (.008) 0.27 (.007)
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Inhomogeneous wave equation. This equation does not have the standard evolution form, as it does
not involve the ∂t term. Thus, even without the source term, most of the current methods cannot be
applied directly to discover this equation. In Figure 5 we show the absolute difference between the
true field and the fields computed from the sources discovered by D-CIPHER and its ablated version
across different measurement settings. D-CIPHER finds the correct functional form with coefficients
not far from the ground truth. The ablated version fails to discover the correct functional form and
the found ∂-free part does not reproduce the correct behavior of the equation.

Figure 5: We solve the inhomogeneous wave equation for the ∂-free parts found by the D-CIPHER
and its ablated version Abl. D-CIPHER. We show the absolute difference between the computed
fields and the true field generated by ∂-free part 2× et sin(3t).

9 Discussion

Applications. As D-CIPHER can potentially discover any closed-form ∂-free part, it is especially
useful when this part of the PDE captures an essential component of the phenomenon. We demonstrate
it by finding the heat and vibration sources as well as the driving force of an oscillator. Beyond the
spatio-temporal physical equations, D-CIPHER might prove useful in discovering population models
structured by age, size, and spatial position [59, 58], age-dependent epidemiological models [21],
and predator-prey models with age-structure [41]. All these equations are VR-PDEs where the ∂-free
parts are crucial elements of the equations signifying the rates of mortality, infection, recovery, or
growth. We believe that discovering closed-form equations for these systems would prove invaluable
in understanding their behavior.

Limitations and open challenges. D-CIPHER may fail in some scenarios, either due to challenging
experimental settings or a challenging underlying PDE. Challenging experimental settings might
include unobserved variables, high measurement noise, infrequent sampling, and inadequate domain
(e.g., small time horizon). Challenging PDE forms might include a PDE outside of the VR-PDE class
or a ∂-free part with a complex expression that is difficult to find. We note that we address some of
these challenges by utilizing a variational approach, defining VR-PDEs to be a very general class of
equations, and designing CoLLie, enabling a thorough search across closed-form expressions.

Ethics Statement. We want to emphasize that D-CIPHER was designed to facilitate the process of
scientific discovery by extracting closed-form PDEs from data. It is not intended to or capable of
replacing human experts in the modeling process. No human-derived data was used.
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Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K Moore, Sartaj Singh, and others.
SymPy: symbolic computing in Python. PeerJ Computer Science, 3:e103, 2017. Publisher:
PeerJ Inc.

[38] A. R. Mitchell and D. F. Griffiths. The finite difference method in partial differential equations.
Wiley, Chichester [Eng.] ; New York, 1980.

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[40] Brenden K Petersen, Mikel Landajuela Larma, T Nathan Mundhenk, Claudio P Santiago, Soo K
Kim, and Joanne T Kim. Deep Symbolic Regression: Recovering Mathematical Expressions
From Data via Risk-seeking Policy Gradients. ICLR 2021, 2021.

[41] J. Promrak, G. C. Wake, and C. Rattanakul. Predator-prey Model with Age Structure. The
ANZIAM Journal, 59(2):155–166, October 2017. Publisher: Cambridge University Press.

[42] Zhaozhi Qian, Krzysztof Kacprzyk, and Mihaela van der Schaar. D-CODE: Discovering Closed-
form ODEs from Observed Trajectories. The Tenth International Conference on Learning
Representations, 2022.

[43] Maziar Raissi and George Em Karniadakis. Hidden physics models: Machine learning of
nonlinear partial differential equations. Journal of Computational Physics, 357:125–141, March
2018.

[44] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Numerical Gaussian Processes
for Time-Dependent and Nonlinear Partial Differential Equations. SIAM Journal on Scientific
Computing, 40(1):A172–A198, January 2018.

[45] Chengping Rao, Pu Ren, Yang Liu, and Hao Sun. Discovering Nonlinear PDEs from Scarce
Data with Physics-Encoded Learning. ICLR 2022, 2022.

[46] Patrick A. K. Reinbold, Daniel R. Gurevich, and Roman O. Grigoriev. Using noisy or incomplete
data to discover models of spatiotemporal dynamics. Physical Review E, 101(1):010203, January
2020.

[47] Samuel H. Rudy, Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Data-driven
discovery of partial differential equations. Science Advances, 3(4):e1602614, April 2017.

[48] Hayden Schaeffer. Learning partial differential equations via data discovery and sparse optimiza-
tion. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
473(2197):20160446, January 2017.

[49] Michael Schmidt and Hod Lipson. Distilling Free-Form Natural Laws from Experimental Data.
Science, 324(5923):81–85, April 2009.

[50] Michael Spivak. Calculus On Manifolds: a Modern Approach To Classical Theorems Of
Advanced Calculus. CRC Press, 2018. OCLC: 1029237047.

[51] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP: an operator splitting
solver for quadratic programs. Mathematical Programming Computation, 12(4):637–672, 2020.

[52] Trevor Stephens. gplearn: Genetic programming in python, with a scikit-learn inspired and
compatible api, 2022.

[53] Robert Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Sta-
tistical Society. Series B (Methodological), 58(1):267–288, 1996. Publisher: [Royal Statistical
Society, Wiley].

[54] Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu, and Max Tegmark.
AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity. 34th Confer-
ence on Neural Information Processing Systems (NeurIPS 2020), 2020.

13



[55] Silviu-Marian Udrescu and Max Tegmark. AI Feynman: A physics-inspired method for
symbolic regression. Science Advances, 6(16):eaay2631, April 2020.

[56] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.
van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W.
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A Notation and definitions

A.1 Notation

Table 4: Symbols used in this work

Symbol Meaning

[n] a set of numbers {1, . . . , n}
N a set of natural numbers, i.e., {1, 2, 3, . . . , }
N0 a set of non-negative integers, i.e., {0, 1, 2, 3, . . .}
M the dimension of the domain of a vector field
N the dimension of the codomain of a vector field
K denotes the smoothness of functions or the maximum order of derivatives
D the size of the dataset of observed fields
S the number of testing functions
Ω an open set in RM

u̇(t) the derivative of u at t
α a multi-index, an element of NM

0

|α| the order of α, |α| =
∑M

i αi

∂αi
i αth

i -order partial derivative with respect to the ith variable
∂α ∂α1

1 ∂α2
2 . . . ∂αM

M

CK a set of functions with continuous partial derivatives ∂α for all |α| ≤ K
E an extended derivative, Definition 1
E[P ] an extended differential operator, Definition 1
F the functional used in the variational loss, Definition 3
L(E[P ], g) the variational loss, Equation 11
G a sampling grid, Definition 10
u a true field, Definition 9
v an observed field, Definition 10
D a dataset of observed trajectories
ϵ the noise
Q a dictionary of non-degenerate extended derivatives
β a vector describing the ∂-bound part of the VR-PDE
σR a noise ratio
∆t a sampling interval

A.2 Definitions

In this section, we collect the definitions of some of the important terms used in the paper for easy
reference.

Definition 4 (Closed-form expressions and functions). A closed-form expression is a mathematical
expression that consists of a finite number of variables, constants, arithmetic operations, and certain
well-known functions (e.g., logarithm, trigonometric functions). A function f is called closed-form if
it can be represented by a closed-form expression. E.g., f(x, y) = x2 log(y) + sin(3z).
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Remark. In practice, we do not want to consider any finite expression. Any symbolic regression
algorithm penalizes expressions that are too long putting a soft constraint on the number of elements
used. That is why deep neural networks are not considered closed-form even if they satisfy the
conditions in Definition 4.
Definition 5 (Multi-index). An n-dimensional multi-index α is an n-tuple

α = (α1, α2, . . . , αn)

where ∀i ∈ [n] αi ∈ N0. Thus α ∈ Nn
0 . We define the order of α as |α| =

∑n
i=1 αi.

Definition 6. For any n-dimensional multi-index α we define a mixed derivative
∂α = ∂α1

1 ∂α2
2 . . . ∂αn

n

where ∂αi
i = ∂αi/∂xαi

i is a αth
i -order partial derivative with respect to xi (the ith independent

variable). We call ∂α non-trivial if |α| > 0. We denote the list of all non-trivial partial derivatives of
u up to order K as ∂[K]u.
Definition 7 (Closed-form Partial Differential Equation). Let f be a closed-form real smooth function.
We say that a vector field u : Ω→ RN is governed by a K th-order closed-form PDE described by f
if

f(x,u(x), ∂[K]u(x)) = 0 ∀x ∈ Ω (17)
where ∂[K]u are all non-trivial mixed derivatives of all uj (j ∈ [N ]) up to the K th order.
Definition 8 (Testing function). Support of a function ϕ : Ω→ R is defined as

supp ϕ = {x ∈ Ω : ϕ(x) ̸= 0}
where B is the topological closure of B in Ω.

ϕ is called a testing function if it is a CK function with compact support.
Definition 9 (True Field). We define a true field on Ω as a vector valued function u : Ω → RN

where each uj : Ω→ R is a CK function.
Definition 10 (Observed field and sampling grid). We define a sampling grid G to be a finite subset
of Ω. Let u : Ω → RN be a true field on Ω. An observed field sampled from u on a grid G is a
function v : G → RN of the form

vj(x) = uj(x) + ϵj(x) ∀x ∈ G ∀j ∈ [N ]

where ϵj(x) corresponds to noise, a realisation of a zero-mean random variable.
Definition 11 (L1 sphere). Let n ∈ N. We define n-dimensional L1 sphere to be a subset of Rn+1

defined as:
{x ∈ Rn+1 | ||x||1 = 1} ⊂ Rn+1 (18)

Definition 12 (Standard simplex). Let n ∈ N. We define standard n-simplex to be a subset of Rn+1

defined as:

{x ∈ Rn+1 |
n+1∑
i=1

xi = 1 ∧ xi ≥ 0 ∀i ∈ [n+ 1]} ⊂ Rn+1 (19)

B Variational-Ready PDEs

B.1 Variational Formulation of PDEs

In this section, we provide the standard variational formulation of PDEs for linear PDEs [19].
Definition 13 (Linear differential operator). LetA be a finite set of multi-indices. A linear differential
operator L is defined as

L =
∑
α∈A

aα∂
α

where aα ∈ CK is a non-zero sufficiently smooth function of dependent variables. If maxα∈A |α| =
n then we call L an nth-order linear differential operator. If all aα are constants we say that L has
constant coefficients.

The adjoint of L, denoted L†, is a linear differential operator defined as

L†u(x) =
∑
α∈A

(−1)|α|∂α(aα(x)u(x)) (20)
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Proposition 1 (Variational Formulation of PDEs for linear PDEs). Let K ∈ N. Consider a scalar
field u : Ω → R, such that u ∈ CK , a K th-order linear differential operator L, and a continuous
function g : Ω→ R. Let ϕ : Ω→ R be a testing function. Then u satisfies a linear PDE

L[u(x)]− g(x) = 0 ∀x ∈ Ω (21)

if and only if ∫
Ω

[
u(x)L†ϕ(x)− g(x)ϕ(x)

]
dx = 0 (22)

for all testing functions ϕ : Ω→ R.

Note that the integrals are always well-defined as ϕ has a compact support.

B.2 Theorem

Before we prove the Theorem 1, we need the following lemma, which is a particular formulation
of the Fundamental lemma of calculus of variations [18]. We also need a generalized version of the
divergence theorem [31].
Lemma (Fundamental lemma of calculus of variations). Let K ∈ N, Ω be an open set in RM ,
and u : Ω → R be a continuous function. Then u is equal to 0 on the whole Ω if and only if∫
Ω
u(x)ϕ(x)dx = 0 for all CK functions ϕ : Ω→ R with compact support.

Proof. If u is identically 0 on Ω then all the integrals are trivially equal to 0.

We now prove the converse.

Let as assume for contradiction that there exists a point x0 ∈ Ω such that u(x0) ̸= 0. Without loss
of generality we assume u(x0) = ϵ > 0. As u is continuous there exists an open ball around x0 of
radius δ, denoted Bδ

x0
= {x ∈ Ω | ||x− x0||2 < δ}, such that ∀x ∈ Bδ

x0
u(x) > ϵ/2 > 0.

Now let ϕ be a CK function that is positive on Bδ
x0

and 0 elsewhere. Such a function can always
be created by appropriately shifting and scaling ϕ(x) = e−1/(1−||x||22) · 1{||x||2<1}. Its support is a
closed ball B̄δ

x0
= {x ∈ Ω | ||x− x0||2 ≤ δ} which is compact. Then∫

Ω

u(x)ϕ(x)dx =

∫
Bδ

x0

u(x)ϕ(x)dx > 0 (23)

as both u(x) and ϕ(x) are positive on Bδ
x0

. Thus we found a continuous function ϕ with compact
support such that: ∫

Ω

u(x)ϕ(x)dx ̸= 0 (24)

Therefore u is identically 0 on Ω.

To make this section self-contained, we provide the statement of the generalized divergence theorem
[31].
Theorem 2 (Divergence theorem). Let Ω be an open set in RM and let f, g be continuous on
Ω̄ = Ω ∪ ∂Ω and continuously differentiable on Ω. Then∫

Ω

∂1
i [f(x)]g(x)dx = −

∫
Ω

f(x)∂1
i [g(x)]dx+

∫
∂Ω

νif(x)g(x)dx (25)

where ν is a normal unit vector to the boundary ∂Ω.

In a 1-dimensional setting, the statement of the theorem reduces to the integration by parts.

We can now prove Theorem 1.

Proof. Let us denote Ep = (αp, ap, hp). Then the PDE in Equation 9 can be written as:

P∑
p=1

ap(x)∂
αp [hp(x,u(x))]− g(x,u(x)) = 0 ∀x ∈ Ω (26)
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The LHS is continuous as all ap and hp are smooth, g is continuous, u ∈ CK , and |αp| ≤ K ∀p ∈ [P ].
Thus we can use the fundamental lemma of calculus of variations to say that the Equation 26 is true
if and only if ∫

Ω

[
P∑

p=1

ap(x)∂
αp [hp(x,u(x))]− g(x,u(x))

]
ϕ(x)dx = 0 (27)

for all testing functions ϕ. We transform the LHS of Equation 27 using linearity to:
P∑

p=1

∫
Ω

ap(x)∂
αp [hp(x,u(x))]ϕ(x)−

∫
Ω

g(x,u(x))ϕ(x)dx (28)

Let us now focus on ∫
Ω

ap(x)∂
αp [hp(x,u(x))]ϕ(x) (29)

and let us denote αp = (αp1, . . . , αpM ). Then ∂αp = ∂
αp1

1 . . . ∂
αpM

M and the expression can be
written as ∫

Ω

∂
αp1

1 . . . ∂
αpM

M [hp(x,u(x))]ap(x)ϕ(x)dx (30)

Let us denote the support of ϕ as B. As ϕ is equal to zero outside of its support, we can write the
expression as ∫

B
∂
αp1

1 . . . ∂
αpM

M [hp(x,u(x))]ap(x)ϕ(x)dx (31)

Without loss of generality, let us assume that αp1 > 0. By the divergence theorem, this can be
rewritten as

−
∫
B
∂
αp1−1
1 . . . ∂

αpM

M [hp(x,u(x))]∂
1
1 [ap(x)ϕ(x)]dx (32)

because the integral over the boundary is equal to 0∫
∂B

ν1∂
αp1−1
1 . . . ∂

αpM

M [hp(x,u(x))]ap(x)ϕ(x)dx = 0 (33)

as ϕ has a compact support (and thus vanishes on the boundary). We can perform this operation αp1

times to shift the whole derivative ∂
αp1

1 to the second part of the equation and obtain

(−1)αp1

∫
B
∂
αp2

2 . . . ∂
αpM

M [hp(x,u(x))]∂
αp1

1 [ap(x)ϕ(x)]dx (34)

Then we repeat this for other derivatives and we end up with the following expression:

(−1)αp1 · . . . · (−1)αpM

∫
B
hp(x,u(x))∂

αp1

1 . . . ∂
αpM

M [ap(x)ϕ(x)]dx (35)

As the integrand is zero outside of B, this can be rewritten as:

(−1)|αp|
∫
Ω

hp(x,u(x))∂
αp [ap(x)ϕ(x)]dx (36)

or more compactly, using the functional defined in Definition 3, as:

F(Ep,u, ϕ) (37)

Therefore Equation 28 can be written as:
P∑

p=1

F(Ep,u, ϕ)−
∫
Ω

[g(x,u(x))ϕ(x)] dx (38)

Thus, we proved that Equation 26 is true if and only if
P∑

p=1

F(Ep,u, ϕ)−
∫
Ω

[g(x,u(x))ϕ(x)] dx = 0 (39)

for all testing functions ϕ.
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Table 5: Examples of equations which are Variational-Ready

Name Equation Linear VR

Damped wave eq. with a source utt + ρut − κ∇2u = g(x) ✓ ✓
Gauss law ∇ ·E = ρ/ϵ0 ✓ ✓
Burger’s equation ut + uux − νuxx = 0 ✗ ✓
Navier-Stokes equations ut + (u · ∇)u− ν∇2u = −1/ρ∇p+ g ✗ ✓
Korteweg-De Vries equation ut + uxxx − 6uux = 0 ✗ ✓
Kuramoto-Sivashinsky equation ut + uxx + uxxxx + uux = 0 ✗ ✓
Fisher’s equation ut − κuxx = ru(1− u) ✗ ✓
Liouville’s equation uxx + uyy = κeρu ✗ ✓
Porous medium equation ut −∇2(uκ) = 0 ✗ ✓
Sine-Gordon equation utt − uxx = − sin(u) ✗ ✓

B.3 Examples

The examples of VR-PDEs can be found in Table 5.

C D-CIPHER

C.1 Rewrite the inner optimization as a constrained least squares

Let us rewrite the objective in Equation 14.

D∑
d=1

S∑
s=1

(
P∑

p=1

F(βpÊp, û(d), ϕs)−
∫
Ω

g(x, û(d)(x))ϕs(x)dx

)2

(40)

First, let us observe that

F(βpÊp, û(d), ϕs) =

∫
Ω

hp(x, û
(d)(x))(−1)|αp|∂αp [βpap(x)ϕs(x)]dx = βpz

(d,s)
p (41)

if we let z(d,s)p ∈ R be defined as

z(d,s)p =

∫
Ω

hp(x, û
(d)(x))(−1)|αp|∂αp(ap(x)ϕs(x))dx (42)

Moreover, if we define w(d,s) ∈ R as

w(d,s) =

∫
Ω

g(x, û(d)(x))ϕs(x)dx (43)

we can rewrite expression 40 as

D∑
d=1

S∑
s=1

(
P∑

p=1

βpz
(d,s)
p − w(d,s)

)
(44)

Now, the sum over p can be written as a dot product between z(d,s) ∈ RP and β ∈ RP . We can also
combine the sums over d and s. We obtain∑

(d,s)∈[D]×[S]

(
β · z(d,s) − w(d,s)

)2
(45)

which is exactly the same as the objective in Equation 15.

C.2 Pseudocode

The pseudocode of D-CIPHER is presented in Algorithm 1.
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Algorithm 1 D-CIPHER

Input: Observed fields D = {v(d)}Dd=1, grid G
Input: Symbolic regression optimization algorithm O
Input: Smoothing algorithm S
Input: Testing functions {ϕs}Ss=1

Input: Dictionary Q = {Êp}Pp=1, Êp = (αp, ap, hp) ▷ Step 1
Output: Target PDE
û(d) = S(v(d)) ∀d ∈ [D] ▷ Step 2
initialize matrix Z ∈ RD×S × RP

Z
(d,s)
p ←

∫
Ω
hp(x, û

(d)(x))(−1)|αp|∂αp(ap(x)ϕs(x))dx
procedure LOSS(g)

initialize vector w ∈ RD×S

w(d,s) ←
∫
Ω
g(x, û(d)(x))ϕs(x)dx

β ← COLLIE(Z,w) ▷ Section 7
L = ||Zβ −w||22
return L

end procedure
g = O(LOSS) ▷ Step 3
initialize vector w ∈ RD×S

w(d,s) ←
∫
Ω
g(x, û(d)(x))ϕs(x)dx

β ← COLLIE(Z,w) ▷ Section 7
return

∑P
p=1 βpÊp[u](x)− g(x,u(x)) = 0

C.3 Testing functions

Testing functions should satisfy the following conditions:

1. Be sufficiently smooth (at least CK for a K th order PDE)

2. Compact support

3. Derivatives can be computed analytically

4. Orthonormal

Conditions 1 and 2 follow directly from Definition 3. Condition 3 is necessary because we do not
want to estimate the derivatives of the testing functions. Condition 4 follows from the result obtained
by [42] that suggests that these functions should be a subset of an orthonormal basis of L2 space.

We use B-Splines [15] as the testing functions in our experiments because we can control their
smoothness and the derivatives are easy to compute. We scale and shift them appropriately so that
they are orthonormal.

Other testing functions are possible and examining them constitutes an interesting research direction.
In particular, piecewise polynomials as defined by [35] or various wavelets. Ideally, we would like to
choose wavelets that form an orthonormal basis for the L2 space, such as

• Shannon wavelets - smooth (C∞) but not compact

• Meyer wavelets - smooth (C∞) but not compact (better rate of decay than Shannon)

• Daubechies wavelets - smooth (CK for a specified K) and compact but they do not have a
closed-form expression.

Another interesting avenue of research would be to adapt the testing functions to the input data.
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D CoLLie

D.1 Lagrangian

The problem that CoLLie is supposed to solve is a constrained least-squares optimization defined as:

minimize ||Az − b||22
subject to ||z||1 − 1 = 0

(46)

where A ∈ Rm×n has a full column rank, b ∈ Rm, and z ∈ Rn for some m,n ∈ N.

We consider the Lagrangian L : Rn × R→ R associated with this problem [8] defined as

L(z, λ) = ||Az − b||22 + λ(||z||1 − 1) (47)

Now let us define ẑ : R→ Rn as

ẑ(λ) = argmin
z∈Rn

L(z, λ) = argmin
z∈Rn

||Az − b||22 + λ||z||1 (48)

The goal of our algorithm is to find λ∗ ∈ R such that ||ẑ(λ∗)||1 = 1. Let us define a function
q : R→ R as

q(λ) = ||ẑ(λ)||1 (49)
The goal can be phrased as finding λ∗ ∈ R such that q(λ∗) = 1.

Let us note that ẑ(0) is just a solution to the ordinary least squares (OLS) problem with no constraints
and its norm is q(0).

D.2 Extending LARS

Case 1. q(0) ≥ 1.

If we assume that ẑ is continuous then q is also continuous. From the continuity and the fact that
limλ→+∞ q(λ) = 0 and q(0) ≥ 1 we infer that there exists a λ ≥ 0 such that q(λ) = 1. Moreover,
for λ ≥ 0 the problem in Equation 48 is the same as in LASSO [53]. Therefore we just need to
perform LASSO for different λ and choose the one that gives the solution with L1 norm equal to 1.

To do it in practice we use Least Angle Regression (LARS) [17], a popular algorithm used to minimize
the LASSO objective. It generates complete solution paths, i.e., a function c : R+ → Rn defined as

c(λ) = argmin
z∈Rn

||Az − b||22 + λ||z||1 (50)

which is equivalent to ẑ for λ ≥ 0. An illustration of LARS solution paths can be seen in Figure 6.
Each line corresponds to a function ci which describes the coefficient for the ith covariate. The paths
are defined from some λ0 where all ci(λ0) = 0 to λ = 0 where c(0) = ẑ(0). In other words, the
solution paths cover the whole range of constraints from the strictest, effectively imposing the L1
norm of z to be 0, up to no constraints, solving the OLS problem.

The solution paths from the LARS algorithm are piecewise linear and the outputs are the values of
the coefficients for points (λ0 > . . . > λn = 0) where the slopes change. We calculate the norm at
each of these points, ||c(λi)||1, and find j ∈ [n] such that ||c(λj−1)||1 < 1 ≤ ||c(λj)||1. As each ci
is a linear function on [λj , λj−1] and we know both c(λj−1) and c(λj), we can effectively search for
λ ∈ [λj , λj−1] such that ||c(λ)||1 = 1. The search can be performed by any root-finding algorithm.
We use Brent’s method [9].

Case 2. 0 < q(0) < 1.

This is much more difficult as it corresponds to solving the problem in Equation 48 for λ < 0. The
solutions given by the LARS algorithm are too small. In fact, the solution with the biggest norm is
c(0) = ẑ(0), the OLS solution, with norm exactly q(0) < 1.

To address this challenge, we propose the following heuristic. We extend the solution paths generated
by LARS beyond λ = 0 for λ < 0. We assume that the paths will continue to be piecewise linear and
that they will keep the slope they have in the last interval [λn = 0, λn−1]. Let us denote this slope as

∆ci =
ci(0)− ci(λn−1)

0− λn−1
(51)
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This is graphically represented in Figure 6. Formally, these extended paths, c̄ : R→ R are defined
as:

c̄i(λ) =

{
ci(λ), λ ≥ 0

ci(0) + λ∆ci, λ < 0
(52)

Now, we want to find λ < 0 such that ||c̄(λ)||1 = 1. To achieve this in practice, we first make the
following observations.

For any λ < 0 we say that c̄i(λ) is on the right side if c̄i(λ)∆ci ≤ 0 and we say that c̄i(λ) is on the
wrong side if c̄i(λ)∆ci > 0. In other words, being on the wrong side just means that the path is yet
to cross the x-axis if we keep decreasing λ. We can easily find λ′ such that for all λ < λ′ all c̄i(λ)
are on the right side (none of the paths will ever cross the x-axis).

λ′ = min

{
0− ci(0)

∆ci
| i ∈ [n] ∧ ci(0)∆ci > 0

}
(53)

If ||c̄(λ′)||1 ≥ 1 we just need to search the interval [λ′, 0] for λ such that ||c̄(λ′)||1 = 1.

If ||c̄(λ′)||1 < 1 then we need to search λ < λ′. However, by definition, for all λ < λ′, all ci(λ)
are on the right side. That means ||c̄(λ)||1 as a function of λ is just a linear function on the interval
(−∞, λ′). To see that, let us observe that

||c̄(λ)||1 =

n∑
i=1

|c̄i(λ)| =
n∑

i=1

sign(c̄i(λ))c̄i(λ) (54)

Additionally, for λ < λ′ all ci(λ) are on the right side, so we have sign(c̄i(λ)) = −sign(∆ci). We
can rewrite ||c̄(λ)||1 as:

||c̄(λ)||1 =

n∑
i=1

(−sign(∆ci)(ci(0) + λ∆ci))

= −
n∑

i=1

sign(∆ci)ci(0)−

(
n∑

i=1

sign(∆ci)∆ci

)
λ

= −
n∑

i=1

sign(∆ci)ci(0)−

(
n∑

i=1

|∆ci|

)
λ

(55)

Therefore the solution can be found using the following equation

λ∗ = λ′ +
1− ||c̄(λ′)||1
−
∑n

i=1 |∆ci|
(56)

Case 3. q(0) = 0. In that case, we just return a precomputed solution to the problem

minimize ||Az||22
subject to ||z||1 − 1 = 0

(57)

which we compute by subdividing the problem into 2n quadratic programs and solving each of them
separately using CVXOPT algorithm [2] as described in Section 7.

D.3 Comparison

We perform a comparison between CoLLie and an algorithm based on CVXOPT [2] as described in
Section 7. CoLLie uses different procedures depending on the problem, thus for a fair comparison
we generate an equal number of tests falling under Case 1 and Case 2 (two main cases) as described
in D.2. To achieve that, we generate a random m× n matrix A where each entry is sampled from
the standard normal distribution. We use m = 1000 and n ranging from 2 to 7. We then generate a
vector ẑ ∈ Rn such that each entry is sampled from a uniform distribution on [−0.5, 0.5]. Then ẑ is
normalized to have L1 norm equal to 1. We sample a number l from a uniform distribution on [−1, 3]
and multiply ẑ by l to obtain z′ = lẑ. By this procedure, we are guaranteed that cases ||z′||1 < 1
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Figure 6: Panel A shows and example of solution paths calculated by the LARS algorithm. Panel B
shows their extended versions as defined in Case 2 in D.2. The x-axis is reversed, so λ decreases as it
moves to the right.

and ||z′||1 ≥ 1 are equally likely. We then let b = Az′. The task is then to find z with L1 norm
equal to 1 that minimizes ||Az − b||22. As q(0) = ||z′||1 = l, Case 1 and Case 2 are equally likely.

We perform 1000 experiments for each n. As losses for optimal solutions can be on widely different
scales, we report the relative error between the loss obtained by CoLLie and the loss obtained by the
algorithm based on CVXOPT, which seems to always find the optimal solution.

The time is measured on a single computer with an Intel Core i5-6500 CPU (4 cores) and 16GB of
RAM.

E Experiments

E.1 Ablated D-CIPHER

The ablated version uses the standard MSE loss with estimated derivatives and thus solves the
following optimization problem:

min
g

min
||β||1

D∑
d=1

∑
x∈G

(
P∑

p=1

βpÊp[v(d)](x)− g(x,v(d)(x))

)2

(58)

where v(d) is the observed field, G is the sampling grid, and Êp[v(d)](x) requires derivative estimation.

The ablated version uses the same symbolic regression algorithm to search over closed-form g and
CoLLie for the inner optimization.

E.2 Implementation

Step 1. For the homogeneous heat equation and Burgers’ equation we use dictionary Q =
{u, ∂tu, ∂xu, ∂x(u2), ∂2

xu, ∂
2
x(u

2)}. For Kuramoto-Sivashinsky equation we use dictionary Q =
{u, ∂tu, ∂xu, ∂x(u2), ∂2

xu, ∂
2
x(u

2), ∂3
xu, ∂

3
x(u

2), ∂4
xu, ∂

4
x(u

2)}. For the damped and forced har-
monic oscillator we use the dictionary {∂t, ∂2

t }, and for the wave and heat equations, we use
{∂t, ∂x, ∂2

t , ∂t∂x, ∂
2
x}.

Step 2. Field estimation is performed using the Gaussian Process Regression from the Python library
scikit-learn [39]. The kernel is chosen to be the RBF kernel [60] with an added White kernel to
account for noise. The observed field is initially standardized by subtracting the mean and dividing
by the standard deviation. Then the GaussianProcessRegressor is fitted to the data. The estimated
fields are generated by predicting the values of a trained Gaussian Process on a full integration grid
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and then scaling back to their original range (by multiplying by the standard deviation and adding the
mean).

Step 3. The search over the closed-form expression is performed using the symbolic regression
library gplearn [52]. We use a custom fitness function that solves the inner optimization problem
in Equation 14. This inner optimization is performed by CoLLie (Section 7). The integration is
performed using Riemann sums.

Ablated version of D-CIPHER. The derivative estimation is performed by first fitting a Gaussian
process (in the same way as in Step 2) and then using the finite difference to estimate the derivative
in one of the coordinates for all points in the sampling grid. To obtain higher-order derivatives, a
Gaussian process is fitted again and the derivative is once again calculated using the finite difference
(possibly in a different direction than the first time).

E.3 Hyperparameters

Gaussian process regression. The kernel parameters of the Gaussian Process are automatically
adjusted during training. The default bounds of the length scale of the RBF kernel and the noise level
of the White kernel are used, i.e., (1e− 5, 1e5).

GPlearn. We do not perform parameter tuning for the gplearn library and use the same parameters as
in D-CODE [42] except for the parsimony coefficient and the number of generations.

Table 6: Hyperparameters used in gplearn

Hyperparameter Value

population size 15000
tournament size 20
p crossover 0.6903
p subtree mutation 0.1330
p hoist mutation 0.0361
p point mutation 0.0905
generations 20 and 30

The number of generations is chosen to be 30 for the damped and forced harmonic oscillator and 20
for the inhomogeneous heat and wave equations.

Please check [52] for the detailed description of these parameters.

We modify the implementation of the parsimony coefficient. The standard implementation adds to
the loss the length of the equation multiplied by the parsimony coefficient. In our implementation, we
increase the loss by the parsimony coefficient. This modification is performed because for different
experiments we record the loss on widely different scales. To prevent tuning this parameter for
every experimental setting we introduce a penalty that can work on different scales. The parsimony
coefficient is chosen manually by performing experiments for a few values. The value used in the
experiments is 0.05.

The set of allowed mathematical operations is: {+,−,×,÷, sin, exp, log}
We want to emphasize that we use the same configuration of gplearn in D-CIPHER and its ablated
version.

Integration and number of testing functions. For the damped and forced harmonic oscillator
we use 10 testing functions and the integration step 0.01. For the inhomogeneous heat and wave
equations we use 100 testing functions and integrate on a grid with steps δt = 0.01 and δx = 0.01.

Derivative estimation in the ablated version of D-CIPHER. The Gaussian process is configured
the same way as described above. The interval used in the finite difference method to estimate the
derivative was chosen to be: 10−3.
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E.4 Choice of equations

Equations used in Section 8.1 are canonical equations from physics that often appear in other works
about PDE discovery [47]. The homogeneous heat equation is a second-order PDE that models how
heat diffuses through a region. It contains the dissipative term ∂2

xu. Burgers’ equation is second-order
PDE used, for instance, in fluid mechanics or nonlinear acoustics [14]. It contains the advection
term u∂xu and the diffusion term that prevents shock formation. Kuramoto-Sivashinsky equation is
a fourth-order PDE used in modelling reaction-diffusion systems [27] and is known for its chaotic
behavior [22].

In Section 8.2, we chose equations of physical significance that have an interesting ∂-free part that
is not a linear combination (as discussed in Section 3). That makes them impossible to discover by
the current methods. A forced and damped harmonic oscillator is a second-order ODE. Although D-
CODE [42] can discover any closed-form first-order ODE, it cannot be used to discover second-order
ODEs. Thus there is currently no algorithm capable of discovering this equation. Inhomogeneous
heat and wave equations are second-order PDEs where the ∂-free part is a source (of heat and wave
respectively). Moreover, the wave equation does not have the standard evolution form, as it does
not involve the ∂t term. Thus even without the source term, most of the current methods cannot be
applied directly to discover this equation.

E.5 Data generation

Homogeneous heat equation. The fields were generated by solving the equation ∂tu− θ1∂
2
xu = 0

(θ1 = 0.25) with Neumann boundary conditions ∂xu(t, 0) = ∂xu(t,X) = 0 and an initial condition
u(0, x) = u0(x), where u0 is randomly sampled from a Gaussian process. The equation is solved
using the implicit BTCS scheme [25] with steps δt = 0.001 and δx = 0.001. The observed field is
generated by sampling (t, x) ∈ [0, T ]× [0, X], evaluating the true field u(t, x) and adding Gaussian
noise. T = 2 and X = 2 are used in the experiments.

Burger’s equation. The fields are computed by solving ∂tu+ u∂xu− θ1∂
2
xU = 0 (θ1 = 0.2) with

an initial condition u(0, x) = u0(x), where u0 is randomly sampled from a Gaussian process, and
with Dirichlet boundary conditions u(t, 0) = u0(0), u(t,X) = u0(X). The equation is solved the
using Crank-Nicolson scheme [57] with steps δt = 0.002 and δx = 0.002. The observed field is
generated by sampling (t, x) ∈ [0, T ]× [0, X], evaluating the field u(t, x) and adding Gaussian noise.
T = 2 and X = 2 are used in the experiments.

Kuramoto-Sivashinsky equation. The solution is the same as the one used in [47]. The observed
field is generated by sampling (t, x) ∈ [0, T ]×[0, X], evaluating the field u(t, x) and adding Gaussian
noise. T = 100 and X = 100 are used in the experiments.

Damped and forced harmonic oscillator. The true fields are created by analytically solving the
equation ∂2

t u(t) + 2θ1θ2∂tu(t) + θ22u(t) = θ3 sin(θ4t), where θ1 = 0.5, θ2 = 4.0, θ3 = 5.0, θ4 =
3.0, with random initial conditions for u(0) and ∂tu(0). The observed fields are then created by
sampling t ∈ [0, T ], evaluating u(t), and adding Gaussian noise. T = 2 was used in the experiments.

Inhomogeneous heat equation. The true fields are computed by solving ∂tu(t, x)− θ1∂
2
xu(t, x) =

θ2e
θ3t, where θ1 = 0.25, θ2 = 1.25, θ3 = 1.8, with Neumann boundary conditions ∂xu(t, 0) =

∂xu(t,X) = 0 and an initial condition u(0, x) = u0(x), where u0 is randomly sampled from a
Gaussian process. The equation is solved using the implicit BTCS scheme [25] with steps δt = 0.001
and δx = 0.001. The observed field is generated by sampling (t, x) ∈ [0, T ]× [0, X], evaluating the
true field u(t, x) and adding Gaussian noise. T = 2 and X = 2 are used in the experiments.

Inhomogeneous wave equation. The true fields are computed by solving ∂2
t u(t, x)− θ1∂

2
xu(t, x) =

θ2e
t sin(θ3t), where θ1 = 1.0, θ2 = 2.0, θ3 = 3.0, with Dirichlet boundary conditions u(t, 0) =

u0(0), u(t,X) = u0(X), where u0 is randomly sampled from a Gaussian process and specifies
the initial condition u(0, x) = u0(x). The equation is solved using the Implicit Difference Method
[38] with steps δt = 0.001 and δx = 0.001 . The observed field was generated by sampling
(t, x) ∈ [0, T ] × [0, X], evaluating the true field u(t, x) and adding Gaussian noise. T = 2 and
X = 2 were used in the experiments.
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E.6 Experimental settings

Homogeneous heat equation

Noise ratio (σR): 0.001, 0.01, 0.1

Number of samples (D): 10

Domain (Ω): [0, 2]× [0.2]

Grid (G): {0, 0.07, . . . , 2} × {0, 0.07, . . . , 2}
Burgers’ equation

Noise ratio (σR): 0.001, 0.01, 0.1

Number of samples (D): 10

Domain (Ω): [0, 2]× [0.2]

Grid (G): {0, 0.1, . . . , 2} × {0, 0.1, . . . , 2}
Kuramoto-Sivashinsky equation

Noise ratio (σR): 0.001, 0.01, 0.1

Number of samples (D): 1

Domain (Ω): [0, 100]× [0.100]

Grid (G): {0, 1.67, . . . , 100} × {0, 1.67, . . . , 100}
Damped and forced harmonic oscillator

Default values are in bold.

Noise ratio (σR): 0.001, 0.005, 0.01, 0.1, 0.2, 0.5

Number of samples (D): 1, 2, 5, 10, 15

Domain (Ω): [0,2]

Grid (G): {0, 0.08, . . . , 2}, {0,0.1, . . . ,2}, {0, 0.13, . . . , 2}, {0, 0.2, . . . , 2}, {0, 0.4, . . . , 2}
Inhomogeneous heat equation

Noise ratio (σR): 0.05, 0.1, 0.2

Number of samples (D): 10

Domain (Ω): [0, 2]× [0.2]

Grid (G): {0, 0.07, . . . , 2} × {0, 0.07, . . . , 2}
Inhomogeneous wave equation

Noise ratio (σR): 0.001, 0.01, 0.015

Number of samples (D): 10

Domain (Ω): [0, 2]× [0.2]

Grid (G): {0, 0.07, . . . , 2} × {0, 0.07, . . . , 2}

E.7 Benchmarks

We use the implementation of PDE-FIND and WSINDy from the PySINDY library [24, 16].

An important hyperparameter in PDE-FIND and WSINDy is the library Θ used. We impose that Q
and Θ ∪ {∂tu} have the same number of elements. Moreover, solutions given by PDE-FIND and
WSINDy are scaled to have the L1 norm equal to 1. Both of these measures are undertaken to ensure
that RMSE error is comparable between the algorithms.

For the homogeneous heat equation and Burgers’ equation we use a library

Θ = {u, ∂x, ∂2
xu, u∂xu, u∂

2
xu}.
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For the Kuramoto-Sivashinsky equation, we use a library

Θ = {u, ∂x, ∂2
xu, ∂

3
xu, ∂

4
xu, u∂xu, u∂

2
xu, u∂

3
x, u∂

4
x}.

In the experiments, we have not optimized for the derivative-free part as it is identically equal to 0 in
all equations.

E.8 Correct functional form

To measure success probability we need to establish whether two closed-form functions match.
The previous approach [42] considered their functional forms, i.e., expressions where all numeric
constants are replaced by placeholders. By this measure, functions sin(3x) and sin(3.5x) match as
they have the same functional form sin(Cx), where C is a placeholder.

However, this definition is quite restrictive because functions sin(3x), sin(3x)+0.001, 1.001 sin(3x),
and sin(3x+ 0.001) all have different functional forms.

We consider it an open challenge to design a good metric that would meaningfully reflect whether the
correct equation is discovered. We propose the following.

For a target function f , we consider its augmented form f̃ , defined as f̃(x) = C1f(C3x+C4) +C2,
where all Ci are placeholders. Then all numeric constants are turned into placeholders as well. In the
end, we combine the constants. For instance, C1 + C2 becomes just C3.

As an example, let us consider a function f(x) = 1.3e2x. The augmented functional form is created
in the following way:

1. Augment: C1 × 1.3e2×(C3×x+C4) + C2

2. Replace: C1 × C5e
C6×(C3×x+C4) + C2

3. Combine: C1e
C3x+C4 + C2

We perform this procedure for the target function. We can now take the standard functional form of the
candidate function and check whether it matches the augmented functional form of the target function,
taking into account that some of the constants might not be present in the candidate expression.

To aid in this procedure, we use a Python library for symbolic mathematics, SymPy [37].

E.9 Computation time

The average computation time for a single experiment with the damped and forced harmonic oscillator
is 281 seconds with a standard error of 4.5 seconds. The average computation time for a single
experiment with an inhomogeneous heat equation is 68 minutes with a standard error of 38 seconds.
This time is measured on a single computer with an Intel Core i5-6500 CPU (4 cores) and 16GB of
RAM.

The experiments are run simultaneously on 5 computers like the one described above. The total
time for all experiments (all seeds, all equations, all experimental settings, and both versions of
D-CIPHER) is 65 hours.

E.10 Licenses

The licenses of the software used in this work are presented in Table 7

F Additional experiments and discussion

F.1 Sharpe-Lotka-McKendrick model

We test D-CIPHER on a population model called the Sharpe-Lotka-McKendrick model [59]. The
model is described by the following equation

∂tu(t, a) + ∂au(t, a) +m(a)u(t, a) = 0 (59)
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Table 7: Software used and their licenses

Software License

gplearn BSD 3-Clause "New" or "Revised" License
cvxopt GNU General Public License
cvxpy Apache License
sympy New BSD License
scikit-learn BSD 3-Clause "New" or "Revised" License
numpy liberal BSD license
pandas BSD 3-Clause "New" or "Revised" License
scipy liberal BSD license
python Zero-Clause BSD license
pysindy MIT License

where m(a) is age-specific mortality rate. We choose m(a) = 2eθa. We set θ = 1.5 in the
experiments.

We note that the derivative-free part of the target PDE cannot be expressed as a linear combination of
functions from a finite dictionary if the parameters are not known a priori. D-CIPHER is uniquely
positioned among other discovery algorithms as the only technique that can recover any mortality
rate that can be represented as a closed-form expression. We show a comparison between D-CIPHER
and the Ablated D-CIPHER in Table 8

Table 8: Simulation results for the Sharpe-Lotka-McKendrick model. We report the success probabil-
ity of discovering the ∂-free part and the Average RMSE of the ∂-bound part. Standard deviations
are shown in brackets

Method Sucess Probability Average RMSE)
σR = 0.001 0.01 σR = 0.001 0.01

D-CIPHER 0.6 (0.15) 0.5 (0.16) 0.007 (0.0008) 0.008 (0.0011)
Abl. D-CIPHER 0.2 (0.13) 0.2 (0.13) 0.017 (0.0009) 0.017 (0.0008)

F.2 Discovering systems

Discovering systems of PDEs is a much harder problem than discovering a single PDE. One of the
issues is the fact that we would call indeterminism. It follows from the following fact. If a vector
field u is a solution to two differential equations f1 and f2, i.e.,

f1(x,u
(d)(x), ∂[K]u(d)(x)) = 0 ∀x ∈ Ω

f2(x,u
(d)(x), ∂[K]u(d)(x)) = 0 ∀x ∈ Ω

(60)

then it is also a solution to any linear combination of these equations, i.e.,

λ1 × f1(x,u
(d)(x), ∂[K]u(d)(x)) + λ2 × f2(x,u

(d)(x), ∂[K]u(d)(x)) = 0 ∀x ∈ Ω (61)
for any λ1, λ2 ∈ R. Moreover, equations can sometimes be differentiated to yield more equations.

Let us take as an example the Cauchy-Riemann equations defined as:

∂xu1 − ∂yu2 = 0∂xu2 + ∂yu1 = 0 (62)

Let us assume that we have a true vector field (u1, u2) that satisfies both equations. Then the
following equations are also satisfied

∂xu1 − ∂yu2 + ∂xu2 + ∂yu1 = 0

∂xu1 − ∂yu2 − ∂xu2 − ∂yu1 = 0
(63)

We can also differentiate the Cauchy-Riemann equations to arrive at the Laplacian equations for u1

and u2.

∂2
xu1 + ∂2

yu1 = 0

∂2
xu2 + ∂2

yu2 = 0
(64)
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We could also combine the first-order equations with second-order equations or consider even higher-
order derivatives. Although all these equations are compatible with our vector field (u1, u2), not all
of them are equally desirable to discover. That is why we believe that in any algorithm for discovering
systems of differential equations substantial expert knowledge or inductive biases have to be encoded
to guide the algorithm into the right equations.

Current methods do not consider systems of equations or consider a system of equations of a very
particular form. In the latter case, each equation models a derivative with respect to time of a different
scalar field. The system is assumed to look like this:

∂tu1 = f1(x,u(x), ∂
[K]u(x))

∂tu2 = f2(x,u(x), ∂
[K]u(x))

· · ·
∂tuL = fL(x,u(x), ∂

[K]u(x))

(65)

In addition, the LHS of these equations is often assumed to only contain spatial derivatives.

D-CIPHER can be used to discover some systems of differential equations if enough prior knowledge
is provided in the choice of the dictionary Q. Moreover, the discovered equations are not required to
have a particular evolution form as is the case in current approaches.

Firstly, we note that D-CODE [42] has been shown to discover a system of equations that looks like
Equations 65 when all equations are first-order ODEs. As D-CIPHER reduces to D-CODE when
applied to first-order ODEs, it is also capable of discovering such a system.

We demonstrate that D-CIPHER is able to discover both Cauchy-Riemann equations if we use two
different dictionaries. Each of the dictionaries yields a different equation. Additionally, it is a
well-known fact that if a vector field satisfies Cauchy-Riemann equations then the constituent scalar
fields are harmonic, i.e., they satisfy Laplace’s equation. Based on the same dataset we are also
able to discover both Laplace’s equations given another set of two different dictionaries. We note
that Laplace’s equation does not contain ∂x term, so most of the current methods cannot be directly
applied to discover this equation. The results are presented in Figure 7. The dictionaries used to
discover each of the equations are the following.

For ∂xu1 − ∂yu2 = 0 we use Q1 = {∂xu1, ∂yu2, ∂
2
xu1, ∂yu2}

For ∂xu2 + ∂yu1 = 0 we use Q2 = {∂xu2, ∂yu1, ∂
2
xu2, ∂

2
yu1}

For ∂2
xu1 + ∂2

yu1 = 0 we use Q3 = {∂xu1, ∂yu1, ∂
2
xu1, ∂

2
yu1}

For ∂2
xu2 + ∂2

yu2 = 0 we use Q4 = {∂xu2, ∂yu2, ∂
2
xu2, ∂

2
yu2}

In the experiments, we have not optimized for the derivative-free part as it is identically equal to 0 in
all equations.

F.3 Increasing the size of the dictionary Q

We test D-CIPHER on the Sharpe-Lotka-McKendrick model (Equation 59) with different dictionaries.
We start with a small dictionary Q1 = {∂tu, ∂au}, and we create every new dictionary from the
previous one by adding one more extended derivative. The final dictionary contains 10 elements,
Q10 = {∂tu, ∂au, ∂2

au, ∂
2
t u, ∂t∂au, ∂a(u

2), ∂2
a(u

2), ∂t(u
2), ∂2

t (u
2), ∂t(u

3), ∂a(u
3)}. The Average

RMSE of the ∂-bound part is shown in Figure 8. We do not observe any increase in average error.
Note that in these experiments, we just focus on the ∂-bound part and do not optimize the ∂-free part.
The relationship between the computation time and the size of the dictionary is represented in Figure
9.

F.4 Computational complexity

We want to emphasize that PDE discovery is not a time-critical application (usually this process is
performed manually by scientists) and we believe D-CIPHER’s computation time is acceptable for
such a task. In this section, we describe which parts of the algorithms are most computationally
intensive.
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Figure 7: Simulation results for both Cauchy-Riemann equations and two Laplace’s equations. We
report the Average RMSE of the ∂-bound part in different noise settings
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Figure 8: Simulation results for Sharpe-Lotka-McKendrick model. We report the Average RMSE of
the ∂-bound part for different sizes of the dictionary Q

.

Computation in D-CIPHER is performed in Step 2 and Step 3.

Step 2. Computational complexity of Step 2 depends on the choice of the smoothing algorithm. We
want to emphasize that the user can use any smoothing algorithm based on their domain knowledge
and experience, including spline regression, LOWESS, and Kalman filters. Gaussian Process has
time complexity O(n3) where n is the number of data points in a grid G. D-CIPHER is specifically
designed to work for sparse and noisy data, so we have not encountered major computational issues
while performing Gaussian process regression. We also note that significant progress has been made
in adapting Gaussian processes for datasets with many data points [28].

Step 3. D-CIPHER consists of two optimization loops. The outer optimization is performed by
a symbolic regression algorithm (in our case genetic programming). The inner optimization is
performed by CoLLie (Section 7). Searching through a space of closed-form expression requires
testing many candidate equations. D-CIPHER is designed to work with many different algorithms for
symbolic regression and it is advised to choose an algorithm that can search through this space most
efficiently.
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Figure 9: Computation time of the experiments in Appendix F.3 The plot shows how the size of the
dictionary Q influences the computation time

CoLLie was specifically designed to solve the optimization problem as quickly as possible with a
minor accuracy trade-off (see Figure 2). It is based on LARS which has time complexity O(mn2)
[17] where m is the number of samples and n is the number of features. In our case, n = P is usually
small as it corresponds to the size of the dictionary and m = SD. In our experiments, S was set up to
100 and D up to 10. Overall LARS is performed very quickly. The additional steps in CoLLie require
only a few arithmetical operations (linear in n) and a possible root searching of a single variable
function that is efficiently implemented using Brentq algorithm [9].

Other important parts of the algorithm are the numerical integrations. One such integration is
performed at the beginning of the algorithm to compute the matrix Z (see Algorithm 1). It does
not contribute much to the computation time as it is performed only once. The other integration
is performed for each candidate equation to compute vector w. Also, substantial time is spent on
computing the values of the candidate function g used in the integration. Fortunately, both of these
operations can be implemented as vectorized operations which are designed to run very efficiently on
modern hardware. We also discourage overly long equations for g (check the discussion in Appendix
E.3) to limit the number of operations performed.

F.5 Challenges of derivative estimation

One of the advantages of D-CIPHER compared to other methods is the use of the variational
formulation of PDEs that allows it to circumvent derivative estimation. This is important as derivative
estimation is challenging, especially in noisy settings with infrequent sampling. The problem becomes
more pronounced the higher the order of the derivative. To demonstrate these issues, we perform a
series of synthetic experiments.

Qualitative study. First we qualitatively show how challenging the task of derivative estimation
is. We generate an observed trajectory for the damped and forced harmonic oscillator. Then we
estimate this trajectory using both Guassian Process regression and Spline regression. As shown
in Figure 10 (Panel A), the estimated trajectories are very close to the true trajectory. Then we
estimate the first derivative (Panel B) and the second derivative (Panel C). We show the standard
finite difference methods as well as derivative estimation techniques using Spline regression and
Gaussian Process regression. In both cases we see that the estimated derivatives do not match the
ground truth (calculated analytically) as closely as in Panel A. Moreover the mismatch for the second
derivative seems to be bigger than for the first derivative.

Quantitative study. We investigate this relation quantitatively for the damped and forced harmonic
oscillator and the wave equation. For the oscillator we generate an observed trajectory and then we
estimate its derivatives, up to the fourth order using both finite difference and Gaussian Processes.
We then compare the derivatives with the analytically calculated ground truths and measure root
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Figure 10: Panel A shows that estimation of the true trajectory can be performed successfully by both
Spline regression (Spline) and Gaussian Process regression (GP). Panel B shows the estimated first
derivative and Panel C shows the estimated second derivative. We observe that the higher the order
the less accurate is the estimate.

mean squared error. The results are shown in Figure 11 (Panel A). We can see that the error increases
the higher the order of the derivative. For the wave equation, we perform a similar experiment but
this time we estimate different mixed derivatives. We consider any mixed derivative ∂i

t∂
j
x, where

i, j ∈ {0, 1, 2}. We demonstrate the results in Figure 11 (Panel B). We observe that the error increases
the higher the order of the derivative (i+ j).
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Figure 11: Panel A demonstrates the error between the estimated derivative and the ground truth
increases with the order of the derivative (performed for the damped and forced harmonic oscillator).
Panel B shows that the same happens for the wave equation. The (i.j) entry of the heatmap should
be interpreted as the RMSE between the estimated derivative ∂i

t∂
j
x and the ground truth.

F.6 Challenges of PDE discovery and how we address them

PDE discovery is a very difficult task with many challenges. In Table 9 we summarize some of them
and describe how our work addresses them.

F.7 Significance of the new notions

In this section, we want to justify that the new notions we introduce (evolution assumption, linear
combination form, derivative-bound part, derivative-fee part, Variational-Ready PDEs) are important
theoretical contributions that help us understand the landscape of different PDEs from the machine
learning perspective.

The definitions we introduce let us characterize different classes of PDEs. These new notions
complement the standard recognized PDE classes such as semi-linear, quasilinear, hyperbolic, etc.
These standard classes were introduced predominantly to characterize the solving techniques or the
properties of the solutions, whereas the notions we introduce relate to the difficulty of discovering
such equations from data.
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Table 9: Some challenges of PDE discovery and how we address them

Challenge Novel contribution (how we address the challenge)

Noisy measurements We use the variational loss function (Equation 11)
Large diversity of PDEs We allow any closed-form ∂-free part and require no evolu-

tion assumption (Section 3
Learning compact equations We penalize long ∂-free parts and use L1 normalization for

the ∂-bound part (Section 6, Appendix E.3
Efficient search We develop a quick algorithm, CoLLie, for the inner opti-

mization (Section 7
Chaotic systems We do not estimate the initial conditions [11] or perform for-

ward time stepping [29] which are computationally unstable
for chaotic systems

Significance of linear combination form and the evolution assumption. In Table 10 we demon-
strate how the presence of the two assumptions, the linear combination form (LC) and the evolution
assumption (EA), influences the optimization problem. We see that with both assumptions, the
problem is relatively straightforward and reduces to sparse linear regression. With only one of the
assumptions present the problem becomes more difficult. With neither of these assumptions, the
problem becomes very difficult and requires some other assumptions. D-CIPHER does not make
either of these assumptions but it assumes the PDE to be of the form described by Equation 13.

Significance of ∂-bound part, ∂-free part and Variational-Ready PDEs. The difficulty of deriva-
tive estimation has been one of the main challenges of PDE discovery. The variational formulation
allows to circumvent derivative estimation and thus is more robust to noisy data. Previously, the
variational formulation has been applied only to a subset of equations in a linear combination form
and with the evolution assumption. We observed that any restrictions that the variational formu-
lation might put on the equation come from the terms containing the derivatives. Thus we define
the derivative-bound part and the derivative-free part of the PDE due to their significance for the
variational formulation. That allows us to define Variational-Ready PDEs as currently the broadest
class of PDEs that admit the variational formulation. We believe it is an important contribution as
methods requiring derivative estimation underperform in settings with high noise. This definition
outlines the current limits of any method that circumvents derivative estimation in that way.

Table 10: This table demonstrates how the presence of the two assumptions, the linear combination
form (LC) and the evolution assumption (EA), influences the optimization problem.

LC EA Equation form Optimization problem Examples

Yes Yes ∂tuj =
∑P

p=1 θpfp(x,u(x), ∂
[K]u(x)) Relatively easy. Can be for-

mulated as finding sparse so-
lution to linear least squares
(similar to ridge regression)

[10, 47]

Yes No
∑P

p=1 θpfp(x,u(x), ∂
[K]u(x)) = 0 Medium difficulty. Can be

formulated as P separate
linear least squares prob-
lems as above

[23]

No Yes ∂tuj = g(x,u(x)) Medium difficulty. Find g
using symbolic regression

[42]

No No f(x,u(x), ∂[K]u(x)) = 0 Very difficult. Requires
other assumptions (in this
work, Equation 13)

D-CIPHER

F.8 Comparison with D-CODE

To clarify our contributions, we compare D-CIPHER to D-CODE [42] which we think is closest in
spirit to the algorithm we developed as both of them allow any closed-form derivative-free part and
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use variational formulation to circumvent derivative estimation. We also note how the new notions
we introduce help us compare the two works.

Algorithm presented in D-CODE [42] can discover any first-order explicit closed-form ODE, i.e., an
equation of the form.

∂tuj(t) = g(u(t), t)

where g is a closed-form function. It uses the variational formulation of ODEs to circumvent
derivative estimation.

Table 11: Comparison between D-CIPHER and D-CODE [42]

Property D-CODE [42] D-CIPHER

Applicable to PDEs No Yes
Higher-order derivatives No (only first-order) Yes
Requires evolution assumption Yes No
Derivative-bound part Fixed: ∂tuj Learned:

∑P
p=1 βpÊp[u]

Derivative-free part Any closed-form function Any closed-form function
Derivative estimation No No

D-CODE [42] can be considered a special case of D-CIPHER. We can recover it from D-CIPHER by
choosing the dictionary to contain only one element, i.e., Q = ∂tuj .

As the derivative-bound part is fixed, every ODE of that form admits the variational formulation. This
is not true for PDEs as there are derivative-bound parts that might prohibit the variational formulation.
Thus D-CIPHER required careful consideration of the appropriate class of equations to search over.

As D-CIPHER needs to find both the ∂-free part (function g) and the ∂-bound part, the optimization
problem is much more complicated. That is why we restrict the derivative-bound part of the PDE
to be spanned by terms from the pre-specified dictionary and develop an efficient optimization
algorithm, CoLLie. We emphasize that, as is the case for [42], we do not put any constraints on the
derivative-free part of the PDE, apart from it being closed-form.

F.9 Error bounds

While we would like to have error bounds for the discovered PDE, we note that the problem we solve
is significantly more difficult than the one considered in other works. The space of PDEs we consider
is much more complex than the space of PDEs in a linear combination form. In other works (e.g., [47],
[35]), the PDE is basically a vector in RP and the discovery task is mostly reduced to finding a sparse
enough vector that approximately solves a certain linear equation. Of course, there is a lot of literature
that aids in establishing error bounds in such problem settings. However, D-CIPHER searches over a
space RP ×CFE(M +N), where CFE(M +N) is a space of closed-form expressions in M +N
variables. This space is combinatorial in the functional form and continuous in real constants. This
makes it very challenging to derive any error bounds.
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Figure 12: Comparison of different estimation algorithms that can be used in D-CIPHER. GP -
Gaussian Process regression, Nearest - Nearest point interpolation, Linear - Linear interpolation,
Cubic - Cubic interpolation.
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F.10 Comparison between different estimation algorithms

Step 2 of D-CIPHER requires estimating the fields. We emphasize that any choice of reconstruction
algorithm can be used, and it should be chosen based on the application and domain knowledge. In
our experiments, D-CIPHER is implemented using Gaussian Process regression [60]. In this section,
we investigate other common interpolation algorithms. We implement D-CIPHER with different
estimation algorithms. In particular, we compare Gaussian Process (GP) against: Nearest point
interpolation (Nearest), Linear interpolation, and Cubic interpolation (Cubic). The implementation
details of these three algorithms can be found in the scipy [56] documentation. The results are
presented in Figure 12. We see that the estimation algorithms that produce smoother functions (GP,
Cubic) tend to give better results.

F.11 How comprehensive does the dictionary Q need to be?

Table 12 shows 17 different differential equations and what terms they need in a dic-
tionary. All of them can be discovered with a dictionary of size of 10, Q =
{∂tu, ∂xu, ∂t∂xu, ∂2

t u, ∂
2
xu, ∂t∂

2
x, ∂

3
xu, ∂

4
xu, ∂x(u

2), ∂2
x(u

2)}, and 9 of those equations can be de-
scribed with a dictionary containing just 4 terms, Q = {∂tu, ∂xu, ∂2

t u, ∂
2
xu}. It is thus likely that

such small dictionaries are sufficient to discover most of the well-known equations. Many differential
equations have similar derivative-bound parts and differ by derivative-free parts. Being able to
discover any closed-form derivative-free part is what makes D-CIPHER stand out.

Table 12: This table lists various Variational-Ready PDEs (some of which are discussed in the paper)
and shows which extended derivative terms they require. All of them can be discovered with a
dictionary of size of 10, and 9 of them can be described with a dictionary containing just 4 terms. It
is thus likely that such small dictionaries are sufficient to discover most of the well-known equations.

Equation ∂tu ∂xu ∂t∂xu ∂2
t u ∂2

xu ∂t∂
2
xu ∂3

xu ∂4
xu ∂x(u

2) ∂2
x(u

2)

Heat equation ✓ ✓
Wave equation ✓ ✓
Burger’s equation ✓ ✓ ✓
SLM model ✓ ✓
Damped harmonic oscillator ✓ ✓
Kuramoto-Sivashinsky equation ✓ ✓ ✓ ✓
Benjamin-Bona-Mahony equation ✓ ✓ ✓ ✓
Boussinesq equation ✓ ✓ ✓ ✓
Chafee-Infante equation ✓ ✓
Damped wave equation ✓ ✓ ✓
Fisher’s equation ✓ ✓
Hunter-Saxton equation ✓ ✓ ✓
Klein-Gordon equation ✓
Korteweg-De Vries equation ✓ ✓ ✓
Liouville’s equation ✓ ✓
Sine-Gordon equation ✓ ✓
Sinh-Gordon equation ✓

F.12 How to take advantage of the observed derivatives?

D-CIPHER can make use of the observed derivatives (if they are available) by adapting the dictionary.
Consider a setting with a dictionary Q = {∂tu, ∂xu, ∂t∂xu, ∂2

t u, ∂
2
xu}. If we happen to have the

measurements of ∂tu then we can introduce a new variable v = ∂tu and change the dictionary to
Q = {v, ∂xu, ∂xv, ∂tv, ∂2

xu}. Note, we have performed experiments where the dictionary contains
more than one dependent variable in Appendix F.2. With observed derivatives, we can also enlarge
the space of Variational-Ready PDEs by allowing g (∂-free part) to depend on v as well.

F.13 Impact on real-world problems

D-CIPHER is especially useful in discovering governing equations for systems with more than one
independent variable. For instance, spatiotemporal data or temporal data structured by age or size.
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In particular, we envision D-CIPHER to be useful in modeling spatiotemporal physical systems,
population models, and epidemiological models.

Spatiotemporal physical systems. D-CIPHER may prove useful in discovering equations governing
the oceans or the atmosphere. For instance, some places actively add or remove CO2 from the
atmosphere. These “sources” and “sinks” are likely to be described by a ∂-free part which D-CIPHER
is specially equipped to discover. Similarly, with the ocean temperature where ∂-free part can describe
a heat source. Another area of application can be modeling seismic waves across the earth’s crust.
Here the ∂-free part can describe the vibration source (e.g., an earthquake).

Population models. Population models can be used in agriculture to determine the harvest or for pest
control to predict their impact on the crop. They have also been used in environmental conservation
to model the population of endangered species. Population models have also been used in modeling
the growth of cells to better understand tumor growth. Moreover, understanding the evolution of a
population pyramid for a specific country may prove invaluable in ensuring its economic stability.
As in all these scenarios, the rates of growth and mortality are likely to be described by ∂-free part,
D-CIPHER is uniquely positioned to discover such equations as an aid to human experts.

Epidemiological models. Epidemiological models are crucial during a pandemic for better planning
and interventions. For many diseases, the rates of mortality and infection are age-dependent. Thus,
modeling the spread of disease using PDEs (rather than ODEs) might provide superior results.

F.14 D-CIPHER in practice

Below we discuss the things to consider while using D-CIPHER.

The order of the differential equation. One of the first considerations should be to choose the
order of the differential equation K. For many dynamical systems, K = 2 is sufficient unless we
expect very complicated behavior. Then, considering K = 3 or even K = 4 may be warranted. Note,
that we show that D-CIPHER can discover a fourth-order PDE (Kuramoto-Sivashinsky equation) in
Section 8.

Homogeneous equations. Before searching through the whole space of closed-form g (derivative-
free parts), we can consider whether the equation we want to discover may be homogeneous. These
experiments on the restricted search space can provide quick insights before searching through all
closed-form derivative-free parts.

Terms in a dictionary. For a given order of a differential equation K, it is a good idea to include
all standard differential operators up to order K acting on all the variables. For instance, for K = 2
and M = 1 + 1 we could choose Q = {∂tu, ∂xu, ∂t∂xu, ∂2

t u, ∂
2
xu}. That allows to cover all linear

PDEs with constant coefficients up to that order. To allow for non-linear PDEs we can include a term
like ∂t(u

2) = 2u∂tu that often describes advection (as in Burger’s equation).

Dictionary steering when dealing with many dependent variables. When we deal with a system
of PDEs rather than a single PDE choosing a dictionary is increasingly important. As we explain
in Appendix F.2, discovering whole systems of PDEs is very challenging and D-CIPHER is not
designed to do so out of the box. However, we show how that can be done in certain situations. We
can steer what kind of equations are discovered by choosing the terms in the dictionary.

Estimation algorithm. Estimation algorithms make different assumptions on the data-generating
process and should be chosen based on domain expertise. As we show in Appendix F.10, algorithms
that produce smoother functions, such as Gaussian Process regression and cubic spline interpolation,
tend to have good results. We can consider the advantages and disadvantages of these methods.
For instance, Gaussian Process regression works very well for smooth signals. However, it is
computationally intensive and might not perform well if the signal is not smooth enough (it has
abrupt changes). Spline interpolation, on the other hand, is faster and more appropriate for less
smooth signals, but it might introduce certain unwanted artifacts because of using cubic polynomials
to interpolate the data.
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