
Appendix

Table of Contents
A Preliminaries 17

A.1 Definitions . 17
A.2 Online Convex Optimization (OCO) . 17

B Missing proofs in Section 3 19
B.1 Excess risk bound for Gibbs algorithm . 19
B.2 Excess risk bound for SGD . 21
B.3 Excess risk bound for SGLD . 23
B.4 Excess risk bound for Regularized Loss Minimization (RLM) 24
B.5 Unified form of excess risk upper bound . 25
B.6 Convexity of the unified upper bound . 26

C Missing proofs in Section 5 27
C.1 AER bound in static environments . 27
C.2 AER bound in possibly shifting environments (Proof of Theorem 5.1) 30

D Missing proofs in Section 6 34
D.1 Cost function for Gibbs base learner . 34
D.2 Static AER of Gibbs . 36
D.3 Proof of Theorem 6.1 (Dynamic AER of Gibbs) 37
D.4 Cost function for SGD base leaner . 38
D.5 Static AER of SGD . 39
D.6 Proof of Theorem 6.2 (Dynamic AER of SGD) 40

E Experiments 42
E.1 Experimental settings . 42
E.2 Additional results . 44
E.3 Experimental details . 46
E.4 Bayes Online Changing-point Detection . 47

F Additional Discussion 49
F.1 Learning-forgetting w.r.t meta-updates . 49
F.2 Real-world examples for practicality and necessity of CML 49
F.3 More details on DCML . 49
F.4 Limitations . 50
F.5 Broader Impacts . 50

G Additional Related Works 51
G.1 Summary and comparison of related settings 51
G.2 Continual Learning . 51
G.3 Meta-Continual Learning . 52
G.4 Continual Meta-Learning . 52
G.5 Meta-Learning . 53

16

A Preliminaries

In the appendix, we assume that all sets are convex subsets of Rd, and we use ‖ · ‖ to denote the
Euclidean norm.

A.1 Definitions

Definition A.1 (Lipschitzness). A function f : W → R is L-Lipschitz w.r.t norm ‖ · ‖ if for all
w1, w2 ∈ W , |f(w1)− f(w2)| ≤ L‖w1 − w2‖
Definition A.2 (Quadratic Growth). A function f :W → R has α-quadratic-growth w.r.t ‖ · ‖ for
α > 0 if for any w ∈ W , we have:

α

2
‖w − w∗‖2 ≤ f(w)− f(w∗) ,

where w∗ denotes the global minimum point of f which is closest to w.

Definition A.3 (Convex). A function f : W → R is convex w.r.t norm ‖ · ‖ if f is everywhere
sub-differentiable and if ∀x, y ∈ W ,

f(y) ≥ f(x) + 〈∇f(x), y − x〉 ,

where ∇f(x) is a subgradient of f at x.

Definition A.4 (Strongly Convex). A function f :W → R is α-strongly convex w.r.t norm ‖ · ‖ if f
is everywhere sub-differentiable and if ∀x, y ∈ W ,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
α

2
‖y − x‖2 ,

where ∇f(x) is a subgradient of f at x.

Definition A.5 (Smoothness). A function f :W → R is β-smooth w.r.t norm ‖ · ‖ if f is everywhere
sub-differentiable and if ∀x, y ∈ W ,

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
β

2
‖y − x‖2 ,

where ∇f(x) is a subgradient of f at x.

Definition A.6 (Bregman divergence). Let R : U → R be an everywhere sub-differentiable strongly
convex regularization function. Then the Bregman divergence w.r.t function R for any x, y ∈ U is
defined as:

BR(x‖y)
def
= R(x)−R(y)− 〈∇R(y), (x− y)〉 .

A.2 Online Convex Optimization (OCO)

A.2.1 Definitions of regrets

Definition A.7 (Static regret). The static regret of an OCO algorithm on the action set U w.r.t a
sequence of cost functions {ft : U → R}Tt=1 is defined as:

RT
def
=

T∑
t=1

ft(ut)−min
u∈U

T∑
t=1

ft(u)

Definition A.8 (Traditional dynamic regret [40]). The dynamic regret of an OCO algorithm on the
action set U w.r.t a sequence of cost functions {ft : U → R}Tt=1 and the comparator sequence
ψ1:T ,∀ψt ∈ U is defined as:

RT
def
=

T∑
t=1

ft(ut)−
T∑
t=1

ft(ψt)

17

A.2.2 Static regret may be vacuous in shifting environments

Proof. For a shifting environment that has u∗T = arg minu
1
T

∑T
t=1 ft(u) changing with T , we can

prove that the static regret may be vacuous as T goes to infinity.

Let us denote FT =
∑T
t=1 ft(u

∗
T), FT−1 =

∑T−1
t=1 ft(u

∗
T−1), F0 = 0.

Assume that the cost functions are non-negative, which is usually the case. Whenever we have
ft(u

∗
T)− ft(u∗T−1) ≥ a > 0, we can obtain

FT − FT−1 =

T−1∑
t=1

(ft(u
∗
T)− ft(u∗T−1)) + fT (u∗T) ≥ a(T − 1) + fT (u∗T) .

The above inequality holds for any T ≥ 1, so we can rewrite it as Ft−Ft−1 ≥ a(t− 1) + ft(u
∗
t). By

summing each side from t = 1 to t = T , we have FT ≥ F0 + aT (T−1)
2 +

∑T
t=1 ft(u

∗
t) ≥

aT (T−1)
2 .

Consequently, we have 1
T FT = 1

T

∑T
t=1 ft(u

∗
T) ≥ a(T−1)

2 , which means the static regret will be
vacuous when T →∞.

A.2.3 Online algorithms

Definition A.9 (Follow The Leader (FTL)). Given a sequence of strongly convex cost functions
{ft : U → R}t≥1, FTL plays for t > 1:

ut = arg min
u∈U

t−1∑
i=1

fi(u) .

Definition A.10 (Follow The Regularized Leader (FTRL)). Given a sequence of convex cost func-
tions {ft : U → R}t≥1, a strongly convex regularization function R : U → R, and the starting point
u1 = arg min

u∈U
R(u), FTRL plays for t > 1:

ut = arg min
u∈U

t−1∑
i=1

fi(u) +R(u) .

Khodak et al. [31] write FTRL as ut = arg minu∈U
∑t−1
i=1 fi(u) + BR(u‖u1), while we follow

Shalev-Shwartz et al. [41] and Hazan et al. [40].
Definition A.11 (Online Mirror Descent (OMD)). Given a sequence of convex cost functions
{ft : U → R}t≥1, a strongly convex regularization function R : U → R, and u1 = ∇R∗(0), OMD
plays for t > 1:

ut = ∇R∗(−η
t−1∑
i=1

∇fi(ui)) ,

where R∗(ũ) = max
u
〈u, ũ〉 −R(u) is the Fenchel conjugate of R(u).

There exists an equivalent linearized version of the above FTRL and lazy OMD through the lineariza-
tion of the convex cost functions.
Definition A.12 (Lazy OMD). Given a sequence of convex cost functions {ft : U → R}t≥1, a
strongly convex regularization function R : U → R, and ∇R(ũ1) = 0, u1 = arg min

u∈U
BR(u‖ũ1),

then lazy OMD and FTRL play for t > 1:

ũt = arg min
u
〈η∇ft−1(ut−1), u〉+BR(u‖ut−1)

ut = arg min
u∈U

BR(u‖ũt) .

The proof of the equivalence can be found in Hazan et al. [40].

18

B Missing proofs in Section 3

Definition B.1. Consider any base learner A that takes a fixed prior information u with a data set
S ∼ µm as input and outputs W = A(S, u) ∼ PW |S,u. Define the expected generalization gap of
algorithm A as

gen(µ,A)
def
= EA,S [Lµ(A(S, u))− LS(A(S, u))] = EW,S [Lµ(W)− LS(W)]

and the expected excess risk as

Rexcess(A, u)
def
= EA,S [Lµ(A(S, u))− Lµ(w∗)] = EW,S [Lµ(W)− Lµ(w∗)] ,

where w∗ = arg minw∈W Lµ(w) is the hypothesis that achieves the minimum true risk.

B.1 Excess risk bound for Gibbs algorithm

Lemma B.2. Let Q be an arbitrary distribution on W and let β > 0 be the inverse temperature
that balances fitting and generalization. Then, we can jointly denote u = (β,Q). Let S ∼ µm be a
sample of examples. The solution to the optimization problem

P ∗W |S,u = arg inf
PW |S

{
EW,S [LS(W)] +

1

β
ESDKL(PW |S‖Q)

}
is given by the Gibbs algorithm which satisfies

dP ∗W |S,u(w) =
e−βLS(w)dQ(w)

EW∼Q
[
e−βLS(W)

] .
See Proof of Theorem 5 in [48].
Theorem B.3 (Excess risk bound for Gibbs algorithm of meta-parameter u = (β, φ)). Suppose
W = Rd and assume that `(·, z) ∈ [0, 1] is L-Lipschitz for all z ∈ Z . Let Wg ∼ PWg|S,u denote the
output of the Gibbs algorithm 3 applied on data set S with meta-parameter u = (β,Q). Let w∗ be
the hypothesis that achieves the minimum true risk amongW . The excess risk of Wg satisfies

Rexcess(Gibbs, u)
def
= E[Lµ(Wg)]− inf

w∈W
Lµ(w)

≤ β

2m
+ inf
σ>0

(
σL
√
d+

1

β
DKL(N (w∗, σ21d))‖Q)

)
.

Specifically, if we assume Q is the Gaussian distribution N (φ, σ21d) with σ = m−1/4d−1/4L−1/2

and denote u = (β, φ), then we have

Rexcess(Gibbs, u) ≤ β

2m
+m−1/4L1/2d1/4 +

d1/2m1/2L

2β
‖φ− w∗‖2 .

Proof. The original proof can be found in Corollary 3 [48], we provide the proof below with more
details and some tiny modifications. Consider an arbitrary data-free distribution related to the
unknown minimum w∗ of the true risk, i.e., N (w∗, σ21d). Then for any σ > 0, we have:

EWg,S [Lµ(Wg)] = EWg,S [LS(Wg)] + gen(µ,Gibbs)

≤ EWg,S [LS(Wg)] +
β

2m

≤ EWg,S [LS(Wg)] +
1

β
ESDKL(PWg|S,u‖Q) +

β

2m

≤
∫
W

ESLS(w)N (w;w∗, σ21d)dw +
1

β
DKL(N (w∗, σ21d))‖Q) +

β

2m

=

∫
W
Lµ(w)N (w;w∗, σ21d)dw +

1

β
DKL(N (w∗, σ21d))‖Q) +

β

2m

3In some definitions, the output of the Gibbs algorithm is the optimal distribution itself. Here, we consider a
sampling from this distribution.

19

The first step is obtained with previous work’s results that Gibbs algorithm is (2β
m , 0)-differentially

private [49]. The second inequality makes use of the non-negativity of KL divergence. The last
inequality derives naturally from the fact that the output of the Gibbs algorithm follows the optimal
distribution for the objective function in Lemma B.2.

Since `(., z) is L-Lipschitz for all z ∈ Z , we can obtain the following by combining the Jensen’s
inequality:

|Lµ(w)− Lµ(w∗)| ≤ EZ∼µ[|`(w,Z)− `(w∗, Z)|] ≤ L‖w − w∗‖,∀w ∈ W .

Then we have∫
W
Lµ(w)N (w;w∗, σ21d)dw ≤

∫
W

(Lµ(w∗) + L‖w − w∗‖)N (w;w∗, σ21d)dw

≤ Lµ(w∗) + Lσ
√
d .

So we have for any σ > 0,

E[Lµ(Wg)]− inf
w∈W

Lµ(w) ≤ β

2m
+ inf
σ>0

(
σL
√
d+

1

β
DKL(N (w∗, σ21d))‖Q)

)
=

β

2m
+ inf
σ>0

(
σL
√
d+

1

β
DKL(N (w∗, σ21d))‖N (φ, σ21d))

)
=

β

2m
+ inf
σ>0

(
σL
√
d+

1

2βσ2
‖φ− w∗‖2

)
≤ β

2m
+m−1/4L1/2d1/4 +

d1/2m1/2L

2β
‖φ− w∗‖2

The last three lines are obtained with the assumption that Q is the Gaussian distribution N (φ, σ21d)
and setting σ = m−1/4d−1/4L−1/2.

20

B.2 Excess risk bound for SGD

Theorem B.4 (Excess Risk Bound for SGD of meta-parameter u = (η, φ)). Suppose W = Rd,
let w∗

def
= arg minw∈W Lµ(w) be the hypothesis that achieves the minimum population risk inW .

Consider the SGD algorithm with K updates starting from W1 = φ: Wk+1 = Wk − η∇`(Wk, Zk),
where Zk is a sample randomly selected from data set S. Assume the loss function `(·, z) is convex,
β-smooth and L-Lipschitz for all z ∈ Z . Let the output of the algorithm be W = 1

K

∑K
k=1Wk. Then,

the excess risk bound is given by:

Rexcess(SGD, u)
def
= EW,S [Lµ(W)]− inf

w∈W
Lµ(w) ≤ ‖φ− w

∗‖2

2ηK
+ (

L2

2
+
L2K

m
)η .

Proof. The excess risk can be decomposed as

EW,S [Lµ(W)−min
w
Lµ(w)] = EW,S [Lµ(W)− LS(W)] + EW,SLS(W)−min

w
Lµ(w)

= EW,S [Lµ(W)− LS(W)] + [EW,SLS(W)− ESLS(w∗)]

= gen(µ,SGD) + EW,SLS(W)− ESLS(w∗) .

The first term is the generalization gap defined in Definition B.1. Note that the second term is not the
optimization error εWopt

def
= |EW,S [LS(W)]− EW,S [LS(w∗S)]| used in [38], which is the expected gap

between the SGD output W and the ERM output w∗S . The optimization error indicates how close the
SGD output can approximate the possibly intractable exact ERM solution, which is an upper bound
of the absolute value of the second term |EW,SLS(W)− ES [LS(w∗)]| ≤ εWopt (can be derived with
Lemma 5.1 in [50]).

Here, we directly make use of the convexity and obtain the gap compared to the true minimum.
It’s easy to bound EW,SLS(W) − ESLS(w∗) using the method provided in Shalev-Shwartz and
Ben-David [51] with some tiny modifications.

Since we have Wk+1 = Wk − η∇`(Wk, Zk), W1:K is related to the randomness introduced by the
sampling path Z1:K from S. Moreover, for the convex loss function, we have:

EW,SLS(W)− ESLS(w∗) = ES
[
EW∼PW |S,uLS(W)− LS(w∗)

]
= ES

[
EW1:K

LS(
1

K

K∑
k=1

Wk)− LS(w∗)

]

≤ ES

[
EW1:K

1

K

K∑
k=1

LS(Wk)− LS(w∗)

]

≤ ES

[
EW1:K

1

K

K∑
k=1

〈Wk − w∗,∇LS(Wk)〉

]

= ES

[
EV1:K−1

1

K

K∑
k=1

〈Wk − w∗,∇LS(Wk)〉

]

= ES

[
1

K

K∑
k=1

EV1:k−1
〈Wk − w∗,∇LS(Wk)〉

]
,

where Vk = ∇`(Wk, Zk). The inequalities are obtained by using Jensen’s inequality and the last two
equalities are obtained with the fact that W1:K is determined by V1:K−1.

Moreover, we have E[Vk|Wk] = E[Vk|V1:k−1] = ∇LS(Wk). The first equality comes from the
update rule, where Wk is determined by the previous k − 1 gradients and the meta parameter
u = (η, φ). Note that u is not a random variable and hence no randomness needs to be considered.
The second equality holds because Zk is uniformly sampled from S, so Vk is an unbiased estimator
of∇LS(Wk).

Hence,

21

EV1:K

(
1

K

K∑
k=1

〈Wk − w∗, Vk〉

)
=

1

K

K∑
k=1

EV1:K
[〈Wk − w∗, Vk〉]

=
1

K

K∑
k=1

EV1:k
[〈Wk − w∗, Vk〉]

=
1

K

K∑
k=1

EV1:k−1
EVk [〈Wk − w∗, Vk〉|V1:k−1]

=
1

K

K∑
k=1

EV1:k−1
[〈Wk − w∗,EVk [Vk|V1:k−1]〉]

=
1

K

K∑
k=1

EV1:k−1
[〈Wk − w∗,∇LS(Wk)〉]

By using Lemma14.1 in Shalev-Shwartz and Ben-David [51], we can obtain that

EW,SLS(W)− ESLS(w∗) ≤ ES

[
EV1:K

(
1

K

K∑
k=1

〈Wk − w∗, Vk〉

)]

≤ ‖W1 − w∗‖2

2ηK
+

η

2K

K∑
k=1

E‖Vk‖2.

Since the loss function is L-Lipschitz, we can further obtain:

EW,SLS(W)− Lµ(w∗) ≤ ‖W1 − w∗‖2

2ηK
+
η

2
L2 .

We have assumed that the loss function is convex and β-smooth. Therefore, following Theorem 4.7
in Hardt et al. [50], we have the following upper bound for the generalization gap of SGD if the step
size is smaller than 2

β :

|gen(µ, SGD)| ≤ L2K

m
η .

So, we can conclude

Rexcess(SGD, u) = EW,S [Lµ(W)]− inf
w∈W

Lµ(w) ≤ ‖φ− w
∗‖2

2ηK
+ (

L2

2
+
L2K

m
)η.

22

B.3 Excess risk bound for SGLD

Theorem B.5 (Excess risk bound for SGLD of meta-parameter u = (η, φ)). SupposeW = Rd, let
w∗

def
= arg minw∈W Lµ(w) be the hypothesis that achieves the minimum population risk inW . For

SGLD algorithm with K adaptation starting from W1 = φ: Wk+1 = Wk − η∇`(Wk, Zk) + ξk,
where Zk is a sample randomly selected from data set S, ξk is the independently injected isotropic
Gaussian noise N (0, σ21d). Assume the loss function `(·, z) is convex and L-Lipschitz for all z ∈ Z .
And let the output of the algorithm be W = 1

K

∑K
k=1Wk. Then we have the following excess risk

bound:

Rexcess(SGLD, u)
def
= EW,S [Lµ(W)]− inf

w∈W
Lµ(w) ≤ ‖φ− w

∗‖2

2ηK
+
η

2
L2 +

dσ2

2η
+

√
K

4m

ηL

σ
.

Proof. Analogous to the proof of SGD, we can decompose the excess risk as

EW,S [Lµ(W)−min
w
Lµ(w)] = EW,S [Lµ(W)− LS(W)] + EW,SLS(W)−min

w
Lµ(w)

= EW,S [Lµ(W)− LS(W)] + EW,SLS(W)− ES [LS(w∗)]

= gen(µ,SGLD) + EW,SLS(W)− ESLS(w∗) .

According to Pensia et al. [38], we have |gen(µ,SGLD)| ≤
√

1
4m

Kη2L2

σ2 .

In addition, we have the update for SGLD:Wk+1 = Wk−η∇`(Wk, Zk)+ξk, whereW1:K is related
to the randomness introduced by the sampling path Z1:K from S and the injected noise ξ1:K .

Denote Vk = ∇`(Wk, Zk) + ξk
η , then we have E[Vk|Wk] = E[Vk|V1:k−1] = ∇LS(Wk).

Conduct similar proof as the above SGD algorithm and use Lemma 14.1 in [51], we can obtain that

EW,SLS(W)− ESLS(w∗) ≤ ES

[
EV1:K

(
1

K

K∑
k=1

〈Wk − w∗, Vk〉

)]

≤ ‖W1 − w∗‖2

2ηK
+

η

2K

K∑
k=1

E‖Vk‖2 .

Since the loss function is L-Lipschitz, we have

EW,SLS(W)− Lµ(w∗) ≤ ‖W1 − w∗‖2

2ηK
+
η

2
(L2 + d

σ2

η2
) .

Combining the aforementioned generalization gap bound of SGLD, we conclude the proof.

23

B.4 Excess risk bound for Regularized Loss Minimization (RLM)

Theorem B.6 (Excess risk bound for RLM of meta-parameter u = (β, φ)). SupposeW = Rd, let
w∗

def
= arg minw∈W Lµ(w) be the hypothesis that achieves the minimum population risk inW . Let us

denote the output of RLM with Tikhonov regularization as W = arg minw∈W LS(w) + 1
β ‖w − φ‖

2.
Suppose the loss function ` : W ×Z → [0, 1] is convex and L-Lipschitz, so the excess risk of the
above algorithm is bounded by:

Rexcess(RLM, u)
def
= EW,S [Lµ(W)]− inf

w∈W
Lµ(w) ≤ ‖φ− w

∗‖2

β
+

2L2β

m
.

Proof. Here, since the algorithm is deterministic, we can consider PW |S,u as a delta distribution
centered on w∗S = A(u, S). Then, the bound becomes

EW,S [Lµ(W)] = ES [Lµ(w∗S)] = ES [Lµ(A(u, S)]

≤ inf
w∈W

Lµ(w) +
1

β
‖φ− w∗‖2 +

2L2β

m
,

which is equivalent to Corollary 13.8 in [51] with φ = 0, β = 1
λ .

To prove the above bound, we use the same decomposition of excess risk:

EW,S [Lµ(W)−min
w
Lµ(w)] = ES [Lµ(w∗S)− LS(w∗S)] + ESLS(w∗S)−min

w
Lµ(w)

= ES [Lµ(w∗S)− LS(w∗S)] + ESLS(w∗S)− ES [LS(w∗)]

= gen(µ,RLM) + ESLS(w∗S)− ESLS(w∗) .

From Corallary 13.6 in [51], the stability of RLM rule satisfies

gen(µ,RLM) = ES [Lµ(w∗S)− LS(w∗S)] ≤ 2L2β

m
,

which means the RLM rule using Tikhonov regularization described above is on-average-replace-
one-stable with rate 2L2β

m . From the definition of this algorithm, we have for any w ∈ W ,

LS(w∗S) ≤ LS(w∗S) +
1

β
‖w∗S − φ‖2 ≤ LS(w) +

1

β
‖w − φ‖2 .

Take expectation w.r.t S, we can obtain ESLS(w∗S) ≤ Lµ(w) + 1
β ‖w − φ‖

2,∀w ∈ W . Finally,
combining the stability bound and letting w = w∗, we conclude the proof.

24

B.5 Unified form of excess risk upper bound

Lemma B.7. Assume the loss function ` has α-quadratic growth (defined in Appendix A.2), then
excess risk bound has the following form: Rexcess(A, ut) ≤ bt+ct‖φt−w∗t ‖

2

βt
+ dtβt + et , with

bt, et ≥ 0, ct, dt > 0, can derive the unified form of cost function ft(ut) as illustrated in eq. (1).

Proof. Let w̄t = EWt be the expected output of the algorithm, and ε0 = ‖wt − w̄t‖2 is the
randomness of the algorithm, which should be small enough. Then, using Titu’s lemma, Jensen’s
inequality, and the α-quadratic growth assumption on the loss function, we get:

‖φt − w∗t ‖2 = ‖φt − w̄t + w̄t − w∗t ‖2

≤ 2‖φt − w̄t‖2 + 2‖w̄t − w∗t ‖2

= 2‖φt − w̄t‖2 + 2‖EWt − w∗t ‖2

≤ 2‖φt − w̄t‖2 + 2E‖Wt − w∗t ‖2

≤ 2‖φt − w̄t‖2 +
4E[Lµt(Wt)− Lµt(w∗t)]

α

≤ 2‖φt − w̄t‖2 +
4(
bt+ct‖φt−w∗t ‖

2

βt
+ dtβt + et)

α
.

Rearrange and put the upper bound of ‖φt − w∗t ‖2 into the excess risk bound, replace
√
ct/dtβ

′
t =

αβt − 4ct, and use again the Titu’s lemma, we get

Rexcess(A, ut) ≤ 4α
√
ctdt

(
‖φt − wt‖2 + ε0 + bt

4ct
+ 4dtct

α2 + et
α

β′t
+

2
√
dtct
α2

+
β′t

4α2
+

et

4α
√
dtct

)
It’s easy to relate κt,∆t, εt to the terms in the above bound. We prove Proposition D.1 and Proposi-
tion D.4 without using this Lemma and provide more details in the corresponding derivations.

Theorem B.8. Assume the loss function ` has α-quadratic growth (defined in Appendix A.2), then
there exists the following unified form ft(ut) of excess risk upper bound given an input meta-
parameter ut for SGD, SGLD, RLM and Gibbs algorithm:

ft(ut) = κt

(
aβt +

b‖φt − wt‖2 + εt + ε0
βt

+ ∆t

)
, κt, εt, βt,∆t ∈ R+, ∀t ∈ [T], a, b, ε0 > 0 ,

where we jointly denote ut = (βt, φt) as the meta-parameter of the base learner. φt is the initial-
ization or bias, βt is the learning rate (if A ∈ {SGD, SGLD}) or a regularization coefficient (if
A ∈ {RLM,Gibbs}). We denote wt as a single output for randomized algorithms, ε0 represents the
randomness that can be controlled through Monte Carlo Sampling, the sample size, and steps for
specific algorithms. εt, κt,∆t are related to the task sample size mt.

Proof. According to Theorem B.3, Theorem B.4, Theorem B.5 and Theorem B.6, we have

Rexcess(Gibbs, ut) ≤
βt

2mt
+m

−1/4
t L1/2d1/4 +

d1/2m
1/2
t L

2βt
‖φt − w∗t ‖2 ,

Rexcess(SGD, ut) ≤
‖φt − w∗t ‖2

2ηtKt
+ (

L2

2
+
L2Kt

mt
)ηt ,

Rexcess(SGLD, ut) ≤
‖φt − w∗t ‖2

2ηtKt
+
ηt
2
L2 +

dσ2

2ηt
+

√
Kt

4mt

ηtL

σ
,

Rexcess(RLM, ut) ≤
‖φt − w∗t ‖2

βt
+

2L2βt
mt

.

Combining Lemma B.7, we observe that bt = 0, ct =
d1/2m

1/2
t L

2 , dt = 1
2mt

, et = m
−1/4
t L1/2d1/4

for Gibbs algorithm; βt = ηt, bt = 0, ct = 1
2Kt

, dt = L2

2 + L2Kt
mt

, et = 0 for SGD; βt = ηt, bt =

dσ2

2 , ct = 1
2Kt

, dt = L2

2 +
√

Kt
4mt

L
σ , et = 0 for SGLD; and bt = 0, ct = 1, dt = 2L2

mt
, et = 0 for

RLM. Therefore, the algorithms mentioned above have a unified form of excess risk upper bound as
defined in eq. (1).

25

B.6 Convexity of the unified upper bound

Lemma B.9. ∀t ∈ [T], the cost function that has the following form:

ft(ut) = ft(βt, φt) = κt(aβt +
b‖φt − wt‖2 + εt + ε0

βt
+ ∆t), βt, κt, εt,∆t ∈ R+, a, b, ε0 > 0,

is convex w.r.t ut = (βt, φt), where φt, wt ∈ W ⊆ Rd.

Proof.

∂βtft = κt(a−
b‖φt − wt‖2 + εt + ε0

β2
t

)

∂φtft = κt
2b(φt − wt)

βt

The Hessian matrix of ft(βt, φt):

∇2ft =

(
2κt

b‖φt−wt‖2+εt+ε0
β3
t

−2b(φt−wt)
β2
t

κt
−2b(φt−wt)

β2
t

κt κt
2b
βt
1d×d

)

For any h = (h0, hd) ∈ R× Rd, and βt > 0, φ ∈ Rd we have:

(∇2f(ut)h, h) = κt
2(εt + ε0)h2

0 + 2b‖h0(φt − wt)− βthd‖2

β3
t

≥ 0

, so ft is convex w.r.t ut.

26

C Missing proofs in Section 5

C.1 AER bound in static environments

Algorithm 2 Meta-OGD (Static Environment)
Require: Convex setW, T, φ1 = 0 ∈ W, β1 > 0, initial learning rate γ;
for t← 1 to T do

Sample task distribution: µt ∼ τt;
Sample dataset St ∼ µt;
Select meta parameter ut = (βt, φt) ∈ U ;
Learn base parameter wt = A(ut, St),
Estimate excess risk upper bound ft(ut) in Eq. (1);
Update learning rate of the meta-parameter: γt = γ/

√
t;

Update the meta-parameter:
ut+1 = ΠU (ut − γt∇ft(ut)),∇ft(ut) = (aκt − bκt‖φt−wt‖2+κtεt+κtε0

β2
t

, 2bκt(φt−wt)
βt

);
i.e.:
φt+1 = (1− 2bκtγt

βt
)φt + 2bκtγt

βt
wt ; βt+1 = βt − γt(aκt − κt(b‖φt−wt‖2+εt+ε0)

βt2
);

end

Theorem C.1 (AER bound in static environment). Let us consider the static environment. If the
excess risk’s upper bound of the base learner A(βt, φt) can be formulated as the aforementioned
unified cost function form in Lemma B.6. Then, running Meta-OGD (Algo. 2) as the meta learner ,
the AER is bounded as:

AERTA ≤ (2
√
a(bV 2 + ε+ ε0))

T∑
t=1

κt
T

+

T∑
t=1

κt∆t

T

+
3κmax

2ε̃0

√
T

√(D̂2 +
bD̂2 + εmax

a
)(4ab2ε̃0D̂2 + a2(εmax + bD̂2)2)

 ,

where D̂ is the diameter of the base learner outputs, V 2 =
∑T
t=1

κt∑T
t=1 κt

‖φ∗ − wt‖2 is the
variance of the base learner outputs, φ∗ is the optimal initialization (or bias) in hindsight, and
ε =

∑T
t=1 κtεt∑T
t=1 κt

, κmax = max{κ1:t}, εmax = max{ε1:t}, ε̃0 = ε0 + εv. If εv > bV 2 + ε, we replace

ε0 in the bound with ε̃0. Let B def
=

[√
ε̃0/a,

√
(bD̂2 + ε+ ε̃0)/a

]
, then, the meta-parameter set in

Algo. 2 is U def
= B ×W .

Proof. At first, in a static environment, all the tasks share the same optimal prior information
u∗ = minu∈U

∑T
t=1 ft(u) (the comparator in static regret). As proved in Lemma B.6, the cost

functions are convex, so the sum of T convex functions
∑T
t=1 ft(u) is convex. Then we have the

minimum attained at u∗ = (β∗, φ∗). By solving minu
∑T
t=1 ft(u), we get φ∗ =

∑T
t=1

κt∑T
t=1 κt

wt

and β∗ =
√

(bV 2 + ε+ ε0)/a, where ε =
∑T
t=1 κtεt∑T
t=1 κt

and V 2 =
∑T
t=1

κt∑T
t=1 κt

‖φ∗ − wt‖2.

According to Algo. 2, φt is determined by the previous base learner outputs w1:t−1 and the initializa-
tion φ1 = 0. As long as 2bκtγt

βt
≤ 1,∀t, we can prove that φt is always constrained within the ball of

diameter D̂ that contains Ŵ . So we have 0 ≤ ‖φt−wt‖ ≤ D̂ and V 2 =
∑T
t=1

κt∑T
t=1 κt

‖φ∗−wt‖2 ≤

D̂2. Moreover, we constrain βt ∈
[√

ε̃0/a,

√
(bD̂2 + ε+ ε̃0)/a

]
, where ε̃0 = ε0 + εv is related to

the randomness of the base learner ε0 and a factor εv to control the range of βt. We will see later
that εv can affect the gradient norm of the meta-parameter. We can further verify that 2bγtκt

βt
≤ 1

27

can always hold with ε̃0 <
a2(εmax+bD̂

2)
4b2 and the given interval of βt. Hence, φt is always inside the

smallest ball that contains Ŵ .

To derive the static regret bound, we need to prove the following result first:

‖ut+1 − u∗‖2 = ‖ΠU (ut − γt∇ft(ut))− u∗‖ ≤ ‖ut − γt∇ft − u∗‖2

≤ ‖ut − u∗‖2 + γ2
t ‖∇ft‖2 − 2γt〈∇ft, (ut − u∗)〉 .

So we have 〈∇ft, (ut − u∗)〉 ≤ ‖ut−u
∗‖2−‖ut+1−u∗‖2

2γt
+ γt‖∇ft‖2

2 .

Moreover, with βt ∈
[√

ε̃0/a,

√
(bD̂2 + ε+ ε̃0)/a

]
, we have

|∂βtft| = |κt(a−
b‖φt − wt‖2 + εt + ε0

β2
t

)| ≤ aκt(bD̂
2 + εmax)

ε̃0
,

|∂φft| =
2bκt‖φt − wt‖

βt
≤ 2bκtD̂√

ε̃0/a
.

Hence, ‖∇ft‖2 ≤ a2κ2
t (bD̂

2+εmax)
2

ε̃20
+

4ab2κ2
t D̂

2

ε̃0
.

In addition, ‖ut − u∗‖2 = ‖φt − φ∗‖2 + |βt − β∗|2 ≤ D̂2 + bD̂2+εmax
a .

So the static regret is bounded by:

Rstatic
T (u∗) =

T∑
t=1

ft(ut)− ft(u∗) ≤
T∑
t=1

〈∇ft, (ut − u∗)〉

≤
T∑
t=1

‖ut − u∗‖2 − ‖ut+1 − u∗‖2

2γt
+

T∑
t=1

γt‖∇ft‖2

2

≤
T∑
t=1

‖ut − u∗‖2(
1

2γt
− 1

2γt−1
) +

T∑
t=1

γt‖∇ft‖2

2

≤ (D̂2 +
bD̂2 + εmax

a
)

1

2γT
+ (

4ab2D̂2

ε̃0
+
a2(εmax + bD̂2)2

ε̃20
)

T∑
t=1

γtκ
2
t

2

≤ 3κmax

2ε̃0

√
T

√(D̂2 +
bD̂2 + εmax

a
)(4ab2ε̃0D̂2 + a2(εmax + bD̂2)2)

 .

The third inequality holds since we have the learning rate schedule γt = γ√
t
, where 1/γ0 = 0.

The last step is obtained by setting γ =
ε̃0

√
D̂2+ bD̂2+εmax

a

κmax

√
4ab2ε̃0D̂2+a2(εmax+bD̂2)2

and
∑T
t=1

1√
t
≤ 2
√
T , where

κmax = max{κ1:T }, εmax = max{ε1:T }.
According to the setting of ε̃0, we have two conditions.

1. If εv ≤ bV 2 + ε, β∗ =
√

(bV 2 + ε+ ε0)/a ∈
[√

ε̃0/a,

√
(bD̂2 + ε+ ε̃0)/a

]
can be attained.

Then, for the optimal comparator in hindsight u∗ = (β∗, φ∗), we have the accumulated cost:

T∑
t=1

ft(u
∗) =

T∑
t=1

κt(aβ
∗ +

b‖φ∗ − wt‖2 + εt + ε0
β∗

+ ∆t)

= (2
√
a(bV 2 + ε+ ε0))

T∑
t=1

κt +

T∑
t=1

κt∆t .

28

Finally, we obtain:

AERTA ≤
1

T

T∑
t=1

ft(ut)

≤ 1

T
(

T∑
t=1

ft(u
∗) +Rstatic

T (u∗))

= (2
√
a(bV 2 + ε+ ε0))

T∑
t=1

κt
T

+

T∑
t=1

κt∆t

T

+
3κmax

2ε̃0
√
T

√(D̂2 +
bD̂2 + εmax

a
)(4ab2ε̃0D̂2 + a2(εmax + bD̂2)2)

 .

2. If εv > bV 2 + ε, β∗ =
√

(bV 2 + ε+ ε0)/a <
√
ε̃0/a cannot be attained. We can simply upper

bound the cost function by replacing ε0 with ε̃0 and obtain a newly attainable optimal comparator

in hindsight ũ∗ = (β̃∗, φ∗), where β̃∗ =
√

(bV 2 + ε+ ε̃0)/a ∈
[√

ε̃0/a,

√
(bD̂2 + ε+ ε̃0)/a

]
.

Then, we have the accumulated cost:

T∑
t=1

ft(ũ
∗) =

T∑
t=1

κt(aβ̃
∗ +

b‖φ∗ − wt‖2 + εt + ε̃0

β̃∗
+ ∆t)

= (2
√
a(bV 2 + ε+ ε̃0))

T∑
t=1

κt +

T∑
t=1

κt∆t .

Finally, we obtain:

AERTA ≤
1

T

T∑
t=1

ft(ut)

≤ 1

T
(

T∑
t=1

ft(ũ
∗) +Rstatic

T (ũ∗))

= (2
√
a(bV 2 + ε+ ε̃0))

T∑
t=1

κt
T

+

T∑
t=1

κt∆t

T

+
3κmax

2ε̃0
√
T

√(D̂2 +
bD̂2 + εmax

a
)(4ab2ε̃0D̂2 + a2(εmax + bD̂2)2)

 .

29

C.2 AER bound in possibly shifting environments (Proof of Theorem 5.1)

Theorem C.2. Consider both static and shifting environments. If the excess risk’s upper bound of
the base learner A(ut, St) can be formulated as a unified form in Eq.(1), then, the AER of DCML
(in Algo. 1) is upper bounded by:

AERTA ≤
2

T

N∑
n=1

(
√
a(bV 2

n + εn + ε0)κn +
∆n

2
)︸ ︷︷ ︸

optimal trade-off in hindsight

+
3

2T

N∑
n=1

D̃nGn
√
Mn − 1︸ ︷︷ ︸

average regret over slots

+
D̃max

T

√√√√2P ∗
N∑
n=1

G2
n︸ ︷︷ ︸

regret w.r.t environment shift

,

where subscript n, k indicate k-th task in n-th slot. The optimal meta-parameter in hindsight of n-th
slot is u∗n = (β∗n, φ

∗
n) and P ∗ =

∑N−1
n=1 ‖u∗n − u∗n+1‖ + 1 is the path length of N slots. Let κn =∑Mn

k=1 κn,k, ∆n =
∑Mn

k=1 κn,k∆n,k. φ∗n =
∑Mn

k=1
κn,k
κn

wn,k is the weighted average of the base

learner outputs within the slot. β∗n =
√

(bV 2
n + εn + ε0)/a, where V 2

n =
∑Mn

k=1
κn,k
κn
‖φ∗n − wn,k‖22

is the variance in n-th slot and εn =
∑Mn

k=1
κn,k
κn

εn,k. Moreover, Gn is the upper bound of the
gradient norm, D̃n is the diameter of meta-parameters in n-th slot, and D̃max = max{D̃n}Nn=1.

Proof. A possibly shifting environment can be considered slot-wise static or static, so we need to
derive the dynamic regret bound. We use the subscript n, k to indicate the k-th task inside the n-th
slot and the corresponding timestep is t =

∑n−1
i=1 Mi + k. To obtain such a bound, we first prove the

following result for the meta-parameter updates inside the n-th slot:

‖un,k+1 − u∗n‖2 = ‖ΠU (un,k − γn,k∇fn,k(un,k))− u∗n‖ ≤ ‖un,k − γn,k∇fn,k − u∗n‖2

≤ ‖un,k − u∗n‖2 + γ2
n,k‖∇fn,k‖2 − 2γn,k〈∇fn,k, (un,k − u∗n)〉 .

So we have 〈∇fn,k, (un,k − u∗n)〉 ≤ ‖un,k−u
∗
n‖

2−‖un,k+1−u∗n‖
2

2γn,k
+

γn,k‖∇fn,k‖2
2 .

Let Gn be the upper bound of the gradient norm related to the n-th slot, i.e., maxk{‖∇fn,k‖} ≤ Gn.
Applying the above result and the update rule in Algo. 1, we have the dynamic regret:

Rdynamic
T (u∗1:N) =

N∑
n=1

Mn∑
k=1

fn,k(un,k)− fn,k(u∗n)

≤
N∑
n=1

(
Mn−1∑
k=1

∇f>n,k(un,k − u∗n) +∇f>n,Mn
(un,Mn

− u∗n)

)

≤
N∑
n=1

Mn−1∑
k=1

[
‖un,k − u∗n‖2 − ‖un,k+1 − u∗n‖2

2γn,k
+G2

n

γn,k
2

]

+

N∑
n=1

‖un,Mn − u∗n‖2 − ‖un+1,1 − u∗n‖2

2ρ
+G2

n

ρ

2
.

The meta-parameter updates that transition between slots adopt the hopping learning rate ρ, which
reflects the environment change.

Denote

T1 =

N∑
n=1

Mn−1∑
k=1

[
‖un,k − u∗n‖2 − ‖un,k+1 − u∗n‖2

2γn,k
+G2

n

γn,k
2

]
+G2

n

ρ

2

and

T2 =

N∑
n=1

‖un,Mn
− u∗n‖2 − ‖un+1,1 − u∗n+1‖2 + ‖un+1,1 − u∗n+1‖2 − ‖un+1,1 − u∗n‖2

2ρ
.

30

First, let us play some tricks with T2,

T2 =

N∑
n=1

‖un,Mn
− u∗n‖2 − ‖un+1,1 − u∗n+1‖2

2ρ
+

N∑
n=1

‖u∗n+1‖2 − ‖u∗n‖2 + 2u>n+1,1(u∗n − u∗n+1)

2ρ

=

N−1∑
n=1

‖un,Mn − u∗n‖2 − ‖un+1,1 − u∗n+1‖2

2ρ

+

N−1∑
n=1

‖u∗n+1‖2 − ‖u∗n‖2 + 2u>n+1,1(u∗n − u∗n+1)

2ρ

+
‖uN,MN

− u∗N‖2 − ‖uN+1,1 − u∗N+1‖2 + ‖u∗N+1‖2 − ‖u∗N‖2 + 2u>N+1,1(u∗N − u∗N+1)

2ρ

≤
N−1∑
n=1

‖un,Mn − u∗n‖2 − ‖un+1,1 − u∗n+1‖2

2ρ
+
‖u∗N‖2 − ‖u∗1‖2

2ρ
+
D̃max

ρ

N−1∑
n=1

‖u∗n − u∗n+1‖

+
‖uN,MN

− u∗N‖2 − ‖uN+1,1‖2 + 2u>N+1,1u
∗
N − ‖u∗N‖2

2ρ

≤
N−1∑
n=1

‖un,Mn
− u∗n‖2 − ‖un+1,1 − u∗n+1‖2

2ρ
+
‖u∗N‖2 − ‖u∗1‖2

2ρ
+
D̃max

ρ

N−1∑
n=1

‖u∗n − u∗n+1‖

+
‖uN,MN

− u∗N‖2

2ρ
.

The first inequality is obtained with

u>n+1,1(u∗n − u∗n+1) ≤ ‖un+1,1‖‖u∗n − u∗n+1‖ ≤ D̃max‖u∗n − u∗n+1‖ ,

where D̃max = max{D̃n}Nn=1 is the maximal slot-wise diameter of the set of meta-parameters. To
ensure ‖un+1,1‖ ≤ D̃max,∀n, we assume 0 is included in each slot’s meta-parameter set. The last

inequality of the above proof holds because
−‖uN+1,1‖2+2u>N+1,1u

∗
N−‖u

∗
N‖

2

2ρ =
−‖uN+1,1−u∗N‖

2

2ρ ≤ 0.

Let D̂n be the diameter of the base learner outputs in n-th slot, and let D̂max = max{D̂n}Nn=1,
κmax
n = max{κn,k}Mn

k=1, εmax
n = max{εn,k}Mn

k=1, εmax = max{εmax
n }Nn=1.

We constrain βn,k ∈
[√

ε̃0/a,

√
(bD̂2

n + εmax + ε̃0)/a

]
, where ε̃0 = ε0 + εv is related to the

randomness of the base learner ε0 and a factor εv to control the range of βt. We will see later that εv
can affect the upper bound of the gradient norm of the meta-parameter. We can further verify that
2bγn,kκn,k

βn,k
≤ 1 can always hold with ε̃0 <

a2(εmax+bD̂
2
n)

4b2 . Hence, φn,k is always inside the smallest

ball that contains Ŵn. Then, we can define D̃2
n

def
= D̂2

n +
bD̂2

n+εmax
n +ε̃0
a . Therefore, we have

D̃2
max = (1 + b/a)D̂2

max + (εmax + ε̃0)/a .

Now we tackle T1. Since we scale the learning rate of the meta-parameter for shifting environments,
we need to set ρ > γn,k for better tracking of the change. Then, we note that if we define 1

γn,0
= 0,

we have
Mn−1∑
k=1

‖un,k+1 − u∗n‖2

2γn,k
=

Mn−1∑
k=0

‖un,k+1 − u∗n‖2

2γn,k
=

Mn−2∑
k=0

‖un,k+1 − u∗n‖2

2γn,k
+
‖un,Mn

− u∗n‖2

2γn,Mn−1

≥
Mn−2∑
k=0

‖un,k+1 − u∗n‖2

2γn,k
+
‖un,Mn

− u∗n‖2

2ρ

=

Mn−1∑
k=1

‖un,k − u∗n‖2

2γn,k−1
+
‖un,Mn

− u∗n‖2

2ρ
.

31

In addition, we have ‖un,k − u∗n‖2 = ‖φn,k − φ̂∗n‖2 + |βn,k − β∗n|2 ≤ D̂2
n +

bD̂2
n+εmax

n

a ≤ D̃2
n.

So, we can bound the dynamic regret as

Rdynamic
T (u∗1:N) ≤ T1 + T2

≤
N∑
n=1

(
Mn−1∑
k=1

[
‖un,k − u∗n‖2

2γn,k
− ‖un,k − u

∗
n‖2

2γn,k−1
+G2

n

γn,k
2

]
− ‖un,Mn − u∗n‖2

2ρ
+G2

n

ρ

2

)

+

N−1∑
n=1

‖un,Mn
− u∗n‖2 − ‖un+1,1 − u∗n+1‖2

2ρ

+
‖u∗N‖2 − ‖u∗1‖2

2ρ
+
D̃max

ρ

N−1∑
n=1

‖u∗n − u∗n+1‖+
‖uN,MN

− u∗N‖2

2ρ

=

N∑
n=1

(
Mn−1∑
k=1

[
‖un,k − u∗n‖2

2γn,k
− ‖un,k − u

∗
n‖2

2γn,k−1
+G2

n

γn,k
2

]
+G2

n

ρ

2

)

+

N∑
n=1

‖un,Mn
− u∗n‖2

2ρ
+

N−1∑
n=1

−‖un+1,1 − u∗n+1‖2

2ρ
−

N∑
n=1

‖un,Mn
− u∗n‖2

2ρ

+
‖u∗N‖2 − ‖u∗1‖2

2ρ
+
D̃max

ρ

N−1∑
n=1

‖u∗n − u∗n+1‖

≤
N∑
n=1

(
Mn−1∑
k=1

D̃2
n

[
1

2γn,k
− 1

2γn,k−1

]
+G2

n

γn,k
2

+G2
n

ρ

2

)

+
D̃2

max

ρ
+
D̃2

max

ρ

N−1∑
n=1

‖u∗n − u∗n+1‖ .

The last inequality is derived with ‖u∗N‖ ≤ D̃max and ignoring the negative terms.

Denote the path length of the reference sequence as P ∗ =
∑N−1
n=1 ‖u∗n − u∗n+1‖ + 1. By setting

γn,k = D̃n
Gn
√
k

(satisfies 1/γn,0 = 0), ρ =

√
2P∗D̃2

max∑N
n=1G

2
n

, and using
∑Mn−1
k=1

1√
k
≤ 2
√
Mn − 1, we

have

Rdynamic
T (u∗1:N) ≤

N∑
n=1

(
3D̃nGn

√
Mn − 1

2
+
G2
n

2
ρ

)
+
D̃2

maxP
∗

ρ

≤
N∑
n=1

3D̃nGn
√
Mn − 1

2
+ D̃max

√√√√2P ∗
N∑
n=1

G2
n .

For each slot n, the optimal prior in hindsight is u∗n = (φ∗n, β
∗
n). By solving minu

∑Mn

k=1 fn,k(u), we
can get:

φ∗n =

Mn∑
k=1

κn,k∑Mn

k=1 κn,k
wn,k, β

∗
n =

√
(bV 2

n + εn + ε0)/a ,

where V 2
n =

∑Mn

k=1
κn,k∑Mn
k=1 κn,k

‖φ∗n − wn,k‖2 and εn =
∑Mn
k=1 κn,kεn,k∑Mn
k=1 κn,k

.

Thus, the accumulated cost for the slot-wise optimal priors in hindsight:

N∑
n=1

Mn∑
k=1

fn,k(u∗n) =

N∑
n=1

Mn∑
k=1

κn,k(aβ∗n +
b‖φ∗n − wn,k‖2 + εn,k + ε0

β∗n
+ ∆n,k)

=

N∑
n=1

(2
√
a(bV 2

n + εn + ε0))

Mn∑
k=1

κn,k +

Mn∑
k=1

κn,k∆n,k

32

Finally, we obtain the bound in the main theorem:

AERTA ≤
1

T

T∑
t=1

ft(ut)

≤ 1

T

(
N∑
n=1

Mn∑
k=1

fn,k(u∗n) +Rdynamic
T (u∗1:N)

)

=
1

T

N∑
n=1

(2
√
a(bV 2

n + εn + ε0))

Mn∑
k=1

κn,k +
1

T

N∑
n=1

Mn∑
k=1

κn,k∆n,k

+
1

T

N∑
n=1

3D̃nGn
√
Mn − 1

2
+

1

T
D̃max

√√√√2P ∗
N∑
n=1

G2
n .

Moreover, by limiting the range of βn,k ∈ B
def
=

[√
ε̃0/a,

√
(bD̂2

n + εmax + ε̃0)/a

]
, we have

|∂βn,kfn,k| = |κn,k(a− b‖φn,k − wn,k‖2 + εn,k + ε0
β2
n,k

)| ≤ aκmax
n (bD̂2

n + εmax
n)

ε̃0
,

|∂φn,kfn,k| =
2bκn,k‖φn,k − wn,k‖

βn,k
≤ 2bκmax

n D̂n√
ε̃0/a

.

Therefore, ‖∇fn,k‖2 ≤ a2(κmax
n)2(bD̂2

n+εmax
n)2

ε̃20
+

4ab2(κmax
n)2D̂2

n

ε̃0
,∀k ∈ [Mn].

Moreover, we let G2
n =

a2(κmax
n)2(bD̂2

n+εmax
n)2

ε̃20
+

4ab2(κmax
n)2D̂2

n

ε̃0
, replace D̃n with the tighter√

D̂2
n +

bD̂2
n+εmax

n

a and use D̃2
max = (1 + b/a)D̂2

max + (εmax + ε̃0)/a.

Analogous to the proof of static AER, if εv ≤ bV 2
n + εn, β∗n =

√
(bV 2

n + εn + ε0)/a ∈ B can be
attained. Then, the above AER can be alternately bounded as:

AERTA ≤
1

T

N∑
n=1

(2
√
a(bV 2

n + εn + ε0))

Mn∑
k=1

κn,k +
1

T

N∑
n=1

Mn∑
k=1

κn,k∆n,k

+
3

2ε̃0T

N∑
n=1

κmax
n

√(D̂2
n +

bD̂2
n + εmax

n

a
)(Mn − 1)

√
a2(bD̂2

n + εmax
n)2 + 4ab2ε̃0D̂2

n


+

1

T

√
(a+ b)D̂2

max + εmax + ε̃0
a

√√√√2P ∗

[
N∑
n=1

(a2(bD̂2
n + εmax

n)2 + 4ab2ε̃0D̂2
n)(κmax

n)2

ε̃20

]
.

Otherwise, if εv > bV 2
n +εn, β∗n =

√
(bV 2

n + εn + ε0)/a <
√
ε̃0/a cannot be attained by optimizing

within B. We can simply upper bound the cost function by replacing ε0 with ε̃0 and obtain newly
attainable optimal comparators in hindsight ũ∗n = (β̃∗n, φ

∗
n), where β̃∗n =

√
(bV 2

n + εn + ε̃0)/a ∈[√
ε̃0/a,

√
(bD̂2 + εmax + ε̃0)/a

]
. Finally, we can obtain a bound for this case by replacing ε0 in

the first line of the above dynamic AER bound with ε̃0.

33

D Missing proofs in Section 6

D.1 Cost function for Gibbs base learner

Proposition D.1. SupposeW ⊂ Rd, let w∗t be the hypothesis that achieves the minimum population
risk amongW . Suppose ` ∈ [0, 1], and `(·, z) is L-Lipschitz and α-quadratic-growth for all z ∈ Z .
Let wt = A(φt, βt) denote the output of the Gibbs algorithm applied on dataset St, and Qt be the
prior distribution and βt the inverse temperature of t-th task. Assume Qt is a gaussian distribution
N (φt, σ

2
t 1d) with σt = m

−1/4
t d−1/4L−1/2. To meet the general form of the cost function, we

replace βt with β′t by αβt − 2
√
dmtL = m

3
4
t d

1
4

√
Lβ′t. Hence, the upper bound of the excess risk of

the Gibbs algorithm is:

ft(β
′
t, φt) = (

d
1
4

√
L

m
1
4
t

)

 β′t
2α

+ 1 +
2d

1
4

√
L

αm
1
4
t

+

2α‖φt − wt‖2 + ε0 + 2
α

√
d
mt
L+ 2

√
Ld

1
4

m
1
4
t

β′t

 .

Proof. From Theorem B.3, we have:

Rexcess(Gibbs, ut) ≤
βt

2mt
+m

−1/4
t L1/2d1/4 +

d1/2m
1/2
t L

2βt
‖φt − w∗t ‖2 .

Let w̄t = EWt be the expected output of the Gibbs algorithm, and let ε0 = 2α‖wt − w̄t‖2 be the
randomness of the algorithm, which should be a small. Then, using Titu’s lemma and the α-quadratic
growth assumption on the loss function, we get

‖φt − w∗t ‖2 = ‖φt − w̄t + w̄t − w∗t ‖2

≤ 2‖φt − w̄t‖2 + 2‖w̄t − w∗t ‖2

≤ 2‖φt − w̄t‖2 + 2‖EWt − w∗t ‖2

≤ 2‖φt − w̄t‖2 + 2E‖Wt − w∗t ‖2

≤ 2‖φt − w̄t‖2 +
4E[Lµt(Wt)− Lµt(w∗t)]

α

≤ 2‖φt − w̄t‖2 +
4(βt

2mt
+m

−1/4
t L1/2d1/4 +

d1/2m
1/2
t L

2βt
‖φt − w∗t ‖2)

α
.

Then, we have ‖φt − w∗t ‖2 ≤
2α‖φt−w̄t‖2+

2βt
mt

+4m
−1/4
t L1/2d1/4

α− 2d1/2m
1/2
t L

βt

.

Consequently, we can obtain:

Rexcess(Gibbs, ut) ≤
βt

2mt
+m

−1/4
t L1/2d1/4 +

d1/2m
1/2
t L(α‖φt − w̄t‖2 + βt

mt
+ 2m

−1/4
t L1/2d1/4)

αβt − 2d1/2m
1/2
t L

.

Replace αβt − 2d1/2m
1/2
t L = m

3/4
t d1/4L1/2β′t, we have

34

Rexcess(Gibbs, ut) ≤
(m

3/4
t d1/4L1/2β′t + 2d1/2m

1/2
t L)/α

2mt
+m

−1/4
t L1/2d1/4

+
α‖φt − w̄t‖2 +

(m
3/4
t d1/4L1/2β′t+2d1/2m

1/2
t L)/α

mt
+ 2m

−1/4
t L1/2d1/4

m
1/4
t d−1/4L−1/2β′t

=
1

2α
m
−1/4
t d1/4L1/2β′t +

1

α
m
−1/2
t d1/2L+m

−1/4
t L1/2d1/4

+
α‖φt − w̄t‖2 + 1

αm
−1/4
t d1/4L1/2β′t + 2

αm
−1/2
t d1/2L+ 2m

−1/4
t L1/2d1/4

m
1/4
t d−1/4L−1/2β′t

=
1

2α
m
−1/4
t d1/4L1/2β′t +m

−1/4
t L1/2d1/4 +

2

α
m
−1/2
t d1/2L

+
α‖φt − w̄t‖2 + 2

αm
−1/2
t d1/2L+ 2m

−1/4
t L1/2d1/4

m
1/4
t d−1/4L−1/2β′t

= (m
−1/4
t d1/4L1/2)

(
β′t
2α

+ 1 +
2

α
m
−1/4
t d1/4L1/2

+
α‖φt − w̄t‖2 + 2

αm
−1/2
t d1/2L+ 2m

−1/4
t L1/2d1/4

β′t

)

≤ (
d

1
4

√
L

m
1
4
t

)

 β′t
2α

+ 1 +
2d

1
4

√
L

αm
1
4
t

+

α‖φt − w̄t‖2 + 2
α

√
d
mt
L+ 2

√
Ld

1
4

m
1
4
t

β′t



≤ (
d

1
4

√
L

m
1
4
t

)

 β′t
2α

+ 1 +
2d

1
4

√
L

αm
1
4
t

+

2α‖φt − wt‖2 + ε0 + 2
α

√
d
mt
L+ 2

√
Ld

1
4

m
1
4
t

β′t


= ft(β

′
t, φt) .

35

D.2 Static AER of Gibbs

Theorem D.2. Let the Gibbs algorithm described in Proposition D.1 be the base learner. Apply
Meta-OGD (Algo. 2) on cost function ft(β′t, φt), further assume that each task use the same sample
number m, then the AER can be bounded as:

AERTGibbs ≤ O
((

(V + 1) +
1√
T

)
1

m
1
4

)
.

Proof. From Lemma B.6, we know that ft is convex w.r.t u, so we can directly apply OGD. Following
Proposition D.1, we have

ft(β
′
t, φt) = (

d
1
4

√
L

m
1
4
t

)

 β′t
2α

+ 1 +
2d

1
4

√
L

αm
1
4
t

+

2α‖φt − wt‖2 + ε0 + 2
α

√
d
mt
L+ 2

√
Ld

1
4

m
1
4
t

β′t

 .

To apply Theorem C.1, we first find a = 1
2α , b = 2α, εt = 2

α

√
d
mt
L+ 2

√
Ld

1
4

m
1
4
t

, ∆t = 1 + 2d
1
4
√
L

αm
1
4
t

,

ε0 = 2α‖wt − w̄t‖2, and κt = d
1
4
√
L

m
1
4
t

. Since we have assumed mt = m,∀t ∈ [T], then we have

κ = κt = κmax = d1/4
√
L

m1/4 , ε = εt = εmax = 2
α

√
d
mL+ 2

√
Ld

1
4

m
1
4

.

Taking the above values into Theorem C.1, we have:

AERTGibbs ≤ (
√

2(2αV 2 + ε+ ε0)/α+ 1)

T∑
t=1

d1/4
√
L

Tm1/4
+

T∑
t=1

2
√
dL

Tα
√
m

+
3d1/4

√
L

2ε̃0
√
Tm1/4

√
((1 + 4α2)D̂2 + 4

√
d/mL+

4α
√
Ld1/4

m1/4
)

×

√
8αε̃0D̂2 + (

1

α2

√
d

m
L+

√
Ld

1
4

αm
1
4

+ D̂2)2 .

Since we have assumed the bounded gradient norm for the cost function, i.e., L′-Lipschitz, then we
can obtain:

D̂2 ≤ ε̃0L
′ − aκε
abκ

,

which implies ε̃0 ≥ aκε/L′, where aκε/L′ ∈ O(1/
√
m). So it suffices to ensure ε̃0 > Ω(1/

√
m).

Moreover, we have V < D̂ < D is bounded given the boundness ofW .

So if we set ε0 ∈ om(1) and εv = bV 2 < bV 2 + ε with constant V , then ε̃0 = ε0 + εv satisfies the
above condition. Consequently, we have

AERTGibbs ≤ O
((

(V + 1) +
1√
T

)
1

m
1
4

)
.

36

D.3 Proof of Theorem 6.1 (Dynamic AER of Gibbs)

Theorem D.3. SupposeW ⊂ Rd. Assume that `(·, z) ∈ [0, 1] is L-Lipschitz and has α-quadratic-
growth for all z ∈ Z . Let wt = AGibbs(βt, φt, St) be the output of the Gibbs algorithm (Definition
B.2) on St, where φt is the mean of a prior Gaussian N (φt, σ

2
t 1d) with σt = m

−1/4
t d−1/4L−1/2

and βt is the inverse temperature. Consider Algo. 1 (DCML) and further assume that each slot has
equal length M and each task uses the sample number m. Then, the AER can be bounded as:

AERTGibbs ≤ O

((
(1 +

1

N

N∑
n=1

Vn +
1√
M

) +

√
P ∗

M
√
N

)
1

m
1
4

)
.

Proof. From Proposition D.1, we first obtain a = 1
2α , b = 2α, εn,k = 2

α

√
d

mn,k
L + 2

√
Ld

1
4

m
1
4
n,k

,

∆n,k = 1 + 2d
1
4
√
L

αm
1
4
n,k

, and κn,k = d
1
4
√
L

m
1
4
n,k

. Moreover, κmax
n = d1/4

√
L

m∗n
1/4 , εmax

n = 2
α

√
d
m∗n

L + 2
√
Ld

1
4

m∗n
1
4

,

where m∗n = min{mn,k}Mn

k=1.

For simplicity, let us assume that each environment slot has the same number of tasks, i.e., Mn = M ,
T = NM , and each task has the same number of samples, i.e., mn,k = m. So we have κn,k =

κmax
n = κ = d1/4L1/2m−1/4 and εn,k = εmax

n = ε = 2
α

√
d/mL+ 2

√
Ld1/4m−1/4.

Taking these values into Theorem 5.1, we can obtain:

AERTGibbs ≤
1

N

N∑
n=1

(
√

2(2αV 2
n + εn + ε0)/α)

d
1
4

√
L

m
1
4

+
d

1
4

√
L

m
1
4

+
2
√
dL

α
√
m

+
3

2ε̃0NM

d
1
4

√
L

m
1
4

√
M − 1×

N∑
n=1

√
(1 + 4α2)D̂2

n + 4

√
d

m
L+

4α
√
Ld

1
4

m
1
4

√
(D̂2

n +

√
d

m
L

1

α2
+

√
Ld

1
4

αm
1
4

)2 + 8αε̃0D̂2
n

+
1

NM

√
ε̃0(1 + 4α2)D̂2

max + 4

√
d

m
L+

4α
√
Ld1/4

m1/4
× d1/4

√
L

m
1
4

×

√√√√√2P ∗
N∑
n=1

(D̂2
n + 1

α2

√
d/mL+

√
Ld

1
4

αm
1
4

)2

ε̃20
+

8αD̂2
n

ε̃0
.

Since we have assumed the bounded gradient norm for the cost function, i.e., L′-Lipschitz, then we
can obtain:

D̂2
n ≤

ε̃0L
′ − aκε
abκ

,

which implies ε̃0 ≥ aκε/L′, where aκε/L′ ∈ O(1/
√
m). So it suffices to ensure ε̃0 > Ω(1/

√
m).

Moreover, we have Vn < D̂n < D is bounded given the boundness ofW .

So if we set ε0 ∈ om(1) and εv = bV 2 < bV 2
n + ε with constant V , ε̃0 = ε0 + εv satisfies the above

condition. Consequently, we have

AERTGibbs ≤ O

((
(1 +

1

N

N∑
n=1

Vn +
1√
M

) +

√
P ∗

M
√
N

)
1

m
1
4

)
.

37

D.4 Cost function for SGD base leaner

Proposition D.4. SupposeW = Rd, let w∗t be the hypothesis that achieves the minimum population
risk amongW . Suppose `(·, z) is convex, α-quadratic-growth, β-smooth, and L-Lipschitz for all
z ∈ Z . Let wt denote the output of the SGD algorithm applied on dataset St and φt be the
initialization of t-th task, ηt is the learning rate, and Kt is the gradient updates number. To meet the
unified form in Eq. (1), let η′t = (Ktαηt − 2)κt, then upper bound of the excess risk is:

f(η′t, φt) = κt

(
2α‖φt − wt‖2 + ε0 + 2(L2 + 2L2Kt

mt
)/(Ktα)

η′t
+

1

2
η′t + 2κt

)
,

where κt =
√

(1/(Ktα) + 2/(mtα)L.

From Theorem .B.4, we have the following excess risk bound for SGD:

Proof.

Rexcess(SGD, ut) ≤
‖φt − w∗t ‖2

2ηtKt
+ (

L2

2
+
L2Kt

mt
)ηt .

Let w̄t = EWt be the expected output of the SGD algorithm of t-th task, and wt is the actual output.
Let ε0 = 2α‖wt − w̄t‖2 be the randomness of the algorithm, which should be small. With the
quadratic growth property, we have

‖φt − w∗t ‖2 = ‖φt − w̄t + w̄t − w∗t ‖2

≤ 2‖φt − w̄t‖2 + 2‖w̄t − w∗t ‖2

≤ 2‖φt − w̄t‖2 + 2E‖Wt − w∗t ‖2

≤ 2‖φt − w̄t‖2 +
4E[Lµt(Wt)− Lµt(w∗t)]

α

≤ 2‖φt − w̄t‖2 +
4(
‖φt−w∗t ‖

2

2ηtKt
+ (L

2

2 + L2Kt
mt

)ηt)

α
.

Therefore, we can obtain

‖φt − w∗t ‖2 ≤
2α‖φt − w̄t‖2 + (2L2 + 4L2Kt

mt
)ηt

α− 2
Ktηt

,

Rexcess(SGD, ut) ≤
2α‖φt − wt‖2 + ε0 + (L2 + 2L2Kt

mt
)ηt

Ktαηt − 2
+ (

L2

2
+
L2Kt

mt
)ηt .

Let

f(ηt, φt) =
2α‖φt − wt‖2 + ε0 + (L2 + 2L2Kt

mt
)ηt

Ktαηt − 2
+ (

L2

2
+
L2Kt

mt
)ηt ,

and replace η′t = (Ktαηt − 2)κt, κt =

√
(L2+2L2 Kt

mt
)

Ktα
, we have

f(η′t, φt) =
2α‖φt − wt‖2 + ε0 + (L2 + 2L2Kt

mt
)(η′t/κt + 2)/(Ktα)

η′t/κt

+ (
L2

2
+ L2Kt

mt
)(η′t/κt + 2)/(Ktα)

= κt

(
2α‖φt − wt‖2 + ε0 + 2(L2 + 2L2Kt

mt
)/(Ktα)

η′t
+

1

2
η′t + 2κt

)

38

D.5 Static AER of SGD

Theorem D.5. Let SGD described in Proposition D.4 be the base learner. Apply Meta-OGD(Algo. 2)
on cost function ft(η′t, φt), further assume that each task uses the sample number m, tasks the same
number of gradient steps K. Then the AER is bounded as:

AERTSGD ≤ O

(
(V +

1√
T

)

√
1

K
+

1

m

)
.

Proof. According to Proposition D.4, we have κt =

√
(L2+2L2 Kt

mt
)

Ktα
, a = 1/2, b = 2α and εt =

2(L2+2L2 Kt
mt

)

Ktα
= 2κ2

t ,∆t = 2κt, ε0 = 2α‖wt − w̄t‖2.

For simplicity, we assume the SGD step and sample number are the same for different tasks. Hence,

we have Kt = K, mt = m, κt = κmax =
√

1
Kα + 2

mαL = κ and εt = ε = εmax = 2κ2.

Put these variable into the bound of Theorem C.1, we have:

AERTSGD ≤ (

√
2(2αV 2 + (

2

Kα
+

4

mα
)L2 + ε0))

√
1

Kα
+

2

mα
L+ 2(

1

Kα
+

2

mα
)L2

+
3

2ε̃0
√
T

√
1

Kα
+

2

mα
L×

√√√√((1 + 4α)D̂2 + 4(
1

Kα
+

2

mα
)L2

)(
8α2ε̃0D̂2 +

(
(

1

Kα
+

2

mα
)L2 + αD̂2

)2
) .

Since we have assumed the bounded gradient norm for the cost function, i.e., L′-Lipschitz, then we
can obtain:

D̂2 ≤ ε̃0L
′ − aκε
abκ

,

which implies ε̃0 ≥ aκε/L′, where aκε/L′ ∈ O(m−3/2 + K−3/2). So it suffices to ensure ε̃0 ∈
Ω(m−3/2 +K−3/2).

Moreover, we have V < D̂ < D is bounded given the boundness ofW .

So if we set ε0 ∈ om(1) + oK(1) and εv = bV 2 < bV 2 + ε, s.t. ε̃0 = ε0 + εv satisfies the above
condition, we have

AERTSGD ≤ O

(
(V + om(1) + oK(1) +

1
om(1)+oK(1)+V 2

√
T

)

√
1

K
+

1

m

)
.

Considering a constant variance, it gives the following bound that has the same complexity factor and
rate as Theorem 3.2 in [31] (Khodak et al. [31] used OGD as the base learner, where each step only
takes one sample, i.e., K = m).

AERTSGD ≤ O

(
(V +

1√
T

)

√
1

K
+

1

m

)
.

If we have V → 0, we can set ε0 ∈ om(1) + oK(1) and εv = bV 2 + ε + 1/T 1/4 > bV 2 + ε, s.t.
ε̃0 = ε0 + εv satisfies the above condition. In this case, we have:

AERTSGD ≤ O

((
V + om(1) + oK(1) +

1√
T

+

1
om(1)+oK(1)+V 2+1/T 1/4

√
T

)√
1

K
+

1

m

)

= O(
1

4
√
T

+ om(1) + oK(1))

√
1

K
+

1

m
,when V → 0 ,

which has an additional term om(1) + oK(1) compared to Theorem 3.2 in [31]. This is because the
variance V 2 (task similarity) in our paper is calculated via the average SGD iterates. A similar term
will be introduced using the same output for estimating V in [31].

39

D.6 Proof of Theorem 6.2 (Dynamic AER of SGD)

Theorem D.6. Let W = Rd. Consider that `(·, z) is convex, β-smooth, L-Lipschitz, and has
α-quadratic-growth for all z ∈ Z . Let SGD be the base learner for each task where it outputs
wt = ASGD(ηt, φt, St) with learning rate ηt and initialization φt. Consider Algo. 1 (DCML) on the
SGD cost function. Further, assume each slot has equal length M , each task uses the sample number
m and the same number of updating steps K. Then the AER is bounded by:

AERTSGD ≤ O

((
1

N

N∑
n=1

Vn +
1√
M

+

√
P ∗

M
√
N

)√
1

K
+

1

m

)
.

Proof. For simplicity, we assume the SGD step and sample number are the same for different tasks.
Hence, Kn,k = K and mn,k = m. Based on Proposition D.4, we have a = 1/2, b = 2α. Then, we

get κn,k =
√

1
Kα + 2

mαL = κ εn,k = ε = 2κ2, and ∆n,k = 2κn,k.

Put these variable into the bound of Theorem 5.1, we can obtain:

AERTSGD ≤ (
1

N

N∑
n=1

√
2(2αV 2

n + 2(
1

Kα
+

2

mα
)L2 + ε0))

√
1

Kα
+

2

mα
L+ 2(

1

Kα
+

2

mα
)L2

+
3

2ε̃0M

√
1

Kα
+

2

mα
L
√
M − 1×

1

N

N∑
n=1

(√
(1 + 4α)D̂2

n + (
4

Kα
+

8

mα
)L2

√
(αD̂2

n + (
1

Kα
+

2

mα
)L2)2 + 8α2ε̃0D̂2

n

)

+
1

M

√
(1 + 4α)D̂2

max + 4L2(
1

Kα
+

2

mα
) + 2ε̃0 ×

√
1

Kα
+

2

mα
L

×

√√√√2P ∗

N

1

N

N∑
n=1

[
(αD̂2

n + (1
Kα + 2

mα)L2)2

ε̃20
+

8α2D̂2
n

ε̃0

]
.

Since we have assumed the bounded gradient norm for the cost function, i.e., L′-Lipschitz, then we
can obtain:

D̂2
n ≤

ε̃0L
′ − aκε
abκ

,

which implies ε̃0 ≥ aκε/L′, where aκε/L′ ∈ O(m−3/2 + K−3/2). So it’s sufficient to ensure
ε̃0 ∈ Ω(m−3/2 +K−3/2). Moreover, we have Vn < D̂n < D is bounded given the boundness ofW .

So if we set ε0 ∈ om(1) + oK(1) and εv = bV 2
n < bV 2

n + ε s.t. ε̃0 = ε0 + εv satisfies the above
condition, we have

AERTSGD ≤ O

((
1

N

N∑
n=1

Vn + om(1) + oK(1) +
1

ε0+V 2√
M

+

1
ε0+V 2

√
P∗

N

M
)

√
1

K
+

1

m

 .

The above bound has additional om(1) + oT (1) compared to Theorems in [31]. Since the variance
V 2
n (task similarity) in this paper is calculated via the average SGD iterates. A similar term will be

introduced using the same algorithm outputs for estimating V in [31]. Moreover, our bound is in
terms of average task excess risk, while [31] upper bounds the average task regret for online base
learners using a different meta-learning algorithm.

Considering a constant variance, we have

AERTSGD ≤ O

((
1

N

N∑
n=1

Vn +
1√
M

+

√
P ∗

M
√
N

)√
1

K
+

1

m

)
.

When we have a large P ∗ with a small N (the environment occasionally changes with a large shift),
the above bound has an improved rate of O(1/

√
M) or

√
P ∗ on the path length P ∗ (reflecting

40

environment similarities and shifts) compared to O
(

1
N

∑N
n=1 Vn + 1√

M
+ min{

√
P∗

MN ,
P∗

NM }
)

–
the equivalent form of Theorem 3.3 [31] in this case.

If we have Vn → 0, we can set ε0 ∈ om(1) + oK(1) and εv = bV 2
n + ε + 1/M1/4 > bV 2

n + ε, s.t.
ε̃0 = ε0 + εv satisfies the aforementioned condition. In this case, we have:

O

 1

N

N∑
n=1

Vn + om(1) + oK(1) +
1 + 1

ε0+V 2+1/M1/4

√
M

+

1
ε0+V 2+1/M1/4

√
P∗

N

M

√ 1

K
+

1

m

= O

(
1

4
√
M

(
1 +

√
P ∗

NM

)
+ om(1) + oK(1)

)√
1

K
+

1

m
,when Vn → 0 .

The above bound has an improvement of rate O(1/ 4
√
M) on P ∗ as Vn → 0 compared to the

equivalent term O
(

1
4√
M

+
√

P∗

NM + om(1) + oK(1)
)

of Theorem 3.3 in [31].

41

E Experiments

In this section, we provide experimental settings, some additional experimental results, and experi-
mental details. The code is available in https://github.com/livreQ/DynamicCML.

E.1 Experimental settings

Figure 6: Summary of experimental settings

E.1.1 Detailed setting in OSAKA

Task data generating process Following OSAKA, we use a pre-trained meta-model as initializa-
tion. The datasets in OSAKA contain three environments. One is used for pre-training, and the other
two are considered unseen, consisting of OOD tasks compared to the pre-trained environment. We
run 10 CML episodes for each method, where each episode has a length of T = 10000 time steps.

At each time step, we choose to change to another environment with probability p. We select the
new environment with a probability of 0.5 for the pre-trained environment and 0.25 for one of the
other two. Then, a task is sampled from the selected environment. The above generation process
is slightly different from the original OSAKA, which mainly considers a task-agnostic setting (i.e.,
unknown task boundary). They used a single probability for switching the task and environment
simultaneously. In contrast, we focus on shifting environments under the task-aware setting, where
the task switches with probability 1, and the environment changes with the process described above.
A visualization of the data-generating process is presented in Fig. 6.

Datasets We test DCML on two representative datasets in OSAKA.

• The Synbols [43] dataset uses characters from different alphabets on randomized back-
grounds as the pre-training environment. A new alphabet and font classification tasks are
considered unseen environments. This is a large and complex dataset including a heteroge-
neous environment (font) with extremely large concept shift w.r.t other environments. We
conduct a 4-way 5-shot classification for this dataset.

• For Omniglot-MNIST-FashionMNIST(OMF), we pre-train the meta-model on the first 1000
classes of Omniglot [44]. Then, at CML time, the models are updated on a stream of tasks
generated by the process discussed in the previous section exposed to the full Omniglot
dataset and two OOD datasets – MNIST [45] and FashionMNIST [46]. In this study, we
conduct 10-way 5-shot classification as the benchmark does.

42

https://github.com/livreQ/DynamicCML

Table 2: Comparison of computational complexities with baselines
Methods Computational complexity

Fine-tuning O(T ∗K)
MetaCOG O(T ∗ (K +M))
MetaBGD O(T ∗ (K +M))

ANIL O(T ∗K)
MAML O(T ∗K)

CMAML O(T ∗ (K + 1))
DCML O(T ∗ (K + 1))

Baselines We compared the proposed algorithm with different baselines. For a fair comparison,
we further use the same meta-model pre-trained with MAML [4] for all the methods. During the
continual learning phase, all the methods adapt with few-shot data and are then evaluated on separate
test data for each task.

• ANIL is a variation of MAML that only adapts the network’s head w.r.t new tasks. Following
OSAKA, MAML, and ANIL do not update the meta-model during the CL phase. so they
will not suffer from forgetting but lack the plasticity to learn from tasks in new environments.
They are compared to show the problem with static representations in shifting environments.

• CMAML [13] includes an update modulation phase and a prolonged adaptation phase. The
former uses a function gλ : R → (0, 1) to modulate the learning rate of the meta-model
proportionally to the loss value. The latter updates the meta-model with buffered tasks when
the environment changes or a task switch is detected. Otherwise, it keeps updating w.r.t the
previous model. When λ = 0, CMAML is equivalent to MAML, which never updates the
meta-model. When λ → ∞, CMAML updates the meta-model with a constant learning
rate.

• MetaBGD and MetaCOG [8] perform CML based on MAML and Bayesian Gradient
Descent (BGD), where Meta-COG introduced a per-parameter mask.

• Fine-tuning uses the meta-model as initialization and consistently updates this model w.r.t
the tasks encountered, which can be considered a lower bound in the setting to illustrate
catastrophic forgetting.

Remark E.1. Two modifications w.r.t original OSAKA benchmark: (1) We consider a task-aware
setting, where the task constantly shifts at each timestep. (2) The cumulative performance in the
original OSAKA is evaluated on the model before updating to current task data, which does not use
the support query splits. Instead, we follow the CML setting and evaluate all the baseline algorithms
on the model after updating to the current task.

Computational Complexity The computational complexities of all the methods are provided in
Tab. 2, where the run time is measured in terms of the number of gradient computations. All the
methods are assumed to use a K-step SGD as the inner algorithm.

• Fine-tuning uses the meta-model as initialization and consistently updates this model w.r.t
the tasks encountered. MAML and ANIL do not update the meta-model during the learning
phase. Therefore, these methods need to compute T ∗K gradients for the T encountered
tasks.

• MetaBGD and MetaCOG perform CML based on MAML and use Bayesian Gradient
Descent (BGD) for meta-model adaptation, which requires M Monte Carlo samplings for
the meta-gradient computation. Hence, the computation complexity is O(T ∗ (K +M)).

• DCML and CMAML need one meta-gradient and K inner gradients computations for each
task, so the complexity is O(T ∗ (K + 1)).

43

0.0 0.2 0.4 0.6 0.8 1.0
p

1

0

1

2

3

4

5

6

Av
er

ag
e

te
st

 lo
ss

 (l
og

 sc
al

e)
 a

t t
=2

00
oracle
detect

window
static

(a) Average test loss w.r.t changing probability p. (b) Bayes online changing-point detection

Figure 7: Additional experiments for moving 2D Gaussian

E.2 Additional results

E.2.1 Moving 2D Gaussian

Comparison of different environment shift detection methods In Fig. 7 (a), we plot the average
test loss at t = 200 w.r.t the environment changing probability p in log scale, where we set the
window size to 10 for "window". We can see that the "window" performs similarly to the "oracle"
when the environment changes occur not too frequently. "Static" shows the worst result, then the
"detect ." We simply (without carefully adjusting the hyper-parameters) adapted the Bayes Online
Changing-point Detection (BOCD) to the algorithm output, which, in fact, highly depends on the
performance of the base learner. Fig. 7 (b) illustrates the detection results of BOCD, where the green
lines are the detection results and the red lines are the actual changing points. The upper figure shows
one of the dimensions of the algorithm output wt with blue points. The lower figure illustrates the
run-length posterior at each time step using a logarithmic color scale, where darker indicates a higher
probability. We can see that with the current hyper-parameter setting, detection results are delayed
compared to the actual changing points. BOCD is more likely to miss detecting some changing points
rather than conducting false detection. The pseudo-code for BOCD is provided in Algo. 3.

Not always a necessity for the exact detection of changing points We observed a better perfor-
mance of "window" than "oracle" for the OSAKA dataset in the main paper, which implies that the
exact changing points detection may not be necessary.

This result is related to the algorithm, which does not necessarily hold for other methods that maintain
multiple meta-models. By updating a single meta-model online, the context switch cost exists
for reconstructing the meta-knowledge in each slot. Setting a fixed window size can ensure the
meta-knowledge quality of each slot and yield good performance on average.

In addition, the phenomenon is related to the overlap between the consecutive environment distribu-
tions and the environment shift probability p. We empirically tested these factors, and the result is
presented in Fig. 8. In Fig. 8, "oracle" is better than "window" when p < 0.1, and the gap becomes
more evident when the distribution overlap is smaller.
Remark E.2. A larger overlap between distributions indicates that they are more similar, which can
provide a better transfer performance (smaller test loss in Fig. 8 (a) than in (b)). In this case, the two
distributions are close, so it’s hard to determine precisely which distribution the encountered task
belongs to. When two distributions are well-separated, it’s easy to detect the shift correctly, but the
transfer error is larger.

E.2.2 OSAKA benchmark

We present in Tab. 5 additional results for the Synbols dataset with the environment changing
probability p = 0.4 and p = 1.0. We can see DCML performs much better than baselines on new
environments, especially the hardest one – Font.

44

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
p

0

1

2

3

4

5

Av
er

ag
e

te
st

 lo
ss

 (l
og

 sc
al

e)
 a

t t
=2

00

oracle
detect

window
static

(a)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
p

1

0

1

2

3

4

5

6

7

Av
er

ag
e

te
st

 lo
ss

 (l
og

 sc
al

e)
 a

t t
=2

00

oracle
detect

window
static

(b)

Figure 8: Justification of "Oracle" and "Window" (window size = 1/p) methods on the Moving
2D Gaussian mean estimation: (a) Consecutive environment distributions with a large overlap,
where τt = N (φ̃∗t , I2), and φ̃∗t = φ̃∗t−1 + (1, 1) with probability of p. (b) Consecutive environment
distributions with a small overlap, where τt = N (φ̃∗t , 0.1I2), and φ̃∗t = φ̃∗t−1+(2, 2) with probability
of p.

(a) (b)

(c) (d)

Figure 9: Average test accuracy on (a) all environments (b) Omniglot, the pre-trained environment (c)
Fashion MNIST, the unseen environment (d) MNIST, the unseen environment when the environment
changes with probability p = 0.8.

In addition, we provide the experimental records in wandb for the OMF dataset when the environment
changes with probability p = 0.8. The average test accuracies w.r.t timesteps in the CL phase are
plotted in Fig. 9.

45

Table 3: Average test accuracy (%) at t = 10000 on Synbols datasets of OSAKA benchmark

SYNBOLS, p = 0.4 SYNBOLS, p = 1.0

MODEL ALL ENV. ALPHA. NEW ALPHA. FONT TOTAL ALPHA. NEW ALPHA. FONT
FINE TUNING 25.3± 0.8 25.4± 1.2 25.2± 0.5 25.1± 0.3 25.2± 0.7 25.4± 1.0 25.2± 0.5 25.1± 0.4
METACOG [8] 25.1± 0.9 25.1± 1.3 25.0± 0.7 25.0± 0.3 25.0± 0.8 25.7± 0.9 25.0± 0.8 25.0± 1.0
METABGD [8] 29.2± 7.5 30.9± 10.8 27.8± 5.0 27.0± 3.2 28.6± 6.7 30.2± 9.6 27.4± 4.6 26.6± 3.2
ANIL [47] 60.6± 0.3 77.5± 0.1 53.4± 0.2 32.6± 0.2 60.4± 0.1 77.6± 0.1 53.7± 0.1 32.8± 0.2
MAML [4] 77.0± 0.3 96.8± 0.1 72.9± 0.2 40.3± 0.3 76.8± 0.1 96.8± 0.2 73.0± 0.2 40.2± 0.4
CMAML [13] 64.9± 1.5 79.0± 3.8 60.2± 0.6 40.3± 1.4 63.1± 1.1 77.0± 3.1 58.6± 0.8 40.1± 1.6
DCML(ORACLE) 77.1± 0.6 95.8± 0.2 73.2± 0.3 42.3± 0.4 77.1± 0.1 95.7± 0.5 73.1± 0.4 43.4± 1.2
DCML(WINDOW) 77.2± 0.5 96.0± 0.3 73.4± 0.4 42.2± 0.8 77.2± 0.2 95.6± 0.6 73.2± 0.5 44.2± 1.6

E.3 Experimental details

E.3.1 Moving 2D Gaussian

Model As we described in the main paper, the hypothesis space of the moving 2D Gaussian is R2.
And we adopt mean square loss ‖w−x‖2, which is 2-strongly convex, so it’s 2-quadratic growth with
α = 2. Moreover, we limited the data to [−10, 10]× [−10, 10]. Thus, for the given loss function, the
Lipshitz constant is L = 20

√
2, and we set L = 30 in the code.

Training Details The hyper parameter settings and training details for Moving 2D Gaussian are
presented in Table 4. We can see with the Algorithm 1 provided in the main paper. There is no
need to set the hyper-parameters for the base learner. They are automatically adapted to the derived
equations. Moreover, the initial learning rate of the meta learner is controlled by D_hat_guess. Then,
it’s also scheduled automatically with time and environment changing points.

Table 4: Moving 2D Gaussian experimental details

Hyper-parameters Fig. 3(b) Fig. 7(a)
task horizon T 200

loss mean square loss
Lipschitz constant L 30

α 2
hopping lr ρ 0.8
D_hat_guess 5

sample numbers m 100 100
inner epoch K 1 2

changing prob p 0.05 [0.025, 0.063, 0.158, 0.398, 0.631, 1]

Computing Resource All experiments for Moving 2D Gaussian were tested on a Mac with an Intel
Core i5 CPU and 8G memory.

E.3.2 OSAKA benchmark

Model for OMF dataset We used a CNN network architecture as the basic model. The four modules
are identical: A 3× 3 2d convolution layer with 64 filters, stride 1, and padding 1. The following
are a batch normalization layer, a Relu layer, and a max-pooling layer of stride 2. The image data
passing the aforementioned modules form a 64× 1× 1 feature map, which was further taken into a
fully connected layer. Then the fully connected layer outputs the logits for a 10-class classification.
At last, the cross-entropy loss is calculated with the logits and the corresponding labels.

Model for Synbols dataset We used a CNN network architecture as the basic model. The four
modules are identical: A 3 × 3 2d convolution layer with 64 filters, stride 1, and padding 1. The
following are a batch normalization layer, a Relu layer, and a max-pooling layer of stride 2. The
image data passing the aforementioned modules form a 64× 2× 2 feature map, which was further
flattened and taken into a fully connected layer. Then, the fully connected layer outputs the logits for a
4-class classification. At last, the cross-entropy loss is calculated with the logits and the corresponding
labels.

Training Details The hyper-parameter settings and training details for OSAKA data sets are outlined
in Table 5.

46

Computing Resource The experiments for OSAKA were run on a server node with 6 CPUs and 1
GPU of 32GB memory.

Table 5: OSAKA experimental details

Hyper-parameters OMF Synbols
task horizon T 10000

loss cross entropy
α 4

D_hat_guess 100
image size 28*28 32*32

image channel 1 3
n_shots 5 5

n_shots_test 15 15
n_ways 10 4

prob_statio 0.0 0.0
sample number m =n_shots * n_ways 50 20

inner epoch K 8 16
prob_env_switch p [0.2, 0.4, 0.6, 0.8, 1.0] [0.2, 0.4, 1.0]

Lipschitz constant L 200 100
hopping lr ρ 1.0 0.2

eta_0 6.0 20
epsilon_0_rate 1.0 4.0

Hyper-parameter Search Following OSAKA, the hyper-parameters were tuned by random search,
and the same number of trials were allocated for each algorithm. For each trial, we sampled hyper-
parameter combinations uniformly from the search space presented in Tab. 6 for baselines and in
Tab. 7 for DCML.

According to the experimental setting of OSAKA, we do not need a validation dataset for searching
the hyper-parameters. New CML episodes (task sequences) generated with different random seeds
can be considered held-out data. The results reported in the paper are tested on 10 new CML episodes
using the learned hyper-parameters.

Table 6: Hyper-parameter search space for baselines

Hyper-parameters Search space
meta-learning rate η 0.0001, 0.0005, 0.001, 0.005, 0.01

base learning rate 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5
inner steps 1, 2, 4, 8, 16
first-order True, False

modulation λ 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 2.0, 2.5, 3.0
parameter variance σ 0.0001, 0.01, 0.1

step-size for parameter mean β 0.5, 1.0, 10
MC samples 5

threshold for task switch γ -2

E.4 Bayes Online Changing-point Detection

We modify the implementation of BOCD in [52] for our experiments. The detailed method is
presented in [42]. Given a sequence of tasks, we use the base leaner outputs w1:t as observations of
BOCD to be divided into non-overlapping product partitions. Each partition can be considered as
sampled from the same static environment slot. BOCD model the detection of changing point as
estimating the posterior distribution over the current run-length rt ∈ [0, 1, ..., t], i.e., P (rt|w1:t) =
P (rt,w1:t)
P (w1:t)

. Thus, rt = 0 means to start a new partition.

We treat the hypothesis as factorized Gaussian and apply BOCD on each dimension of the algorithm
output wt. For Moving 2D Gaussian, we detect the whole wt, since it’s just 2D. Here, we provide the
pseudo-code in Algorithm 3 with Gaussian Prior for each dimension applied in our experiments.

47

Table 7: Hyper-parameter search space for DCML

Hyper-parameters Search space
quadratic growth parameter α 0.05, 0.5, 1, 2, 4, 6, 8, 10

Lipschitz constant L 50, 100, 150, 200, 250, 300, 350, 400
number of inner steps K 1, 2, 4, 8, 16

slot diameter guess D̂ 50, 100, 200, 400, 600
hopping learning rate ρ 0.2, 0.4, 0.6, 0.8, 1.0

initialization β1 2, 4, 6, 8, 10, 12, 14, 16, 18, 20
initialization of ε0 1, 2, 4, 6, 8, 10

Algorithm 3 Pseudo code for detecting environment change
Require: P (r0 = 0) = 1, prior mean µ0

1 = 0, prior precision δ0
1 = 1/0.1, changing probability p,

data precision δw = 1
for t← 1 to T do

observe new algorithm output wt
evaluate the predictive probability πrt = P (wt|µrt , δrt)
calculate the growth probability P (rt = rt−1 + 1, w1:t) = P (rt−1, w1:t−1)πrt (1− p)
calculate the changepoint probability P (rt = 0, w1:t) =

∑
rt−1

P (rt−1, w1:t−1)πrt p

calculate evidence P (w1:t) =
∑
rt
P (rt, w1:t)

update run length distribution P (rt|w1:t) = P (rt, w1:t)/P (w1:t)
update statistics:
δrt+1 = δrt , δ

r+1
t+1 = δrt + δw

µrt+1 = µrt , µ
r+1
t+1 = 1/δr+1

t+1 ∗ (δrtµ
r
t + wtδw)

if arg maxk P (rt = k|w1:t) < arg maxk P (rt−1 = k|w1:t−1) then
changing point detected

end
end

48

F Additional Discussion

F.1 Learning-forgetting w.r.t meta-updates

In this section, we offer some intuitive interpretations for the adaptive updates of the meta-parameter
of the base learner.

The updates of the meta-parameter (φ and β) in Algo. 1 and 2 can be separately expressed as:

φt+1 = (1− 2bκtγt
βt

)φt + 2bκtγt
βt

wt and βt+1 = βt − γt(aκt − κt(b‖φt−wt‖2+εt+ε0)
βt2

).

Considering the case that all the tasks have the same sample number. βt reflects the confidence of A
on the given initialization for learning the task t. For example, βt is the learning rate (step size) for
SGD. A large learning rate means that the learner relies more on the data, and a small one means
believing the prior. From the update of β, we can see a large βt+1 implies that the current task output
is far from its initialization (‖φt − wt‖ is large), which indicates the current task t may be an outlier,
exceeding the range of meta-model for recovering its performance. Hence, the environment may
have changed. So in the next task, the base learner learns more from the task data instead of keeping
close to the initialization (βt+1 is large).

The learning rate of the initialization (or bias) is determined by 2bκtγt
βt

. As mentioned above, a large
distance from the initialization indicates that the current task t may be an outlier. So from t+ 1 step,
the tasks are treated with low confidence to update the common initialization φt+1 with 2bκγt

βt+1
being

small (βt+1 is large). Then until the distance w.r.t the common initialization holds a small value for
several rounds, β also decays to a smaller value. The tasks start to contribute more to updating the
initialization.

The above mechanism works well for static environments and can address forgetting in shifting
environments. But it will lose tracking ability in the shifting environment, so we need slot-wise
adjusting for γt to obtain a better trade-off.

F.2 Real-world examples for practicality and necessity of CML

A typical real-world application of CML is the online recommendation system, where we aim to
predict the user’s preference for various products. Different users’ preferences are considered as
different task distributions. The distribution of users can be regarded as a task environment. The
recommendation system maintains a meta-model that predicts the recent preferences shared across
users and adapts task-specific models that predict the user-specific preferences.

The user queries for displaying products arrive sequentially, and the system randomly distributes
several (e.g.,mt = 200) products in response to the query. Denote the products and the corresponding
preferences for t-th user as (Xi, Yi) ∼ µt,∀i ∈ [mt], which are i.i.d.. The labels are initially unknown
for this setting, but a few labels can be acquired through the following interaction:

• The meta-model predicts the preferences over products and displays them according to the
predicted preference order.

• Normally, the user will only view a small part (m′t = 50) of the distributed products, and
the preference can be determined with the clicks or view time over these products, which
gives the few-shot labeled samples.

• Then, the task-specific model is adapted from the meta-model with these examples. We
hope the model can generalize on the rest of the unseen examples with correct preference
prediction, which can provide new recommendations.

• Finally, the task-specific model of each user is used for updating the meta-model. Since the
shared preferences change with the season, fashion trends, and accidental events, the task
environment is shifting.

F.3 More details on DCML

Relate parameters in eq. 1 to specific base learner Since the proposed framework is valid for
different base learners, the parameters like a, b, and κ in the unified form of excess risk upper bounds

49

(cost function) are related to the specific algorithm. Since all of the experiments adopt SGD, we give
here a detailed description of it.

According to Proposition D.4, the K-step SGD with learning rate ηt and initialization φt for the t-th
task has the following cost function:

f(βt, φt) = κt

(
1

2
βt +

2α‖φt − wt‖2 + ε0 + 2κ2
t

βt
+ 2κt

)
,

where a = 1
2 , b = 2α, κt = L

√
1
Kα + 2

mtα
, εt = 2κ2

t ,∆t = 2κt. The learning rate of the base

learner ηt = (βtκt + 2)/(Kα) is related to the sample number mt of each task via κt, which can
reflect the generalization.

Impact of the initial meta-parameter on the model’s behavior The initial meta-parameter sub-
stantially affects the model’s behavior. For instance, the aforementioned recommendation system
suffers from a well-known cold-start problem. A well-pertained model initialization φ1 can help
address the problem.

Given a good initialization φ1, β1 also affects the performance substantially. According to the
meta-parameter adaptation, if β1 is too large, the algorithm tends to keep the prior knowledge and
will not learn from the data. If β1 is too small, the algorithm will ignore the initialization and learn
from scratch.

How does DCML adjust the meta-parameter The updates in Algo. 1 for the meta-parameter
u = (βt, φt) are:

φt+1 = (1− 2bκtγt
βt

)φt +
2bκtγt
βt

wt, βt+1 = βt − γt(aκt −
κt(b‖φt − wt‖2 + εt + ε0)

βt
2) .

We adjust the learning rate of the meta-parameter (γt) with the following strategy:

• For k-th task inside the n-th environment (slot), γt = γ0/
√
k, where the initialization is

determined by the theoretical optimal value γ0 = ε0
κt

√
(1+b/a)D̂2+εt/α

4ab2D̂2ε0+a2(b∗D̂2+ε2t)
2

.

• When an environment change is detected, γt is set to a large hopping rate γt = ρ, which is
related to the path length.

How to set hyper-parameters In the experiments, we tune the following hyper-parameters
α,K,L, D̂, ε0, ρ, β1 by random search on the defined space in Tab. 7. Specifically for the sim-
ple moving 2D Gaussian: since the loss function is 2-strongly convex, we have α = 2.

F.4 Limitations

The proposed theory works for non-convex loss when using the Gibbs algorithm. However, We do
not offer analysis for SGD with non-convex loss, where it’s hard to find an easily optimizable form
for the excess risk upper bound. Excess risk analysis for gradient-based learning algorithms with
non-convex loss is a promising but challenging direction for the deep learning community. We hope
to work on this topic in the future.

In this paper, we do not provide theoretical guarantees for memory-based approaches, which can
better address meta-level forgetting with additional memory cost. Future theoretical studies can be
conducted to complete the framework.

F.5 Broader Impacts

In general, this work is fundamental. It aims to understand the bi-level learning-forgetting trade-off
in CML and improve the model performance in real-time intelligent systems with a better trade-off
balance. The potential negative impacts depend on the specific application.

50

Potential negative impacts Since the main objective is to obtain the optimal average excess risk
over rounds, when each task relates to a person in some applications like personalized recommendation
systems or medical diagnosis systems, it may cause some fairness issues for individuals, especially
those who appear around the changing points.

How to address? The aforementioned potential unfairness can be mitigated by adding calibration
modules as in [53–55] or providing more training data for tasks around changing points.

G Additional Related Works

G.1 Summary and comparison of related settings

Table 8: Comparison of different settings adapted from [13], where S and Q represent the train and
test data from the same distribution, respectively. Train data S = S̄ ∪ S̃ is further divided into the
support and query sets. µt is a sub-task in CL with i.i.d. data, CLP1:M represent whole CL problems
of infinite non-i.i.d. data stream and p(T) is the distribution over them.

Settings Task Datasets Tasks & Environments Task Parameter (base) Meta Updates Evaluation
SL S,Q ∼ µ — w = A(S) — L(w,Q)

CL S1:T , Q1:T ∼ µ1:T
µ1:T ∼ τ (static)

µ1:T ∼ τ1:T (shifting) w = ACL(S1:T) —
∑T
t=1 L(w,Qt)

ML S1:M ∼ µ1:M (train tasks),
SM :N ∼ µM :N (test tasks) µ1:N ∼ τ wi = A(u, S̄i),

∀i ∈ [M],M < N
∇u
∑M
i=1 L(A(u, S̄i), S̃i)

∑N
i=M L(A(u, S̄i), S̃i)

CML S1:T , Q1:T ∼ µ1:T
µ1:T ∼ τ (static)

µ1:T ∼ τ1:T (shifting) wt = A(ut, S̄t)
∇ft(ut) or

∇utL(A(ut, S̄t), S̃t)

∑
t L(A(ut, S̄t), Qt)

MCL Si,1:T , Qi,1:T ∼ CLPi
∀i ∈ [M]

CLP1:M ∼ p(T) wi = ACL(u, S̄i,1:T) ∇u
∑
t L(ACL(u, S̄i,1:T), S̃i,t)

∑M
i=1

∑
t L(ACL(u, S̄i,1:T), Qi,t)

We present different settings related to the Continual Meta-Learning (CML) problem studied in this
paper in Tab. 8. The detailed discussions in each setting can be found in the following sections.

Supervised Learning (SL) methods learn as a single task from the train data and evaluate on inde-
pendent test data. The data points are assumed, i.i.d. sampled from the same distribution. Continual
Learning (CL) aims to learn from a sequence of non-i.i.d. tasks, where the data points inside each
task are i.i.d. Meta-Learning (ML) has many settings. Here, we present the statistical version. All the
tasks are assumed to be i.i.d. sampled from the same task environment. The evaluation is conducted
on test tasks to measure the generalization performance of the algorithm on new tasks.

In Meta-Continual Learning (MCL), a continual learning prediction problem (CLP) is defined as
a non-i.i.d. data stream, which is a task sampled from the stationary distribution p(T). Random
subsequences of dependent data points of length k are sampled from each CLP task for training. The
major difference between CML and MCL settings is that the non-stationarity of CML comes from
the sequentially encountered non-i.i.d. task distributions. In contrast, the non-stationarity of MCL
comes from the non-i.i.d. data points within a task.

G.2 Continual Learning

Except for the taxonomy w.r.t different approaches mentioned in the main paper, CL can also be
divided into the following three scenarios w.r.t the different properties of the task distributions
[56, 57]. Class Incremental Learning (CIL) [58] involves learning new classes over time without
having access to all classes at once during training. The label space is growing over time, where
Yt ⊂ Yt+1,∀t. In the final step, the predictor is aimed to be capable of classifying all the seen
classes. Domain Incremental Learning (DIL) [59] defines on the same label space Y that has a fixed
associated semantic meaning, and the marginal distributions on input space µt(X) varies over time.
Task Incremental Learning (TIL) [5] can define on different label spaces Yt 6= Yt+1,∀t or the same
label space Y associated to different semantic meanings over tasks. In conventional definitions, CIL
and DIL are under a weak task-agnostic setting (the task identities or task boundaries are unknown
during testing but known during training), while TIL is under the task-ware setting with known task
identities. However, with increasing research diversities, TIL has also been studied in task-agnostic
settings recently. In this paper, we study CML within a similar TIL scenario of CL.

51

Key Differences between CL and CML The two settings share the common objective of address-
ing the stability-plasticity dilemma, which is the typical objective for learning from non-stationary
data. Their key differences are:

Continual Learning:

• Standard CL methods sequentially adapt a task model and aim for a final model that
performs well on all the tasks encountered. (Some memory-based approaches like dynamic
architecture grow a subnet for each task.)

• The current task model is adapted from the previous task model.
• Standard CL reports the final performance of the agent on all the tasks at the end of its

lifetime.
• Standard CL approaches mainly focus on minimizing catastrophic forgetting without con-

sidering quick generalization for tasks with few-shot data, e.g., the replay-based and
regularization-based methods.

Continual Meta-Learning:

• CML methods sequentially adapt a meta-model and aim to recover the performance on
previous tasks by adapting the meta-model with few additional samples. Therefore, it’s
more suitable for learning few-shot tasks. (Some memory-based approaches grow a subnet
for each environment.)

• The current task model is adapted from the meta-model.
• CML reports the cumulative performance of the agent throughout its lifetime.
• CML focuses on quick generalization for new tasks and fast recovering performance of

previous tasks with few-shot data.

G.3 Meta-Continual Learning

Javed and White [60] and Gupta et al. [61] study a different Meta-Continual Learning (MCL) setting.
A continual learning prediction problem (CLP) is defined as a non-i.i.d. data stream, which can be
considered a CLP task T . The CLP tasks are sampled from a stationary distribution p(T), where
for each CLP task, random subsequences of dependent data points are sampled from the task for
training. [60] conducts offline meta-representation learning w.r.t two objectives MAML-REP and
OML. MAML-REP uses batch data for inner adaptation. OML is calculated with a single data
point for each inner adaptation, which can reflect the degree of forgetting in CLP tasks. Gupta
et al. [61] proposes La-MAML, which adopts a replay buffer and conducts meta-initialization with
optimization on the OML objective in an online manner. In addition, La-MAML adopts a modulation
of per-parameter learning rates in the meta-learning updates. The optimization of learning rates in
La-MAML is w.r.t empirical loss, while our learning rates optimization is based on the excess risk
upper bound. So, our approach suffers less from over-fitting.

G.4 Continual Meta-Learning

Static environments Harrison et al. [32] studies continual meta-learning (CML) under task agnostic
setting, where the task boundaries are unknown. It proposed an algorithmic framework MOCA
that incorporates different meta-learning methods with Bayesian Online Changing-point Detection
(BOCD) to identify unknown task boundaries during the meta-learning process. The task environment
is still assumed static. On the contrary, we focus on the bi-level trade-off in shifting task environments
with known task boundaries, where we detect the environmental distribution shift, not the task
distribution shift.

Shifting environments To address the environment shift, Jerfel et al. [14] proposes a non-
parametric Dirichlet process mixture of hierarchical Bayesian models that allows adaptively adding
new task clusters and selecting over a set of learned meta-initialization parameters for the newly
encountered task. A similar approach is also used to detect the task shift in a task-agnostic setting.
For both task-agnostic and task-aware settings, [14] has tested the proposed algorithm on datasets
with two times environment shifts. The proposed method requires additional O(K) memory for

52

storing the initialization parameters for the detected K clusters. For each task, it needs to update the
task-specific model and the meta-model for all the K initializations. K can grow with the time.

Zhang et al. [15] use a Dynamic Gaussian Mixture Model (DGMM) to model the distribution of the
meta-parameters. Different from [14], which applies point estimation during inference, [15] derived
a structured variational inference method that can reduce overfitting. The experiment is conducted
with three times environment shifts of four datasets. [15] needs O(K) extra memory for storing the
meta-parameters.

Wang et al. [16] studies a slightly different setting where each environment has a super long task
sequence. In this case, the cartographic forgetting for meta-knowledge is more obvious. To address
this, they use a memory buffer to store a small number of training tasks from previous environments
and a shared representation for different task environments and grow the subnets when a new
environment is detected on latent space using BOCD. For deciding which cluster the task belongs
to, they store the average embedding for each environment for calculating the distances. Hence, its
memory complexity is O(K +M).

G.5 Meta-Learning

Statistical Learning to Learn (LTL) LTL [62] has been intensively studied with various theoretic
tools. The early theoretical framework was proposed by Baxter [24], where they first defined the
notion of the task environment and derived the uniform convergence bounds. And the tasks are
i.i.d sampled from the environment. Denevi et al. [63, 28] provided excess risk for ridge regression
and discussed the train-validation split impact. Amit and Meir [25] applied PAC Bayes theory and
provided generalization bounds for stochastic neural networks. They also derived a joint training
algorithm that simultaneously updates the meta-parameter and task parameters, which cannot be
extended to the sequential learning scenario. Recently, Chen et al. [26] derived an information-
theoretic generalization bound for the MAML-like algorithm, which provides non-vacuous bounds
for deep few-shot learning and can be applied to sequential task learning.

Statistical Lifelong Learning The difference between Lifelong learning [64] and LTL is that the
tasks are observed sequentially, while LTL has all the tasks in hand. Pentina and Lampert [65] first
applied PAC Bayes theory to Lifelong Learning, where they also assumed that all the tasks are, i.i.d.
sampled from the task environment. In a subsequent work [66], they relaxed the i.i.d. assumption
with two scenarios. The first is that the tasks are dependent, but a dependency graph is known so that
they can prove a statistic bound. In the second, they also consider a shifting environment change.
However, they assume that the base learner output of the current task only depends on the current and
the previous task data, and the expected performance of the base learner does not change with time.
Under these assumptions, they obtain statistical guarantees for the gradually changing environment.

Online LTL The online LTL methods have all the tasks in hand, but at each round t, they sample
a task from the N tasks in hand. Cavallanti et al. [67] works on this setting for online multi-task
learning. Multi-task learning is often treated as a simplified version of LTL in previous works [68].

Online Meta-Learning Two main settings to meta-learn sequential tasks in an online manner are
referred to as online-within-online (OWO) [28–31] and batch-within-online (BWO) [9, 27]. The
former applies online algorithms for both base and meta learners. The latter treats task-level learning
differently as a statistical batch setting. The BWO setting is close to the CML studied in this paper,
while the theoretical work is rare, and none of the previous BWO methods considers shifting task
environments. Khodak et al. [31] first considered shifting environments in the OWO setting, where
the base learner is the gradient-based online learner. In contrast, we consider more choices of batch
base learners and a fine-grained algorithm w.r.t environment change. Even though their bounds are
not w.r.t AER and the results are not directly comparable, we make an intuitive comparison, which
suggests the proposed algorithm in this paper has an improved rate for gradient-based base learners
in slot-wise stationary environments over their related results. Moreover, we conducted a rigorous
analysis of the bi-level trade-off, which is missing in the related works mentioned above. Finally,
although not clearly defined in previous meta-learning literature, we note Meta Continual Learning
(MCL) [60, 61] can be named in a similar way as Online-Within-Batch (OWB), where the tasks are
processed in one batch, but the data within each task are processed online.

53

Other related works Model-Agnostic Meta-Learning (MAML) [4] that uses the higher-order
gradients for meta-updates has gained tremendous success in practice. Therefore, a lot of work
emerges to improve MAML. Finn et al. [69], Grant et al. [70], Yoon et al. [71] combine MAML with
Bayesian methods. Rajeswaran et al. [72] improves MAML with implicit gradient calculation for the
meta-updates. Since meta-learning considers learning and generalization for both seen and unseen
tasks, it has not only been applied to CL for addressing catastrophic forgetting but has also been
applied to Test-Time Domain Adaptation (DA) for quick generalization. For more related works in
Test-Time DA or DA, please refer to [73–75].

54

