
Theoretical and Practical Perspectives on what
Influence Functions Do

Andrea Schioppa1 Katja Filippova1 Ivan Titov2,3 Polina Zablotskaia1

1Google DeepMind 2University of Edinburgh 3University of Amsterdam
{arischioppa, katjaf, polinaz}@google.com, ititov@inf.ed.ac.uk

Abstract

Influence functions (IF) have been seen as a technique for explaining model pre-
dictions through the lens of the training data. Their utility is assumed to be in
identifying training examples "responsible" for a prediction so that, for example,
correcting a prediction is possible by intervening on those examples (removing or
editing them) and retraining the model. However, recent empirical studies have
shown that the existing methods of estimating IF predict the leave-one-out-and-
retrain effect poorly. In order to understand the mismatch between the theoretical
promise and the practical results, we analyse five assumptions made by IF methods
which are problematic for modern-scale deep neural networks and which concern
convexity, numeric stability, training trajectory and parameter divergence. This
allows us to clarify what can be expected theoretically from IF. We show that while
most assumptions can be addressed successfully, the parameter divergence poses a
clear limitation on the predictive power of IF: influence fades over training time
even with deterministic training. We illustrate this theoretical result with BERT and
ResNet models. Another conclusion from the theoretical analysis is that IF are still
useful for model debugging and correcting even though some of the assumptions
made in prior work do not hold: using natural language processing and computer
vision tasks, we verify that mis-predictions can be successfully corrected by taking
only a few fine-tuning steps on influential examples.

1 Introduction and related work

Influence Functions (IF) [CS82] have been regarded as a tool that can trace model behavior on any
example to the training examples [KL17, PLKS20, GRH+21]. Their theoretical justification lies in
the ability to predict loss changes on a specific test point when training on a perturbed loss obtained
by removing or down-sampling a given training point. In the case of an undesired model behavior
on a test-point, the influential training examples for that test point have been assumed to be the
ones "responsible" for the prediction so that intervening on those – e.g., by removing them and then
retraining the model, or by taking additional fine-tuning steps [GRH+21] – would result in a change
in the loss or prediction. It has been confirmed that for linear models it is indeed the case [KATL19].

Recently, in their extensive experiments, [BPF21] and [KS21] could not find empirical support for the
claim that IF approximate the Leave-Some-Out Retraining (LSOR) effect on the loss in deep neural
networks. In particular, they show that the correlation between the ranking of training examples
produced by LSOR and the IF-based ranking is low and considerably affected by choice of hyper-
parameters. How can this discrepancy be explained? And, given that the theoretical justification
for IF lacks empirical support, does it mean that IF should be abandoned as an explainability and
debugging tool altogether?

In this work we clarify what question Influence Functions (IF) actually answer. We first identify
assumptions which are either implicit or not investigated in prior work: these concern convexity,

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

numeric stability, training trajectory, and the the parameter divergence when retraining on a new
loss. In principle, any of these assumptions might be problematic and be the reason why the original
theoretical justification for IF is not supported empirically. However, we show how to address
most of them successfully so that they cannot be the reason for the aforementioned discrepancy.
Unfortunately, we also show that the parameter divergence is indeed problematic and requires to
revise both theoretical and practical expectations about IF. This analysis paves the way to clarifying
the question that IF can answer. As a first step in this direction, we need to distinguish two approaches
to computing influence. The Hessian-based Influence Functions (HIF) [CS82, KL17] have a rigorous
theoretical justification in statistics, but rely on strict convexity assumptions, which are not met
in Deep Learning and which previous analyses of HIF in the Deep Learning literature still rely
on [KL17, BNL+22]. Our first contribution concerns HIF and is twofold: we prove (Theorem 1)
that this unsatisfied convexity assumption is not as problematic for HIF as one may think–given a
stationary point for the original loss, there is a nearby stationary point for the perturbed loss which
can be approximated by using HIF. However, we point out a more serious problem with HIF: there is
no guarantee that by retraining on the perturbed loss one would get to that stationary point. This
observation provides an additional support to the second popular approach to IF, TracIn [PLKS20],
which explicitly models the training dynamics and which additionally does not require to compute the
expensive inverse Hessian vector product as it only uses gradient information.1 Despite TracIn being
grounded in the training dynamics, we unveil a hidden additive modeling assumption in [PLKS20]
that prevents it from correctly modeling the (re)-training dynamics. Our second contribution is thus
to provide a theoretical analysis (Theorem 2) of how training trajectories change when perturbing
the loss. This is a key result as it suggests that two training trajectories differing by a small loss
perturbation could diverge over time to the point of violating a first-order expansion assumption that
IF make, thus making IF’s predictions unreliable. Our further theoretical and empirical investigation
confirms this conjecture. Therefore, what IF can do is to predict parameter changes when fine-tuning
for a limited number of steps on the perturbed loss. This requires to adjust how IF are evaluated
(Section 5) and applied (Section 6). In order to confirm the conjecture and re-adjust expectations
regarding IF, we need a deeper analysis of the trajectory divergence.

Our third contribution is thus to validate the conjecture on trajectory divergence and its consequences
for IF. We first prove (Theorem 3), using a discrete version of Gronwall’s Lemma [Gro19], an upper
bound on the parameter divergence when (re)-training on a perturbed loss. We then empirically
verify that the bound is sharp in Section 5 and that IF can approximate parameter changes along the
perturbed trajectory only for a limited amount of time. We then empirically verify that this leads
to a fading (of accuracy) of IF predictions over time. Therefore, we theoretically demonstrate and
empirically verify that IF can in general answer only what happens when fine-tuning on a perturbed
loss for a limited amount of time, instead of a general retraining setting.

Therefore, our new theory indicates that IF have been used incorrectly as the emphasis has been on
their LSOR potential. On the positive side, it suggests an alternative way of using IF that indeed
yields substantial empirical improvement. To demonstrate that, as our final contribution, in Section 6
we propose and verify a very simple method for correcting mis-predictions by taking only a few
gradient steps on influential examples. Our proposal is related to model editing [DCAT21, inter alia]
in that the latter also aims at changing model predictions. However, there the model is given and
the modifications are done on its parameters whereas IF aim at understanding how specific training
examples are responsible for the current model behavior and editing predictions through the data. We
leave for future work building connections between model editing and IF.

For the case of Hessian-based influence functions, the recent work of [BNL+22] has proposed to
resolve the discrepancy between the theory and the empirical evidence by evaluating them using
the proximal Bregman response function. However, [BNL+22] relies crucially on the convexity
assumption: while under this assumption there is agreement between our work and their findings
(e.g. our parameter divergence drives the linearization error [BNL+22, Sec. 4.4]), our theory applies
also the the case where the Hessian is not positive definite. Moreover, our work covers also the scope
of Gradient-based influence functions including TracIn [PLKS20].

1To incorporate training dynamics, TracIn exploits multiple checkpoints which introduces a substantial
overhead, hence only the latest checkpoint is often used in practice. Other gradient-based methods have been
proposed in [CGFT19, HYHI20], but they lack a justification from the training dynamics perspective.

2

2 Definition of Influence Functions and Notation

The different methods proposed to define Influence Functions share a common goal: forecasting the
change in the prediction on a test example when up (or down-) weighting a training example. This is
achieved by tracing the effect that re-weighting a training example has on the model parameters.

Removing or adding a training point can be modeled by a perturbation of the loss function; such
a perturbation can be made smooth by modeling the weighting of a training point by a continuous
parameter ε. More generally, let L(θ) denote the loss function where θ ∈ RN are the model
parameters. We model loss perturbations by introducing a variation of the loss, which is a smooth
function L(θ, ε) depending on an additional vector parameter ε ∈ RQ and coinciding with the original
loss for ε = 0. For example if lx denotes the loss on a given training point x, we set L(θ, ε) =
L(θ) + εlx. While the scalar case Q = 1 is the one commonly considered, e.g. [KL17, PLKS20], we
introduce the vector one Q > 1 which arises naturally when considering the effect of re-weighting
multiple points differently, e.g. when modifying the weights in a mixture of different data-sets.

The IF method of choice then predicts what would happen if training on L(θ, ε) instead of L(θ).
The final parameters are modeled as a function θε of the perturbation parameter; assuming that
such a function is well-defined and sufficiently smooth, one then makes a first order expansion
θε ' θ0 + εT∇ε|0θε, where∇ε|0θε is the Q×N -dimensional Jacobian at ε = 0 (see also Section A).

Under this first order assumption it is then straightforward to measure the change in the loss lz
corresponding to a test point z:

lz(θε)− lz(θ0) ' εT∇ε|0θε∇θ|θ0 lz. (1)

We emphasize that (1) is general to different IF methods, which differ in the specific derivation of
∇ε|0θε.

3 Problematic assumptions made by Influence Functions

3.1 Problematic Assumption #1: Convexity can be used to show that θε is a function of ε

In order to show that for each value of ε there is a single value of θε (so that one can model
the final parameters as a function of the perturbation parameter), HIF relies on strict convexity
of L. While this assumption is realistic for the statistical models considered in [CS82], this is
not the case for neural networks. Even when introducing a regularization term, the loss of a
neural network is not even weakly convex, and optimization methods usually converge to saddle
points [DPG+14]. To the best of our knowledge, previous analyses of HIF in the Machine Learning
literature, e.g. [KL17, BPF21, BNL+22], have relied on some form of strict convexity. In Section 4.1
we will revisit HIF and prove (Theorem 1), roughly speaking, that near a given stationary point θ0 for
the original loss L, there is a stationary point θε of the perturbed loss L(θ, ε) which can be modeled
as a function of ε and such that ∇ε|0θε is given by −H−1

θ0
∇2

(ε,θ)|(0,θ0)L as in [CS82] (see Section A
regarding the usage of ∇2).

3.2 Problematic Assumption #2: The model Hessian is not degenerate

As HIF requires to apply the inverse model Hessian to ∇2
(ε,θ)|(0,θ0)L, one needs to ensure that

inverting the Hessian is numerically stable. It has been empirically demonstrated [GKX19] that most
eigenvalues of the Hessian tend to cluster near 0. Numerically, this results in a considerable source
of errors and instabilities when estimating HIF; while regularization can alleviate this problem, it
introduces a hyper-parameter in the definition of HIF; the minimal value of such a hyper-parameter
ensuring numerical stability depends on the smallest negative eigenvalue of the Hessian. Unfor-
tunately, in realistic settings, this can be larger in absolute value than reasonable values for the
regularization parameter. For example in our ResNet experiments regularization is of the order 10−4,
while the smallest negative eigenvalue is ' −5. In Section 4.2 we discuss how the Arnoldi-based
Influence Functions (abbr. ABIF) (which were introduced by [SZTS22] for computational efficiency)
can be used to address such instability issues.

3

3.3 Problematic Assumption #3: Training trajectory can be ignored in Hessian-based
Influence

Even if we solve the Problematic Assumption #1 for HIF, there is no guarantee that when actually
re-training from scratch on L(θ, ε) one would converge to the θε given by Theorem 1 because the
training trajectory is disregarded in HIF. As optimization is performed via some form of stochastic
gradient descent, [PLKS20] propose TracIn which averages gradient dot-products across checkpoints
in order to take into account the path taken by the training process. Importantly, for a single checkpoint
θ0 TracIn estimates ∇εθε as −∇2

(ε,θ)|(0,θ0)L, so the inverse Hessian vector product does not need
to be computed. While it seems that TracIn takes into account the training trajectory, in the next
Assumption we identify an issue with the way it models the training trajectory.

3.4 Problematic Assumption #4: The training trajectory can be modelled additively

The analysis of TracIn in [PLKS20] is based on a first-order expansion of the final change of the
loss of a test point in terms of the gradient steps across the training trajectory. While this argument
seems mathematically convincing, it overlooks that if one point is removed, or slightly up-sampled
/ down-sampled, the subsequent training trajectory is modified. Let θε,t denote the value of the
parameters after t steps when doing gradient descent on L(θ, ε). Denoting by T the end-time, TracIn
derives

∇ε|0θε,T = −
T−1∑
t=0

ηt∇2
(ε,θ)|(0,θ0,t)L, (2)

where ηt is the learning rate at time step t. Now, the right-hand side in formula (2) is purely additive
in the time steps; and addition is commutative, so the order of the time steps does not matter. One
way to see that this is problematic is by making L time-dependent so that it differs from L only at a
specific time step t. In this case∇2

(ε,θ)L would be non-zero only at t and formula (2) would consist of
a single term. However, we would expect the perturbation at t to affect the following time steps, so we
should have at least T − t− 1 terms on the RHS for (2). In Section 4.3 we compute∇εθε,T looking
at the whole training trajectory and discover an additional first-order term that is missing from TracIn:
this term models the dependency of a time step on the earlier ones. Concurrent work [GWP+23] also
criticizes the additive assumption in TracIn on empirical grounds and proposes to build (re)-training
simulators which are unfortunately computationally expensive as a new simulator must be fitted on
the training set for each test point.

3.5 Problematic Assumption #5: θε can be expanded to first order in ε

After we derive a formula for θε,T and ∇εθε,T we realize that the latter can grow in norm in T .
However, if θε,T can be Taylor-expanded in ε, we need θε,T − θ0,T to be O(ε) and ∇εθε,T to be
O(1). If this is not the case, the whole IF approach described in Section 2 breaks down because
IF approximate the parameter change θε,T − θ0,T using the Taylor expansion εT∇εθε,T , but the
conditions to apply such a Taylor expansion are not satisfied.

In Section 4 we show how assumptions #1–#4 can be successfully addressed which makes them
not as problematic as they may first appear. However, for assumption #5 we will see that it puts a
substantial limitation on the predictive power of IF. At the same time it allows for a new, locally
bound perspective on IF – that influence holds for a limited number of fine-tuning steps (Section 5).
Based on this finding, in Section 6 we propose a simple approach to use IF to correct mis-predictions
which is theoretically grounded and is in addition much less compute intensive than those that involve
re-training (e.g. [KL17]).

4 Addressing the problematic assumptions

Proofs of all results are in the Appendix and we provide some motivation for the proof in the main
text.

4

4.1 HIF does not need Assumption #1

Previous work [CS82, KL17, BPF21, BNL+22] on Hessian-based Influence Functions (HIF) has
assumed that L is strictly convex in order to claim that 1) the minimum is unique so that θε can be
modeled as a function, and 2) to use the Implicit Function Theorem to differentiate through the
optimality condition.

Here we will just assume that the Hessian is not singular at θ0; by requiring that the final gradients
do not change as we change ε we prove:

Theorem 1. Assume that∇L isCk (k ≥ 1) and let θ0 ∈ RN ; assume that the HessianHθ0 = ∇2
θ|θ0L

is non-singular; then there exist neighborhoods U of θ0 and V of 0 ∈ RQ, and a Ck-function
Θ : V → U such that Θ(0) = θ0 and Θ(ε) ∈ U is the unique solution in U of the equation

∇θL(Θ(ε), ε) = ∇θL(θ0, 0). (3)

Moreover, the gradient of Θ at the origin is given by:

∇ε|0Θ = −H−1
θ0
∇2

(ε,θ)|(0,θ0)L. (4)

Idea of the proof. Existence of Θ(ε) is formulated as a solution to the local problem eq. (3); building
a local solution does not require convexity if one uses the Implicit Function Theorem.

The requirement that ∇θL(Θ(ε), ε) is constant in ε has allowed us to establish a link between
the training under different losses {θ → L(θ, ε)}ε. If we assume that θ0 is a stationary point,
i.e. ∇θL(θ0) = 0, we can strengthen the conclusions:

Corollary 1. Under the assumptions of Theorem 1:

1. If θ0 is a stationary point of L, then each Θ(ε) is a stationary point of the loss θ 7→ L(θ, ε).

2. If θ0 is a local (strict) minimum of L, for ε sufficiently small, Θ(ε) is a local (strict) minimum
of the loss θ 7→ L(θ, ε).

3. Let Q = 1 (hence epsilon is a scalar) with L(θ, ε) = L(θ) + εlx(θ), where lx is the loss
corresponding to a specific training point x. We then obtain the classical result [CS82]:

dΘ

dε

∣∣∣
ε=0

= −(∇2
θL(θ0))−1∇θlx(θ0). (5)

4.2 If Assumption #2 is not satisfied, use Arnoldi-based Influence Functions

Theorem 1 requires that Hθ0 is non-singular. If the Hessian is singular, we just need to keep fixed
those parameters that are responsible for the degeneracy. More precisely, we diagonalize Hθ0 ; we
let P1 be the subspace spanned by the eigenvectors corresponding to the non-zero eigenvalues and
let P0 be its orthogonal complement, that is, the kernel of Hθ0 . Up to an orthogonal transformation
of the parameters, we can assume that P1 is spanned by the first N1-coordinates and decompose
θ = (ϑ, ϕ) ∈ RN1 × RN2 so that Hϑ0 = ∇2

ϑL((ϑ0, ϕ0)) is non-singular. We then apply Theorem 1
to the restricted variation (ϑ, ε) 7→ L((ϑ, ϕ0), ε). In terms of the original parameters θ, this means
that the function Θ(ε) is constrained to lie in θ0+P1, keeping the ϕ-component constantly equal to ϕ0.
Concretely, we can approximate P1 using the Arnoldi iteration; therefore, we can address the failure
of Assumption #2 by using Arnoldi-based Influence Functions (ABIF) [SZTS22], which approximate
P1 using the subspace spanned by the eigenvectors corresponding to the top-k (in absolute value)
eigenvalues of the Hessian. The fact that ABIF stabilizes the estimation of influence scores has been
observed empirically in previous work: in [SZTS22, Fig. 2] where using ABIF instead of the full
Hessian improves the retrieval of mislabeled examples, and in [FLP+23, Fig. 3] where ABIF is the
best solver on the QA task and is comparable to the other solvers on the text-completion task.

4.3 The training trajectory can be traced to address Assumptions #3–#4

We need to improve our notation to correctly trace the training trajectory. The first issue is to keep
track of the parameters across the time steps; the second issue are sources of non-determinism,

5

e.g. batch selection or random state for dropout. When comparing training trajectories for different
values of ε we want our notation to account for sources of non-determinism, as they might increase
the difference between the training trajectories.

To address the first issue, we let θε,t be the value of the parameters after training on L(θ, ε) for t
steps. In particular, θε,0 denotes the initial value condition that we assume held fixed at θinit for
different values of ε. As random state is a function of the training step (e.g. the batch to use at step t),
to address the second issue, we just need to allow both the loss and the variation to depend on the
train step, denoting them by Lt and Lt.
To simplify the exposition and for consistency with [PLKS20] we assume that models are trained
with stochastic gradient descent. Letting ηt be the learning rate at step t we prove:

Theorem 2. Assume that the model is trained for T time-steps with stochastic gradient descent.
Denoting by Ht the Hessian∇2

θ|θ0,tLt, then the final parameters θε,T satisfy:

∇ε|0θε,T = −
T−1∑
t=0

ηt∇2
(ε,θ)|(0,θ0,t)Lt −

T−1∑
t=0

ηtHt∇ε|0θε,t. (6)

Idea of the proof. One can explicitly write a system of equations for θε,T and apply the operator
∇ε|0 to the solution of this system.

Note that the second term on the RHS of (6), which is missing from (2), takes into account the
contribution of the earlier time steps that is missing from the analysis of [PLKS20]. A practical
consequence of this second term is that the norm of∇ε|0θε,T might grow (in T) more quickly than (2)
would suggest: this is closely related to Assumption #5 which requires ∇ε|0θε,T to be O(1). In
particular, for a constant learning rate, while (2) suggests a linear growth in the time step T , we will
empirically verify in Section 5.1 that the growth is super-linear.

In Section K we illustrate the additional modeling error introduced by TracIn when computing the
Jacobian∇ε|0θε,T in the case of retraining BERT with SGD.

4.4 Assumption #5 becomes problematic over time

To address Assumption #5 we need to look into the parameter divergence ‖θε,T − θ0,T ‖ between
training on L and L. The training dynamics is a discrete version of an ODE for which uniqueness
and differentiability of the solutions with respects to the initial conditions can be established by
Gronwall’s Lemma [Gro19]. The parameter ε can itself be considered an initial condition and we can
prove a discrete version of Gronwall’s Lemma to bound the parameter divergence. For simplicity of
notation we prove the result for stochastic gradient descent, but we also sketch in the Appendix how
to modify the argument to deal with optimizers.

Theorem 3. In the setting of Theorem 2 assume that, for t ≤ T , θε,t lies in a bounded region R such
that

sup
t,θ∈R

‖∇Lt(θ, ε)−∇L(θ, 0)‖ ≤ Cε (7)

and that for θ ∈ R each loss Lt(θ, ε) and its gradient wrt. θ are A-Lipschitz in θ. Then

‖θε,T − θ0,T ‖ ≤ Cε
∑
s<T

ηs(1 + exp(2A
∑
s<T

ηs)). (8)

Idea of the proof. If the time steps were infinitesimal, i.e. if time was made continuous, the evolution
of θε,t would be governed by an ODE; then the bound (8) would be straightforward by applying the
classical Gronwall’s Lemma [Gro19]. In our case we just need to modify the ODE arguments to work
with discrete time.

Note that the bound (8) is quite pessimistic as it involves an exponential of the integrated learning rate∑
s<T ηs. This means that as

∑
s<T ηs increases, the parameter divergence is no longer O(ε) and

6

(a) (b)

Figure 1: Divergence of parameters (log-scale) as a function of the integrated learning rate. For
each value of ε the divergence is exponential (corresponding to a line in log-scale) with two different
divergence rates, one more steep at the beginning of (re)-training. (a) BERT, (b) ResNet

the crucial Assumption #5 is no longer satisfied. This observation leads to a few crucial conclusions:

1. An IF method can predict θε,t only for a limited amount of time-steps: it is therefore
incorrect to evaluate IF methods on LSOR or retraining from scratch.

2. IF methods need to be evaluated on what they can potentially do; therefore the evaluation
setup should consist of fine-tuning on the perturbed loss only a limited amount of steps with
evaluation metrics being reported as a function of the step.

3. Applying IF for correcting mis-predictions should also involve a time-bound scenario: we
propose such a method in Section 6.

4. Sources of non-determinism between two training runs will likely increase the parameter
divergence. So one should try to reduce this with deterministic training. For example, in the
case of re-weighting a point x, i.e. setting L = L + εlx, one should make sure to use the
same batch Bt for the loss L at time step t across training runs for different values of ε.

5 Illustrating the Theory

In this section we first demonstrate Theorem 3 empirically and then verify that the predictive power
of influence scores degrades over time. Full details of our experimental setup are reported in the
Appendix. We consider binary classification for nlp, where we fine-tune BERT on SST2; for computer
vision we consider multi-class classification where we train from scratch ResNet on CIFAR10. All
our experiments use deterministic training: the order of the training batches for the loss L is held
fixed across different runs, as well are the random generators when dropout is used.

5.1 Illustrating Parameter Divergence (Theorem 3)

Theorem 3 provides an upper bound when re-training on a perturbed loss. Such a bound is rather
pessimistic as it involves the integrated learning rate. We therefore investigate empirically what
happens with some typical Deep Learning setups. We take an intermediate checkpoint and keep
training on a new loss obtained by up-sampling 16 training points with a weight ε, that is: Lt =
LBt + ε · LB , where Bt is the training batch for step t and B is the batch of 16 points selected
for up-sampling. For each time step t we then compute ‖θε,T − θ0,T ‖ and then plot it against the
integrated learning rate, see Figure 1.

Unfortunately, we observe that in these experiments the upper bound in Theorem 3 is matched by a
lower bound with the same exponential divergence. We observe a first phase of quick divergence
and then a second one in which the divergence is slower. For the second phase a linear fit of
log ‖θε,T − θ0,T ‖ against the integrated learning rate appears to be strong: for example for BERT we
obtain an R2 of at least 0.9 across the different values of ε. The fitted slope, corresponding to A in
Theorem 3 depends on ε and varies between 30 and 130.

7

(a) (b)

Figure 2: The predictive power of influence scores on the loss shifts degrades over time. (a) BERT,
(b) ResNet. The line represents the average of the correlation R(t) across runs, with the shaded area
the corresponding 95% confidence region.

5.2 Illustrating the fading of influence

We now verify that the predictive power of influence scores fades over time. We again fix a model
checkpoint θinit and select 32 training points and 16 test points. For each training point x we retrain
on Lxt = LBt − 1

100 lx, i.e. x has been down-sampled; for each test point z and time step t we then
compute the loss difference δ(z, x, t) = lz,x,t − lz,t where lz,x,t is obtained when (re)-training on
Lxt and lz,t is obtained when training on the vanilla loss Lt = LBt . Again, we have kept the order of
the batches Bt the same when re-training. Now, at the original checkpoint θinit we can compute the
influence scores IF (z, x) for different methods, e.g. TracIn or HIF (using the the Conjugate Residual
method2). For each time step we thus have 32× 16 values of δ(z, x, t) that can be linearly regressed
against IF (z, x); the corresponding Pearson correlation R(t) then measures the predictive power of
influence scores on the loss shifts when re-training. We repeat the experiments for ResNet 9 times
and for BERT 25 times, with a different selection of train and test points, so that we obtain confidence
intervals for the resulting time-series R(t). Ideally, the theory behind an influence method predicts
R(t) ∼ 1. However, as discussed above, Assumption #5 is indeed problematic and, because of the
parameter divergence illustrated in 5.1 we expect R(t) to degrade over time.

As Figure 2 demonstrates, this is indeed the case. The predictive power is high for BERT after a few
re-training steps and then degrades quickly oscillating around 0 (which is covered by the confidence
intervals). For ResNet, the predictive power is never as high, but it still degrades monotonically over
time, as predicted by the theory. As we see in Section 6, the proponents retrieved for ResNet are less
effective at correcting mis-predictions than those retrieved for BERT: we conjecture that this is related
to the worse predictive power of IF in the case of ResNet. As BERT was trained with the Adam
Optimizer, we also considered a variant which takes into account the optimizer’s pre-conditioner by
multiplying the gradients by the square root of the pre-conditioning matrix. In this case the predictive
power is worse than for the vanilla version of TracIn. For BERT, more plots and a further discussion
about TracIn are included in the Appendix (Section G.1). In the Appendix (Section G.2), we also
illustrate the fading of influence for another NLP pre-trained model, T5. While we have illustrated
the fading of influence for both BERT and ResNet, in the latter case the peak of correlation is quite
low; we repeated the same experiments on the ViT (Section G.3), where we find a high correlation
peak as in the case of BERT.

6 Using Influential Examples for Error Correction

[KL17] propose to correct model mis-predictions by first using influence scores to retrieve the
examples most responsible for a given prediction, and, after correcting them, retraining the model.
Computational considerations aside, a key conclusion from the theory in Section 3 and the empirical
verification in Section 5.2 is that IF only predict influence over a limited number of training steps. In
this section we demonstrate that IF can still be used to correct model mis-predictions by taking a few
fine-tuning steps on influential examples.

2Further details in the Appendix.

8

(a) (b)

Figure 3: Success rate and retention for error correction. (a) BERT, (b) ResNet

Concretely, we propose to correct mis-predictions at a given test point z by first identifying a batch of
influential examples B and then taking a few fine-tuning steps on the perturbed loss L = L+ ε · lB .
We propose two methods: (1) Proponents-correction: we identify the set B of top-k proponents for
the current x and relabel them to what should be the correct prediction on x; (2) Opponents-tuning:
as opponents oppose the current prediction, we take B to be the set of top-k opponents of x.

We investigate how well these error-correction techniques work on SST2 (BERT) and CIFAR10
(ResNet). As a baseline, we randomly sample a set B of training points with the same label as
the prediction on x and then set their label equal to the correct one for x. We take a maximum of
50 fine-tuning steps and take the top-50 proponents or opponents to build B. The main metric we
compute is the success rate, i.e. the ratio of mis-predictions successfully corrected within the limit of
50 steps. Additionally, we report prediction retention [DCAT21] on a fixed held-out set of 50 test
examples, i.e. the ratio of examples predictions which have not changed after a correction – ideally, a
correction does not cause too many changes in model predictions otherwise. We experiment with
different values of ε, starting from no up-sampling and gradually increasing it to when influential
examples account for slightly more than half of the batch.

From Figure 3 we see that Proponents-correction and Opponents-tuning strongly outperform the
baseline in binary classification (SST2). For multi-class classification (CIFAR10) Opponents-tuning
is not effective, as we verified that only 54% of the retrieved opponents have the desired label;
Proponents-correction still outperforms the baseline increasing on average the success rate by 2%
and reducing the number of steps to take by 6%. We conjecture that for ResNet the improvement
over the baseline is less than for BERT because of the worse predictive power of IF (Figure 2 (b)). In
Appendix H we include additional plots showing the number of steps to correct mis-predictions as a
function of the up-sampling parameter ε.

The primary goal of the experiments in this section is to verify that tuning on influential examples
results in a correction more reliably and faster than on other classes of examples. Since the SST2
and CIFAR10 datasets are largely clean, for the proponents method, the training example label is
flipped to an incorrect one. In Appendix I we give examples from a noisy text classification dataset
illustrating the scenario that the correction-with-proponents method is supposed to address.

7 Limitations

We derive the perturbed training trajectory (Theorem 2) and the divergence of trajectories (Theorem 3)
for stochastic gradient descent and, while we sketch in the Appendix the modifications needed when
using other optimizers, we do not pursue this topic in detail. In Section 6 we measure prediction
retention after correcting mis-predictions. While this metric is intuitive and has been used previously
(e.g., [DCAT21]), we do not distinguish between semantically similar and unrelated examples and
thus do not check the consistency and generalization properties of the update [MBAB22], leaving a
thorough study of the correction-retention tradeoff to future work.

9

8 Conclusions

IF have been regarded as a tool that promises to trace model behavior to the training data. Unfortu-
nately, recent studies have found no empirical support for such a claim as IF fail to predict the LSOR
effect. This finding gives rise to the question of what IF methods really predict and whether they
could be useful for model debugging. In this work we clarified which questions IF can be expected
to answer. We first identified problematic assumptions made by IF methods – a priori any of these
assumptions could be a reason for the observed empirical failure of IF. Thus, for each assumption
we studied if it is indeed problematic. While most have turned out to be addressable in one way or
another, we demonstrated that the one about parameter divergence puts a severe limitation on IF.
With a deeper analysis of this assumption, we revised what can be theoretically expected from IF:
IF methods are time-bound, that is, they can at most predict what happens when fine-tuning on a
perturbed loss for a limited amount of time. With that, a practical usage of IF for model debugging is
still possible – we proposed and empirically validated a theoretically-grounded procedure to apply IF
to correct model mis-predictions.

References

[BNL+22] Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger Grosse. If influence
functions are the answer, then what is the question?, 2022.

[BPF21] Samyadeep Basu, Phil Pope, and Soheil Feizi. Influence functions in deep learning are
fragile. In International Conference on Learning Representations, 2021.

[CGFT19] Guillaume Charpiat, Nicolas Girard, Loris Felardos, and Yuliya Tarabalka. Input similar-
ity from the neural network perspective. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. dAlché Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Process-
ing Systems, volume 32. Curran Associates, Inc., 2019.

[CS82] R. Cook and Weisberg S. Residuals and influence in regression. Chapman and Hall,
New York, 1982.

[DCAT21] Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language
models. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pages 6491–6506, Online and Punta Cana, Dominican Republic,
November 2021. Association for Computational Linguistics.

[DPG+14] Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Gan-
guli, and Yoshua Bengio. Identifying and attacking the saddle point problem in
high-dimensional non-convex optimization. In Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K.Q. Weinberger, editors, Advances in Neural Information Processing
Systems, volume 27. Curran Associates, Inc., 2014.

[FLP+23] Jillian Fisher, Lang Liu, Krishna Pillutla, Yejin Choi, and Zaid Harchaoui. Influence
diagnostics under self-concordance. In Francisco Ruiz, Jennifer Dy, and Jan-Willem
van de Meent, editors, Proceedings of The 26th International Conference on Artificial
Intelligence and Statistics, volume 206 of Proceedings of Machine Learning Research,
pages 10028–10076. PMLR, 2023.

[GKX19] Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net
optimization via hessian eigenvalue density. In ICML, 2019.

[GRH+21] Han Guo, Nazneen Rajani, Peter Hase, Mohit Bansal, and Caiming Xiong. FastIF:
Scalable influence functions for efficient model interpretation and debugging. In Pro-
ceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
pages 10333–10350, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics.

[Gro19] T. H. Gronwall. Note on the derivatives with respect to a parameter of the solutions of a
system of differential equations. Annals of Mathematics, 20(4):292–296, 1919.

[GWP+23] Kelvin Guu, Albert Webson, Ellie Pavlick, Lucas Dixon, Ian Tenney, and Tolga Boluk-
basi. Simfluence: Modeling the influence of individual training examples by simulating
training runs, 2023.

10

[HYHI20] Kazuaki Hanawa, Sho Yokoi, Satoshi Hara, and Kentaro Inui. Evaluation of similarity-
based explanations. In ICLR-21, 2020.

[KATL19] Pang Wei Koh, Kai-Siang Ang, Hubert H. K. Teo, and Percy Liang. On the accuracy of
influence functions for measuring group effects. In Proceedings of the 33rd International
Conference on Neural Information Processing Systems, Red Hook, NY, USA, 2019.
Curran Associates Inc.

[KL17] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence
functions. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 1885–1894. PMLR, 06–11 Aug 2017.

[KS21] Karthikeyan K and Anders Søgaard. Revisiting methods for finding influential examples,
2021.

[MBAB22] Kevin Meng, David Bau, Alex J Andonian, and Yonatan Belinkov. Locating and editing
factual associations in GPT. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022.

[PLKS20] Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating
training data influence by tracing gradient descent. In Hugo Larochelle, Marc’Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in
Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[SZTS22] Andrea Schioppa, Polina Zablotskaia, David Vilar Torres, and Artem Sokolov. Scaling
up influence functions. In AAAI-22, 2022.

[WTD17] Ellery Wulczyn, Nithum Thain, and Lucas Dixon. Ex machina: Personal attacks seen at
scale. In Proceedings of the 26th International Conference on World Wide Web, WWW
’17, pages 1391–1399, Republic and Canton of Geneva, CHE, 2017. International World
Wide Web Conferences Steering Committee.

11

A Clarifications regarding the operator∇

We spell out in further detail the way we employ the∇ operator. For example, we say that∇ε|0θε is
the Q×N -dimensional Jacobian at ε = 0: concretely,∇ε|ε0f means computing the Jacobian of f
wrt. ε and evaluating it at the point ε0; this Jacobian is a matrix whose (i, j)-entry is given by:

(∇ε|ε0f)i,j =
∂fj
∂εi

(ε0). (9)

This is easily extended to higher order derivatives denote by∇k; specifically we use∇2
(ε,θ)|(0,θ0)L to

denote the matrix whose i, j-entry is given by:

(∇2
(ε,θ)|(0,θ0)L)i,j =

∂2L
∂εi∂θj

(0, θ0); (10)

as the matrix H−1
θ0

acts on the space of the parameters θ, the notation H−1
θ0
∇2

(ε,θ)|(0,θ0)L will denote
a contraction on j:

(H−1
θ0
∇2

(ε,θ)|(0,θ0)L)i,k =
∑
j

(H−1
θ0

)k,j
∂2L
∂εi∂θj

(0, θ0). (11)

B Proof of Theorem 1

For convenience, we first recall the statement of Theorem 1.

Theorem. Assume that∇L is Ck (k ≥ 1) and let θ0 ∈ RN ; assume that the Hessian Hθ0 = ∇2
θ|θ0L

is non-singular; then there exist neighborhoods U of θ0 and V of 0 ∈ RQ, and a Ck-function
Θ : V → U such that Θ(0) = θ0 and Θ(ε) ∈ U is the unique solution in U of the equation

∇θL(Θ(ε), ε) = ∇θL(θ0, 0). (12)

Moreover, the gradient of Θ at the origin is given by:

∇ε|0Θ = −H−1
θ0
∇2

(ε,θ)|(0,θ0)L. (13)

Proof. Equation (12) gives us N constraints on the N + Q variables (θ, ε) and we want to solve
them for the first N variables θ; to obtain the function Θ we invoke the Implicit Function Theorem,
using that the Jacobian wrt. the variables we want to solve for is Hθ0 and is therefore non-singular.
Finally (13) is obtained by taking the gradient of (12) wrt. ε and setting ε = 0:

∇2
θ|θ0L · ∇ε|0Θ +∇2

(ε,θ)|(0,θ0)L = 0.

C Proof of Corollary 1

For convenience, we first recall the statement of Corollary 1.

Corollary. Under the assumptions of Theorem 1:

1. If θ0 is a stationary point of L, then each Θ(ε) is a stationary point of the loss θ 7→ L(θ, ε).

2. If θ0 is a local (strict) minimum of L, for ε sufficiently small, Θ(ε) is a local (strict) minimum
of the loss θ 7→ L(θ, ε).

3. Let Q = 1 (hence epsilon is a scalar) with L(θ, ε) = L(θ) + εlx(θ), where lx is the loss
corresponding to a specific training point x. We then obtain the classical result [CS82]
about the influence of down/up-sampling x on the training parameters:

dΘ

dε

∣∣∣
ε=0

= −(∇2
θL(θ0))−1∇θlx(θ0). (14)

12

Proof. If θ0 is a stationary point of L, then∇θL(θ0, 0) = 0 in (3). This implies that∇θL(Θ(ε), ε) =
0 in (3), which is exactly the statement that Θ(ε) is a stationary point of L. If θ0 is a local (strict)
minimum of L, it is not just a stationary point, but the Hessian at θ0 is also positive definite.
By continuity, for sufficiently small ε, also the Hessian ∇2

θ|Θ(ε)L will be positive definite so that
Θ(ε) will be a local (strict) minimum. Finally, (14) follows from applying (3) to the variation
L(θ, ε) = L(θ) + εlx(θ).

D Proof of Theorem 2

For convenience, we first recall the statement of Theorem 2.

Theorem. Assume that the model is trained for T time-steps with stochastic gradient descent.
Denoting by Ht the Hessian∇2

θ|θ0,tLt, then the final parameters θε,T satisfy:

∇ε|0θε,T = −
T−1∑
t=0

ηt∇2
(ε,θ)|(0,θ0,t)Lt −

T−1∑
t=0

ηtHt∇ε|0θε,t. (15)

Proof. The parameters θε,t obey a recurrence relation:

θε,t − θε,t−1 = −ηt−1∇θLt−1(θε,t−1, ε), (16)

which can be solved to give

θε,T = −
T−1∑
t=0

ηt∇θLt(θε,t, ε); (17)

then (15) follows immediately by applying∇ε|0, i.e. computing the Jacobian wrt. ε at the origin.

E Proof of Theorem 3

The first step in the proof of Theorem 3 is a discrete version of Gronwall’s Lemma [Gro19].

Lemma 1. Let {ut}, {αt} and {βt} be sequences such that βt ≥ 0 and

ut ≤ αt +

t−1∑
s=0

βsus. (18)

Note that we assume that (18) holds for t ≥ 1 and we consider u0 an initial condition. Then:

uT ≤ αT + β0

T−1∏
s=1

(1 + βs)u0 +

T−1∑
s=1

αsβs

T−1∏
k=s+1

(1 + βk). (19)

If {αt} is non-decreasing in t we then get:

uT ≤ β0

T−1∏
s=1

(1 + βs)u0 + αT (1 +

T−1∑
s=1

βs

T−1∏
k=s+1

(1 + βk)). (20)

Moreover, defining ut by setting (18) to be an equality, shows that (19) is sharp.

Proof. We first observe that if we set v0 = u0 and build vt by declaring (18) to be an equality, then
vt ≥ ut for any t. This is true by induction as:

ut+1 − αt+1 ≤
t∑

s=0

βsus ≤
t∑

s=0

βsvs = vt+1 − αt+1. (21)

We thus focus on bounding vt+1; we note that

(vt+1 − αt+1)− (vt − αt) = βt(vt − αt) + βtαt; (22)

13

thus
vt+1 − αt+1 = (1 + βt)(vt − αt) + βtαt

= (1 + βt)(1 + βt−1)(vt−1 − αt−1) + (1 + βt)βt−1αt−1 + βtαt;
(23)

then (19) follows by induction and letting t+ 1 = T . Finally, if {αt} is non-decreasing in t we can
simply replace αs with αT obtaining (20). The sharpness follows by considering the sequence {vt}
we defined in the proof.

For convenience, we first recall the statement of Theorem 3.
Theorem. In the setting of Theorem 2 assume that, for t ≤ T , θε,t lies in a bounded region R such
that

sup
ε,θ∈R

‖∇Lt(θ, ε)−∇L(θ, 0)‖ ≤ Cε (24)

and that for θ ∈ R each loss Lt(θ, ε) and its gradient wrt. θ are A-Lipschitz in θ. Then

‖θε,T − θ0,T ‖ ≤ Cε
∑
s<T

ηs(1 + exp(2A
∑
s<T

ηs)). (25)

Proof. The idea is to apply Lemma 1 as we would in the case of a standard ODE. Let us compare the
evolution of θε,t and θ0,t:

θε,t = θinit −
t−1∑
s=0

ηs∇θL(θε,s, ε) (26)

θ0,t = θinit −
t−1∑
s=0

ηs∇θL(θ0,s, 0); (27)

which leads to

‖θε,t − θ0,t‖ ≤
t−1∑
s=0

ηs‖∇θL(θε,s, ε)−∇θL(θ0,s, 0)‖

≤ Cε
t−1∑
s=0

ηs +

t−1∑
s=0

ηsA‖θε,s − θ0,s‖;

(28)

we now just need to rephrase this inequality in terms of Lemma 1:

‖θε,t − θ0,t‖︸ ︷︷ ︸
ut

≤ Cε
t−1∑
s=0

ηs︸ ︷︷ ︸
αt

+

t−1∑
s=0

ηsA︸︷︷︸
βs

‖θε,s − θ0,s‖︸ ︷︷ ︸
us

; (29)

we note that u0 = 0 as both dynamics start at θinit and that αt is non-decreasing in t. We then have
that

uT ≤ αT (1 +

T−1∑
s=1

βs

T−1∏
k=s+1

(1 + βk))

≤ αT (1 +

T−1∑
s=1

βs

T−1∏
k=s+1

exp(βk))

≤ αT (1 + exp(

T−1∑
s=1

βk)

T−1∑
s=1

βs)

≤ αT (1 + exp(

T−1∑
s=1

βk)× exp(

T−1∑
s=1

βk))

≤ αT (1 + exp(

T−1∑
s=1

2βk)),

(30)

which is (8).

14

(a) (b)

Figure 4: For BERT the predictive power of influence scores becomes 0 over time as the distance
from 0 to the confidence interval of the Pearson’s r becomes 0, i.e. the confidence interval contains 0.

E.1 Sketching modifications needed in the case of optimizers

The proofs of Theorems 2 and 3 were given for SGD. The argument in the case of using an optimizer
would be more involved. Here we sketch the modifications needed when dealing with optimizers. An
optimizer is characterized by an optimizer state, σε,t, which will also evolve in time. While for SGD
we just considered the update rule for θε,t, in the case of optimizers one needs to study a joint system
of update rules for the parameters and the optimizer state:

θε,t − θε,t−1 = −ηt−1F (∇θLt−1(θε,t−1, ε), σε,t) (31)
σε,t − σε,t−1 = −ρt−1G(∇θLt−1(θε,t−1, ε), σε,t−1). (32)

In the case of Theorem 2 one would then apply ∇ε|0 to the joint system to obtain the update rule.
For Theorem 3 one should add additional continuity in ε and Lipschitz conditions on F and G; one
should then check that these are indeed satisfied for common optimizers like Adam or Adafactor.

F Why do we use the Conjugate Residual method?

Regarding HIF, note that usually the Conjugate Gradient method is used [KL17] for computing
inverse Hessian vector products. However, in our experiments the Conjugate Gradient method always
yielded a time-series of Pearson Correlations R(t) oscillating around 0, thus without any predictive
power. The reason is that this method assumes the Hessian to be positive-definite, which is not the
case for most Neural Networks. A simple fix to the problem is to use the Conjugate Residual method
which does not require the Hessian to be positive definite. We recommend to use the Conjugate
Residual when applying HIF in Deep Learning; this might look like a minor technical point, but it
can avoid reporting that HIF has no predictive power, when instead the issue lies in the numerical
method used to compute inverse Hessian vector products.

For more discussion on the Conjugate Residual method see its Wikipedia article.

G Further empirical results on Fading of Influence scores

G.1 Fading of Influence for BERT

In the setting of Figure 2(a) we plot the distance from the confidence interval of the Pearson’s r to 0
(Figure 4); once the distance becomes 0, the predictive power of influence scores has become null.

In Figure 5 we zoom in Figure 2 (a: BERT). The fading phenomenon was non affected by checkpoint
selection: in Figure 6 we consider a later checkpoint and we see the same qualitative behavior. More-
over, in Figure 6 we also consider TracIn with 3 checkpoints selected using the advice in [PLKS20] –
we do not see improvements and the peak is even slightly lower than for TracIn using one checkpoint.
Thus, in our further experiments we have used TracIn with a single checkpoint.

In Figure 7 we zoomed in Figure 2 (b: ResNet). In this case the predictive power was never
particularly high, e.g. for TracIn it quickly peaked at 0.3 but it takes more steps than in the case of
BERT to reach 0. We conjecture that this is in part due to the slower divergence of parameters in

15

https://en.wikipedia.org/wiki/Conjugate_residual_method

Figure 5: For BERT the predictive power of influence scores on the loss shifts degrades over time
very quickly.

Figure 6: For BERT the predictive power of influence scores on the loss shifts degrades over time
very quickly. Using multiple checkpoints did not improve performance of TracIn.

16

Figure 7: For ResNet the predictive power of influence scores faded more slowly and was never
particularly high.

Figure 8: For BERT the predictive power of influence scores faded more slowly when using SGD.
The “Gradient” method is TracIn.

17

(a) (b)

Figure 9: The predictive power of influence scores on the loss shifts degrades over time for T5. (a)
Correlation with the ground truth, with the shaded area the corresponding 95% confidence region. (b)
Distance from 0 to the confidence interval, which measures when the confidence interval covers 0.

(a) (b)

Figure 10: The predictive power of influence scores on the loss shifts degrades over time for the
Vision Transformer (ViT). (a) Full range of re-training steps, (b) zoom-in in the peak and decay
phase.

ResNet (compare the x-axis of (a) and (b) in Figure 1) and in part due to the use of SGD. In particular,
we verified that a slower fading also takes place when fine-tuning BERT with SGD (Figure 8).

G.2 Fading of Influence for T5

We consider another NLP pre- trained model fine-tuned on SST2, T5. In Figure 9 we illustrate the
same effect of fading of influence for the T5 model.

G.3 Fading of Influence for the ViT

In the case of ResNet, in our fading of influence experiments (Fig. 2 (b)) the peak is particularly low.
On the same task, we trained a ViT with SGD and observe that the peak is higher, similarly to what
happens with BERT, see Figure 10. We conjecture that this difference is due to the different model
architecture. Note that in both cases, we observe the fading of influence as predicted by the theory.

H How many steps are needed to correct mis-predictions?

In Figure 11 we plot the average and median number of steps to correct a mis-prediction as a
function of ε: for any fixed ε, the more effective a correction method is, the fewer steps are needed
to correct the prediction. For BERT we see that both Proponent-correction and Opponent-tuning
result in a large decrease in the number of steps to take, compared with the Baseline. For ResNet,
we do not plot Opponent-tuning as it performed poorly on success-rate. For ResNet the gains of
Proponent-correction are smaller but consistent as ε varies.

18

(a) (b)

Figure 11: Average and median steps to correct mis-predictions. (a) BERT, (b) ResNet

Table 1: Pairs of misclassified test examples with their mislabeled training proponents
Test example Top proponent

False positives
1 Agreed. This is dumb. Yeah i no it sucks.
2 == Iowa-class battleships == Stupid me... I

didn’t even look... sorry about that... (
By the way, sorry about that stupid edit.

3 It’s so silly of me to ask this question but
I’m still not getting what you’re trying to say.
Sorry for being such an idiot! ;)

By the way, sorry about that stupid edit.

4 hahaha this whale is huge and ugly and funky
doodle...lol...

A cheeseburger for you! Fatty

5 Cool you can change the content!i love sex!! Sex in space Sweet. Thanks for the education!
)

6 ===== A lot of poeple got killed that day
=====

Yes they were Hitler Stated that Slavs were
lesser races and should be salves or killed

7 == A question regarding Rodriguez’s sexual
orientation == Would the statement, "I’ve
gone both ways. I do as I please. I am too
fucking curious to sit here and not try when
I can. Men are intriguing. So are chicks." be
enough to label her as bisexual or LGBT?

Ravenkills97 I didn’t change the genres on In
This Moment, all i did was put commas in be-
tween the genres. U gave me a final warning
for no reason. All because I put commas in
between something, like it fucking erases the
genre.

False negatives
1 your mama is a man grow up Get a life
2 (...) It’s nice to see you finally admit it with

your edit summary of, "what a terrible idiot I
am". (...)

(...) you’re a nerd living with your mom and
you have no friends. You see? (...)

3 U r worse than obamas presidency Are you known as a sock puppet?
4 I don’t want to say sorry ,so get a life before i

ruin yours buthead
Then grow up and stop spamming on my page.
I hear your mommy calling. Run along.

5 (...) it’s hard for me to not take the kind of
stupidity evident from your edits personally
(...)

(...) thats 2 against 1 buddy you lose

6 Your spelling seems to be at about the 3rd
grade level, I hope you’re not having sex.

Okay then. I’ll just have to agree to disagree.
I won’t read your article and I won’t give you
fellatio. Now get off my page.

19

Table 2: Mean influence with variance and metrics for the experiments with the example in Table 1
proponents mean influence mean step median step retention
True 0.91 (±0.03) 3.0 2.5 98.1%
Permuted 0.50 (±0.21) 5.1 3.5 96.3%

Table 3: Training hyper-parameters for ResNet on CIFAR10
Hyper-parameter value
Batch-size 128
Epochs 200
Learning rate 10−1

Learning rate scheduler cosine decay
Optimizer SGD
l2-regularization 10−4

I Selecting mislabeled proponents for correction

For the experiments in Section 6 we use comparatively clean datasets, so the proponents we retrieve
and correct are not mislabeled. In this section we use the notoriously noisy Wikipedia Toxicity
Subtypes dataset [WTD17] where for many misclassified test examples we can find mislabeled
proponents used during training. Table 1 presents false positives and negatives (that is, test examples
incorrectly predicted to be toxic, resp. non-toxic) with a high-scoring proponent which we consider
mislabeled. It is worth noting that some examples lack context necessary to confidently verify whether
they are toxic or not. In total, we collected 14 such pairs, seven for mispredictions of each kind.3

Table 2 presents the mean and the median number of steps needed to be taken on the corrected
proponents to achieve a change in prediction, as well as retention once there is a change. As a
point of comparison, we permute the proponents withing the false positive and false negative sets:
this is a more challenging baseline than selecting examples for correction randomly. Note that the
influence scores for the presented examples range from −0.90 to 0.92, so some of the permuted
proponents still have some quite influence on the test examples they get assigned to. Still, the results
confirm that correcting mislabeled top-scoring proponents is the fastest way of achieving a change in
model predictions, with as few as three steps required on average and with the smallest damage to
predictions on other examples (measured with retention).

J Hyper-parameters

J.1 Training

ResNet was trained on a single V100 with the hyper-parameters in Table 3; training data
was augmented using torchvision using the transformations transforms.RandomCrop(32,
padding=4), and transforms.RandomHorizontalFlip().

3We omitted the most upsetting example from the false negatives.

Table 4: Training hyper-parameters for BERT on SST2
Hyper-parameter value
Batch-size 128
Steps 35000
Learning rate 10−5

Learning rate scheduler None
Optimizer Adam
l2-regularization 5× 10−6

20

Table 5: Training hyper-parameters for T5 on SST2
Hyper-parameter value
Batch-size 16
Maximal sequence Length 128
Epochs 4
Learning rate 10−4

Learning rate scheduler None
Optimizer Adam

Table 6: Training hyper-parameters for ViT on CIFAR10
Hyper-parameter value
Batch-size 128
Epochs 300
Peak learning rate 10−3

Learning rate scheduler 1 epoch warm-up and then cosine decay
Optimizer SGD

The ViT was trained on a single V100 with the hyper-parameters in Table 6; we used the same data
augmentation as in the case of ResNet.

BERT was trained on 8 TPUv3 cores using the hyper-parameters in Table 4. The best checkpoint
was selected on validation-set accuracy evaluated every 500 steps; it corresponded to 6000 steps of
training.

T5 was trained on a GPU V100 using the hyper-parameters in Table 5. We selected a checkpoint
based on the validation set accuracy at epoch 4, where the accuracy was 92.9%. Note that T5 is a
generative model, so at prediction time the sequence to classify is encoded with the encoder and then
the decoder is used to generate a sequence that represents the desired class label. When computing
influence functions, one uses the cross-entropy loss for sequences.

J.2 Correction Experiments

For the correction experiments we used ABIF [SZTS22] because of their computational efficiency as
IF scores need to be computed against the whole training set; we used 32 projectors obtained with 64
Arnoldi iterations. The Arnoldi iteration can take up to 2 hours; scoring the data takes a few minutes.
We used a learning rate of 10−3 and for BERT we loaded the state of the Adam optimizer from the
selected checkpoint.

For BERT we selected the checkpoint at 6000 steps which was the best on validation performance.
For ResNet we selected the checkpoint after 10 epochs at which about 150 test points are incorrectly
classified.

K Illustrating TracIn’s modeling error

In Theorem 2 we have derived the correct formula for the Jacobian ∇ε|0θε,T and we expect TracIn
(Eq. 2) to introduce a modeling error in calculating∇ε|0θε,T . We can compute the difference between
the ground truth θε,T and the first order expansion θ0,T + εT∇ε|0θε,T when the Jacobian is computed
with TracIn (Eq. 2) or the corrected formula (Eq. 6). We can then compute the relative excess error
introduced by TracIn for different values of ε. In Figure 12 we observe that except for the extremely
small perturbation ε = 10−4, TracIn does introduce an additional relative error in modeling the
change of parameters when retraining BERT with SGD. The setup of this experiment is the same as
those of our parameter divergence experiments.

21

Figure 12: Illustrating the additional modeling error introduced by TracIn for different values of the
perturbation ε. The error is the ratio between the error of TracIn (Eq. 2) and the error of the exact
formula (Eq. 6) when retraining BERT on a perturbed loss with SGD.

L Broader Impact Statement

We believe that our work can benefit model developers who want to debug and correct mis-predictions
made by models. Our suggested error-correction procedure is much less compute intensive than
previous ones using IF as it does not require model retraining. However, this debugging procedure
could introduce new errors in the systems, for example if on a specific problem IF are not effective
at predicting loss-shifts or if examples retrieved by IF lead to over-fitting against spurious artifacts
present in such examples. Since this could have a negative impact on the users of such systems,
mitigation strategies should be put in place regarding the trade-offs between the success rate of fixing
specific mis-predictions and the overall retention of the system performance.

22

	Introduction and related work
	Definition of Influence Functions and Notation
	Problematic assumptions made by Influence Functions
	Problematic Assumption #1: Convexity can be used to show that is a function of
	Problematic Assumption #2: The model Hessian is not degenerate
	Problematic Assumption #3: Training trajectory can be ignored in Hessian-based Influence
	Problematic Assumption #4: The training trajectory can be modelled additively
	Problematic Assumption #5: can be expanded to first order in

	Addressing the problematic assumptions
	HIF does not need Assumption #1
	If Assumption #2 is not satisfied, use Arnoldi-based Influence Functions
	The training trajectory can be traced to address Assumptions #3–#4
	Assumption #5 becomes problematic over time

	Illustrating the Theory
	Illustrating Parameter Divergence (Theorem 3)
	Illustrating the fading of influence

	Using Influential Examples for Error Correction
	Limitations
	Conclusions
	Clarifications regarding the operator
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Theorem 2
	Proof of Theorem 3
	Sketching modifications needed in the case of optimizers

	Why do we use the Conjugate Residual method?
	Further empirical results on Fading of Influence scores
	Fading of Influence for BERT
	Fading of Influence for T5
	Fading of Influence for the ViT

	How many steps are needed to correct mis-predictions?
	Selecting mislabeled proponents for correction
	Hyper-parameters
	Training
	Correction Experiments

	Illustrating TracIn's modeling error
	Broader Impact Statement

