
Paraphrasing evades detectors of AI-generated text,
but retrieval is an effective defense

Kalpesh Krishna♠♥∗ Yixiao Song♠ Marzena Karpinska♠
John Wieting♦† Mohit Iyyer♠†

♠University of Massachusetts Amherst, ♥Google, ♦Google DeepMind
{kalpeshk,jwieting}@google.com

yixiaosong@umass.edu {mkarpinska,miyyer}@cs.umass.edu

Abstract

The rise in malicious usage of large language models, such as fake content cre-
ation and academic plagiarism, has motivated the development of approaches that
identify AI-generated text, including those based on watermarking or outlier de-
tection. However, the robustness of these detection algorithms to paraphrases of
AI-generated text remains unclear. To stress test these detectors, we build a 11B
parameter paraphrase generation model (DIPPER) that can paraphrase paragraphs,
condition on surrounding context, and control lexical diversity and content reorder-
ing. Using DIPPER to paraphrase text generated by three large language models
(including GPT3.5-davinci-003) successfully evades several detectors, including
watermarking, GPTZero, DetectGPT, and OpenAI’s text classifier. For example,
DIPPER drops detection accuracy of DetectGPT from 70.3% to 4.6% (at a constant
false positive rate of 1%), without appreciably modifying the input semantics.
To increase the robustness of AI-generated text detection to paraphrase attacks, we
introduce a simple defense that relies on retrieving semantically-similar generations
and must be maintained by a language model API provider. Given a candidate
text, our algorithm searches a database of sequences previously generated by the
API, looking for sequences that match the candidate text within a certain threshold.
We empirically verify our defense using a database of 15M generations from a
fine-tuned T5-XXL model and find that it can detect 80% to 97% of paraphrased
generations across different settings while only classifying 1% of human-written
sequences as AI-generated. We open-source our models, code and data.1

1 Introduction

Large language models (LLMs) such as ChatGPT [Schulman et al., 2022] exhibit an unprecedented
ability to write coherent and relevant long-form text in response to user-specified prompts. These abil-
ities have sparked fears of malicious applications such as automatically generating fake news articles
or homework answers [Stokel-Walker, 2022]. To defend against these use cases, several algorithms
have recently been proposed to detect AI-generated text, including watermarking [Kirchenbauer
et al., 2023a], GPTZero [Tian, 2023], DetectGPT [Mitchell et al., 2023], and OpenAI’s text classi-
fier [OpenAI, 2023a]. However, it remains unclear how robust these algorithms are to paraphrase
attacks, in which AI-generated text from an LLM is rewritten by another (smaller) model to convey
approximately2 the same meaning but using different word choice and syntax.
∗Work done as a PhD student at UMass, and partially as a student researcher in Google Research.
†John Wieting and Mohit Iyyer contributed equally as advisors.
1https://github.com/martiansideofthemoon/ai-detection-paraphrases
2We use the quasi-paraphrase definition of semantic equivalence [Bhagat and Hovy, 2013] in this paper.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/martiansideofthemoon/ai-detection-paraphrases

ChatGPT / GPT3

In a shocking
finding, scientist
discovered a herd
of unicorns living in
a remote valley.

They have never been known to mingle with humans. Today, it is believed these unicorns live
in an unspoilt environment which is surrounded by mountains. Its edge is protected by a
thick wattle of wattle trees, giving it a majestic appearance. Along with their so-called
miracle of multicolored' coat, their golden coloured feather makes them look like mirages.
Some of them are rumored to be capable of speaking a large amount of different languages.
They feed on elk and goats as they were selected from those animals that possess a
fierceness to them, and can "eat" them with their long horns.

There were never any reports of them mixing with people. It is believed they live in an
unspoiled environment surrounded by mountains and protected by a thick clump of wattle.
The herd has a regal look to it, with the magic, rainbow-colored coat and golden feathers.
Some of them are said to be capable of speaking many languages. They eat deer and goats,
because they are the descendants of those animals that sprang from fierce, dangerous
animals and have horns long enough to "eat" these animals.

DIPPER (our
paraphraser)

Watermark
detector

Watermark
detector

prediction:
Unclear

(z=1.8)

prediction:
AI-written

(z=6.3)

(watermarked
tokens in
green, benign
tokens in red)

Figure 1: An overview of paraphrasing attacks with DIPPER on watermarked text [Kirchenbauer
et al., 2023a]. The original model generation (top) contains several “green” watermarked tokens that
are counted by a detector to judge whether the text was AI-generated. After paraphrasing, several
green tokens are replaced with approximately semantically-equivalent red tokens, thereby fooling the
detector. Actual outputs from a watermarked version of GPT2-XL and our paraphraser DIPPER.

In this paper, we first demonstrate the vulnerability of these existing detectors to paraphrase attacks
(Section 3, 4). Such attacks require an external paraphraser model, since paraphrases generated by
the base LLM are still susceptible to detection techniques such as watermarking. We train an 11B
parameter paraphrase generation model called DIPPER (or Discourse Paraphraser) to execute these
attacks. DIPPER possesses two unique features that help its outputs evade AI-generated text detectors:
(1) Paraphrasing long-form text in context: Most modern paraphrasers are exclusively trained
on sentence-level data, ignoring discourse-level information. However, many critical use cases of
LLMs involve generating long-form text as responses to detailed user-specified prompts. Thus, we
train DIPPER to paraphrase paragraph-length texts, re-order content, and optionally leverage context
such as user prompts; (2) Controlling output diversity: Another weakness of existing paraphrasers
is that they lack an easy way to control output diversity. An attacker may want to apply just the
minimum amount of paraphrasing to evade a detector. DIPPER provides users with two intuitive scalar
control knobs at inference time (lexical diversity, content reordering) that are trained end-to-end.

We use DIPPER to attack several recently proposed AI-generated text detectors (see Figure 1 for an
attack overview). Experiments on multiple tasks and LLMs (including GPT3.5-davinci-003) show
that after paraphrasing with DIPPER, a substantial fraction of AI-generated texts are misclassified
as human-written texts by all detectors. For example, DetectGPT [Mitchell et al., 2023] correctly
detects 70.3% of AI-generated sequences from GPT2-XL, but after paraphrasing, its detection rate
drops to only 4.6%3 despite minimal semantic modification. We confirm the validity of DIPPER’s
paraphrases through several automatic evaluations and a human evaluation of semantic similarity.

Given the vulnerability of AI-generated text detectors to paraphrasing, how can we defend against
such attacks? In the second part of our paper (Section 5), we propose to use retrieval methods
to detect AI-generated text instead of relying on statistical properties of the text or watermarking.
First, an LLM API provider stores every output generated by their model in a database. The API
provider then offers a service in which a semantic representation of a candidate text is compared to
representations of every generation stored in the database. The search focuses on the semantics of the
input and can leverage both standard IR methods such as BM-25 [Robertson et al., 1995] as well as
semantic vector representations such as P-SP from Wieting et al. [2022]. Since paraphrasing does not
modify the semantics of the input, this algorithm is robust to paraphrasing attacks. Specifically, we
find that 97.3% of PG19 paraphrases and 80.4% of Wikipedia paraphrases are successfully detected
in a large database of over 15M generations, at a 1.0% false positive rate. We extensively discuss the
limitations and scalability of retrieval-based detection in Section 5.4.

In contrast to concurrent work that also uses paraphrasing to attack AI-generated text detectors [Sada-
sivan et al., 2023], our work offers more comprehensive attack experiments, a new and more powerful
paraphraser, human evaluations of paraphrase quality, and finally a novel defense mechanism based
on retrieval to combat such attacks. To spur future research in this area, we will release our DIPPER
model, data, and a codebase for evaluating both existing detectors and our retrieval-based method.

3These detection rates were computed at a constant false positive rate (FPR) of 1%. Due to the importance of
low FPR in this task, we recommend using a fixed low FPR rather than AUC-ROC values; see Section 4.1.

2

2 Background on detectors of AI-generated text

In this section, we provide a brief overview of existing algorithms for detecting AI-generated text
detection (see Appendix E for a detailed version). We also contrast our work to Sadasivan et al.
[2023], a concurrent effort which notes the efficacy of paraphrasing attacks but does not consider a
retrieval-based defense in its pessimistic conclusion about the fate of AI-generated text detection.

A watermark is a modification to the generated text that can be detected post-hoc by an algorithm
while remaining imperceptible to human readers. Effective watermarks are difficult to remove and
have little effect on the quality of generated text. Prior work has watermarked natural language
using syntax tree manipulations [Topkara et al., 2005, Meral et al., 2009], and this area has received
renewed interest with the advent of LLMs [Abdelnabi and Fritz, 2021, Grinbaum and Adomaitis,
2022]. Most recently, Kirchenbauer et al. [2023a] proposed a simple algorithm that watermarks
LLMs by slightly perturbing its probability distribution while generating text.

Statistical outlier detection methods detect AI-generated text based on its artifacts [See et al., 2019,
Holtzman et al., 2020] instead of modifying the generative algorithm. Early methods detect statistical
irregularities in entropy [Lavergne et al., 2008] and perplexity [Beresneva, 2016], while Gehrmann
et al. [2019] introduced the GLTR visualizer to assist humans in detecting AI-generated text. The
release of ChatGPT prompted the development of two new tools: closed-source GPTZero [Tian, 2023]
and open-source DetectGPT [Mitchell et al., 2023]. The latter uses the observation that AI-generated
text tends to have significantly higher LLM likelihood than meaningful perturbations of it.

Classifier methods train models to distinguish human-written text from AI-generated text. Early
efforts used classifiers to detect fake reviews [Hovy, 2016] and news [Zellers et al., 2019], while
others examined classifier performance across domains [Bakhtin et al., 2019] and decoding strate-
gies [Ippolito et al., 2020]. Most recently, OpenAI fine-tuned a GPT model to perform this task and
released it as a web interface [OpenAI, 2023a]. Their model uses generations from 34 LLMs, with
the human-written text from Wikipedia, WebText, and their internal human demonstration data.

Comparison to Sadasivan et al. (2023): In recent concurrent work, Sadasivan et al. [2023] also
demonstrate the utility of paraphrasing attacks against AI-generated text detectors. Our experiments
encompass more tasks, detection algorithms, and larger LMs like GPT3.5. Additionally, we propose
a discourse-level paraphrase model (DIPPER) that is much more suited to long-form text than the
off-the-shelf sentence-level paraphrasers used in their paper. More importantly, our retrieval-based
defense directly contradicts the “impossibility result” of Sadasivan et al. [2023] and its associated
proof, which states that an optimal detector will perform at random as the quality of LLM-generated
text approaches that of human-written text. The quality of generated text is irrelevant to our detector’s
accuracy because it relies only on a corpus search, and thus the proof is inapplicable. Other concurrent
work [Chakraborty et al., 2023] has also shown the proof’s invalidity in practical settings.

3 Building a controllable discourse paraphraser

Having outlined existing methods to detect AI-generated text, we now focus on a simple attack
against all detection techniques: paraphrasing the generated text. Intuitively, paraphrasing alters
the statistical properties of AI-generated text, which can fool outlier detection or classifiers while
also reducing the number of watermarked tokens (Figure 1). To evade such detectors, a paraphraser
must be able to handle context in the form of prompts or multi-sentence inputs. Its behavior should
also be controllable in order to make as many/few changes as needed to evade a given detector. In
all cases, it should not appreciably change the input semantics. Finally, to evade watermarking, the
paraphraser must be different from the watermarked model, as otherwise the paraphrases will also be
watermarked. Below, we detail how we construct a paraphraser (DIPPER) with all these properties.4

Constructing paraphrase data: Our process involves fine-tuning a LLM on a parallel dataset
of paragraph-level paraphrases, which we modify to model control, external context and content
reordering. We leverage the PAR3 dataset [Thai et al., 2022], which contains multiple translations of
non-English novels into English aligned at a paragraph level, which we treat as paraphrases. More
formally, let p and q be aligned paragraphs, where p1, p2...pN denote sentences of p and q1, q2, ...qM

4To better ground DIPPER’s abilities in prior work, we survey existing paraphrase models in Appendix D.1.

3

q1: My soul was somewhat relieved.

q2: My companion prayed kneeling in
an upright position, my forehead
pressed on the bottom step of the altar,
my arms stretched out on the steps
above.
q3: I do not think I have ever
experienced such consolation and
fervour when praying to God.
q4: My heart was pounding violently,
and in an instant I was oblivious to
everything around me.
q5: I do not know how long I remained
in that position or how much longer I
would have remained there, but I must
have been a very touching spectacle for
my companion and the two nuns who
came to relieve us.

T5-XXL

p1: My soul was in some measure
comforted.
p2: My companion prayed kneeling,
but I bowed myself down, my
forehead touching the bottom step of
the altar and my arm stretching up die
other steps.
p3: I don’t think I have ever
addressed God with more fervour and
received more consolation; my heart
palpitated violently and in a moment I
lost all consciousness of anything
round me.
p4: I don’t know how long I stayed in
that position or how long I might have
stayed, but apparently I was a very
touching sight to my companion and
to the two nuns when they came.

Step 1: Align sentences between translation 1 and
translation 2 using semantic similarity.

alignments = ((p1, q1), (p2, q2), (p3, q3q4), (p4, q5))

Step 2: Choose a subset of
alignments ((p2, q2), (p3, q3q4))
Step 3: Shuffle sentences in q,
compute control codes

(note original order)
p2: My companion prayed
kneeling, but I bowed myself
down, my forehead touching …
p3: I don’t think I have ever
addressed God with more
fervour and received more
consolation; my heart ….

(note shuffled order)
q3: I do not think I have ever
experienced such consolation…
q4: My heart was pounding
violently, and in an instant …
q2: My companion prayed
kneeling in an upright position,
my forehead pressed …

Lexical diversity: 40 / 100
(unigram difference)

Order diversity: 60 / 100
(Kendall’s tau of token map)

Step 4: Input / output
mapping to fine-tune T5-XXL
for discourse paraphrasing

lex = 40, order = 60
p1: My soul was in some measure …
<p>
q3: I do not think I have ever experienced…
q4: My heart was pounding violently, and …
q2: My companion prayed kneeling in an…
</p>
p4: I don’t know how long I stayed in that …

p2: My companion prayed kneeling, but …

p3: I don’t think I have ever addressed …

Figure 2: The method used to train DIPPER on English translations of the French novel The Nun.
We first align sentences between the two translations to create parallel data. Next, a subset of the
alignments are chosen; in this example, we use (p2, q2) and (p3, q3q4). We shuffle sentences, compute
control codes, and fine-tune a T5-XXL LM to generate p2p3 given q3q4q2 and the context p1 and p4.

denote sentences of q. Note that M may not be equal N when two translators disagree on when to
merge and split sentences. We perform the following steps (overview in Figure 2):
1. Align sentences of p to sentences of q by using the semantic similarity scores from the paraphrase

similarity metric in Wieting et al. [2019] to run the sequence alignment algorithm designed by
Needleman and Wunsch [1970] which uses dynamic programming (metric details in Section 4.1).

2. Choose a subset of sentences pi...pj from the first paragraph. Let qi′ ...qj′ be the corresponding
alignment in the second paragraph. In Figure 2, i = 2, j = 3, i′ = 2, j′ = 4.

3. Re-order the sentences qi′ ...qj′ randomly, and compute the diversity control codes between
pi...pj and shuffle(qi′ ...qj′). We shuffle the sentences to allow for the model to learn content
re-ordering. We compute lexical diversity (L) using unigram token overlap (F1 score), and the
order diversity (O) using the Kendall-Tau correlation of tokens of overlapping words between
pi...pj and shuffle(qi′ ...qj′), also used in Krishna et al. [2020]. These scores are normalized to
values {0, 20, 40, 60, 80, 100}, where L = 20 roughly corresponds to a 20% lexical modification.

4. Map the shuffled qi′ ...qj′ to pi...pj , leveraging context from the rest of p and control codes using
string concatenation. Let input = shuffle(qi′ ...qj′). We map,

lexical = L, order = O ⊕ p1...pi−1 ⊕ <p> input </p>⊕ pj+1...pN −→ pi...pj

where ⊕ is string concatenation. During inference, we can paraphrase any sequence of sentences
by marking it with <p> tags, assigning the control codes (L, O) the desired diversity values.

Our final dataset contains 6.3M paraphrase pairs. We fine-tune a sequence-to-sequence Trans-
former [Vaswani et al., 2017] on this data, initialized with the pretrained 11B parameter T5-XXL
checkpoint [Raffel et al., 2020]. See Appendix F.1 for details.

4 Experiments attacking detection algorithms with DIPPER

In this section, we describe our experimental setup in Section 4.1-4.2 and present our results in
Section 4.3. Overall, we find that DIPPER evades all detectors across three LLMs (including GPT3.5).

4.1 Evaluation metrics

Detection accuracy: Our first metric measures how often the input text is correctly detected as
AI-generated. Since detection rates are heavily dependent on the chosen detection threshold, the
AUC-ROC metric is commonly used to measure detector performance [Mitchell et al., 2023], which
considers the range of all possible thresholds. However, in this application, it is critical that the false
positive rate (FPR) is low; in other words, human-written text must almost never be classified as
machine-generated [OpenAI, 2023a, Kirchenbauer et al., 2023a]. Hence, we fix the FPR to 1% for
all detection algorithms (although even 1% is likely too high in practice), and adjust the detection
threshold accordingly while reporting detection accuracies. Additionally, we also plot ROC curves
focusing on the 0-1% FPR region. Overall, we expect detection rates to plummet on paraphrased text.

4

Table 1: Performance of detection algorithms (at 1% FPR) before and after DIPPER paraphrasing
on open-ended generation using Wikipedia prompts (300 generated tokens). As the diversity (L,O)
increases, detection rates decrease across algorithms, with nearly perfect semantic similarity (Sim).
*GPT3.5 DetectGPT scores computed using 200 samples at 20% FPR as it scores 0% at a 1% FPR.

Metric → Sim ↑ Detection Accuracy ↓
Detector → Watermarks DetectGPT OpenAI GPTZero RankGen

GPT2-1.5B - 100.0 70.3 21.6 13.9 13.5
+ DIPPER 20L 99.2 97.1 28.7 19.2 9.1 15.8
+ DIPPER 40L 98.4 85.8 15.4 17.8 7.3 18.0
+ DIPPER 60L 96.9 68.9 8.7 13.3 7.1 19.8
+ DIPPER 60L, 60O 94.3 57.2 4.6 14.8 1.2 28.5

OPT-13B - 99.9 14.3 11.3 8.7 3.2
+ DIPPER 20L 99.1 96.2 3.3 11.8 5.4 5.2
+ DIPPER 40L 98.6 84.8 1.2 11.6 3.8 6.6
+ DIPPER 60L 97.1 63.7 0.8 9.1 6.3 9.3
+ DIPPER 60L, 60O 94.6 52.8 0.3 10.0 1.0 13.5

GPT-3.5-175B, davinci-003 - - 26.5* 30.0 7.1 1.2
+ DIPPER 20L 97.6 - 12.5* 20.6 4.3 1.7
+ DIPPER 40L 96.7 - 8.0* 22.4 4.8 2.0
+ DIPPER 60L 94.2 - 7.0* 15.6 6.1 3.9
+ DIPPER 60L, 60O 88.4 - 4.5* 15.6 1.8 7.3

Human Text - 1.0 1.0 1.0 1.0 1.0

Semantic similarity (Sim): Detection accuracy is an insufficient evaluation of our attack’s success.
We also need to measure whether the original and paraphrased generations share approximately
the same semantics. We measure semantic similarity using the state-of-the-art semantic similarity
model P-SP from Wieting et al. [2022], an embedding averaging model trained on a large corpus of
filtered paraphrase data [Wieting and Gimpel, 2018]. P-SP is a well-calibrated metric that performs
well on semantic calibration tests as well as plagiarism detection in STS benchmarks [Agirre et al.,
2016]. P-SP is also robust against topically similar non-paraphrases. We found that P-SP it scores
just 0.09 on random pairs of paragraphs from the same book (topically similar paragraphs but not
paraphrases) in the PAR3 dataset [Thai et al., 2022]. In contrast, the average P-SP score of actual
human paraphrase pairs in PAR3 is 0.76. We consider semantics to be approximately preserved if the
P-SP score is greater than this average human paraphrase score of 0.76.

Besides semantic similarity, we conduct several automatic evaluations, ablation studies, and human
evaluations of intrinsic paraphrase quality in Appendix C.

4.2 Models, datasets & detection algorithms

Base language models: We conduct attacks on three language models of varying sizes that belong to
different model families. We consider the GPT2-XL model (1.5B parameters) [Radford et al., 2019],
the OPT-13B model [Zhang et al., 2022], and the text-davinci-003 variant from the GPT-3.5
family [Brown et al., 2020], which has 175B parameters and has additionally been instruction tuned
using reinforcement learning from human feedback [Ouyang et al., 2022]. For all LMs, we sample
generations that are 300 tokens long before passing them through DIPPER for the attack experiments.5

Natural language generation tasks: We experiment with two long-form text generation tasks, since
most malicious applications (e.g., fake article creation) are associated with long-form outputs. First,
we consider open-ended generation, where an LM generates a continuation to a two-sentence prompt.
To obtain our prompts, we sample 3K contiguous two-sentence chunks from the validation split of
WikiText-103 [Merity et al., 2017] and use the next 300 tokens as the “human-written” continuation.
Second, we evaluate long-form question answering [Fan et al., 2019], in which an LM answers a
question with a 300-word answer (dataset details in Appendix F.2). For our main results, the human

5For GPT2-XL and OPT-13B, we generate text using nucleus sampling [Holtzman et al., 2020] with p = 0.9.
For davinci-003, we use the default hyperparameters on the API Playground (temperature = 0.7).

5

reference answers or continuations are only used to adjust detection thresholds of studied methods to
maintain a 1% FPR.6 Note that we are not removing human-written text from our test set. Our metric
is equivalent to having a test set with a 50-50 split between machine/human-written text for the same
prompts, and observing the FPR=1% point in the ROC curve (also provided in Appendix H).

Figure 3: Detector performance (at 1% FPR) on
long-form QA before/after paraphrasing. As di-
versity (L,O) increases, detection rates decrease
with very high semantic preservation (Sim). WM:
Watermark, D.GPT: DetectGPT, O.AI: OpenAI.
*GPT3.5 D.GPT uses 100 samples at 20% FPR to
show attack success, as it scores 0% at 1% FPR.

Metric → Sim ↑ Detection Accuracy ↓
W.M. D.GPT O.AI

GPT2-1.5B - 100.0 74.9 59.2
+ DIPPER 20L 99.5 98.9 45.7 35.3
+ DIPPER 40L 99.0 90.7 28.0 34.4
+ DIPPER 60L 97.5 71.1 15.8 31.3

+ 60L, 60O 96.2 55.8 7.6 32.7

OPT-13B - 100.0 29.8 33.5
+ DIPPER 20L 99.6 98.3 15.0 24.5
+ DIPPER 40L 99.4 87.3 6.4 24.1
+ DIPPER 60L 96.5 65.5 3.2 21.6

+ 60L, 60O 92.9 51.4 1.5 21.6

GPT-3.5-175B
davinci-003 - - 67.0* 40.5
+ DIPPER 20L 99.9 - 54.0* 43.1
+ DIPPER 40L 99.8 - 36.0* 43.1
+ DIPPER 60L 99.5 - 23.0* 40.1

+ 60L, 60O 98.3 - 14.0* 38.1

Human Text - 1.0 1.0 1.0

Detection algorithms: We attack five detec-
tors:7 (1) watermarking [Kirchenbauer et al.,
2023a]; (2) DetectGPT [Mitchell et al., 2023];
(3) GPTZero [Tian, 2023]; (4) OpenAI’s text
classifier [OpenAI, 2023a];8 and (5) RankGen-
XL-all [Krishna et al., 2022a].9 We use the de-
fault hyperparameters for each detector. We also
respect their minimum length specifications, dis-
carding instances where any of the AI-generated
text, human-written text, or paraphrased text is
shorter than the minimum length.

Paraphrasing AI-generated text: We pass
the prompts for each task and AI-generated
responses to those prompts through DIPPER.
Specifically, we feed the model input of the
form,

lexical = L, order = O prompt
<p> generated-text </p>,

where L and O represent the paraphraser di-
versity control codes and the <p> and </p>
special tokens mark the boundaries of the text
to be paraphrased. We use L = 20, 40, 60 and
O = 0, 60 in our main attack experiments. After
paraphrasing, we ensure that the AI-generated
sequence, paraphrased sequence, and human-
written sequence have an equal number of words
by truncating them to the length of the shortest
among the three. To ensure higher semantic
preservation, we iteratively paraphrase long se-
quences three sentences at a time, keeping al-
ready paraphrased text in the context of the generation. To show the effectiveness of our attack, we
only paraphrase each generation once, rather than draw multiple samples until it evades detection.10

4.3 Attacking AI-generated text detectors

We present our results in Table 1 and Figure 3. Overall we find that:

Paraphrasing significantly lowers detection accuracy while preserving input semantics. Across
all LMs, detectors,11 and tasks, paraphrasing significantly lowers detection accuracy across all
diversity control codes. For instance, paraphrasing GPT2-XL open-ended generations reduces
watermark detection accuracy from 100% to 57.2%, and DetectGPT accuracy from 70.3% to just
4.6%. Trends are similar even for large LMs like GPT-3.5, for which paraphrasing reduces OpenAI’s
text classifier accuracy from 30.0% to 15.6%. Additionally, DIPPER preserves semantics effectively,

6Alternatively, if a random half of the human-written data was used for threshold adjustment, we find the
other half has a FPR of 0.8%-1.2% across random splits, and this deviation will reduce with a bigger dataset.

7We consider both model-specific and model-agnostic detectors, as justified in Appendix F.3.
8This classifier was taken down in July 2023 by OpenAI due to its low accuracy.
9While RankGen was not explicitly optimized for this task, it was trained to identify well-written continua-

tions, so we hypothesize that it could also act as a reasonable AI-generated text detector.
10We discuss this attack briefly in Section 4.4.
11Except RankGen, which scores paraphrases as AI-generated more often than non-paraphrased text. We

attribute this to paraphrases being poorer continuations to the prompt compared to the original (Appendix C), an
aspect RankGen bases its score on. However, it has low overall performance since it is not trained for this task.

6

as 88%-99% paraphrases achieve a P-SP score higher than the median score of human-written
paraphrases. High semantic preservation is supported by careful human evaluations in Appendix C.2.
Overall, we find that watermarking is the most resilient detector to paraphrasing.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (%)

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
(%

)

detectgpt
detectgpt (pp)
gptzero
gptzero (pp)

openai
openai (pp)
watermark
watermark (pp)

random
sim retrieval (pp)
bm25 retrieval (pp)

Figure 4: ROC plots (0-1% FPR) for GPT2-
XL using different detectors, before (solid
lines) and after paraphrasing (dashed). Para-
phrasing reduces detection rate across FPRs,
and our detector retrieval detects para-
phrases best; full plots in Appendix H.

Non-watermarking detectors are generally ineffec-
tive. We observe that all detectors apart from water-
marking struggle with text generated by larger models
like OPT-13B and GPT-3.5, achieving detection accu-
racies < 50%. While DetectGPT is effective on the
smaller GPT2-XL model (74.9% on long-form QA),
its accuracy drops to just 29.8% on OPT-13B. Further-
more, GPTZero and RankGen perform the worst among
the five detectors on all tested LMs (Table 1), as they
are only able to detect < 15% of non-paraphrased AI-
generated text. Thus, we recommend against using
these detectors.

ROC plots confirm the trends at different false pos-
itive rates. In Figure 4, we plot the detection accuracy
(true positive rate) at different values of FPR between
0% and 1% for GPT2-XL. Overall, paraphrasing signif-
icantly drops detection rates across all FPR thresholds
(more plots in Appendix H).

4.4 Alternative paraphrasing attacks

Paraphrasing multiple times: Our presented attacks
use just a single paraphrase generated by DIPPER to
evade detection. A simple way to further improve the effectiveness of a paraphrase attack is to sample
multiple times12 from DIPPER and choose a paraphrase that evades the detector while also preserving
semantics. We do not perform this attack as it can only be done if an attacker has access to a detector,
which may be a strong assumption (see Appendix A.2). That being said, using multiple paraphrase
samples can make the attacks even more potent against publicly available detectors.

Non-DIPPER paraphrasers: A second alternative is to use non-DIPPER paraphrasers that operate
at the sentence level. These models can be deployed for long-form text inputs by paraphrasing the
inputs sentence by sentence, ignoring prompt context. While the concurrent work of Sadasivan et al.
[2023] shows that this method can also evade detection, our ablations in Appendix C show that
non-contextual versions of DIPPER have lower quality and are less compatible with the prompt as
DIPPER paraphrasers. Moreover, most existing paraphrasers lack fine-grained diversity control and
multi-sentence input support (survey in Appendix D.1), two desired properties from an attacker’s
point of view: attackers want to modify long multi-sentence responses just enough to evade detection.

A more interesting option is to use an LLM like ChatGPT to perform few-shot contextual paraphrasing.
While this method is likely to provide accurate paraphrases,13 they may be detectable by strategies like
watermarking (whether using the same API as the original LLM or a different one). We thus expect a
sophisticated adversary to use their own private paraphraser (like DIPPER) to evade detection.

5 Defense against paraphrase attacks using retrieval

In Section 4.3, we showed that paraphrasing is an effective attack against AI-generated text detectors.
How can LLM API providers defend against these attacks? In this section, we propose retrieval over
previously-generated sequences as a defense against paraphrase attacks. At a high level (Figure 5), an
API provider first stores every sequence generated by their LLM in a database. The API provider offers
an interface that allows users to enter candidate AI-generated text as a query. The interface searches

12Precisely, compute fdipper(x) for different random seeds while sampling text. Alternatively, an attacker
could also compute fdipper(fdipper(...fdipper(x))), but this will lead to excessive semantic drift from x.

13In initial experiments, we observed that DIPPER performs competitively with the much larger and more
powerful GPT-3.5 davinci-003 model in terms of paraphrase quality, and significantly better at controlling
diversity. This finding shows that specialized smaller models can outperform LLMs in paraphrasing tasks.

7

Prompt: Is there an
upper limit on how long
a sentence can be?

ChatGPT / GPT3

Prompt: When will
objects in orbit around
the Earth fall down?
Prompt: Tell me a
detailed biography of
Barack Obama.
Prompt: Why do large
language models make
up things?

…

Response: No, there is no
upper limit on how long a
sentence can be….

Response: Objects in orbit
around will not fall down
unless their trajectory…

Response: Barack Obama II
was born on August 4, 1961 in
Honolulu. He is the 44th …

Response: Large language
models are known for their
ability to generate realistic…

…

DIPPER paraphraser

Database of
responses

Response: Objects in orbit
around will not fall down
unless their trajectory …

Paraphrase: Things currently
moving around Earth in orbit
will not fall unless their path …

BM25
retriever

Generated
by our API!

Figure 5: An illustration of AI-generated text detection with retrieval. Several users (including the
attacker, shown as the purple emoji) feed prompts to the API which are collectively added to a private
API-side database. Candidate queries are compared against this database using a retriever like BM25.

over the entire database of previously-generated text, trying to find a sequence that approximately
matches the content of the input query. This search can be done using a semantic similarity scorer
like P-SP [Wieting et al., 2022] or a retriever like BM25 [Robertson et al., 1995]. Since paraphrasing
approximately preserves input semantics, we expect such a defense to still be able to map paraphrased
generations to their source. We formalize our detector in Section 5.1, and then conduct a controlled
comparison with competing detectors in Section 5.2. We evaluate retrieval-based detection at scale
using a large retrieval corpus of 15M generations in Section 5.3. In Appendix A we extensively
discuss limitations of retrieval-based detection and share ideas for enabling further scaling.

5.1 Formulating the retrieval defense

Let fLM be an LLM API (e.g., GPT-3.5) that takes a prompt x as input and returns a continuation
y. Let fret be an encoder (e.g., TF-IDF, neural network) that embeds variable-length sequences into
fixed-size vectors that represent the input semantics. Then, we do the following:

Building the database: Let x1, ..., xN be the set of prompts that have been fed as input to the API in
the past with yi = fLM(xi) being the LLM output. Here N can potentially be very large for popular
APIs (we study up to N = 15M). We construct our database Y = [y1, ...yN] by encoding every
LLM API output with our retrieval encoder, or yi = fret(yi). The database Y is dynamically updated
and stored on the API side. It is inaccessible to clients except via the API described in the next step.

Querying the database: Let y′ be a candidate text and y′ = fret(y
′) its encoded vector. Suppose a

client wishes to know whether y′ was generated by the API fLM. The API provider can check this by
seeing whether the maximum similarity score of y′ to an entry in the database exceeds some detection
threshold T chosen by the API provider:

output = score > T, where score = max
i∈{1,..N}

y′ · yi

|y′| |yi|
We expect unperturbed machine-generated text to always get a score of 1.0, while paraphrasing the
text may lower the detection score. Hence, lowering T will increase the detection rate of heavily-
paraphrased text but also increase the false positive rate (i.e., human-written text that resembles
sequences previously generated by the LLM API can be falsely flagged). Since N can be very large,
the score can also be approximated using efficient nearest neighbor libraries like FAISS [Johnson
et al., 2019]. However, in this work we only compute exact inner products.

As the retriever fret, we experiment with two choices: P-SP [Wieting et al., 2022] and BM25 [Robert-
son et al., 1995]. We implement BM25 using the retriv library from Bassani [2022]. In order to
normalize and calibrate BM25 scores, we compute the F1-score unigram token overlap [Rajpurkar
et al., 2016] between the candidate y′ and the best retrieval y∗ to get a detection score in [0, 1].

5.2 Controlled comparisons of retrieval with other AI-generated text detectors

First, we conduct a controlled comparison between the detection algorithms evaluated in Section 4.3
and our retrieval method on long-form question answering.14 We construct three kinds of databases,

1. 3K sequences generated by a specific LM for one of the tasks;
14Corresponding results in open-ended text generation on Wikipedia prompts are provided in Appendix G.1.

8

Table 2: A comparison of retrieval against other detectors on long-form QA (300 generated tokens).
Our detector outperforms baselines (at 1% FPR) even with the most diverse paraphrases (+60L,O).

GPT2-XL OPT-13B GPT-3.5 (davinci-003)

Original + 60L + 60 L,O Original + 60L + 60 L,O Original + 60L + 60 L,O

Watermark [2023a] 100.0 71.1 55.8 100.0 65.5 51.4 - - -
DetectGPT [2023] 74.9 15.8 7.6 29.8 3.2 1.5 1.0 0.0 0.0
OpenAI [2023a] 59.2 31.3 32.7 33.5 21.6 21.6 40.5 40.1 38.1

(Ours) Retrieval over corpus of 3K generations from model itself, with retriever:

SP 100.0 95.6 87.7 100.0 94.8 85.3 100.0 94.2 85.1
BM25 100.0 99.2 97.8 100.0 99.3 97.3 100.0 98.6 96.2

(Ours) Retrieval over corpus of 9K generations pooled from all three models, with retriever:

SP 100.0 88.9 75.4 100.0 89.6 76.4 100.0 93.8 84.6
BM25 100.0 98.3 95.2 100.0 98.5 94.4 100.0 98.5 96.0

(Ours) Retrieval over 43K ShareGPT responses + corpus of 3K generations from model itself, with retriever:

SP 100.0 94.0 84.8 100.0 94.2 84.7 100.0 94.1 84.9
BM25 100.0 98.9 97.5 100.0 99.0 97.3 100.0 98.4 95.5

2. 9K sequences formed by concatenating the generations from all three LMs in this paper;
3. 46K sequences constructed by combining the 3K sequences from (1) with 43K LLM

responses from ShareGPT-Vicuna.15

We expect (2) to be a more difficult test for our method than (1), since the retriever needs to distinguish
between multiple generations from different models given the same prompt. On the other hand, (3)
denotes a more real-world setting with several diverse LLM-generated outputs from ShareGPT. Next,
we perform retrieval over this corpus using different types of queries: the original AI-generated text,
its DIPPER paraphrase, and human-written text (each query with at least 50 tokens).

Table 2 shows that across all LMs, retrieval is a much more effective detector than baseline
detectors. On unperturbed AI-generated text, retrieval has a 100% detection accuracy due to exact
match with the retrieval corpus. On paraphrased text, retrieval with BM25 is quite effective, detecting
97.8% of the highest-diversity paraphrases (L60, O60) on GPT2-XL, 97.3% on OPT-13B and 96.2%
on GPT-3.5 in long-form question answering. This is significantly better than the next best alternative
with competing detectors (55.8%, 51.4%, 38.1%). Even on our harder augmented databases, detection
rates continue to be high: 95.2%, 94.4%, 96.0% for the 9K augmented database; 97.5%, 97.3%,
95.5% for the ShareGPT augmented database. Finally, we observe that BM25 is a more effective
retriever than P-SP, scoring 95.2% vs 75.4% on the augmented setting in GPT2-XL. These trends
are consistent across different FPR thresholds, as shown in Figure 4.

In Appendix G.2, we additionally observe promising preliminary results that show the effectiveness
of retrieval against text mixing attacks [Kirchenbauer et al., 2023b].

5.3 Is retrieval an effective detector with a large retrieval corpus?

In the previous section, we conducted experiments using the set of 9K sequences generated by all
three models as the retrieval corpus. However, this is more of a toy experiment: in practice, a popular
LLM API may serve millions of queries a day. As the corpus grows larger, the false positive rate
(i.e., human-written text falsely detected as AI-generated) will grow. How well do retrieval-based
detectors scale? To answer this question, we need access to a large corpus of AI-generated text. We
utilize the training data used to train RankGen [Krishna et al., 2022a], which contains over 70M
AI-generated sequences. We use the Project Gutenberg and Wikipedia splits of the training data,
each of which contain 15M sequences generated by a T5-XXL model [Raffel et al., 2020] fine-tuned
on the different documents in the same domain. We discard generations which are shorter than 50
tokens, and paraphrase a subset of 2K generations to evaluate retrieval.

Retrieval is effective even with a corpus size of 15M generations. In Figure 6a, we plot the
detection accuracy as a function of retrieval database size. Overall, we observe that detection

15huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered

9

huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered

2 4 6 8 10 12 14 16
corpus size (millions)

0

20

40

60

80

100

De
te

ct
io

n
ra

te
 (%

) a
t F

PR
 =

 1
%

BM25, pg19 (paraphrased)
P-SP, pg19 (paraphrased)
BM25, wiki (paraphrased)
P-SP, wiki (paraphrased)

(a) Variation in retrieval-based detection with re-
trieval corpus size. Note consistently high detec-
tion rates for paraphrases, which only slightly de-
grades as the corpus is scaled to 15M generations.

10 20 30 40 50 60
number of words in query (paraphrase)

0

20

40

60

80

100

De
te

ct
io

n
ra

te
 (%

) a
t F

PR
 =

 1
%

Retrieval over 2M generations

BM25, wiki
BM25, pg19

(b) Variation in retrieval-based detection with dif-
ferent query lengths. Overall, retrieval performs
best with queries of length 50+ tokens.

Figure 6: Detection rate using retrieval at 1% FPR w.r.t. corpus size (left) and query length (right).

accuracy remains consistently high across different corpus sizes (varying from 1M generations to
15M generations). We observe slight drops in performance as the corpus size increases: just 1% (98.3
to 97.3) on Project Gutenberg (PG19) and 9.6% (90.0 to 80.4) on Wikipedia. Consistent with the
results in Section 5.2, BM25 continues to outperform P-SP across different corpus sizes.

Retrieval detection works best with 50 or more tokens of generated text. Another important
factor for our retrieval-based detector is the query length: shorter queries are likely to have more
matches (many of them spurious) compared to longer ones. In Figure 6b, we plot the detection
accuracy of paraphrased sequences at various query lengths by truncating each sequence to its first
X words before using it as a query for BM25. We use a retrieval corpus of 2M generations for this
experiment. We observe that BM25 struggles to detect paraphrased text with a query length of 20
(less than 25% accuracy), but the detection rate rapidly increases and begins to plateau at 50 tokens.

5.4 Scalability and limitations of retrieval-based detectors

In Appendix A we extensively discuss the scalability of retrieval (A.1), its limitations (A.2), ideas for
improving retrieval-based detectors (A.3), and incentive structures for LLM providers to implement
retrieval (A.4). In summary, we believe retrieval-based detection is a scalable approach: we estimate
that if OpenAI implemented it with ChatGPT, they would need just 5TB of storage space per month
(similar to modern portable hard disks). Furthermore, retrieval on ChatGPT scale takes 130 seconds
per retrieval on a CPU-only Macbook Pro, which can certainly be further optimized. However,
retrieval-based detection has some important limitations: (1) potential privacy risk of exposing all
LLM responses behind a binary classifier; (2) inability to use retrieval-based detection on open-source
LLMs like LLAMA [Touvron et al., 2023]; and (3) the need to implement and maintain retrieval
infrastructure. We discuss mitigation strategies for the limitations in Appendix A.2.

6 Conclusion

We present DIPPER, a controllable paraphraser that can rewrite paragraphs in context. We use DIPPER
to stress test current AI-generated text detectors, and we find that DIPPER paraphrases easily evade
these detectors while preserving input semantics. As a defense, we propose a simple retrieval-
based detector which searches through a corpus of previously-generated sequences from an LLM
API for semantically-similar generations to a given query. We show that this defense significantly
outperforms baselines on paraphrased text, and scales effectively. We discuss the limitations and
ethical considerations of our work in Appendix A, B. We have additionally open sourced our models,
code and data to enable future research.1 Since this paper’s initial release, DIPPER has been extensively
utilized in follow-up studies to measure the robustness of AI-generated text detection algorithms ([Lu
et al., 2023, Koike et al., 2023, Zhao et al., 2023, Yoo et al., 2023, Patil et al., 2023, Kirchenbauer
et al., 2023b, Kumarage et al., 2023, Liu et al., 2023], to name a few).

10

Acknowledgements

We are very grateful to our anonymous reviewers for their detailed feedback which helped improve
our paper. We also thank Kenton Lee, Katherine Thai, Slav Petrov, Fernando Pereira, Jon Clark,
William Cohen, Tu Vu, Yapei Chang, Shufan Wang and the UMass NLP group for several useful
discussions on earlier versions of this paper. Kalpesh Krishna was supported by a Google PhD
Fellowship. Part of this work was done while Kalpesh was a Student Researcher at Google Research,
hosted by John Wieting.

References
S. Abdelnabi and M. Fritz. Adversarial watermarking transformer: Towards tracing text provenance

with data hiding. In 2021 IEEE Symposium on Security and Privacy (SP), pages 121–140, 2021.

E. Agirre, C. Banea, D. Cer, M. Diab, A. Gonzalez-Agirre, R. Mihalcea, G. Rigau, and J. Wiebe.
SemEval-2016 task 1: Semantic textual similarity, monolingual and cross-lingual evaluation. In
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), 2016.
doi: 10.18653/v1/S16-1081. URL https://www.aclweb.org/anthology/S16-1081.

R. R. Agrawal, M. Turchi, and M. Negri. Contextual handling in neural machine translation: Look
behind, ahead and on both sides. In 21st annual conference of the European association for
machine translation, pages 11–20, 2018.

S. Badaskar, S. Agarwal, and S. Arora. Identifying real or fake articles: Towards better language
modeling. In Proceedings of the Third International Joint Conference on Natural Language
Processing: Volume-II, 2008. URL https://aclanthology.org/I08-2115.

A. Bakhtin, S. Gross, M. Ott, Y. Deng, M. Ranzato, and A. Szlam. Real or fake? learning to
discriminate machine from human generated text. arXiv preprint arXiv:1906.03351, 2019.

E. Bandel, R. Aharonov, M. Shmueli-Scheuer, I. Shnayderman, N. Slonim, and L. Ein-Dor. Quality
controlled paraphrase generation. In Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 596–609, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.45. URL
https://aclanthology.org/2022.acl-long.45.

E. Bassani. retriv: A user-friendly and efficient search engine in python., 2022. URL https:
//github.com/AmenRa/retriv.

D. Beresneva. Computer-generated text detection using machine learning: A systematic review.
In 21st International Conference on Applications of Natural Language to Information Systems,
NLDB, pages 421–426. Springer, 2016.

R. Bhagat and E. Hovy. Squibs: What is a paraphrase? Computational Linguistics, 39(3):463–
472, 2013. doi: 10.1162/COLI_a_00166. URL https://www.aclweb.org/anthology/
J13-3001.

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://github.com/google/jax.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural information
processing systems, 33:1877–1901, 2020.

N. Carlini, F. Tramèr, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee, A. Roberts, T. Brown,
D. Song, Ú. Erlingsson, A. Oprea, and C. Raffel. Extracting training data from large language
models. In 30th USENIX Security Symposium (USENIX Security 21), pages 2633–2650. USENIX
Association, Aug. 2021. ISBN 978-1-939133-24-3. URL https://www.usenix.org/
conference/usenixsecurity21/presentation/carlini-extracting.

11

https://www.aclweb.org/anthology/S16-1081
https://aclanthology.org/I08-2115
https://aclanthology.org/2022.acl-long.45
https://github.com/AmenRa/retriv
https://github.com/AmenRa/retriv
https://www.aclweb.org/anthology/J13-3001
https://www.aclweb.org/anthology/J13-3001
http://github.com/google/jax
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting

S. Chakraborty, A. S. Bedi, S. Zhu, B. An, D. Manocha, and F. Huang. On the possibilities of
ai-generated text detection. arXiv preprint arXiv:2304.04736, 2023.

M. Chen, Q. Tang, S. Wiseman, and K. Gimpel. Controllable paraphrase generation with a syntactic
exemplar. In Proceedings of the Association for Computational Linguistics, 2019. doi: 10.18653/
v1/P19-1599. URL https://www.aclweb.org/anthology/P19-1599.

M. Connor and D. Roth. Context sensitive paraphrasing with a global unsupervised classifier. In
European Conference on Machine Learning, pages 104–115. Springer, 2007.

P. Damodaran. Parrot: Paraphrase generation for nlu., 2021. URL https://github.com/
PrithivirajDamodaran/Parrot_Paraphraser.

Y. Deng, A. Bakhtin, M. Ott, A. Szlam, and M. Ranzato. Residual energy-based models for text
generation. In International Conference on Learning Representations, 2020.

A. Devaraj, I. Marshall, B. Wallace, and J. J. Li. Paragraph-level simplification of medical texts. In
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 4972–4984, 2021. doi: 10.18653/v1/2021.naacl-main.395. URL https:
//aclanthology.org/2021.naacl-main.395.

T. Dopierre, C. Gravier, and W. Logerais. PROTAUGMENT: Unsupervised diverse short-texts
paraphrasing for intent detection meta-learning. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pages 2454–2466, Online, Aug.
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.191. URL
https://aclanthology.org/2021.acl-long.191.

A. Fan, Y. Jernite, E. Perez, D. Grangier, J. Weston, and M. Auli. Eli5: Long form question answering.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages
3558–3567, 2019.

S. Garg, S. Prabhu, H. Misra, and G. Srinivasaraghavan. Unsupervised contextual paraphrase
generation using lexical control and reinforcement learning. arXiv preprint arXiv:2103.12777,
2021.

S. Gehrmann, H. Strobelt, and A. Rush. GLTR: Statistical detection and visualization of generated
text. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics:
System Demonstrations, pages 111–116, Florence, Italy, July 2019. Association for Computational
Linguistics. doi: 10.18653/v1/P19-3019. URL https://aclanthology.org/P19-3019.

D. Gomes, M. Costa, D. Cruz, J. Miranda, and S. Fontes. Creating a billion-scale searchable
web archive. In Proceedings of the 22nd International Conference on World Wide Web, pages
1059–1066, 2013.

Google. How google search organizes information, 2023. URL https://www.google.com/
search/howsearchworks/how-search-works/organizing-information.

R. Goutham. High-quality sentence paraphraser using transformers in nlp, 2021. URL
https://github.com/ramsrigouthamg/Questgen.ai/tree/master/
NewModels/T5LargeParaphraser.

T. Goyal and G. Durrett. Neural syntactic preordering for controlled paraphrase generation. Pro-
ceedings of the Association for Computational Linguistics, 2020. URL https://arxiv.org/
abs/2005.02013.

E. Grechnikov, G. Gusev, A. Kustarev, and A. Raigorodsky. Detection of artificial texts. RCDL2009
Proceedings. Petrozavodsk, pages 306–308, 2009.

A. Grinbaum and L. Adomaitis. The ethical need for watermarks in machine-generated language.
arXiv preprint arXiv:2209.03118, 2022.

12

https://www.aclweb.org/anthology/P19-1599
https://github.com/PrithivirajDamodaran/Parrot_Paraphraser
https://github.com/PrithivirajDamodaran/Parrot_Paraphraser
https://aclanthology.org/2021.naacl-main.395
https://aclanthology.org/2021.naacl-main.395
https://aclanthology.org/2021.acl-long.191
https://aclanthology.org/P19-3019
https://www.google.com/search/howsearchworks/how-search-works/organizing-information
https://www.google.com/search/howsearchworks/how-search-works/organizing-information
https://github.com/ramsrigouthamg/Questgen.ai/tree/master/NewModels/T5LargeParaphraser
https://github.com/ramsrigouthamg/Questgen.ai/tree/master/NewModels/T5LargeParaphraser
https://arxiv.org/abs/2005.02013
https://arxiv.org/abs/2005.02013

A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. The curious case of neural text degeneration.
In Proceedings of the International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=rygGQyrFvH.

T. Hosking, H. Tang, and M. Lapata. Hierarchical sketch induction for paraphrase generation. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 2489–2501, Dublin, Ireland, May 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.acl-long.178. URL https://aclanthology.org/
2022.acl-long.178.

J. House. Text and context in translation. Journal of pragmatics, 38(3):338–358, 2006.

D. Hovy. The enemy in your own camp: How well can we detect statistically-generated fake
reviews – an adversarial study. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), Aug. 2016. doi: 10.18653/v1/P16-2057.
URL https://aclanthology.org/P16-2057.

J. E. Hu, R. Rudinger, M. Post, and B. Van Durme. Parabank: Monolingual bitext generation and
sentential paraphrasing via lexically-constrained neural machine translation. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pages 6521–6528, 2019.

K.-H. Huang and K.-W. Chang. Generating syntactically controlled paraphrases without using
annotated parallel pairs. In Proceedings of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main Volume, pages 1022–1033, Online, Apr.
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.eacl-main.88. URL
https://aclanthology.org/2021.eacl-main.88.

D. Ippolito, D. Duckworth, C. Callison-Burch, and D. Eck. Automatic detection of generated text is
easiest when humans are fooled. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1808–1822, July 2020. doi: 10.18653/v1/2020.acl-main.164.
URL https://aclanthology.org/2020.acl-main.164.

M. Iyyer, J. Wieting, K. Gimpel, and L. Zettlemoyer. Adversarial example generation with
syntactically controlled paraphrase networks. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages 1875–1885, New Orleans, Louisiana,
June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1170. URL
https://www.aclweb.org/anthology/N18-1170.

S. Jean, S. Lauly, O. Firat, and K. Cho. Does neural machine translation benefit from larger context?
arXiv preprint arXiv:1704.05135, 2017.

S. Jean, A. Bapna, and O. Firat. Fill in the blanks: Imputing missing sentences for larger-context
neural machine translation. arXiv preprint arXiv:1910.14075, 2019.

J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with gpus. IEEE Transactions on
Big Data, 7(3):535–547, 2019.

M. Junczys-Dowmunt. Microsoft translator at WMT 2019: Towards large-scale document-level
neural machine translation. In Proceedings of the Fourth Conference on Machine Translation
(Volume 2: Shared Task Papers, Day 1), pages 225–233, Florence, Italy, Aug. 2019. Association
for Computational Linguistics. doi: 10.18653/v1/W19-5321. URL https://aclanthology.
org/W19-5321.

V. Karpukhin, B. Oguz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen, and W.-t. Yih. Dense passage
retrieval for open-domain question answering. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 6769–6781, 2020.

A. Kazemnejad, M. Salehi, and M. Soleymani Baghshah. Paraphrase generation by learning how to
edit from samples. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
acl-main.535. URL https://aclanthology.org/2020.acl-main.535.

13

https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://aclanthology.org/2022.acl-long.178
https://aclanthology.org/2022.acl-long.178
https://aclanthology.org/P16-2057
https://aclanthology.org/2021.eacl-main.88
https://aclanthology.org/2020.acl-main.164
https://www.aclweb.org/anthology/N18-1170
https://aclanthology.org/W19-5321
https://aclanthology.org/W19-5321
https://aclanthology.org/2020.acl-main.535

O. Khattab and M. Zaharia. Colbert: Efficient and effective passage search via contextualized late
interaction over bert. In Proceedings of the 43rd International ACM SIGIR conference on research
and development in Information Retrieval, pages 39–48, 2020.

J. Kirchenbauer, J. Geiping, Y. Wen, J. Katz, I. Miers, and T. Goldstein. A watermark for large
language models. arXiv preprint arXiv:2301.10226, 2023a.

J. Kirchenbauer, J. Geiping, Y. Wen, M. Shu, K. Saifullah, K. Kong, K. Fernando, A. Saha, M. Gold-
blum, and T. Goldstein. On the reliability of watermarks for large language models. arXiv preprint
arXiv:2306.04634, 2023b.

R. Koike, M. Kaneko, and N. Okazaki. Outfox: Llm-generated essay detection through in-context
learning with adversarially generated examples. arXiv preprint arXiv:2307.11729, 2023.

K. Krishna, J. Wieting, and M. Iyyer. Reformulating unsupervised style transfer as paraphrase
generation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 737–762, 2020.

K. Krishna, Y. Chang, J. Wieting, and M. Iyyer. RankGen: Improving text generation with large
ranking models. arXiv preprint arXiv:2205.09726, 2022a.

K. Krishna, D. Nathani, X. Garcia, B. Samanta, and P. Talukdar. Few-shot controllable style
transfer for low-resource multilingual settings. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 7439–7468, 2022b.

S. Kuang, D. Xiong, W. Luo, and G. Zhou. Modeling coherence for neural machine transla-
tion with dynamic and topic caches. In Proceedings of the 27th International Conference
on Computational Linguistics. Association for Computational Linguistics, Aug. 2018. URL
https://aclanthology.org/C18-1050.

A. Kumar, S. Bhattamishra, M. Bhandari, and P. Talukdar. Submodular optimization-based diverse
paraphrasing and its effectiveness in data augmentation. In Conference of the North American
Chapter of the Association for Computational Linguistics, 2019. doi: 10.18653/v1/N19-1363.
URL https://www.aclweb.org/anthology/N19-1363.

A. Kumar, K. Ahuja, R. Vadapalli, and P. Talukdar. Syntax-guided controlled generation of para-
phrases. Transactions of the Association for Computational Linguistics, 2020.

T. Kumarage, P. Sheth, R. Moraffah, J. Garland, and H. Liu. How reliable are ai-generated-text
detectors? an assessment framework using evasive soft prompts. arXiv preprint arXiv:2310.05095,
2023.

P. Laban, T. Schnabel, P. Bennett, and M. A. Hearst. Keep it simple: Unsupervised simplification of
multi-paragraph text. In Association for Computational Linguistics, 2021. doi: 10.18653/v1/2021.
acl-long.498. URL https://aclanthology.org/2021.acl-long.498.

V. Lakshman, C. H. Teo, X. Chu, P. Nigam, A. Patni, P. Maknikar, and S. Vishwanathan. Embracing
structure in data for billion-scale semantic product search. arXiv preprint arXiv:2110.06125, 2021.

T. Lavergne, T. Urvoy, and F. Yvon. Detecting fake content with relative entropy scoring. PAN, 8:
27–31, 2008.

M. Lewis, M. Ghazvininejad, G. Ghosh, A. Aghajanyan, S. Wang, and L. Zettlemoyer. Pre-training
via paraphrasing. Advances in Neural Information Processing Systems, 33:18470–18481, 2020.

Z. Li, X. Jiang, L. Shang, and H. Li. Paraphrase generation with deep reinforcement learning. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages
3865–3878, Brussels, Belgium, Oct.-Nov. 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-1421. URL https://aclanthology.org/D18-1421.

14

https://aclanthology.org/C18-1050
https://www.aclweb.org/anthology/N19-1363
https://aclanthology.org/2021.acl-long.498
https://aclanthology.org/D18-1421

Z. Li, X. Jiang, L. Shang, and Q. Liu. Decomposable neural paraphrase generation. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3403–3414,
Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1332.
URL https://aclanthology.org/P19-1332.

Z. Lin, Y. Cai, and X. Wan. Towards document-level paraphrase generation with sentence rewriting
and reordering. In Findings of the Association for Computational Linguistics: EMNLP 2021,
Nov. 2021. doi: 10.18653/v1/2021.findings-emnlp.89. URL https://aclanthology.org/
2021.findings-emnlp.89.

A. Liu, L. Pan, X. Hu, S. Meng, and L. Wen. A semantic invariant robust watermark for large
language models. arXiv preprint arXiv:2310.06356, 2023.

N. Lu, S. Liu, R. He, and K. Tang. Large language models can be guided to evade ai-generated text
detection. arXiv preprint arXiv:2305.10847, 2023.

E. Mansimov, G. Melis, and L. Yu. Capturing document context inside sentence-level neural machine
translation models with self-training. In Proceedings of the 2nd Workshop on Computational
Approaches to Discourse, pages 143–153, Nov. 2021. doi: 10.18653/v1/2021.codi-main.14. URL
https://aclanthology.org/2021.codi-main.14.

S. Maruf, F. Saleh, and G. Haffari. A survey on document-level neural machine translation: Methods
and evaluation. ACM Computing Surveys (CSUR), 54(2):1–36, 2021.

A. Max. Sub-sentencial paraphrasing by contextual pivot translation. In Proceedings of the 2009
Workshop on Applied Textual Inference (TextInfer), pages 18–26, 2009.

Y. Meng, X. Ao, Q. He, X. Sun, Q. Han, F. Wu, C. Fan, and J. Li. ConRPG: Paraphrase generation
using contexts as regularizer. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 2551–2562, Nov. 2021. doi: 10.18653/v1/2021.emnlp-main.
199. URL https://aclanthology.org/2021.emnlp-main.199.

H. M. Meral, B. Sankur, A. S. Özsoy, T. Güngör, and E. Sevinç. Natural language watermarking via
morphosyntactic alterations. Computer Speech & Language, 23(1):107–125, 2009.

S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models. In International
Conference on Learning Representations, 2017.

L. Miculicich, D. Ram, N. Pappas, and J. Henderson. Document-level neural machine translation
with hierarchical attention networks. In Empirical Methods in Natural Language Processing, 2018.
doi: 10.18653/v1/D18-1325. URL https://aclanthology.org/D18-1325.

E. Mitchell, Y. Lee, A. Khazatsky, C. D. Manning, and C. Finn. Detectgpt: Zero-shot machine-
generated text detection using probability curvature. arXiv preprint arXiv:2301.11305, 2023.

S. B. Needleman and C. D. Wunsch. A general method applicable to the search for similarities in the
amino acid sequence of two proteins. Journal of molecular biology, 48(3):443–453, 1970.

NewYorkPost. Chatgpt faces ‘growing pains’ as website traffic drops
for first time, 2023. URL https://nypost.com/2023/07/05/
chatgpt-website-traffic-drops-for-first-time-in-june.

OpenAI. OpenAI Models - GPT3.5, 2022. URL https://platform.openai.com/docs/
models/gpt-3-5.

OpenAI. AI text classifier, Jan 2023a. URL https://beta.openai.com/
ai-text-classifier.

OpenAI. New ways to manage your data in ChatGPT, 2023b. URL https://openai.com/
blog/new-ways-to-manage-your-data-in-chatgpt.

15

https://aclanthology.org/P19-1332
https://aclanthology.org/2021.findings-emnlp.89
https://aclanthology.org/2021.findings-emnlp.89
https://aclanthology.org/2021.codi-main.14
https://aclanthology.org/2021.emnlp-main.199
https://aclanthology.org/D18-1325
https://nypost.com/2023/07/05/chatgpt-website-traffic-drops-for-first-time-in-june
https://nypost.com/2023/07/05/chatgpt-website-traffic-drops-for-first-time-in-june
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://beta.openai.com/ai-text-classifier
https://beta.openai.com/ai-text-classifier
https://openai.com/blog/new-ways-to-manage-your-data-in-chatgpt
https://openai.com/blog/new-ways-to-manage-your-data-in-chatgpt

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, et al. Training language models to follow instructions with human feedback.
arXiv preprint arXiv:2203.02155, 2022.

V. Patil, P. Hase, and M. Bansal. Can sensitive information be deleted from llms? objectives for
defending against extraction attacks. arXiv preprint arXiv:2309.17410, 2023.

A. Popescu-Belis, S. Loáiciga, C. Hardmeier, and D. Xiong, editors. Proceedings of the Fourth Work-
shop on Discourse in Machine Translation (DiscoMT 2019), Hong Kong, China, Nov. 2019. Asso-
ciation for Computational Linguistics. URL https://aclanthology.org/D19-6500.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are unsu-
pervised multitask learners. OpenAI Blog, 1(8), 2019. URL https://openai.com/blog/
better-language-models/.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu.
Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine
Learning Research, 21:1–67, 2020.

A. Rajauria. Pegasus fine-tuned for paraphrasing, 2020. URL https://huggingface.co/
tuner007/pegasus_paraphrase.

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. SQuAD: 100,000+ questions for machine compre-
hension of text. In Proceedings of Empirical Methods in Natural Language Processing, 2016. doi:
10.18653/v1/D16-1264. URL https://www.aclweb.org/anthology/D16-1264.

Reuters. OpenAI, Google, others pledge to watermark AI content for safety, White House says,
2023a.

Reuters. EU lawmakers vote for tougher AI rules as draft moves to final stage, 2023b.

A. Roberts, H. W. Chung, A. Levskaya, G. Mishra, J. Bradbury, D. Andor, S. Narang, B. Lester,
C. Gaffney, A. Mohiuddin, et al. Scaling up models and data with T5X and seqio. arXiv preprint
arXiv:2203.17189, 2022.

S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, M. Gatford, et al. Okapi at trec-3.
Nist Special Publication Sp, 109:109, 1995.

A. Roy and D. Grangier. Unsupervised paraphrasing without translation. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages 6033–6039, Florence,
Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1605. URL
https://aclanthology.org/P19-1605.

V. S. Sadasivan, A. Kumar, S. Balasubramanian, W. Wang, and S. Feizi. Can ai-generated text be
reliably detected? arXiv preprint arXiv:2303.11156, 2023.

J. Schulman, B. Zoph, C. Kim, J. Hilton, J. Menick, J. Weng, J. Uribe, L. Fedus, L. Metz, et al.
ChatGPT: Optimizing language models for dialogue, 2022. URL https://openai.com/
blog/chatgpt.

A. See, A. Pappu, R. Saxena, A. Yerukola, and C. D. Manning. Do massively pretrained language
models make better storytellers? In Proceedings of the 23rd Conference on Computational Natural
Language Learning (CoNLL), pages 843–861, Nov. 2019. doi: 10.18653/v1/K19-1079. URL
https://aclanthology.org/K19-1079.

R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks against machine
learning models. In 2017 IEEE symposium on security and privacy (SP), pages 3–18. IEEE, 2017.

C. Stokel-Walker. Ai bot chatgpt writes smart essays-should academics worry? Nature, 2022.

K. Thai, M. Karpinska, K. Krishna, W. Ray, M. Inghilleri, J. Wieting, and M. Iyyer. Exploring
document-level literary machine translation with parallel paragraphs from world literature. In
Empirical Methods in Natural Language Processing, 2022.

16

https://aclanthology.org/D19-6500
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
https://huggingface.co/tuner007/pegasus_paraphrase
https://huggingface.co/tuner007/pegasus_paraphrase
https://www.aclweb.org/anthology/D16-1264
https://aclanthology.org/P19-1605
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://aclanthology.org/K19-1079

N. Thakur, N. Reimers, A. Rücklé, A. Srivastava, and I. Gurevych. Beir: A heterogenous benchmark
for zero-shot evaluation of information retrieval models. arXiv preprint arXiv:2104.08663, 2021.

B. Thompson and M. Post. Paraphrase generation as zero-shot multilingual translation: Disentangling
semantic similarity from lexical and syntactic diversity. In Proceedings of the Fifth Conference
on Machine Translation, pages 561–570, Online, Nov. 2020. Association for Computational
Linguistics. URL https://aclanthology.org/2020.wmt-1.67.

E. Tian. Gptzero: An ai text detector, 2023. URL https://gptzero.me/.

J. Tiedemann and Y. Scherrer. Neural machine translation with extended context. In Proceedings of
the Third Workshop on Discourse in Machine Translation, pages 82–92, Copenhagen, Denmark,
Sept. 2017. doi: 10.18653/v1/W17-4811. URL https://aclanthology.org/W17-4811.

M. Tkachenko, M. Malyuk, A. Holmanyuk, and N. Liubimov. Label Studio: Data labeling software,
2020-2022. URL https://github.com/heartexlabs/label-studio. Open source
software available from https://github.com/heartexlabs/label-studio.

M. Topkara, C. M. Taskiran, and E. J. Delp III. Natural language watermarking. In Security,
Steganography, and Watermarking of Multimedia Contents VII, volume 5681, pages 441–452,
2005.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. In Proceedings of Advances in Neural Information
Processing Systems, pages 5998–6008, 2017. URL http://papers.nips.cc/paper/
7181-attention-is-all-you-need.pdf.

E. Voita, P. Serdyukov, R. Sennrich, and I. Titov. Context-aware neural machine translation
learns anaphora resolution. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 1264–1274, Melbourne, Aus-
tralia, July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1117. URL
https://aclanthology.org/P18-1117.

E. Voita, R. Sennrich, and I. Titov. Context-aware monolingual repair for neural machine translation.
In Empirical Methods in Natural Language Processing, pages 877–886, 2019a. doi: 10.18653/v1/
D19-1081. URL https://aclanthology.org/D19-1081.

E. Voita, R. Sennrich, and I. Titov. When a good translation is wrong in context: Context-aware
machine translation improves on deixis, ellipsis, and lexical cohesion. In Proceedings of the
Association for Computational Linguistics, 2019b. doi: 10.18653/v1/P19-1116. URL https:
//aclanthology.org/P19-1116.

L. Wang, Z. Tu, A. Way, and Q. Liu. Exploiting cross-sentence context for neural machine translation.
In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
pages 2826–2831, 2017. doi: 10.18653/v1/D17-1301. URL https://aclanthology.org/
D17-1301.

J. Wieting and K. Gimpel. ParaNMT-50M: Pushing the limits of paraphrastic sentence embeddings
with millions of machine translations. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 451–462, Melbourne, Australia,
July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1042. URL https:
//www.aclweb.org/anthology/P18-1042.

J. Wieting, T. Berg-Kirkpatrick, K. Gimpel, and G. Neubig. Beyond BLEU:training neural machine
translation with semantic similarity. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4344–4355, Florence, Italy, July 2019. Association for
Computational Linguistics. doi: 10.18653/v1/P19-1427. URL https://aclanthology.
org/P19-1427.

17

https://aclanthology.org/2020.wmt-1.67
https://gptzero.me/
https://aclanthology.org/W17-4811
https://github.com/heartexlabs/label-studio
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://aclanthology.org/P18-1117
https://aclanthology.org/D19-1081
https://aclanthology.org/P19-1116
https://aclanthology.org/P19-1116
https://aclanthology.org/D17-1301
https://aclanthology.org/D17-1301
https://www.aclweb.org/anthology/P18-1042
https://www.aclweb.org/anthology/P18-1042
https://aclanthology.org/P19-1427
https://aclanthology.org/P19-1427

J. Wieting, K. Gimpel, G. Neubig, and T. Berg-kirkpatrick. Paraphrastic representations at scale. In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Sys-
tem Demonstrations, pages 379–388, Abu Dhabi, UAE, Dec. 2022. Association for Computational
Linguistics. URL https://aclanthology.org/2022.emnlp-demos.38.

S. Witteveen and M. Andrews. Paraphrasing with large language models. In Proceedings of
the 3rd Workshop on Neural Generation and Translation, pages 215–220, Hong Kong, Nov.
2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-5623. URL https:
//aclanthology.org/D19-5623.

X. Xie, X. Lu, and B. Chen. Multi-task learning for paraphrase generation with keyword and part-
of-speech reconstruction. In Findings of the Association for Computational Linguistics: ACL
2022, pages 1234–1243, Dublin, Ireland, May 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.findings-acl.97. URL https://aclanthology.org/2022.
findings-acl.97.

H. Xiong, Z. He, H. Wu, and H. Wang. Modeling coherence for discourse neural machine translation.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages 7338–7345,
2019.

W. Xu, C. Callison-Burch, and C. Napoles. Problems in current text simplification research: New
data can help. Transactions of the Association for Computational Linguistics, 3:283–297, 2015.

K. Yang, D. Liu, W. Lei, B. Yang, H. Zhang, X. Zhao, W. Yao, and B. Chen. Gcpg: A general frame-
work for controllable paraphrase generation. In Findings of the Association for Computational
Linguistics: ACL 2022, pages 4035–4047, 2022.

K. Yin, P. Fernandes, A. F. Martins, and G. Neubig. When does translation require context? a
data-driven, multilingual exploration. arXiv preprint arXiv:2109.07446, 2021.

K. Yoo, W. Ahn, and N. Kwak. Advancing beyond identification: Multi-bit watermark for language
models. arXiv preprint arXiv:2308.00221, 2023.

R. Zellers, A. Holtzman, H. Rashkin, Y. Bisk, A. Farhadi, F. Roesner, and Y. Choi. Defending against
neural fake news. Advances in neural information processing systems, 32, 2019.

J. Zhang, H. Luan, M. Sun, F. Zhai, J. Xu, M. Zhang, and Y. Liu. Improving the transformer
translation model with document-level context. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, 2018. doi: 10.18653/v1/D18-1049. URL
https://aclanthology.org/D18-1049.

S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab, X. Li, X. V. Lin,
et al. Opt: Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068,
2022.

X. Zhao, P. Ananth, L. Li, and Y.-X. Wang. Provable robust watermarking for ai-generated text.
arXiv preprint arXiv:2306.17439, 2023.

18

https://aclanthology.org/2022.emnlp-demos.38
https://aclanthology.org/D19-5623
https://aclanthology.org/D19-5623
https://aclanthology.org/2022.findings-acl.97
https://aclanthology.org/2022.findings-acl.97
https://aclanthology.org/D18-1049

Appendix

A Limitations of retrieval-based detection and ideas for scaling it further

This section extensively discusses the scalability, limitations, future work and and an LLM API
provider’s incentive structures for retrieval-based detection. First, in Appendix A.1, we discuss the
scalability of retrieval-based detection in terms of compute requirements, storage space, and accuracy
on larger databases. Next, in Appendix A.2, we first point out some limitations of using retrieval for
AI-generated text detection (Section 5), some of which potentially apply to all existing detectors.
Along with limitations, we provide several possible workarounds. In Appendix A.3, we then discuss
ideas that can make the proposed retrieval detection work well at an even larger scale than the one we
discussed in Section 5. Finally, in Appendix A.4 we briefly discuss why an LLM provider may be
incentivized to implement retrieval-based detection, and the relationship of this detector with GDPR’s
right to be forgotten.

A.1 Scalability of retrieval-based detection

Retrieval-based detection requires the storage of a large database of LLM-generated responses, and
querying this database to find matches for previously generated responses. How scalable is this
approach in terms of storage space, compute, and accuracy? In this section we perform approximate
calculations of these requirements on OpenAI’s ChatGPT [Schulman et al., 2022].

Storage space requirements: We estimate ChatGPT’s outputs to take 5TB space monthly (similar
to a personal portable hard-disk) via the following calculations. ChatGPT currently gets about 2B
monthly visits [NewYorkPost, 2023]. Assuming an average response length of 500 tokens per session,
this corresponds to 1 trillion tokens. Similar in size to LLaMA’s training data [Touvron et al., 2023],
this needs 5TB space. However, 5TB is a small amount of storage compared to the industrial scale
of information retrieval. For example, the Google Search index is over 100,000TB and has 100B+
pages [Google, 2023]. Major LLM service providers already have complex storage infrastructure
to facilitate this defense. Additionally, OpenAI already stores conversations for at least 30 days (to
monitor abuse, and potentially RLHF), even after a user chooses to opt-out [OpenAI, 2023b].

Compute requirements: Our retrieval experiments, conducted on a 14-core CPU (similar to a
Macbook Pro), took 1 second per retrieval on a 15M sized corpus. Extrapolating to a corpus of
ChatGPT’s monthly usage (2B visits) would need 130 seconds/retrieval on a Macbook. However,
this is fully parallelizable, and can make use of GPUs (Google searches 100B+ entries in < 1 sec).
Moreover, efficient similarity search has powerful libraries like FAISS available [Johnson et al., 2019].
For comparison, ChatGPT itself takes 10 seconds/response, possibly using a powerful 8-GPU A100
server.16 Major LLM providers have massive compute clusters, and we believe the computational
requirement of retrieval is much lower than hosting LLMs in the first place, which these providers are
already adept at. Moreover, our proposed ideas in Appendix A.3 can further reduce compute costs.

Accuracy on larger databases: Our experiments were conducted on the RankGen training set [Kr-
ishna et al., 2022a], which is the largest publicly available database of AI-generated text that we
are aware of (15M generations each in four domains). Besides this, in Section 5 we also conducted
experiments on a the ShareGPT corpus with 47K ChatGPT-generated responses. We note that it is
extremely expensive and time consuming to create a corpus of AI-generated text from scratch: at a
cost of $0.001 per 500-word response, collecting a billion ChatGPT outputs would cost $1M and
take a long time to collect due to rate limits. Hence, a billion-scale experiment is likely only possible
with an LLM provider’s private database.

One of the concerns with a larger database is that of semantic collisions: a database will saturate with
entries having similar semantics, especially for popular topics, and subsequently harm detection at
scale. However, we note that:

1. Like other detectors, retrieval works best on longer sequences (Figure 6b). Long generations
exponentially increase the likelihood of semantic divergences between pairs of entries.

16https://twitter.com/tomgoldsteincs/status/1600196981955100694

19

https://twitter.com/tomgoldsteincs/status/1600196981955100694

2. Retrieval compares the candidate response against the top-1 entry in the database, not the top-k.
For false-positive candidates on popular topics, the top-k entries together are more likely to cover
input semantics (recall) rather than top-1 (precision).

3. The most effective retrievers use a combination of neural semantic encoders and token overlap
scores [Thakur et al., 2021]. We also see this our experiments (Section 5), BM25 beats P-SP at
detection. BM25 is not purely semantic driven: it uses TF-IDF token overlap.

4. The retrieval accuracy for unperturbed AI-generated text is always 100%, just like exact match
searches in a modern search engine. Retrieval-based detection is also effective on substrings of
unperturbed text (as shown in Appendix G.2).

Overall, we are optimistic about our scaling plots (Figure 6a), and see just a 0.8% drop moving
from a 1M to 10M database (PG19-BM25). We emphasize that BM25 is a basic retriever, and is not
optimized on our task. Information retrieval literature has many powerful retrievers and has shown
success at billion-scale corpus sizes [Gomes et al., 2013, Lakshman et al., 2021]. Google Search
currently effectively indexes over 100B webpages [Google, 2023]. We have also suggested a dense
retrieval mechanism in Appendix A.3 which can be optimized on the underlying retrieval corpus.

Retrieval can easily be used in tandem with other detectors like watermarking. Finally, we note
that our paper is the first proof-of-concept that shows a retrieval-based detector could work, and we
anticipate future work to build upon it.

A.2 Limitations of retrieval for detection

While retrieval over previously-generated sequences is an effective defense against paraphrase attacks,
it also suffers from key limitations, some of which apply broadly to all existing detectors. We discuss
these limitations below and discuss possible solutions:

1. Detection is specific to an API. Unlike other general-purpose AI detection algorithms e.g. Ope-
nAI’s classifier [OpenAI, 2023a], retrieval can only detect generations from the API over which
the database is built. API #1 has no access to the database of generations from API #2, and thus
will not be able to detect generations produced by API #2.

2. Retrieval is limited to closed-source LLMs. Users of open-source LLMs like LLAMA [Touvron
et al., 2023] can freely generate outputs without the outputs being stored in a central database.
However, currently most major LLM providers operate their LLMs behind closed APIs. It is also
important to note that watermarking [Kirchenbauer et al., 2023a], the most promising alternative
to retrieval, also has this limitation. Since watermarks are added during decoding rather than into
the model weights, users of open LLMs are free to generate text without watermarks. While other
alternatives like DetectGPT [Mitchell et al., 2023] or classifiers do not suffer from this issue, we
show that they either have low accuracy, or are extremely vulnerable to paraphrasing (Section 4.3).

3. The API provider needs to provide a retrieval infrastructure. After the release of Chat-
GPT [Schulman et al., 2022], AI chatbots are getting widespread adoption. At a conservative rate
of 5M queries a day, the database will have almost two billion entries in a year. Complex retrieval
infrastructure (like modern search engines) will be necessary to retrieve over these large databases
with low latency.

4. False positives due to training data memorization. Language models have been shown to
memorize sequences verbatim from their training data [Carlini et al., 2021], such as the Gettysburg
Address [Radford et al., 2019]. Despite being originally written by humans, these sequences will
be classified as model-generated by our detector. To tackle this issue, we suggest API providers
additionally perform retrieval over the training data used to train the model. If a sequence is found
in the training set as well as the generation database, it is likely to be an instance of training set
memorization.

5. Privacy concerns. Providing a retrieval detection service partially exposes the database of previ-
ously generated text for all users. This raises concerns of membership inference attacks [Shokri
et al., 2017] on private user data which may appear in the generated text (if present in user prompt).
To mitigate this, we suggest: (1) the detection service should be provided only to trusted users
under an agreement to not misuse the system, such as college teachers trying to detect cheating;
(2) users should be encouraged not to enter any sensitive private data in their prompts to APIs, a

20

practice already followed by ChatGPT17; (3) API providers only provide a binary output from
this detector (AI-generated or not), rather than actual search results; (4) API providers rate-limit
queries from IP addresses; and (5) differential privacy mechanisms or scrubbing private attributes
to make it difficult / impossible to reconstruct the user prompt from just detector access.

6. Slight reduction in accuracy with large databases. As we observed in Section 5.3, the accuracy
of detecting paraphrased text slightly degrades as the database of retrievals gets larger. However,
we found this decrease to be quite small (only 1% on PG19 scaling 1M generations to 15M),
despite using fairly primitive retrievers like BM25. Moreover, unperturbed AI-generated text will
always be detected with 100% accuracy using our method, irrespective of corpus size. We discuss
this topic more in Appendix A.1 under “Accuracy on larger databases”.

7. Tasks with constrained output space or short outputs. Similar to all other detection algorithms,
it may be hard or even impossible to distinguish AI-generated outputs for tasks with a constrained
output space (like sentence-level translation, classification) or very short outputs (as shown in
Section 5.3). Thus, we believe the main utility of AI-generated text detection is for longer-form
generated text, and hence we focus on tasks like long-form QA and open-ended text generation
with relatively lengthy outputs. Note that to avoid detection, a sophisticated attacker may try to
generate long-form text in smaller chunks using multiple API calls, where each newly-generated
chunk is incrementally concatenated to the prompt. This is not a concern for our method if
retrieval is done over the corpus of prompts concatenated with generations.

8. Iterative attacks with access to detector. Another concern is that attackers with access to
detection algorithms will iteratively modify their perturbations until they avoid detection (as shown
by Sadasivan et al. [2023]). While this is a valid concern for all detectors, we believe retrieval
has an important advantage over the alternatives. Since the corpus of previously-generated text is
proprietary, only the API provider can provide access to this detection service - it is impossible for
attackers to locally reproduce this detector. This allows API providers to adopt several mitigation
strategies such as (1) rate-limiting queries to avoid iterative attacks; (2) providing retrieval access
only to verified users (e.g., teachers); and (3) detecting possible iterative attacks by analyzing
previously queries to the retriever.

9. Lack of formal guarantees between threshold T , response length and detection rate. Unlike
watermarking, we believe it is harder to establish formal relationships between the chosen threshold
T , response length, and the corresponding TPR / FPR rates. Similar to DetectGPT / classifiers,
we believe the threshold needs to be estimated empirically on the underlying corpus, retriever and
candidate response distribution. A formal relationship between FPR and the threshold (like in
watermarking) may be possible using information about the density of the retrieval database in the
semantic vector space. We leave this exploration for future work.

A.3 Ideas to make retrieval detection work well at an even larger scale

In Section 5.3, we observed that our proposed retrieval detector is effective even with a large corpus of
15M previously-generated sequences. While we do not have access to a larger corpus of generations
(billion-scale), in this section we describe some ideas to improve retrieval detection at such a scale.

1. Timestamp filtering in retrieval corpus. To reduce the large search space, the detector interface
could provide users with an option to restrict retrieval to only a fixed time period during which the
text was likely to be generated. For instance, a common use-case of AI-generated text detection
might be when teachers attempt to catch plagiarism in college essays. Teachers could restrict
retrieval to only those generations created during the assignment window.

2. More sophisticated retrieval strategies. In our work, we only explore simple retrieval strategies
like BM25. However, several more sophisticated retrieval strategies exist, which are known to
boost performance [Thakur et al., 2021] and could be useful here. These include methods like
re-ranking of top-k retrievals [Khattab and Zaharia, 2020] or dense retrieval [Karpukhin et al.,
2020]. We do note that these more complex methods are also slower, and latency is likely to be a
pressing concern for API providers.

3. Fine-tuning dense retrievers for the detection task. The retrievers in our work are not fine-
tuned for the task of AI-generated text detection. However, we hypothesize that fine-tuning

17https://chat.openai.com

21

https://chat.openai.com

retrievers on this task can help retrievers adapt better to the retrieval corpus and detection task.
Specifically, a contrastive learning approach could be adopted here: positive pairs are paraphrased
or otherwise noised sequences paired with their generations, while negative pairs are human-
written continuations paired with the machine-generated text.

A.4 Incentives for LLM providers to implement retrieval-based detection

Finally, in this section we discuss the incentive structures for LLM API providers, and why they
might want to implement retrieval-based detection.

1. There is a substantial push from both the US and European governments to regulate companies
to make their AI-generated text/images detectable. For instance, several major LLM providers
made voluntary commitments to watermark their AI-generated content [Reuters, 2023a]. Sim-
ilarly, the European government recently pushed for rulings to make AI-generated content de-
tectable [Reuters, 2023b].

2. In a hypothetical scenario where there is a lawsuit about the origin of some malicious AI-generated
content, maintaining a database of previously generated responses could be a reliable method
to prove innocence, given its strong performance over competing AI-generated text detectors.
Keeping this dataset private, also protects LLM providers from the privacy risks of retrieval-based
detection (Appendix A.2).

3. Major LLM providers are already storing their model-generated outputs to monitor abuse, as
well as possibly help improve their products with RLHF preference-based training. For instance,
OpenAI’s ChatGPT stores the history for 1 month even if users choose to opt-out [OpenAI, 2023b].
Hence, implementing a retrieval-based detection service on top of this database does not entail a
resource overhead in terms of storage, and reduces the engineering effort needed to implement
this detector.

Is retrieval-based detection at odds with GDPR’s right-to-be-forgotten? One of the hurdles for
LLM providers to implement retrieval-based detection is GDPR’s right to be forgotten,18 which
allows attackers to request their data to be deleted by the LLM provider in order to avoid detection.
However, we believe that AI-generated text detection is a sufficient cause to temporarily override
GDPR deletion requests. We believe that AI-generated text detection could fall under the following
GDPR guidelines for overrides: (1) “freedom of expression and information”, (2) “establishment of a
legal defense or in the exercise of other legal claims”, and possibly (3) “comply with a legal ruling
or obligation” in the future. As an example of this, while OpenAI allows users to delete their chat
history [OpenAI, 2023b], they retain it for 30 days, and can review it if required to monitor for abuse.

B Ethical Considerations

Our goal in this paper is not to provide a recipe for potential attackers (e.g., college students wishing to
use ChatGPT in their essays) to evade AI text detection systems. Rather, we wish to bring awareness
to the wider community about the vulnerabilities of current AI-generated text detectors to simple
paraphrase attacks. These detectors are not useful in their current state given how easy they are to
evade. We encourage the research community to stress test their detectors against paraphrases, and to
develop new detectors which are robust against these attacks. To facilitate such research, we open
source our paraphraser and associated data / code.

Furthermore, we propose not just an attack but also a potentially strong defense against this attack.
Our detection strategy is simple, relying on retrieval over a corpus of previously-generated sequences.
We empirically show that such a detection algorithm could work at scale and provide extensive
discussion on possible methods to improve performance (Appendix A.3), as well as discussing
possible limitations and approaches to tackling them (Appendix A.2). We hope that retrieval-based
AI-generated text detectors rapidly improve and are eventually deployed in conjunction with other
detection methods like watermarking / classifiers.

18https://gdpr.eu/right-to-be-forgotten

22

https://gdpr.eu/right-to-be-forgotten

C Experiments measuring intrinsic paraphrase generation quality

Our experiments in Section 4 and Section 5 focused on attacking AI-generated text detectors with
paraphrases and defending against these paraphrase attacks. We used DIPPER as the underlying
paraphrase generation model for all of these experiments. Are DIPPER’s paraphrases actually good
enough to make the attack worthwhile, and can simpler paraphrasers be just as effective as DIPPER?
In this section, we conduct careful ablation experiments (Appendix C.1) and human evaluations
(Appendix C.2) to validate the effectiveness of DIPPER at preserving the semantics of the input
generation. Our results show that DIPPER effectively leverages surrounding context to paraphrase
multiple sentences while preserving input semantics.

C.1 Ablation studies on DIPPER

In this section, we perform automatic evaluations to confirm the efficacy of DIPPER as a paraphraser.
From a survey of existing paraphrasers that we carry out in Appendix D.1, DIPPER possess two
unique features that differentiate it from other paraphrasers: (1) its ability to leverage context from
outside of the text to be paraphrased (such as the prompt); and (2) its ability to paraphrase multiple
sentences at once. How useful are these features while paraphrasing long sequences of text?

To answer this question, we first train an ablated version of DIPPER by constructing a training
dataset (Section 3) without any left or right context, and then fine-tuning T5-XXL using the same
hyperparameters as in Section 3. We call this model DIPPER-no-ctx. We paraphrase 1K open-
ended generations from GPT2-XL using both DIPPER and DIPPER-no-ctx, using each of the four
configurations of diversity control codes studied in this paper. We then evaluate the quality of the
paraphrased text using three metrics: (1) GPT3.5-davinci-003 perplexity [Brown et al., 2020] of
the prompt concatenated with the paraphrased continuation; (2) RANKGEN compatibility between
the prompt and the paraphrased continuation [Krishna et al., 2022a]; and (3) unigram token overlap
between the paraphrased continuation and the prompt.

Contextual paraphrasing leads to higher quality paraphrases. In Table 3 (Experiment 1), we
observe that across all four control code configurations and all three metrics, paraphrases from
DIPPER are preferred over paraphrases from DIPPER-no-ctx. Specifically, with the lexical and order
control codes set to 60% (most diverse), DIPPER paraphrases are preferred by GPT3.5 perplexity 71%
of the time compared to non-contextual paraphrases (average perplexity drop of 12.9 vs 14.2).

Paraphrasing multiple sentences at a time is better than paraphrasing individual sentences.
Next, we use our DIPPER-no-ctx model to compare two settings: paraphrasing 3 sentences at a time vs
paraphrasing 1 sentence at a time before concatenating. We hypothesize that the former will produce
higher quality paraphrases since we expect it to better connect discourse elements across the text.
Indeed, in Table 3 (Experiment 2) across all control codes, GPT3.5 and RANKGEN usually prefer
multi-sentence paraphrases over the single-sentence baseline. This preference is 71% or higher for
all control codes when evaluating with GPT-3.5 perplexity, reaching 83% for L60,O60.

DIPPER paraphrases are close to the unperturbed GPT-2 XL generations. Finally, we compare
DIPPER with the original GPT2-XL generations (without paraphrasing) on the same three metrics.
While we expect metrics to prefer non-paraphrased text, a strong paraphraser will produce text that
is close to the original in terms of these metrics. Table 3 (Experiment 3) confirms our hypothesis:
at L20, RANKGEN has a 50-50 preference between the two outputs, while GPT3.5 prefers the
non-paraphrased generations just 61% of the time, with an average perplexity gain of just 0.4 (11.1
to 11.5). At more diverse control codes, preference for GPT2-XL generations does go up (58%
RANKGEN, 73% GPT3.5 for L60), but absolute scores continue to be close (11.1 vs 12.3 GPT-3.5
perplexity). Note that while all of these ablations use just a single paraphrase sample, it is easy for an
attacker to obtain multiple samples from DIPPER and choose the sample that maximizes these metrics
(as discussed in Section 4.3).

C.2 Human evaluation of semantic preservation using DIPPER

The automatic semantic similarity scores in Table 1 and 3 indicate that DIPPER generates paraphrases
that are faithful to the original input paragraphs. To confirm this result with human evaluation, we

23

Table 3: Ablation experiments demonstrate the high quality of DIPPER’s paraphrases compared to
alternatives. Displayed scores are the percentage of cases in which rewrite A is preferred over B
by one of the three metrics, with subscripts showing absolute average scores on each metric across
the dataset. Overall, DIPPER benefits from context outside the input (Experiment 1), multi-sentence
paraphrasing (Experiment 2), and is not too far behind non-paraphrased text in terms of quality
(Experiment 3).

Open-ended generation with GPT2-XL on Wikipedia prompts

RANKGEN-XL GPT3.5 davinci-003 perplexity unigram overlap with prompt

Control rewrite A rewrite B rewrite A rewrite B rewrite A rewrite B

Experiment 1: Is context helpful for paraphrasing?

rewrite A = DIPPER with context
rewrite B = DIPPER no context

20L 62% 10.2 38% 9.4 58% 11.5 42% 11.7 55% 41.3 45% 40.7
40L 62% 9.8 38% 8.7 64% 11.9 36% 12.5 57% 40.7 43% 39.8
60L 64% 9.6 36% 7.9 66% 12.3 34% 13.3 55% 39.9 45% 39.2
60L,60O 66% 8.3 34% 6.3 71% 12.9 29% 14.2 56% 39.4 44% 38.4

Experiment 2: Is it helpful to paraphrase multiple sentences at a time?

rewrite A = DIPPER 3 sentences at a time
rewrite B = DIPPER 1 sentence at a time

20L 55% 9.4 45% 8.9 73% 11.7 27% 12.5 51% 40.7 49% 40.7
40L 55% 8.7 45% 8.5 71% 12.5 29% 13.3 46% 39.8 54% 40.3
60L 53% 7.9 47% 7.6 71% 13.3 29% 14.3 46% 39.2 54% 39.8
60L,60O 57% 6.3 43% 5.3 83% 14.2 17% 16.7 47% 38.4 53% 38.9

Experiment 3: Does paraphrasing preserve the quality of the original text?

rewrite A = no paraphrasing
rewrite B = DIPPER

20L 50% 10.4 50% 10.2 61% 11.1 39% 11.5 51% 41.6 49% 41.3
40L 57% 10.4 43% 9.8 67% 11.1 33% 11.9 55% 41.6 45% 40.7
60L 58% 10.4 42% 9.6 73% 11.1 27% 12.3 58% 41.6 42% 39.9
60L,60O 68% 10.4 32% 8.3 79% 11.1 21% 12.9 61% 41.6 39% 39.4

hire three native English teachers and/or editors on Upwork19 to evaluate the semantic fidelity of the
paraphrases. As human evaluation is expensive, we fix the order diversity (O) to be 0 and focus on
the impact of the lexical diversity. We evaluate paraphrases with the lexical codes L20, L40, and L60,
corresponding to moderate, medium, and high lexical diversity. Twenty paraphrases are sampled
randomly for each lexical code, resulting in 60 original text and paraphrase pairs.

The evaluation is conducted on the platform Label Studio [Tkachenko et al., 2020-2022].20 As shown
in the interface of our annotation platform Figure 7, the text to be paraphrased (highlighted in yellow)
are preceded by its context. The annotators see the same amount of text as DIPPER. They need to first
read the texts, select one point on the Likert scale, then provide free-form comments justifying their
ratings. We estimated that the evaluation of each paraphrase takes 1.5 to 2 minutes. As such, we pay
$15 as a base rate with a bonus for the reasonable extra time that the annotators spend on the tasks.

Among the 60 original text and paraphrase pairs, the three annotators agreed on their choice 28.3%
of the time, and 60% of the time the point they chose on the scale differs by 1. Table 4 reports how
often each point on the Likert scale is chosen. Over 80% of the time, our annotators rate DIPPER’s
paraphrases as nearly equivalent (4 out of 5) or approximately equivalent (5 out of 5).

A qualitative analysis of the free-form annotator comments reveals systemic strengths and shortcom-
ings of DIPPER. Table 8 provides two representative examples for each lexical code that is evaluated
in our human study.

19https://www.upwork.com
20https://labelstud.io/

24

https://www.upwork.com
https://labelstud.io/

Figure 7: The interface of the annotation platform used in our human study

Table 4: This table shows how often each point in the Likert scale was chosen by 3 annotators for the
pairs of original and paraphrased texts. Twenty text pairs are randomly selected for each lexical code
(L). 81.8% of the time, our model DIPPER provides a paraphrase which is nearly equivalent to the
input in terms of semantic meaning.

L Sum of 4 and 5 5 4 3 2
Approx. equivalent Nearly equivalent Somewhat equivalent Topically related

20 95.0% 63.3% 31.7% 5.0% 0.0%
40 78.3% 45.0% 33.3% 21.7% 0.0%
60 70.0% 28.3% 41.7% 28.3% 1.7%

Total 81.1% 45.6% 35.6% 18.3% 0.6%

Strengths First, the third example in Table 8 exemplifies DIPPER’s ability to leverage information
from context to increase diversity while maintaining coherence (i.e., from line. . . reference the song’s
title to reference to “I’m the Greatest"). The same is observed in row 2 where DIPPER uses the context
to interchange he and Churchill. A paraphrase model without looking into context will have great
difficulty in doing this and no prior paraphraser (see Table 5 for a list) is capable of that. Second, the
example in the fifth row highlights DIPPER’s ability to make significant changes to original texts with
a high lexical diversity code (L60) (see the color coding) while preserving their semantic meaning as
rated by the annotators.

Qualitative shortcomings: The first shortcoming is that, when the original text contains new created
proper names (unlike common people and country names), such as the ones in row 6 (Homing Attack
and Slide Attack), a high lexical code has a tendency to change such nouns, leading to the result that
one of our annotators deems it to be only topically related to the original. However, this shortcoming
can be overcome by decreasing the lexical code, which a user can choose from a continuous range
(from 0 to 100). For instance, in row 1 with lex=20, the songs’ names M’s Confession and Gone
Fishing are kept intact. Another shortcoming is that DIPPER occasionally omits content from an
original text. While in some cases such removal is acceptable (see row 6), in other cases it causes
significant change in the meaning of the text (see row 4). However, the former case can be overcome
by paraphrasing a shorter paragraph at a time.

25

Overall, the human study shows that DIPPER performs well at preserving the semantic meaning of
original texts while introducing both semantic and syntactic diversity. Because DIPPER provides
user-friendly controllabilty of output diversity, a user can adjust the control code to find the most
suitable paraphrase for their need.

D Related work for discourse paraphrasing

D.1 Survey of paraphrase generation papers

As an important NLP task, paraphrasing has attracted much attention. Many models have been
proposed to improve the quality of paraphrases. To position our model DIPPER and highlight its
strengths, we conduct a survey of paraphrase generation papers from 2018 to 2022 (Table 5) and
focus on the following four aspects:

1. Whether a model can paraphrase a paragraph at once,
2. whether a model can merge or split consecutive sentences when appropriate,
3. whether a model leverages context surrounding an input sentence when paraphrasing,
4. whether a model provides control knobs for users to customize the output diversity.

The survey shows that only three out of 25 papers mentioned that their model can paraphrase more
than one sentence (but not necessarily at once). None of them enables their model to merge or
split sentences when paraphrasing. No model uses information from context surrounding an input
sentence during inference time. Finally, 14 papers offer ways for users to customize the diversity of
paraphrases. However, most diversity control methods such as constituency parses or exemplars may
not be straightforward and intuitive to end-users as the scalar control knobs in DIPPER.

In contrast to the papers in the survey, DIPPER nicely combines all desiderata into one model and
offers intuitive control knobs for lexical and syntactic diversity. Automatic and human evaluation
show that DIPPER can efficiently leverage context information and reorganize sentences while having
high fidelity in meaning (Appendix C).

D.2 Other related work

In this section we discuss a few additional less related papers which were not included in our survey in
Appendix D.1. Our discourse paraphraser is closely related to work on contextual machine translation,
where source/target context is used to improve sentence-level machine translation [House, 2006,
Jean et al., 2017, Wang et al., 2017, Tiedemann and Scherrer, 2017, Kuang et al., 2018, Agrawal
et al., 2018, Miculicich et al., 2018, Zhang et al., 2018, Xiong et al., 2019, Jean et al., 2019, Voita
et al., 2019a, Yin et al., 2021, Mansimov et al., 2021]. Prior work has shown that context helps with
anaphora resolution [Voita et al., 2018], deixis, ellipsis, and lexical cohesion [Voita et al., 2019b].
Efforts to make paraphrase generation more contextual have been quite limited. A few efforts have
attempted to use sentence level context to paraphrase phrases [Connor and Roth, 2007, Max, 2009],
and dialogue context to paraphrase individual dialogues in a chat [Garg et al., 2021].

Our work is also related to efforts in text simplification to go beyond a sentence, by collecting
relevant datasets [Xu et al., 2015, Devaraj et al., 2021] and building unsupervised algorithms [Laban
et al., 2021]. Note that our work focuses on a general-purpose paraphrasing algorithm and is not
tied to any particular style, but could be utilized for document-level style transfer using techniques
like Krishna et al. [2020, 2022b]. Similar efforts have also been undertaken in machine transla-
tion, [Popescu-Belis et al., 2019, Junczys-Dowmunt, 2019, Maruf et al., 2021], attempting to translate
paragraphs/documents at once.

E More background on detectors of AI-generated text

In this section, we provide an overview of existing algorithms that have been developed for the
purpose of detecting machine-generated text. Such algorithms fall into three main categories: (1)
watermarking algorithms, which modify the generative algorithm to encode hidden information
unique to the API (Appendix E.1); (2) statistical outlier detection methods, which do not modify

26

Table 5: The table shows the result of our survey of paraphrase generation papers from 2018 to
2022. We focus on four aspects: (1) whether a model can paraphrase multiple sentences at once, (2)
whether a model is able to merge or split an input sentence when appropriate, (3) whether a model
takes context surrounding the input sentence into consideration when paraphrasing, and (4) whether
a model enables users to control the semantic and syntactic diversity of paraphrases. 1Granularity
levels are word, phrase, and sentence. 2Meng et al. [2021] use context for their dataset construction,
but do not leverage it during training/inference. 3The diversity score is a combination of the unigram
Jaccard distance and the relative position change for unigrams. 4The code is represented by a three
dimensional vector corresponding to semantic similarity as well as syntactic and lexical distances
between the input and output sentences.

Paper Multi-sentence Merge / Splits Contextual Diversity Control

Iyyer et al. [2018] 7 7 7 Constituency parse
Li et al. [2018] 7 7 7 7
Roy and Grangier [2019] 7 7 7 7
Witteveen and Andrews [2019] 3 ? 7 7
Kumar et al. [2019] 7 7 7 7
Hu et al. [2019] 7 7 7 Decoding constraints
Chen et al. [2019] 7 7 7 Exemplar
Li et al. [2019] 7 7 7 Granularity control1

Goyal and Durrett [2020] 7 7 7 Exemplar
Lewis et al. [2020] 3 ? 7 7
Thompson and Post [2020] 7 7 7 n-gram overlap
Kumar et al. [2020] 7 7 7 Exemplar
Kazemnejad et al. [2020] 7 ? 7 7
Krishna et al. [2020] 7 7 7 7
Rajauria [2020] 7 7 7 7
Meng et al. [2021] 7 7 72 Diversity score3

Huang and Chang [2021] 7 7 7 Constituency parse
Lin et al. [2021] 3 7 7 7
Goutham [2021] 7 7 7 7
Damodaran [2021] 7 7 7 Binary
Dopierre et al. [2021] 7 7 7 n-gram
Bandel et al. [2022] 7 7 7 Control code4

Hosking et al. [2022] 7 7 7 Syntactic sketch
Yang et al. [2022] 7 7 7 Examplar+Keywords
Xie et al. [2022] 7 7 7 7

DIPPER (ours) 3 3 3 3

the generative algorithm but look for inherent artifacts in generated text (Appendix E.2); and (3)
classifiers trained to discriminate machine-generated text from human-written text (Appendix E.3).
Finally, in Appendix E.4, we compare and contrast our work to Sadasivan et al. [2023], who also note
the efficacy of paraphrasing attacks but do not consider a retrieval-based defense in their pessimistic
conclusion about the fate of AI-generated text detection.

E.1 Watermarking language model outputs

A “watermark” is a modification to the generated text that can be detected by a statistical algorithm
while remaining imperceptible to human readers. Effective watermarks are difficult to remove and
have little effect on the quality of generated text. Prior work attempted to watermark natural language
using syntax tree manipulations [Topkara et al., 2005, Meral et al., 2009], and this area has gotten
renewed interest with large language models generating human-like text [Abdelnabi and Fritz, 2021,
Grinbaum and Adomaitis, 2022]. Most recently, Kirchenbauer et al. [2023a] propose a simple
algorithm that only requires access to the LLM’s logits at each time step to add watermarks. The
watermark can then be verified with only blackbox access to the LM and knowledge of a specific
hash function. This algorithm operates in three steps:

27

1. Mark a random subset of the vocabulary as “green tokens” (or tokens representing the water-
mark, as shown in Figure 1) using the hash of the previously generated token as a random seed. A
total of γ|V | tokens are marked green where γ is the fraction of the tokens that are watermarked
with default γ = 0.5.

2. Increase the logit value for every green token by a constant δ (= 2 by default), which denotes the
watermark strength. This raises the probability of sampling green watermarked tokens, especially
for high-entropy distributions.

3. Sample sequences using decoding algorithms such as nucleus sampling [Holtzman et al., 2020],
leveraging the modified probability distribution at each timestep before truncation.

Detecting the watermark: Verifying whether a text is generated by a watermarked LM is possible
with just knowledge of the hash function and tokenizer. Specifically, the verifier tokenizes the text
and counts the number of green tokens it contains. This is used to calculate the standard normal score
(z-score) for the hypothesis test. If the sequence with T tokens contains a certain number of the green
token (denoted as |s|G), the z-score can be computed by:

z = (|s|G − γT)/
√
Tγ(1− γ)

Intuitively, a higher z-score implies it is less likely for a human to have written the text (null
hypothesis) since it contains a higher than expected number of green tokens. Kirchenbauer et al.
[2023a] recommend using a high z value (z > 4, or p < 3×10−5) to reduce the risk of false positives
(human-written text classified as AI-generated). Low false positive rates are critical in AI-generated
text detection algorithms [OpenAI, 2023a]—we discuss this in Section 4.1.

E.2 Statistical outlier detection methods

Unlike the watermarking algorithms, outlier detection algorithms make no modification to the
generative algorithm. Instead, they attempt to distinguish between human-written and machine-
generated text based on the presence of artifacts in generated text [See et al., 2019, Holtzman et al.,
2020]. Early methods detect statistical irregularities in measures such as entropy [Lavergne et al.,
2008], perplexity [Beresneva, 2016], and n-gram frequencies [Grechnikov et al., 2009, Badaskar et al.,
2008]. After the release of GPT-2, Gehrmann et al. [2019] introduced the GLTR visualization tool to
assist human verifiers in detecting machine-generated text. Most recently, the release of ChatGPT
has prompted the development of two new tools, namely a closed-source tool called GPTZero [Tian,
2023], and open-source DetectGPT [Mitchell et al., 2023]. DetectGPT uses an observation that
model-generated text lies in the negative curvature regions of the model’s log probability function. It
constructs multiple perturbations of the model generated text (using a mask-and-fill strategy), and
compares the log probability of the perturbations with the unperturbed generation. Text is considered
model generated if the log probability of the unperturbed text is significantly higher than the log
probability of perturbations.

E.3 Classifiers

The third class of detection methods relies on classifiers that are fine-tuned to distinguish human-
written text from machine-generated text. Early efforts in this vein use classifiers to detect fake
reviews [Hovy, 2016] and fake news [Zellers et al., 2019]. Other related studies examine classification
performance across domains [Bakhtin et al., 2019] and decoding strategies [Ippolito et al., 2020].
Such studies inspired others to use their insights to improve generative performance [Deng et al.,
2020, Krishna et al., 2022a]. Most recently, OpenAI fine-tuned a GPT model to perform this
discrimination task and released it as a web interface [OpenAI, 2023a]. They fine-tuned this classifier
using generations from 34 language models, with text sourced from Wikipedia, WebText [Radford
et al., 2019], and their internal human demonstration data.

E.4 Comparison to Sadasivan et al. (2023)

In very recent concurrent work, Sadasivan et al. [2023] also demonstrate the utility of paraphrasing
attacks against AI-generated text detectors. While their work makes use of off-the-shelf sentence-
level paraphrase models, DIPPER possesses advanced discourse-level rewriting capabilities as well

28

as fine-grained diversity control, which allows us to thoroughly analyze the effectiveness of various
paraphrasing strategies. Our experiments also encompass more tasks, datasets, and detection algo-
rithms. Moreover, we evaluate larger language models like GPT3.5-davinci-003. Finally and most
importantly, our retrieval-based defense directly contradicts the “impossibility result” of Sadasivan
et al. [2023] and its associated proof, which states that even an optimal detector will approach the
performance of a random classifier as the distance between the distributions of LLM-generated text
and human generated text goes to zero. Since our detector does not rely on properties of the text
but rather a corpus search, the quality of the generated text is irrelevant to the effectiveness of our
detector, and thus their proof does not apply to our method.

F More experimental details of our attack experiments

F.1 Details for training our paraphraser DIPPER

Our paraphraser DIPPER is a sequence-to-sequence Transformer neural network [Vaswani et al., 2017],
initialized with the T5-XXL 1.1 checkpoint [Raffel et al., 2020] and fine-tuned on our paraphrase
generation data, using early stopping on validation loss for held-out novels. During training, we
find it helpful to paraphrase a maximum of 3 consecutive sentences at time, which leads to better
adherence to control codes. Our models are implemented in JAX [Bradbury et al., 2018] using the
T5X library [Roberts et al., 2022] with the default fine-tuning hyperparameters. Our final dataset
contains 6.3M paraphrase pairs. Training was done on 64 cloud TPUv3 chips, and took 6-12 hours to
complete. At inference time, we use nucleus sampling [Holtzman et al., 2020] with p = 0.75 and a
variety of control codes.

To make our paper more intuitive, we have slightly modified the notation that our actual pretrained
model uses. Our pretrained model uses control codes 100− L and 100−O, denoting lexical/order
similarity rather than diversity. Also, <sent> is used instead of <p>. We will clearly document this
in the code release.

F.2 Long-form question answering data processing

In Section 4 evaluate long-form question answering [Fan et al., 2019], in which an LM must answer
a how/why question (e.g., Why are almost all boats painted white?) with a 250-350 word answer.
To build a long-form question answering dataset, we scrape questions from the r/explainlikeimfive
subreddit posted between July to December 2021.21 We randomly sample 500 questions from each of
six popular domains on the subreddit (biology, physics, chemistry, economics, law, and technology)
and pair each question with its longest human-written answer, which yields 3K long-form QA pairs.

F.3 Are successful attacks against model-specific detectors really an attack success?

In our experiments, we attack two model-specific detectors (watermarking, DetectGPT) in addition
to model-agnostic detectors (OpenAI classifier, GPTZero, RankGen). Model-specific detectors have
been specifically designed to judge whether a response was generated by a particular model. After
paraphrasing, a response is not truly generated by that specific model anymore—it has been generated
by the paraphrasing model. Hence, in a sense, the inability of these detectors to detect paraphrased
text denotes their robustness in model-specific detection.

While the argument above has merit, we argue that it is critical for model-specific detectors to be
robust against paraphrasing attacks. Given their strong performance over model-agnostic methods
(Section 4.3), and the large risk of perturbation attacks (human-edited or automatically-edited), we
think it is important for model-specific detectors to bake perturbation robustness in their design
for better downstream usability. Currently, the low performance of model-agnostic detectors (Sec-
tion 4.3) makes them quite unusable, and OpenAI even took down their text classifier due to low
performance [OpenAI, 2023a]. Currently, model-specific detectors (including watermarking and
retrieval) seem to be the only reliable path towards robust AI-generated text detection.

21We choose this period since current language models have been trained on internet data available before
June 2021 [OpenAI, 2022], this prevents verbatim copying from training data.

29

https://www.reddit.com/r/explainlikeimfive/

G More retrieval-based detection experiments

G.1 Controlled comparisons of retrieval with other AI-generated text detectors on
open-ended text generation

We conduct a controlled comparisons of retrieval on the open-ended text generation task with
Wikipedia prompts (see Section 5.2). The result of the experiment is presented in Table 7.

G.2 Robustness against text shortening and mixing attacks

Our experiments in Section 5 assumed that an attacker would paraphrase the entire LLM output to
evade detection. However, an alternative attack strategy that might be adopted in practice is text
shortening, or text mixing [Kirchenbauer et al., 2023b]. Here, attackers only use a substring of an
LLM generated output (instead of the full output), and optionally mix it with text from other sources
(like other LLM-generated outputs or human-written text).

In this section, we conduct some preliminary experiments to show the robustness of retrieval-based
detection to text shortening and mixing attacks. We adopt the same experimental setup as Section 5.3,
utilizing a BM25 retrieval on a PG19 machine-generated corpus of 2M responses.

In Table 6 we see that retrieval is a promising defense strategy even against text shortening and mixing
attacks. Overall, we see that unperturbed random substrings (from single or multiple generations) can
still be detected quite easily (86.2% to 94.7% detection rate at 1% FPR). However, adding DIPPER
paraphrasing on top of that reduces accuracy (56.1% to 68.8% detection rate).

Table 6: Preliminary experiments measuring the robustness of retrieval-based detection to LLM
response shortening and mixing attacks. Overall, we find that retrieval is a strong detector for
truncated as well as mixed responses. Experiments are conducted with BM25 retrieval in the PG19
data setup with a retrieval corpus of size 2M responses (from Section 5.3). Results shown are true
positive rates at the 1% FPR threshold.

Candidate Text Retrieval detection rate
(1% FPR)

unperturbed LLM response 100.0
DIPPER-paraphrased response 98.2
50% truncated DIPPER-paraphrased response 72.6

50% truncated LLM response 86.2
50% LLM response 1 + 50% LLM response 2 94.7
50% DIPPER-paraphrased response 68.8
50% DIPPER-paraphrased response 1 + DIPPER-paraphrased response 2 56.1

H ROC curves at different FPR

See Figure 8.

30

Table 7: Our retrieval defense significantly improves AI-generated text detection accuracy (at 1% FPR)
over baselines on all settings, including our most diverse paraphrase attacks (+60L and +60L,60O).

Open-ended text generation with Wikipedia prompts (300 generated tokens)

GPT2-XL OPT-13B GPT-3.5 (davinci-003)

Original + 60L + 60L,60O Original + 60L + 60L,60O Original + 60L + 60L,60O

Baseline methods:

Watermark 100.0 68.9 57.2 99.9 63.7 52.8 - - -
DetectGPT 70.3 8.7 4.6 14.3 0.8 0.3 2.0 0.5 0.0
OpenAI 21.6 13.3 14.8 11.3 9.1 10.0 30.0 15.6 15.6

(Ours) Retrieval over corpus of 3K generations from model itself, with retriever:

SP 100.0 86.4 81.5 100.0 84.4 77.7 100.0 65.9 49.5
BM25 100.0 99.0 98.0 100.0 97.2 95.3 100.0 58.8 37.4

(Ours) Retrieval over corpus of 9K generations pooled from all three models, with retriever:

SP 100.0 72.1 63.2 100.0 74.6 65.6 100.0 63.1 45.6
BM25 100.0 85.0 78.7 100.0 87.2 79.1 100.0 58.8 37.4

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (%)

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
(%

)

detectgpt
detectgpt (pp)
gptzero
gptzero (pp)

openai
openai (pp)
watermark
watermark (pp)

random
sim retrieval (pp)
bm25 retrieval (pp)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
False Positive Rate (%)

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
(%

)

detectgpt
detectgpt (pp)
gptzero
gptzero (pp)

openai
openai (pp)
watermark
watermark (pp)

random
sim retrieval (pp)
bm25 retrieval (pp)

0 2 4 6 8 10
False Positive Rate (%)

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
(%

)

detectgpt
detectgpt (pp)
gptzero
gptzero (pp)

openai
openai (pp)
watermark
watermark (pp)

random
sim retrieval (pp)
bm25 retrieval (pp)

0 20 40 60 80 100
False Positive Rate (%)

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
(%

)

detectgpt
detectgpt (pp)
gptzero
gptzero (pp)

openai
openai (pp)
watermark
watermark (pp)

random
sim retrieval (pp)
bm25 retrieval (pp)

Figure 8: ROC curves for text generated by GPT2-XL, before paraphrasing (solid lines) and after
paraphrasing (dashed lines, pp). Different plots represent different clipping thresholds on the X-axis.

31

Table 8: Representative model outputs of each lexical code with Likert ratings and comments from
the annotators. The texts in bold in the original texts are the context. Red words are the content being
changed in the original text and green words are the changed content in the paraphrases.

L Original Paraphrase Annotator Comment
20 The first, originally used as Renard’s theme, is

heard during the mammoth "Antonov" cue on
the recording, and is written for piano. The
second new theme, used in the "Christmas in
Turkey" track of The World Is Not Enough,
is reused in the "Going Down Together" track.
Both themes were later adapted by David Arnold
and featured in the film’s score. The first theme ap-
pears in the cue "M’s Confession" and the second
theme appears in the cue "Gone Fishing".

Both themes were subsequently adapted
by David Arnold and used in the film
score. The first theme is used in the
"M’s Confession" cue, and the second
in the "Gone Fishing" cue.

5—Approx. equivalent
While the paraphrase is
worded in a more simplistic
way than the original and has
shortened clauses, the infor-
mation presented in both is
the same.

20 Churchill argues that the United States insti-
tuted blood quantum laws based upon rules of
descendancy [. . .] He has argued that the United
States has used them to strip Indigenous people
of their rights, land and culture in order to benefit
those in power. He contends that these laws were
designed to create a divide among Indigenous peo-
ple, making them easier to control and manipulate.
Churchill has further argued that this manipulation
continues today, as Indigenous people are often
forced to deny their heritage in order to have ac-
cess to resources and opportunities that are denied
to them as a result of their heritage.

He has argued that the United States has
used them to strip indigenous people of
their rights, land, and culture in order to
benefit those in power. Churchill also
argues that these laws were designed
to create divisions among indigenous
people in order to make them easier to
control and manipulate. He has also ar-
gued that this manipulation continues
today, in that indigenous people are of-
ten forced to deny their heritage in order
to have access to resources and oppor-
tunities that are denied to them because
of their heritage.

5—Approx. equivalent
The paraphrase retains all
the information of the orig-
inal, but uses synonymous
language in several places.
Also, the paraphrase re-
places the pronoun "he" with
"Churchill" and vice versa.

40 When tailoring his 1970 composition "I’m the
Greatest" for Starr to record on the 1973 al-
bum Ringo, Lennon referenced the song title
with the lines [. . .] Lennon’s original line was
changed to "Back off Boogaloo" to reference the
song’s title, creating the line that Starr sang in the
finished version.

Lennon’s original reference to "I’m the
Greatest" was changed to "Back off
Boogaloo" to create the line Starr sang
on the finished recording.

4—Nearly equivalent
The original does not specify
that the line in question was
"I’m the Greatest." However,
this can be inferred from the
rest of the passage. Other-
wise, the paraphrase and the
original are quite similar.

40 Some monuments were vandalized and some
were moved to new locations. [. . .] In some
cases, the monuments were moved to new loca-
tions. For example, the stairway of the Great Pyra-
mid of Cholula in Mexico was relocated in the 19th
century and then returned to its original location
in the 20th century. Other monuments were de-
stroyed during wars or religious conflicts, such as
the Buddhas of Bamiyan in Afghanistan, which
were destroyed by the Taliban in 2001.

In some cases, monuments were moved
to new locations. The Great Pyramid
of Cholula, in Mexico, was moved in
the 19th century and then returned to
its original place in the 20th. Others
were destroyed during wars or religious
controversies, such as the Buddhas of
Bamiyan in Afghanistan, which were
destroyed by the Taliban in 2001.

3—Somewhat equivalent
Only one major change in
this short text, but I feel
it’s significant. The origi-
nal text speaks of the mov-
ing of a pyramid’s staircase,
but the paraphrased text im-
plies that the entire pyramid
was moved and then replaced.
This massively changes the
meaning of this text.

60 Heaving wildly, the Hunyani began to descend
rapidly. [. . .] The crew was unable to regain con-
trol and the Hunyani crashed into the ground at
17:14, killing all onboard. The crash was investi-
gated by the Civil Aviation Authority of Zimbabwe
and the investigation concluded that the crash was
caused by a combination of pilot error, fatigue, and
weather conditions. The pilot had failed to prop-
erly assess the weather conditions before takeoff,
instead relying on a forecast from a private weather
service. The weather conditions worsened as the
plane flew and with the pilots already fatigued, they
were unable to appropriately react to the changing
conditions. The combination of these factors led to
the plane losing control and crashing.

The crew could not regain control, and
at 17:14 the Hunyani plunged into the
ground and all those on board were
killed. The accident was investigated
by the Civil Aviation Authority of Zim-
babwe, which found that the crash was
caused by a combination of pilot error,
fatigue and the weather. The pilots had
not properly examined the weather be-
fore take-off, and instead had relied on
a forecast from a private meteorologi-
cal service. The weather deteriorated
during the flight, and the exhausted pi-
lots were unable to react properly to the
deteriorating conditions.

5—Approx. equivalent
Well chosen words make
the alternate version different
but retain the original mean-
ing well. The only difference
is that the paraphrased ver-
sion does not have the con-
cluding sentence, but it does
not alter the meaning in any
way as the facts have already
been included previously.

60 Sonic’s main means of attack is the Spin Attack,
in which he curls into a ball and rapidly spins
his body, damaging enemies and certain obsta-
cles upon collision. This may be performed by
jumping or by rolling on the ground. Sonic can
also use a variety of other moves, such as the Hom-
ing Attack, Slide Attack, and Wall Jump. He also
has access to power-ups like the Speed Shoes, In-
vincibility, and the Super Peel Out. In some games,
Sonic can also use special items or vehicles to tra-
verse levels.

Also, the character can use a variety of
other attacks, such as the homing at-
tack, the slide attack, and the wall jump.
In addition, he can acquire power-ups
such as the Speed Boost, Super Speed,
and the invincibility meter, and in cer-
tain games, he may make use of special
items or vehicles to traverse the world.

2—Topically related
In the second part of the para-
phrase, the writer ignores
the actual moves and skills
of Sonic and invents some
entirely different ones that
not mentioned in the original
text. The method of perform-
ing the attack moves has also
been missed out.

32

	Introduction
	Background on detectors of AI-generated text
	Building a controllable discourse paraphraser
	Experiments attacking detection algorithms with dipper
	Evaluation metrics
	Models, datasets & detection algorithms
	Attacking AI-generated text detectors
	Alternative paraphrasing attacks

	Defense against paraphrase attacks using retrieval
	Formulating the retrieval defense
	Controlled comparisons of retrieval with other AI-generated text detectors
	Is retrieval an effective detector with a large retrieval corpus?
	Scalability and limitations of retrieval-based detectors

	Conclusion
	Limitations of retrieval-based detection and ideas for scaling it further
	Scalability of retrieval-based detection
	Limitations of retrieval for detection
	Ideas to make retrieval detection work well at an even larger scale
	Incentives for LLM providers to implement retrieval-based detection

	Ethical Considerations
	Experiments measuring intrinsic paraphrase generation quality
	Ablation studies on dipper
	Human evaluation of semantic preservation using dipper

	Related work for discourse paraphrasing
	Survey of paraphrase generation papers
	Other related work

	More background on detectors of AI-generated text
	Watermarking language model outputs
	Statistical outlier detection methods
	Classifiers
	Comparison to Sadasivan et al. (2023)

	More experimental details of our attack experiments
	Details for training our paraphraser dipper
	Long-form question answering data processing
	Are successful attacks against model-specific detectors really an attack success?

	More retrieval-based detection experiments
	Controlled comparisons of retrieval with other AI-generated text detectors on open-ended text generation
	Robustness against text shortening and mixing attacks

	ROC curves at different FPR

