
On the Stability-Plasticity Dilemma in Continual
Meta-Learning: Theory and Algorithm

Qi Chen∗
Laval University

Changjian Shui
McGill University

Ligong Han
Rutgers University

Mario Marchand
Laval University

Abstract

We focus on Continual Meta-Learning (CML), which targets accumulating and
exploiting meta-knowledge on a sequence of non-i.i.d. tasks. The primary chal-
lenge is to strike a balance between stability and plasticity, where a model should
be stable to avoid catastrophic forgetting in previous tasks and plastic to learn
generalizable concepts from new tasks. To address this, we formulate the CML
objective as controlling the average excess risk upper bound of the task sequence,
which reflects the trade-off between forgetting and generalization. Based on the
objective, we introduce a unified theoretical framework for CML in both static
and shifting environments, providing guarantees for various task-specific learning
algorithms. Moreover, we first present a rigorous analysis of a bi-level trade-off
in shifting environments. To approach the optimal trade-off, we propose a novel
algorithm that dynamically adjusts the meta-parameter and its learning rate w.r.t
environment change. Empirical evaluations on synthetic and real datasets illustrate
the effectiveness of the proposed theory and algorithm.

1 Introduction

An essential goal in real-time intelligent systems is to balance stability (preserve past knowledge;
minimize catastrophic forgetting [1]) and plasticity (rapidly learn from new experiences; generalize
quickly [2]). For addressing this dilemma, a promising direction is to incorporate meta-learning
[3, 4] with Continual Learning (CL) [5–7], which constitutes the Continual Meta-Learning (CML)
[8–10] problem. Specifically, CML sequentially learns a meta-model from few-shot tasks as the
common prior. Then, for new tasks, it quickly adapts task-specific models with this prior. CML
effectively enables balancing the task-level trade-off between learning new tasks and retaining
previously acquired knowledge since the performance on previous tasks can be recovered with few
additional samples.

Despite being intuitive and technically sound, most related works in CML have focused on improving
empirical performance. There is still much room for exploration in the theoretical aspects. In
particular, there is a lack of rigorous understanding on (1) which factors are important for stability
and plasticity, (2) how to address the dilemma effectively by considering these factors.

To theoretically understand these questions, we need to characterize the sequential task-generating
process. In fact, many CML approaches are based on the implicit assumption that the non-i.i.d. tasks
are originated from a static task environment τ , where µt ∼ τ,∀t. In addition, recent works reveal that
catastrophic forgetting often occurs when transferring a meta-model to a new environment [11, 12]
and start trying to empirically address the forgetting in shifting environments, such as [7, 13–16]. We
take this case into consideration and formally define a more general CML setting, where at each time
t the task µt is generated from a possibly shifting environment τt with µt ∼ τt (the environment is

∗Correspondence to: qi.chen.1@ulaval.ca

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

static if τt = τ,∀t). We found a meta-level trade-off exists in shifting environments, which further
induces difficulty in controlling the task-level learning-forgetting trade-off, as discussed in Sec. 4.2.

In this paper, we formally study the bi-level (task- and meta-) learning-forgetting trade-off in CML to
fill the theoretical gap. Compared with previous works, our contribution highlights are as follows:

Unified theoretical framework We first introduce a novel and unified theoretical framework for
CML in both static and shifting task environments. For each task, the excess risk reflects the true
model performance but is intractable. Therefore, we derive a unified form of the excess risk upper
bound for various base learners, which contains optimization error with the generalization gap and
could be estimated from observations. Based on these, we propose to control the Average Excess
Risk (AER) upper bound of all the tasks as the learning objective in CML (shown in Sec. 3). This
upper bound can be further decomposed as the optimal trade-off and the algorithmic regret.

Understanding the bi-level learning-forgetting trade-off We discuss the bi-level trade-off in
shifting environments with an illustrative example in Sec. 4.1. We theoretically identify in Theorem
5.1 that: (1) Inside each environment, the task-level trade-off is affected by the task similarities, which
reflects on the slot diameters and variances. (2) The path length and changing points representing
environment similarities and non-stationarity dominate the meta-level trade-off. (3) Task and sample
numbers are important to generalization. The optimal trade-off is achieved with a minimal upper
bound of AER, so it’s helpful to consider these factors for optimizing the meta-parameter sequence.

Theoretically grounded algorithm We propose a novel algorithm (Algo. 1) for addressing the
bi-level trade-off in shifting environments, which dynamically adjusts both the meta-parameter and its
learning rate when an environment change is detected. Hence, the proposed algorithm can implicitly
control the AER by minimizing the dynamic regret to approach the optimal trade-off. We derive
a general bound for the proposed algorithm in Theorem 5.1. Improved complexity factors and
rates theoretically demonstrate the validity of the proposed algorithm for balancing the trade-off,
as illustrated in Theorem 6.1 and 6.2. Furthermore, empirical results on various datasets show
improvements in estimated bounds and superior performance compared to baselines, demonstrating
that the proposed algorithm can incrementally learn from new environments while maintaining good
performance on the previous ones, i.e., a well-balanced trade-off.

2 Related work

Due to the page limit, we only briefly discuss the most related works in this section. A more detailed
discussion and comprehensive investigation of various settings are provided in Appendix H.

Continual learning Traditional CL approaches mainly focus on addressing catastrophic forgetting.
Some methods use regularization techniques, such as Elastic Weight Consolidation (EWC) [17]
and Synaptic Intelligence (SI) [18], that aim to protect important parameters of a neural network
from being modified during training on new tasks. Other methods like replay-based approach
[19, 20] store or replay previous task examples to aid in preserving knowledge of old tasks. Another
line of work is parameter isolation or dynamic architecture methods, which involve creating new
network pathways or modules for each new task [21, 22]. Riemer et al. [7] first conceptualize the
learning forgetting trade-off in CL as temporally maximizing transfer and minimizing interference by
enforcing gradient alignment across examples, which is implemented using experience replay and
Reptile [23] to approximate the gradient alignment objective with a first-order Taylor expansion.

Meta-learning Meta-learning aims for quick generalization, allowing for efficient learning of new
tasks with limited data. The foundational framework of statistical meta-learning by Baxter [24]
assumes tasks are i.i.d. sampled from a task environment. Amit and Meir [25] proposed PAC
Bayes bounds with a joint training algorithm, which is not straightforwardly extendable to sequential
learning. Chen et al. [26] derived information-theoretic bounds for MAML-like algorithms suitable
for sequential few-shot learning. These works assume i.i.d. conditions for both tasks and in-task
data. To break the assumption, online meta-learning introduces two main approaches for learning
non-i.i.d. sequential tasks. Batch-Within-Online (BWO)[9, 27] methods, similar to CML, learn each
task under a statistical batch setting. However, the theoretical analysis is limited, and none addresses
shifting task environments. Online-Within-Online (OWO) [28–31] methods employ online algorithms
as both base and meta learners. Khodak et al. [31] were the first to consider shifting environments for
OWO, providing average regret bounds for gradient-based learners.

2

In contrast, we consider various statistical batch algorithms in addition to the gradient-based ones
as base learners. We further propose a fine-grained algorithm w.r.t environment change that has an
improved rate over the bound in [31] (although not directly comparable) for gradient-based base
learners, as discussed in Sec. 6.2. This improvement implies a better learning-forgetting trade-off not
considered in previous meta-learning literature.

Continual meta-learning FTML [9] extends MAML [4] to sequential learning using Follow The
Leader (FTL) as the meta-learner, which requires storing all the previous tasks. MOCA [32]
incorporates Bayesian Online Changing-point Detection (BOCD) to identify unknown task boundaries
during the continual meta-learning process. The above methods can address the task-level trade-
off under a static task environment. However, a meta-level trade-off exists when facing shifting
environments. He et al. [8] combines MAML with Bayes Gradient Descent (BGD), slowly updating
meta-parameters of small variance to stabilize the learning from non-i.i.d. sequential tasks. Caccia
et al. [13] address the environment shift with a soft modulation on meta-updates with the empirical
loss. [14], [15], and [16] incorporate additional memory with different environment shift detection
methods to address the meta-level trade-off. [14] and [15] model the meta-parameter distribution
with a Dirichlet Process Mixture Model (DPMM) and Dynamic Gaussian Mixture Model (DGMM),
respectively, which can detect new environments and store the corresponding K meta-parameters
withO(K) memory. [16] grows K subnets by detecting the environment shift with BOCD and stores
M tasks from previous environments, thus having a memory complexity of O(K +M).

Instead of the memory-based approaches, we focus on the more challenging fully online experimental
setting first proposed by Caccia et al. [13]. Our algorithm consumes O(1) memory and better
balances the meta-level trade-off in the online setting. In addition, we consider different levels of
non-stationarity and more environment shifts compared to previous works.

Theory on the stability-plasticity dilemma Raghavan and Balaprakash [33] explicitly study the
task-level trade-off in continual learning by formulating the problem as a two-player sequential game
and prove the existence of a balance point for each task. However, the cost function is based on
empirical loss without considering generalization on unseen data. Based on NTK [34] regime, the
generalization and forgetting property of orthogonal gradient descent [35] are separately studied in
[36] and [37] for continual learning. To the best of our knowledge, we are the first theoretical work
studying the stability-plasticity dilemma in CML. We also first provide a theoretical framework for
CML in static and shifting environments, offering a formal understanding of the bi-level trade-off.

3 Problem setup

Let us consider a sequence of different task distributions {µt}Tt=1 defined on the same example
space Z = X × Y with T → ∞. Specifically, at time t, the task µt is generated from a possibly
shifting environment τt with µt ∼ τt, which is static if τt = τ,∀t. Then a dataset of mt examples
St = {Zi}mti=1 are i.i.d. sampled from µt, where St ∼ µmtt . In CML, we have two kinds of
parameters: model parameter and meta-parameter, which are learned through a base learner and a
meta learner, respectively. A visual representation of the CML process is provided in Fig. 1. Let the
meta-parameters be defined on the same support U for all the tasks. Additionally, we assume that
the same parametric hypothesis spaceW is used across all tasks with non-negative bounded loss
function ` :W ×Z → [0, 1]. Given any model parameter w ∈ W , the true risk and empirical risk
of t-th task are defined as Lµt(w)

def
= EZ∼µt`(w,Z) and LSt(w)

def
= 1

mt

∑mt
i=1 `(w,Zi). To motivate

the CML setting mentioned above, we also provide an analysis of how to apply CML to real-world
examples like online recommendation systems in Appendix G.2.

3.1 Base learner

At time t, base learnerA takes the task data St and the meta-parameter ut ∈ U that represents the prior
knowledge learned from previous tasks as the input then outputs the model parameterWt = A(ut, St).
Specifically, A is characterized by a conditional distribution2 PWt|St,ut as in [38, 39]. We further
define the corresponding (expected) excess risk on task t as the expected gap between the true risk
of the learned hypothesis Wt and the optimal true risk:

2It will be a delta function if A(ut, St) is deterministic.

3

Figure 1: Illustration of Continual Meta-Learning (CML) process. At each time t, the CML algorithm
ACML (composed of the meta learner and the base learner) takes the current task data St and the
meta-parameter (prior knowledge) ut learned from previous tasks as input. Then, it outputs the
learned hypothesis Wt of the current task and the updated meta-parameter ut+1 for the next task.

Rexcess(A, ut)
def
= EStEWt∼PWt|St,ut [Lµt(Wt)− Lµt(w∗t)] , w∗t = arg minw∈W Lµt(w).

The excess risk of µt is thus explicitly determined by the meta-parameter ut and the base learner,
where ut is provided by experts or random guesses in single-task learning. Although reflecting the
true model performance, the excess risk is intractable due to the unknown distribution µt.

The following theorem gives a unified form of excess risk upper bound that applies to common
base learners such as Stochastic Gradient Descent (SGD), Stochastic Gradient Langevin Dynamics
(SGLD), Regularized Loss Minimization (RLM), and Gibbs algorithm. In contrast to the upper
bounds that contain the empirical risk, it avoids the task data access for the meta-learner and can thus
be used to design new CML algorithms. See detailed proof in Appendix B.5.
Theorem 3.1. For any t ∈ [T], assume that Lµt(·) has α-quadratic growth (see Definition A.2), then
whenever the base learner is SGD, SGLD, RLM, or the Gibbs algorithm, there exists ft(·) that gives

Rexcess(A, ut) ≤ ft(ut) = κt

(
aβt+

b‖φt − wt‖2 + εt + ε0
βt

+∆t

)
, κt, εt, βt,∆t ∈ R+, a, b, ε0 > 0 .

(1)
The meta-parameter ut = (βt, φt) decomposes into an initialization or bias φt and a learning rate
βt (if A ∈ {SGD, SGLD}) or a regularization coefficient (if A ∈ {RLM,Gibbs}). Moreover, wt
denotes the (single) output for the (possibly randomized) base learner, and ε0

def
= 2α||wt − EWt||2

characterizes the randomness of the output. Finally, a and b are constants, and εt, κt,∆t are functions
of the task sample size mt that characterize the base learner (see Appendix B and D).
Remark 3.2. (a) The above bound could be estimated from observation, so we can use it to design
meta-learning algorithms to control the excess risk. (b) Besides learning the initialization/bias, the
corresponding learning rate/regularization coefficient should be further considered to control Rexcess.
(c) ft is convex w.r.t ut (proved in Appendix B.6). (d) This upper bound gives an explicit form of task-
level trade-off that depends on the meta-parameter, where a large βt represents conserving less model
prior (larger forgetting) and learning more from data to obtain the model wt. The similarity ‖φt−wt‖
between the model prior and the new task can affect the choice of βt for a better generalization.

3.2 Meta learner

Since the tasks are sequentially encountered without the i.i.d. assumption and the excess risk upper
bound (cost function) ft is convex, we can naturally consider the meta-learning process as a repeated
game, following the Online Convex Optimization (OCO) regime [40]. At each time t, the meta-learner
first selects ut ∈ U with prior knowledge learned from previous tasks, then the base learner outputs
wt given ut and dataset St. After that, the cost function value ft is revealed. The goal of the meta
learner is to select a sequence of meta-parameters u1:T so as to minimize the regret over rounds.

Static task environment In static environments, the task distributions µt ∼ τ,∀t ∈ [T] are assumed
to be sampled from a fixed environment τ . The corresponding static regret is defined as the gap
between the total cost of u1:T and that of an optimal meta-parameter in hindsight u∗T :

4

Rstatic
T (u1:T)

def
=
∑T
t=1 ft(ut)−

∑T
t=1 ft(u

∗
T), u∗T

def
= arg minu∈U

∑T
t=1 ft(u).

The hindsight u∗T converges to the true minimum u∗ w.r.t τ as T →∞. So the task-level trade-off
can be well-balanced by designing algorithms with sub-linear regret to approach u∗.

Shifting task environment In a more general CML setting where the task environment τt can
change at each time t, using a meta-learner designed to obtain sub-linear static regret will suffer a
shifting comparator. As a result, the optimal u∗T may not converge to a fixed point, and

∑T
t=1 ft(u

∗
T)

can be vacuous when T → +∞, which induces the meta-level forgetting. See a formal justification
in Appendix A.2.2. To this end, we assume the horizon T of the sequential tasks can be divided
into N slots, and the n-th slot contains Mn tasks. We further assume that the environment does not
change with t within each slot. The N optimal priors, in hindsight, are noted as u∗1:N . Consequently,
we define a more versatile dynamic regret as:

Rdynamic
T (u∗1:N)

def
=
∑N
n=1

∑Mn

k=1 [fn,k(un,k)− fn,k(u∗n)] , u∗n
def
= arg minu∈U

1
Mn

∑Mn

k=1 fn,k(u) .

Given
∑N
n=1Mn = T , if N → T , the definition is equivalent to the conventional dynamic regret. If

N → 1, it recovers the static regret. To balance the meta-level trade-off, we need to find algorithms
with sub-linear dynamic regret to sequentially approach the optimums in N slots (environments).

3.3 Continual Meta-Learning objective

In practice, we aim to train the task-specific model with few-shot data and hope that the model will
generalize on unseen data. Hence, we formulate the CML objective as selecting ut at each time t
to ensure a small Average Excess Risk (AER) upper bound for the task sequence {µt}Tt=1, which is
defined as follows given the base learner A:

AERTA
def
=

1

T

T∑
t=1

Rexcess(A, ut) ≤
1

T

T∑
t=1

ft(ut) =
1

T
Rdynamic
T (u∗1:N) +

1

T

N∑
n=1

Mn∑
k=1

fn,k(u∗n) .

We adopt the dynamic regret defined in shifting environments since it can recover the static setting
w.l.o.g. Considering the two terms in the above upper bound of AER, the CML objective is two-fold:
(a) design an appropriate online meta-learner to minimize the dynamic regret. (b) choose the optimal
split of the T tasks to N stationary slots. Based on this objective, we propose a novel continual
meta-learning framework and provide a corresponding theoretical analysis in the following sections.

4 Balancing bi-level learning-forgetting trade-off

4.1 An illustrative example

Figure 2: Illustration of parameter
spaces in a shifting environment,
whereW, Ŵ and D, D̂, D̂n are de-
fined in Def. 4.1. φ?n is the n-th slot
hindsight.

The excess risk upper bound provides the intuition that we
can quickly learn a new task similar to our prior knowledge
by relying on this prior. In this case, the initialization/bias φt
(model prior) is close to the base learner output wt (i.e., a small
distance ‖φt − wt‖2), and the excess risk bound will be small.
So we will elaborate on the learning-forgetting trade-off on an
example of a shifting environment visualized in Fig. 2, based
on the following definitions of task similarities characterized
by the distances in the model parameter space [30].

Definition 4.1. Let us denote Ŵ as the set of all the learned
model parameters: Ŵ = {wt = A(ut, St)}Tt=1∪{0}. Let D̂ be
the diameter of Ŵ w.r.t norm ‖ · ‖: ∀w, v ∈ Ŵ, ‖w − v‖ ≤ D̂.
In shifting task environments, we denote D̂n the corresponding
diameter for n-th slot. AssumeW is a convex set containing
all the possible model parameters. Then let D be the diameter
ofW: ∀w, v ∈ W, ‖w − v‖ ≤ D.

The task environment in Fig. 2 changes within three slots (i.e., three circles with diameters D̂1:3 in
light red). The dark red point is denoted as φ?n – the optimal initialization in hindsight for each slot.

5

Purple points w1:3 are the learned model parameters in different slots. In static environments, CML
can access additional few-shot data to address the task-level forgetting. Assume the models in n-th
slot can recover performance (without forgetting) of similar tasks within a distance D̂n/2. Then,
the optimal φ∗n learned by CML can cover all the tasks in the slot with diameter D̂n. For instance,
the two tasks in the first slot, shown in Fig. 2, have a large distance ‖w1 − w2‖ > D̂1/2. Directly
adapting from one to another suffers catastrophic forgetting. However, keeping the optimal prior φ∗1
can address the forgetting, where ‖φ∗1 − w1‖ < D̂1/2 and ‖φ∗1 − w2‖ < D̂1/2.

However, this does not work in shifting environments. If we view three slots as one static environment
(with large variance), the optimal overall model prior φ∗ will be close to the origin, and the diameter is
D̂, which is much larger than any one of the slot D̂n. A larger diameter (e.g., ‖φ∗−w3‖ � ‖φ∗3−w3‖)
implies the need for more samples for each task to avoid forgetting, which is often not satisfied. A
theoretical interpretation is provided in the discussion following Theorem 6.1. To address this, in the
next session, we propose an algorithm that dynamically adapts the meta-parameter when environment
change occurs so as to rapidly reconstruct meta-knowledge in each static slot. Moreover, it is not
as catastrophic as directly adapting model parameters since the forgetting is w.r.t meta-knowledge,
which is constrained in a core set of φ∗1:T , which has a diameter much smaller than D̂.

4.2 Dynamic algorithm

Algorithm 1 Dynamic Continual Meta-Learning (DCML)

Input: Convex set W, φ1 = 0 ∈ W, T, β1 > 0, initial
learning rate {γ0, ρ}.
if ∃ a pre-trained model φ0 ∈ W then
φ1 = φ0

end if
n = 0, k = 0
for t = 1 to T do

Sample task distribution: µt ∼ τt;
Sample dataset St ∼ µmtt ;
Learn base parameter wt = A(ut, St),
e.g., A = K-step SGD or RLM

wt = φt −
∑K
i=1 βt∇φi−1

t
LSt(φi−1

t), φ0
t = φt,

φit = φi−1
t − βt∇φi−1

t
LSt(φi−1

t);
wt = argminw∈WLSt(w) + 1

βt
‖w − φt‖2;

Estimate excess risk upper bound ft(ut) in Eq. (1);
if t == 1 or environment change detected:τt 6= τt−1

then
Mn = k, n = n+ 1, k = 1, γt = ρ;

else
k = k + 1, γt = γ0/

√
k;

end if
Update meta-parameter:
∇ft(ut) = (κt(a− b‖φt−wt‖2+εt+ε0

β2
t

), 2bκt(φt−wt)
βt

);
ut+1 = ΠU (ut − γt∇ft(ut)), i.e.:

φt+1 = (1− 2bκtγt
βt

)φt + 2bκtγt
βt

wt ;

βt+1 = βt − γt(aκt − κt(b‖φt−wt‖2+εt+ε0)
βt2

);
end for

As discussed in the last section, it would be prob-
lematic in a shifting environment if the meta-
learner adopts the same updating strategy as in
the static setting. Specifically, if we aim to opti-
mize the static regret, the learning rate of meta-
parameter decays with O(1/t) for Follow The
Leader (FTL) [41] andO(1/

√
t) for Online Gra-

dient Descent (OGD). Clearly, such strategies
hardly learn from new tasks in a shifting environ-
ment. On the other side, a constant learning rate
of the meta-parameter is often adopted for op-
timizing the regular dynamic regret [40]. This
strategy could perform poorly when the envi-
ronment only occasionally changes with a huge
step, whereas the theoretical optimal learning
rate becomes large. A large learning rate causes
the meta learner to easily forget the previous
tasks, making convergence difficult inside each
slot. We offer a theoretical comparison with this
in the discussion of Theorem 6.2.

To balance the learning and forgetting trade-
off of meta-knowledge, we proposed the Dy-
namic Continual Meta-Learning (DCML) algo-
rithm (see Algo. 1) that dynamically adjusts the
learning rate of the meta-parameter. When a
changing point is detected, the meta-learning
rate γt adapts to a large hopping learning rate ρ, then relaunches the decay, in O(1/

√
k), from

γ0 in each slot. Besides, the meta-parameter itself is also adaptively updated. According to
φt+1 = (1 − 2bκtγt

βt
)φt + 2bκtγt

βt
wt in Algo. 1, adjusting βt and γt represent the explicit con-

trol on task-level and meta-level trade-off, respectively. A corresponding discussion is provided in
Appendix G.1. For a better understanding of DCML, we present a detailed introduction to it using
SGD as the base learner in Appendix. G.3

Finally, the changing point can be detected with a broad class of Out-Of-Distribution (OOD) detection
methods, e.g., Bayes Online Changing-point Detection (BOCD) [42], loss threshold [13], or setting a
fixed-length sliding window. Specifically, when the window size equals 1, a constant learning rate is
set to the meta learner, which recovers optimizing the typical dynamic regret as in [40].

6

5 Main theorem

We present a general theorem for the proposed DCML framework, which could be deployed for
various base learners with the same excess risk upper bound form as Eq. (1).
Theorem 5.1. Consider both static and shifting environments. If the excess risk’s upper bound of
the base learner A(ut, St) can be formulated as a unified form in Eq.(1), then, the AER of DCML
(in Algo. 1) is upper bounded by:

AERTA ≤
2

T

N∑
n=1

√
a(bV 2

n + εn + ε0)κn +
∆n

2︸ ︷︷ ︸
optimal trade-off in hindsight

+
3

2T

N∑
n=1

D̃nGn
√
Mn − 1︸ ︷︷ ︸

average regret over slots

+
D̃max

T

√√√√2P ∗
N∑
n=1

G2
n︸ ︷︷ ︸

regret w.r.t environment shift

Here, κn =
∑Mn

k=1 κn,k, ∆n =
∑Mn

k=1 κn,k∆n,k, where the subscript n, k indicates k-th task in n-th
slot. The optimal meta-parameter in hindsight of n-th slot is u∗n = (β∗n, φ

∗
n) and the path length of N

slots is P ∗ =
∑N−1
n=1 ‖u∗n − u∗n+1‖+ 1. φ∗n =

∑Mn

k=1
κn,k
κn

wn,k is the weighted average of the base

learner outputs within the slot. β∗n =
√

(bV 2
n + εn + ε0)/a, where V 2

n =
∑Mn

k=1
κn,k
κn
‖φ∗n − wn,k‖22

is the variance in n-th slot and εn =
∑Mn

k=1
κn,k
κn

εn,k. Moreover, Gn is the maximal gradient norm of
the cost function, D̃n is the diameter of meta-parameters in n-th slot, and D̃max = max{D̃n}Nn=1.

The above theorem can be applied to static and shifting environments, where the proof is provided in
Appendix D.2. For comparison, we also derive a general theorem from static regret in Appendix D.1.

Important factors for bi-level trade-off (a) The first term in Theorem 5.1 indicates the
::::::
optimal

:::::::
trade-off

:::
can

:::
be

:::::::
achieved with the N optimal meta-parameters, which is affected by the task simi-

larities within each environment (slot variance V 2
n) and the environment changing points. (b) The

second term is the average static regret over slots, which is related to the task similarities via the
slot diameter D̃n and represents

:::
how

::::
well

:::
the

::::::::
algorithm

:::
can

:::::::
balance

:::
the

::::::::
task-level

::::::::
trade-off. (c) The

last term is the regret w.r.t the environmental shift, reflecting
::::
how

::::
well

:::
the

::::::::
algorithm

:::
can

:::::::
address

::
the

::::::::
meta-level

::::::::
trade-off. It is affected by the path length P ∗, determined by the environment similarities

and the non-stationarity (how frequently the environment changes).
Remark 5.2. The above theorem has considered different sample numbers for each task. We can see
the best initialization (bias) in hindsight (φ∗n) is related to the weighted average of the task models
wn,k in n-th slot through κn,k. E.g., for SGD, κn,k =

√
1/Kα+ 2/mn,kαL implies that the task

trained on more samples will have a smaller weight. Since it’s easier to recover model performance
for the tasks with more samples, less information on these tasks is conserved in the meta-knowledge.

6 Results on specific base learners

Theorem 5.1 provides general theoretical guarantees without specifying the base leaner. In this section,
we discuss the theorem in depth with two typical base learners: SGD within the meta-initialization
setting and Gibbs algorithm for the meta-regularization.

6.1 Gibbs algorithm

Theorem 6.1. LetW ⊂ Rd. Assume that the loss `(·, z) ∈ [0, 1] is L-Lipschitz ∀z ∈ Z and that
Lµt(·) has α-quadratic-growth for all t ∈ [T]. Let wt = AGibbs(βt, φt, St) be the output of the
Gibbs algorithm (Definition B.2) on St, where φt is the mean of a prior Gaussian N (φt, σ

2
t 1d) with

σt = m
−1/4
t d−1/4L−1/2 and βt is the inverse temperature. Consider DCML (Algo. 1) and further

assume that each slot has equal length M and each task uses the sample number m. Then we have

AERTGibbs ∈ O

((
1 +

1

N

N∑
n=1

Vn +

√
MN +

√
P ∗

M
√
N

)
1

m
1
4

)
.

The detailed proof is provided in Appendix E.1 and E.3. We also proved in Appendix E.2 that
the static AER bound is in O

((
(V + 1) + 1/

√
T
)
m−1/4

)
. As we claimed before, when N = 1

(which means the environment is static), the dynamic AER bound recovers the static AER bound.

7

Benefits of DCML Arbitrarily setting the prior mean φt, the excess risk for single-task learning
with Gibbs algorithm has an upper bound in O

(
(D + 1)m−1/4

)
, where D is the diameter of the

parameter space. While the static AER becomes O((V + 1)m−1/4) with rate O(1/
√
T). Since V 2

is the variance of all the outputs of the base learner, we have V ≤ D̂ ≤ D, which illustrates the
benefits of the proposed DCML algorithm. Moreover, in shifting environments, the bound is further
improved in Theorem 6.1, where the complexity factor is decreased by 1

N

∑N
n=1 Vn ≤ V with rate

O(1/
√
M). This means that by considering environment change, DCML can achieve the same AER

with a smaller M (fewer tasks), i.e., faster-constructing meta-knowledge in new environments.

6.2 Stochastic Gradient Descent (SGD)

Theorem 6.2. LetW ⊂ Rd. Consider that `(·, z) is convex, β-smooth, L-Lipschitz ∀z ∈ Z . Assume
that Lµt(·) has α-quadratic-growth for all t ∈ [T]. Let SGD be the base learner for each task
where it outputs wt = ASGD(ηt, φt, St) with learning rate ηt and initialization φt. Consider DCML
(Algo. 1) for the SGD cost function. Further, assume each slot has equal length M , and each task
uses the sample number m and the same number of updating steps K. Then we have

AERTSGD ∈ O

((
1

N

N∑
n=1

Vn +

√
MN +

√
P ∗

M
√
N

)√
1

K
+

1

m

)
.

The detailed proof is provided in Appendix E.4 and E.6. The CML setting uses offline batch-training
for each task, so the related rate of the base learner is O(

√
1/K + 1/m), which is determined by

both the step number and the sample size. Let V̄ = 1
N

∑N
n=1 Vn. CML focuses on fast learning new

tasks and quickly recovers the model performance on past tasks with few-shot examples (m is small).
Hence, the optimal trade-off is dominated by the average deviation over slots V̄ and the path length
P ∗, where P ∗ reflects the environment similarities and the non-stationarity.

Static environment If the environment is static, i.e., N = 1, we have P ∗ = 1,M = T . The bound

becomes in O
(

(V + 1√
T

)
√

1
K + 1

m

)
, which recovers the static AER bound in Appendix E.5.

Shifting environment When the environment occasionally changes with a large step, as discussed
in Sec 4.2, N is small, and M,P ∗ is large. The proposed bound has an improved rate O(1/

√
M)

on P ∗ compared to O(V̄ + 1√
M

+
√

P∗

NM) – an equivalent form of the task average regret bound
in [31]. A more detailed comparison w.r.t [31] has been discussed in the proof for both static and
dynamic AER. Similar to Theorem 6.1, the dynamic AER is improved w.r.t. the static AER with
the improvement on complexity factor by V̄ ≤ V . In addition, if the environments differ a lot
and frequently change, N,P ∗ is large, and M is small. It’s impossible to obtain a small AER, as
demonstrated in the experiment on the Synbols dataset in Tab. 1.

7 Experiments

We first conduct analytic experiments on a synthetic dataset to offer an in-depth understanding of the
theoretical counterpart. Then, we test the proposed algorithm on a recent CML benchmark – OSAKA
[13], which empirically considers shifting environments on a large scale. The experimental results
validate the proposed theory and illustrate the superiority of DCML in shifting environments.

7.1 Moving 2D Gaussian

We introduce a simple synthetic dataset, where the data is generated by the following strategy. Let
the environment be a 2D Gaussian distribution with a moving mean. Initially, τ0 = N (φ̃∗0, I2) with
φ̃∗0 = (−6, 6)T . Then at time point t, τt = N (φ̃∗t , I2) is updated by: φ̃∗t = φ̃∗t−1 + (1, 1) with
probability p and φ̃∗t = φ̃∗t−1 with probability 1− p. Then we have N changing points {tn}Nn=1. At
each time step, we first sample w∗t ∼ τt from the current environment τt as the mean of the task
distribution µt = N (w∗t , 0.1I2), which is also a 2D Gaussian. For task t, we sample m examples
Strt ∼ µmt as train data, m′ samples Stet ∼ µm

′

t as test data. Then the corresponding empirical risk is

8

4 2 0 2 4 6

4

2

0

2

4

6
task mean estimations
hindsight env mean
actual env mean
predicted env mean

(a)

0.5

1.0

1.5

lo
g(

av
g

te
st

 lo
ss

)

8

9

10

11

lo
g(

AE
R) dynamic AER

static AER

0.00

0.02

0.04

0.06

M
et

a
lr

0 20 40 60 80 100 120
t

0.0190

0.0195

0.0200

Ba
se

 lr

(b)

Figure 3: Moving 2D Gaussian mean estimation: (a) track-
ing example, (b) visualization of test loss, static and dy-
namic AER, learning rates of base and meta learners.

0.2 0.4 0.6 0.8 1.0
Probability of environment change

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

A
ve

ra
ge

 te
st

 a
cc

ur
ac

y
(t

=
10

00
0)

ANIL
MAML
CMAML

DCML (window)
DCML (oracle)

Figure 4: Average test acc at final step
t = 10000 w.r.t environment change
probability p on the OMF dataset.

LStrt (w) = 1
m

∑m
i=1 ‖w − xi‖2. SGD uses φt as initialization and a learning rate ηt to optimize this

objective, and outputs wt = ASGD(ηt, φt, S
tr
t). Since wt is obtained from limited data, it can be far

away from w∗t . If the environment shifts to the n-th slot at tn, then the predicted environment mean
φ̂∗n = φtn . We denote φ̃∗n = φ̃∗tn the mean of the actual environment, and the hindsight environment
mean of n-th slot as φ∗n = 1

tn+1−tn
∑tn+1−1
t=tn

wt.

In Fig. 3 (a), we visualize an example of tracking the environment shifts, where the task mean
estimation is wt, the output of SGD. The other three terms are as described above. We further
visualize the test loss, the dynamic, and the static AER bounds in Fig. 3 (b). The red dotted lines
represent the actual environment-changing points. We observe that the static AER is much larger
than the dynamic AER, consistent with the result in Theorem 6.2. In addition, the evolving trend
of dynamic AER is the same as the average test loss, which does not hold for static AER. We also
find that the learning rate of the initialization φt (meta lr in Fig.3 (b)) is scheduled by the changing
points, and the base learning rate is adjusted automatically by the algorithm. Additional experimental
settings and results are provided in Appendix F.

7.2 OSAKA benchmark

Experimental set-up OSAKA considers a task-agnostic setting of unknown task boundaries and
simultaneously switches the task and environment with low probabilities. We slightly modify the
setting to introduce more non-stationarity by always switching to a new task and changing the
environment with probability p at each timestep. We pre-train a meta-model as initialization from
one environment. The new environment is selected with probability 0.5 as the pre-trained one and
0.25 for each of the two unseen environments, consisting of OOD tasks. We further test DCML on
two representative datasets in OSAKA. For Synbols [43] dataset, the model is pre-trained to classify
characters from an alphabet on randomized backgrounds. During CML time, the model is exposed
to the pre-trained environment, a new alphabet for character classification, and a heterogeneous
environment that conducts font classification, which induces significant concept shift. For Omniglot-
MNIST-FashionMNIST(OMF), we pre-train the meta-model on the first 1000 classes of Omniglot
[44]. Then, it is exposed to the full Omniglot dataset and two unseen datasets – MNIST [45] and
FashionMNIST [46] at CML time. More details and baselines are deferred to Appendix F.1.1.

We tested 5-level of non-stationarity with p = {0.2, 0.4, 0.6, 0.8, 1.0} for OMF and for Synbols we
set p = {0.2, 0.4, 1.0}. The average test accuracy of all encountered tasks is used as the performance
metric, which reflects the AER. In addition, we denote DCML (oracle) for the algorithm as offering
correct environment-changing points and DCML (window) as using a fixed-length sliding window.

Results The average test accuracies at the last timestep for all environments and every single
environment are reported in Tab.1 for OMF with p = 0.4 and Synbols with p = 0.2. Additional
experimental results can be found in Appendix F.2.2. Clearly, DCML constantly outperforms all
the baselines with improvements of 1 ∼ 2% points on OMF data and 0.7% points on Synbols data
compared to the best baseline method. A comparison w.r.t powerful baselines is presented in Fig. 5 for
OMF data, where the average test accuracy over rounds in three environments is visualized separately.

9

Table 1: Average test accuracy (%) on OMF & Synbols datasets of OSAKA benchmark

OMF, p = 0.4 SYNBOLS, p = 0.2

MODEL ALL ENV. OMNIGLOT MNIST FMNIST ALL ENV. ALPHA. NEW ALPHA. FONT
FINE TUNING 10.8± 1.5 11.2± 2.2 10.4± 0.8 10.5± 0.8 25.3± 0.7 25.4± 0.9 25.1± 0.4 25.2± 0.5
METACOG [8] 40.9± 0.9 54.4± 1.2 25.6± 0.9 28.9± 0.4 25.3± 0.8 25.7± 0.9 25.0± 0.8 25.1± 1.0
METABGD [8] 54.5± 7.1 70.5± 8.5 40.2± 5.5 36.8± 5.8 29.9± 6.9 31.8± 9.6 28.1± 4.8 27.5± 3.6
ANIL [47] 83.2± 0.3 99.1± 0.1 73.9± 0.1 60.2± 0.1 60.5± 0.4 77.6± 0.6 53.6± 0.2 32.7± 0.4
MAML [4] 83.8± 0.4 99.3± 0.1 75.4± 0.1 61.0± 0.1 76.7± 0.4 96.8± 0.1 73.1± 0.1 40.5± 0.7
CMAML [13] 85.9± 0.7 98.1± 0.3 83.8± 1.8 64.2± 0.9 61.9± 2.5 76.2± 2.1 56.8± 3.2 37.9± 2.4
DCML(ORACLE) 86.5± 0.7 97.4± 0.6 85.7± 2.6 65.9± 1.4 77.2± 0.5 96.0± 0.3 73.4± 0.1 42.4± 0.6
DCML(WINDOW) 86.9± 0.7 97.2± 0.7 86.8± 2.0 66.7± 1.7 77.4± 0.4 96.2± 0.2 73.8± 0.2 42.4± 0.7

0 2000 4000 6000 8000 10000
t

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Av
er

ag
e

Te
st

 A
cc

ur
ac

y

ANIL
MAML
CMAML
DCML (window)
DCML (oracle)

(a)

0 2000 4000 6000 8000 10000
t

0.56

0.58

0.60

0.62

0.64

0.66

Av
er

ag
e

Te
st

 A
cc

ur
ac

y
ANIL
MAML
CMAML
DCML (window)
DCML (oracle)

(b)

0 2000 4000 6000 8000 10000
t

0.65

0.70

0.75

0.80

0.85

Av
er

ag
e

Te
st

 A
cc

ur
ac

y

ANIL
MAML
CMAML
DCML (window)
DCML (oracle)

(c)

Figure 5: Average test accuracy on (a) Omniglot, the pre-trained environment, (b) FashionMNIST,
and (c) MNIST, the two unseen environments where the environment shifts with probability p = 0.2.

Analysis of learning and forgetting In Fig. 5 for OMF data, MAML and ANIL do not suffer
forgetting since they never update meta-parameters. The proposed algorithm forgets a bit more than
CMAML but learns much faster in new environments, illustrating a better trade-off. The fine-grained
adjustment for the meta-learning rate makes it possible to quickly reconstruct meta-knowledge w.r.t
environment change and constantly learn in new environments. On the other hand, MetaBGD and
MetaCOG perform poorly since using BGD hinders acquiring new knowledge. All the methods
perform worse on Synbols data in Tab. 1, where each environment is more diverse than OMF, and the
environments differ a lot, indicating a large D̂n and P ∗. Moreover, we observe a performance drop
of CMAML on Synbols. Since CMAML uses empirical loss for modulation, it is prone to overfitting
and can cause difficulty of convergence inside each slot when D̂n is large, as discussed in Sec. 4.1.

Analysis of stability w.r.t shifting probability We conduct an ablation study on OMF w.r.t environ-
ment change probability in Fig. 4. The results demonstrate the stability of the proposed algorithm
and the increase in performance w.r.t p. Since the environments have high similarities in OMF, the
meta-model is better learned by seeing more tasks given the fixed time steps with a larger p.

Analysis of environment change detection Empirical results suggest that DCML (window) per-
forms better than DCML (oracle). This is reasonable when slots of small length exist where adapting
to new environments causes additional context-switch costs (justified in Appendix F.2.1). Given the
changing probability p, the expected slot length is 1/p, used as the sliding window size. In practice,
even though p is unknown, hyper-parameter searching for the one-dimensional window size is much
easier. Because the similarity between any two environments can differ a lot, it’s hard to find a single
optimal hyper-parameter for change detection methods like BOCD or loss threshold.

8 Conclusion

This paper theoretically studies the stability and plasticity dilemma in CML. Based on the novel AER
objective, it proposes a continual meta-learning framework in both static and shifting environments.
The proposed DCML algorithm can quickly reconstruct meta-knowledge to alleviate forgetting and
quickly adapt to new environments when change occurs. The corresponding theory provides tighter
bounds and more flexible base learner selections. In addition, adaptively learning the meta-parameter
can facilitate the training process in deep learning. Empirical evaluations on both synthetic and real
datasets demonstrate the superiority of the proposed method.

10

Acknowledgments and Disclosure of Funding

We appreciate constructive feedback from anonymous reviewers and meta-reviewers. This work is
supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery
Grant, the Collaborative Research and Development Grant from SSQ Assurances and NSERC, and
the China Scholarship Council.

References
[1] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks:

The sequential learning problem. In Psychology of learning and motivation, volume 24, pages
109–165. Elsevier, 1989.

[2] Gail A Carpenter and Stephen Grossberg. A massively parallel architecture for a self-organizing
neural pattern recognition machine. Computer vision, graphics, and image processing, 37(1):
54–115, 1987.

[3] Sachin Ravi and Alex Beatson. Amortized bayesian meta-learning. In International Conference
on Learning Representations, 2018.

[4] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In ICML, 2017.

[5] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis,
Gregory Slabaugh, and Tinne Tuytelaars. Continual learning: A comparative study on how to
defy forgetting in classification tasks. arXiv preprint arXiv:1909.08383, 2(6):2, 2019.

[6] Chen Zeno, Itay Golan, Elad Hoffer, and Daniel Soudry. Task agnostic continual learning using
online variational bayes. arXiv preprint arXiv:1803.10123, 2018.

[7] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Ger-
ald Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing
interference. arXiv preprint arXiv:1810.11910, 2018.

[8] Xu He, Jakub Sygnowski, Alexandre Galashov, Andrei A Rusu, Yee Whye Teh, and Razvan
Pascanu. Task agnostic continual learning via meta learning. arXiv preprint arXiv:1906.05201,
2019.

[9] Chelsea Finn, Aravind Rajeswaran, Sham Kakade, and Sergey Levine. Online meta-learning.
In International Conference on Machine Learning, pages 1920–1930. PMLR, 2019.

[10] Antreas Antoniou, Massimiliano Patacchiola, Mateusz Ochal, and Amos Storkey. Defining
benchmarks for continual few-shot learning. arXiv preprint arXiv:2004.11967, 2020.

[11] Mengye Ren, Renjie Liao, Ethan Fetaya, and Richard Zemel. Incremental few-shot learning
with attention attractor networks. Advances in neural information processing systems, 32, 2019.

[12] Sung Whan Yoon, Do-Yeon Kim, Jun Seo, and Jaekyun Moon. Xtarnet: Learning to extract
task-adaptive representation for incremental few-shot learning. In International Conference on
Machine Learning, pages 10852–10860. PMLR, 2020.

[13] Massimo Caccia, Pau Rodriguez, Oleksiy Ostapenko, Fabrice Normandin, Min Lin, Lucas
Page-Caccia, Issam Hadj Laradji, Irina Rish, Alexandre Lacoste, David Vázquez, et al. Online
fast adaptation and knowledge accumulation (osaka): a new approach to continual learning.
Advances in Neural Information Processing Systems, 33:16532–16545, 2020.

[14] Ghassen Jerfel, Erin Grant, Tom Griffiths, and Katherine A Heller. Reconciling meta-learning
and continual learning with online mixtures of tasks. Advances in Neural Information Processing
Systems, 32, 2019.

[15] Qiang Zhang, Jinyuan Fang, Zaiqiao Meng, Shangsong Liang, and Emine Yilmaz. Variational
continual bayesian meta-learning. Advances in Neural Information Processing Systems, 34:
24556–24568, 2021.

11

[16] Zhenyi Wang, Li Shen, Tiehang Duan, Donglin Zhan, Le Fang, and Mingchen Gao. Learning to
learn and remember super long multi-domain task sequence. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 7982–7992, 2022.

[17] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521–3526, 2017.

[18] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic
intelligence. In International Conference on Machine Learning, pages 3987–3995. PMLR,
2017.

[19] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

[20] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep
generative replay. Advances in neural information processing systems, 30, 2017.

[21] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with
dynamically expandable networks. arXiv preprint arXiv:1708.01547, 2017.

[22] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska,
Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework
for continual learning. In International Conference on Machine Learning, pages 4528–4537.
PMLR, 2018.

[23] Alex Nichol and John Schulman. Reptile: a scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999, 2(3):4, 2018.

[24] Jonathan Baxter. A model of inductive bias learning. Journal of artificial intelligence research,
12:149–198, 2000.

[25] Ron Amit and Ron Meir. Meta-learning by adjusting priors based on extended pac-bayes theory.
In International Conference on Machine Learning, pages 205–214, 2018.

[26] Qi Chen, Changjian Shui, and Mario Marchand. Generalization bounds for meta-learning: An
information-theoretic analysis. Advances in Neural Information Processing Systems, 34, 2021.

[27] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999, 2018.

[28] Giulia Denevi, Carlo Ciliberto, Riccardo Grazzi, and Massimiliano Pontil. Learning-to-learn
stochastic gradient descent with biased regularization. In International Conference on Machine
Learning, pages 1566–1575. PMLR, 2019.

[29] Pierre Alquier, Massimiliano Pontil, et al. Regret bounds for lifelong learning. In Artificial
Intelligence and Statistics, pages 261–269. PMLR, 2017.

[30] Maria-Florina Balcan, Mikhail Khodak, and Ameet Talwalkar. Provable guarantees for gradient-
based meta-learning. In International Conference on Machine Learning, pages 424–433. PMLR,
2019.

[31] Mikhail Khodak, Maria-Florina Balcan, and Ameet Talwalkar. Adaptive gradient-based meta-
learning methods. arXiv preprint arXiv:1906.02717, 2019.

[32] James Harrison, Apoorva Sharma, Chelsea Finn, and Marco Pavone. Continuous meta-learning
without tasks. Advances in neural information processing systems, 33:17571–17581, 2020.

[33] Krishnan Raghavan and Prasanna Balaprakash. Formalizing the generalization-forgetting trade-
off in continual learning. Advances in Neural Information Processing Systems, 34:17284–17297,
2021.

12

[34] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31,
2018.

[35] Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for
continual learning. In International Conference on Artificial Intelligence and Statistics, pages
3762–3773. PMLR, 2020.

[36] Mehdi Abbana Bennani, Thang Doan, and Masashi Sugiyama. Generalisation guarantees for
continual learning with orthogonal gradient descent. arXiv preprint arXiv:2006.11942, 2020.

[37] Thang Doan, Mehdi Abbana Bennani, Bogdan Mazoure, Guillaume Rabusseau, and Pierre
Alquier. A theoretical analysis of catastrophic forgetting through the ntk overlap matrix. In
International Conference on Artificial Intelligence and Statistics, pages 1072–1080. PMLR,
2021.

[38] Ankit Pensia, Varun Jog, and Po-Ling Loh. Generalization error bounds for noisy, iterative
algorithms. In 2018 IEEE International Symposium on Information Theory (ISIT), pages
546–550. IEEE, 2018.

[39] Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via stochastic
gradient langevin dynamics: a nonasymptotic analysis. In Conference on Learning Theory,
pages 1674–1703. PMLR, 2017.

[40] Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in
Optimization, 2(3-4):157–325, 2016.

[41] Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and
Trends® in Machine Learning, 4(2):107–194, 2012.

[42] Ryan Prescott Adams and David JC MacKay. Bayesian online changepoint detection. arXiv
preprint arXiv:0710.3742, 2007.

[43] Alexandre Lacoste, Pau Rodríguez López, Frédéric Branchaud-Charron, Parmida Atighehchian,
Massimo Caccia, Issam Hadj Laradji, Alexandre Drouin, Matthew Craddock, Laurent Charlin,
and David Vázquez. Synbols: Probing learning algorithms with synthetic datasets. Advances in
Neural Information Processing Systems, 33:134–146, 2020.

[44] Brenden Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua Tenenbaum. One shot learning
of simple visual concepts. In Proceedings of the annual meeting of the cognitive science society,
volume 33, 2011.

[45] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/,
1998.

[46] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Jun-
young Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

[47] Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature
reuse? towards understanding the effectiveness of maml. arXiv preprint arXiv:1909.09157,
2019.

[48] Aolin Xu and Maxim Raginsky. Information-theoretic analysis of generalization capability of
learning algorithms. In Advances in Neural Information Processing Systems, pages 2524–2533,
2017.

[49] Maxim Raginsky, Alexander Rakhlin, Matthew Tsao, Yihong Wu, and Aolin Xu. Information-
theoretic analysis of stability and bias of learning algorithms. In 2016 IEEE Information Theory
Workshop (ITW), pages 26–30. IEEE, 2016.

[50] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent. In International conference on machine learning, pages 1225–1234.
PMLR, 2016.

13

[51] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

[52] gwgundersen. Bayesian online changepoint detection. https://github.com/gwgundersen/
bocd.git, 2020.

[53] Changjian Shui, Gezheng Xu, Qi Chen, Jiaqi Li, Charles X Ling, Tal Arbel, Boyu Wang, and
Christian Gagné. On learning fairness and accuracy on multiple subgroups. Advances in Neural
Information Processing Systems, 35:34121–34135, 2022.

[54] Changjian Shui, Qi Chen, Jiaqi Li, Boyu Wang, and Christian Gagné. Fair representation
learning through implicit path alignment. In International Conference on Machine Learning,
pages 20156–20175. PMLR, 2022.

[55] Min Wen, Osbert Bastani, and Ufuk Topcu. Algorithms for fairness in sequential decision
making. In International Conference on Artificial Intelligence and Statistics, pages 1144–1152.
PMLR, 2021.

[56] Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

[57] Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and Zsolt Kira. Re-evaluating con-
tinual learning scenarios: A categorization and case for strong baselines. arXiv preprint
arXiv:1810.12488, 2018.

[58] Marc Masana, Xialei Liu, Bartłomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and
Joost Van De Weijer. Class-incremental learning: survey and performance evaluation on
image classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5):
5513–5533, 2022.

[59] Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang. Overcoming
catastrophic forgetting by incremental moment matching. Advances in neural information
processing systems, 30, 2017.

[60] Khurram Javed and Martha White. Meta-learning representations for continual learning. Ad-
vances in Neural Information Processing Systems, 32, 2019.

[61] Gunshi Gupta, Karmesh Yadav, and Liam Paull. Look-ahead meta learning for continual
learning. Advances in Neural Information Processing Systems, 33:11588–11598, 2020.

[62] Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview. In Learning to
learn, pages 3–17. Springer, 1998.

[63] Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, and Massimiliano Pontil. Learning to learn
around a common mean. In ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS
31 (NIPS 2018), volume 31. NIPS Proceedings, 2018.

[64] Sebastian Thrun. Is learning the n-th thing any easier than learning the first? Advances in neural
information processing systems, 8, 1995.

[65] Anastasia Pentina and Christoph Lampert. A pac-bayesian bound for lifelong learning. In
International Conference on Machine Learning, pages 991–999, 2014.

[66] Anastasia Pentina and Christoph H Lampert. Lifelong learning with non-iid tasks. Advances in
Neural Information Processing Systems, 28, 2015.

[67] Giovanni Cavallanti, Nicolo Cesa-Bianchi, and Claudio Gentile. Linear algorithms for online
multitask classification. The Journal of Machine Learning Research, 11:2901–2934, 2010.

[68] Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes. The benefit of multitask
representation learning. The Journal of Machine Learning Research, 17(1):2853–2884, 2016.

[69] Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. In
Advances in Neural Information Processing Systems, pages 9516–9527, 2018.

14

https://github.com/gwgundersen/bocd.git
https://github.com/gwgundersen/bocd.git

[70] Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting
gradient-based meta-learning as hierarchical bayes. In International Conference on Learning
Representations, 2018.

[71] Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn.
Bayesian model-agnostic meta-learning. In Advances in Neural Information Processing Systems,
pages 7332–7342, 2018.

[72] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with
implicit gradients. Advances in neural information processing systems, 32, 2019.

[73] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 7201–7211, 2022.

[74] Qi Chen and Mario Marchand. Algorithm-dependent bounds for representation learning of
multi-source domain adaptation. In International Conference on Artificial Intelligence and
Statistics, pages 10368–10394. PMLR, 2023.

[75] Changjian Shui, Qi Chen, Jun Wen, Fan Zhou, Christian Gagné, and Boyu Wang. A novel
domain adaptation theory with jensen–shannon divergence. Knowledge-Based Systems, 257:
109808, 2022.

15

Appendix

Table of Contents
A Preliminaries 17

A.1 Definitions . 17
A.2 Online Convex Optimization (OCO) . 17

B Missing Proofs in Section 3 19
B.1 Excess risk bound for Gibbs algorithm . 19
B.2 Excess risk bound for SGD . 21
B.3 Excess risk bound for SGLD . 23
B.4 Excess risk bound for Regularized Loss Minimization (RLM) 24
B.5 Unified form of excess risk upper bound . 25
B.6 Convexity of the unified upper bound . 26

C Table of Notations 27

D Missing Proofs in Section 5 28
D.1 AER bound in static environments . 28
D.2 AER bound in possibly shifting environments (Proof of Theorem 5.1) 31

E Missing Proofs in Section 6 35
E.1 Cost function for Gibbs base learner . 35
E.2 Static AER of Gibbs . 37
E.3 Proof of Theorem 6.1 (Dynamic AER of Gibbs) 38
E.4 Cost function for SGD base leaner . 39
E.5 Static AER of SGD . 40
E.6 Proof of Theorem 6.2 (Dynamic AER of SGD) 41

F Experiments 43
F.1 Experimental settings . 43
F.2 Additional results . 45
F.3 Experimental details . 47
F.4 Bayes Online Changing-point Detection . 48

G Additional Discussion 50
G.1 Learning-forgetting w.r.t meta-updates . 50
G.2 Real-world examples for practicality and necessity of CML 50
G.3 More details on DCML . 50
G.4 Limitations . 51
G.5 Broader Impacts . 51

H Additional Related Works 52
H.1 Summary and comparison of related settings 52
H.2 Continual Learning . 52
H.3 Meta-Continual Learning . 53
H.4 Continual Meta-Learning . 53
H.5 Meta-Learning . 54

16

A Preliminaries

In the appendix, we assume that all sets are convex subsets of Rd, and we use ‖ · ‖ to denote the
Euclidean norm.

A.1 Definitions

Definition A.1 (Lipschitzness). A function f : W → R is L-Lipschitz w.r.t norm ‖ · ‖ if for all
w1, w2 ∈ W , |f(w1)− f(w2)| ≤ L‖w1 − w2‖
Definition A.2 (Quadratic Growth). A function f :W → R has α-quadratic-growth w.r.t ‖ · ‖ for
α > 0 if for any w ∈ W , we have:

α

2
‖w − w∗‖2 ≤ f(w)− f(w∗) ,

where w∗ denotes the global minimum point of f which is closest to w.

Definition A.3 (Convex). A function f : W → R is convex w.r.t norm ‖ · ‖ if f is everywhere
sub-differentiable and if ∀x, y ∈ W ,

f(y) ≥ f(x) + 〈∇f(x), y − x〉 ,

where ∇f(x) is a subgradient of f at x.

Definition A.4 (Strongly Convex). A function f :W → R is α-strongly convex w.r.t norm ‖ · ‖ if f
is everywhere sub-differentiable and if ∀x, y ∈ W ,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
α

2
‖y − x‖2 ,

where ∇f(x) is a subgradient of f at x.

Definition A.5 (Smoothness). A function f :W → R is β-smooth w.r.t norm ‖ · ‖ if f is everywhere
sub-differentiable and if ∀x, y ∈ W ,

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
β

2
‖y − x‖2 ,

where ∇f(x) is a subgradient of f at x.

Definition A.6 (Bregman divergence). Let R : U → R be an everywhere sub-differentiable strongly
convex regularization function. Then the Bregman divergence w.r.t function R for any x, y ∈ U is
defined as:

BR(x‖y)
def
= R(x)−R(y)− 〈∇R(y), (x− y)〉 .

A.2 Online Convex Optimization (OCO)

A.2.1 Definitions of regrets

Definition A.7 (Static regret). The static regret of an OCO algorithm on the action set U w.r.t a
sequence of cost functions {ft : U → R}Tt=1 is defined as:

RT
def
=

T∑
t=1

ft(ut)−min
u∈U

T∑
t=1

ft(u)

Definition A.8 (Traditional dynamic regret [40]). The dynamic regret of an OCO algorithm on the
action set U w.r.t a sequence of cost functions {ft : U → R}Tt=1 and the comparator sequence
ψ1:T ,∀ψt ∈ U is defined as:

RT
def
=

T∑
t=1

ft(ut)−
T∑
t=1

ft(ψt)

17

A.2.2 Static regret may be vacuous in shifting environments

Proof. For a shifting environment that has u∗T = arg minu
1
T

∑T
t=1 ft(u) changing with T , we can

prove that the static regret may be vacuous as T goes to infinity.

Let us denote FT =
∑T
t=1 ft(u

∗
T), FT−1 =

∑T−1
t=1 ft(u

∗
T−1), F0 = 0.

Assume that the cost functions are non-negative, which is usually the case. Whenever we have
ft(u

∗
T)− ft(u∗T−1) ≥ a > 0, we can obtain

FT − FT−1 =

T−1∑
t=1

(ft(u
∗
T)− ft(u∗T−1)) + fT (u∗T) ≥ a(T − 1) + fT (u∗T) .

The above inequality holds for any T ≥ 1, so we can rewrite it as Ft−Ft−1 ≥ a(t− 1) + ft(u
∗
t). By

summing each side from t = 1 to t = T , we have FT ≥ F0 + aT (T−1)
2 +

∑T
t=1 ft(u

∗
t) ≥

aT (T−1)
2 .

Consequently, we have 1
T FT = 1

T

∑T
t=1 ft(u

∗
T) ≥ a(T−1)

2 , which means the static regret will be
vacuous when T →∞.

A.2.3 Online algorithms

Definition A.9 (Follow The Leader (FTL)). Given a sequence of strongly convex cost functions
{ft : U → R}t≥1, FTL plays for t > 1:

ut = arg min
u∈U

t−1∑
i=1

fi(u) .

Definition A.10 (Follow The Regularized Leader (FTRL)). Given a sequence of convex cost func-
tions {ft : U → R}t≥1, a strongly convex regularization function R : U → R, and the starting point
u1 = arg min

u∈U
R(u), FTRL plays for t > 1:

ut = arg min
u∈U

t−1∑
i=1

fi(u) +R(u) .

Khodak et al. [31] write FTRL as ut = arg minu∈U
∑t−1
i=1 fi(u) + BR(u‖u1), while we follow

Shalev-Shwartz et al. [41] and Hazan et al. [40].
Definition A.11 (Online Mirror Descent (OMD)). Given a sequence of convex cost functions
{ft : U → R}t≥1, a strongly convex regularization function R : U → R, and u1 = ∇R∗(0), OMD
plays for t > 1:

ut = ∇R∗(−η
t−1∑
i=1

∇fi(ui)) ,

where R∗(ũ) = max
u
〈u, ũ〉 −R(u) is the Fenchel conjugate of R(u).

There exists an equivalent linearized version of the above FTRL and lazy OMD through the lineariza-
tion of the convex cost functions.
Definition A.12 (Lazy OMD). Given a sequence of convex cost functions {ft : U → R}t≥1, a
strongly convex regularization function R : U → R, and ∇R(ũ1) = 0, u1 = arg min

u∈U
BR(u‖ũ1),

then lazy OMD and FTRL play for t > 1:

ũt = arg min
u
〈η∇ft−1(ut−1), u〉+BR(u‖ut−1)

ut = arg min
u∈U

BR(u‖ũt) .

The proof of the equivalence can be found in Hazan et al. [40].

18

B Missing Proofs in Section 3

Definition B.1. Consider any base learner A that takes a fixed prior information u with a data set
S ∼ µm as input and outputs W = A(S, u) ∼ PW |S,u. Define the expected generalization gap of
algorithm A as

gen(µ,A)
def
= EA,S [Lµ(A(S, u))− LS(A(S, u))] = EW,S [Lµ(W)− LS(W)]

and the expected excess risk as

Rexcess(A, u)
def
= EA,S [Lµ(A(S, u))− Lµ(w∗)] = EW,S [Lµ(W)− Lµ(w∗)] ,

where w∗ = arg minw∈W Lµ(w) is the hypothesis that achieves the minimum true risk.

B.1 Excess risk bound for Gibbs algorithm

Lemma B.2. Let Q be an arbitrary distribution on W and let β > 0 be the inverse temperature
that balances fitting and generalization. Then, we can jointly denote u = (β,Q). Let S ∼ µm be a
sample of examples. The solution to the optimization problem

P ∗W |S,u = arg inf
PW |S

{
EW,S [LS(W)] +

1

β
ESDKL(PW |S‖Q)

}
is given by the Gibbs algorithm which satisfies

dP ∗W |S,u(w) =
e−βLS(w)dQ(w)

EW∼Q
[
e−βLS(W)

] .
See Proof of Theorem 5 in [48].
Theorem B.3 (Excess risk bound for Gibbs algorithm of meta-parameter u = (β, φ)). Suppose
W = Rd and assume that `(·, z) ∈ [0, 1] is L-Lipschitz for all z ∈ Z . Let Wg ∼ PWg|S,u denote the
output of the Gibbs algorithm 3 applied on data set S with meta-parameter u = (β,Q). Let w∗ be
the hypothesis that achieves the minimum true risk amongW . The excess risk of Wg satisfies

Rexcess(Gibbs, u)
def
= E[Lµ(Wg)]− inf

w∈W
Lµ(w)

≤ β

2m
+ inf
σ>0

(
σL
√
d+

1

β
DKL(N (w∗, σ21d))‖Q)

)
.

Specifically, if we assume Q is the Gaussian distribution N (φ, σ21d) with σ = m−1/4d−1/4L−1/2

and denote u = (β, φ), then we have

Rexcess(Gibbs, u) ≤ β

2m
+m−1/4L1/2d1/4 +

d1/2m1/2L

2β
‖φ− w∗‖2 .

Proof. The original proof can be found in Corollary 3 [48], we provide the proof below with more
details and some tiny modifications. Consider an arbitrary data-free distribution related to the
unknown minimum w∗ of the true risk, i.e., N (w∗, σ21d). Then for any σ > 0, we have:

EWg,S [Lµ(Wg)] = EWg,S [LS(Wg)] + gen(µ,Gibbs)

≤ EWg,S [LS(Wg)] +
β

2m

≤ EWg,S [LS(Wg)] +
1

β
ESDKL(PWg|S,u‖Q) +

β

2m

≤
∫
W

ESLS(w)N (w;w∗, σ21d)dw +
1

β
DKL(N (w∗, σ21d))‖Q) +

β

2m

=

∫
W
Lµ(w)N (w;w∗, σ21d)dw +

1

β
DKL(N (w∗, σ21d))‖Q) +

β

2m

3In some definitions, the output of the Gibbs algorithm is the optimal distribution itself. Here, we consider a
sampling from this distribution.

19

The first step is obtained with previous work’s results that Gibbs algorithm is (2β
m , 0)-differentially

private [49]. The second inequality makes use of the non-negativity of KL divergence. The last
inequality derives naturally from the fact that the output of the Gibbs algorithm follows the optimal
distribution for the objective function in Lemma B.2.

Since `(., z) is L-Lipschitz for all z ∈ Z , we can obtain the following by combining the Jensen’s
inequality:

|Lµ(w)− Lµ(w∗)| ≤ EZ∼µ[|`(w,Z)− `(w∗, Z)|] ≤ L‖w − w∗‖,∀w ∈ W .

Then we have∫
W
Lµ(w)N (w;w∗, σ21d)dw ≤

∫
W

(Lµ(w∗) + L‖w − w∗‖)N (w;w∗, σ21d)dw

≤ Lµ(w∗) + Lσ
√
d .

So we have for any σ > 0,

E[Lµ(Wg)]− inf
w∈W

Lµ(w) ≤ β

2m
+ inf
σ>0

(
σL
√
d+

1

β
DKL(N (w∗, σ21d))‖Q)

)
=

β

2m
+ inf
σ>0

(
σL
√
d+

1

β
DKL(N (w∗, σ21d))‖N (φ, σ21d))

)
=

β

2m
+ inf
σ>0

(
σL
√
d+

1

2βσ2
‖φ− w∗‖2

)
≤ β

2m
+m−1/4L1/2d1/4 +

d1/2m1/2L

2β
‖φ− w∗‖2

The last three lines are obtained with the assumption that Q is the Gaussian distribution N (φ, σ21d)
and setting σ = m−1/4d−1/4L−1/2.

20

B.2 Excess risk bound for SGD

Theorem B.4 (Excess Risk Bound for SGD of meta-parameter u = (η, φ)). Suppose W = Rd,
let w∗

def
= arg minw∈W Lµ(w) be the hypothesis that achieves the minimum population risk inW .

Consider the SGD algorithm with K updates starting from W1 = φ: Wk+1 = Wk − η∇`(Wk, Zk),
where Zk is a sample randomly selected from data set S. Assume the loss function `(·, z) is convex,
β-smooth and L-Lipschitz for all z ∈ Z . Let the output of the algorithm be W = 1

K

∑K
k=1Wk. Then,

the excess risk bound is given by:

Rexcess(SGD, u)
def
= EW,S [Lµ(W)]− inf

w∈W
Lµ(w) ≤ ‖φ− w

∗‖2

2ηK
+ (

L2

2
+
L2K

m
)η .

Proof. The excess risk can be decomposed as

EW,S [Lµ(W)−min
w
Lµ(w)] = EW,S [Lµ(W)− LS(W)] + EW,SLS(W)−min

w
Lµ(w)

= EW,S [Lµ(W)− LS(W)] + [EW,SLS(W)− ESLS(w∗)]

= gen(µ,SGD) + EW,SLS(W)− ESLS(w∗) .

The first term is the generalization gap defined in Definition B.1. Note that the second term is not the
optimization error εWopt

def
= |EW,S [LS(W)]− EW,S [LS(w∗S)]| used in [38], which is the expected gap

between the SGD output W and the ERM output w∗S . The optimization error indicates how close the
SGD output can approximate the possibly intractable exact ERM solution, which is an upper bound
of the absolute value of the second term |EW,SLS(W)− ES [LS(w∗)]| ≤ εWopt (can be derived with
Lemma 5.1 in [50]).

Here, we directly make use of the convexity and obtain the gap compared to the true minimum.
It’s easy to bound EW,SLS(W) − ESLS(w∗) using the method provided in Shalev-Shwartz and
Ben-David [51] with some tiny modifications.

Since we have Wk+1 = Wk − η∇`(Wk, Zk), W1:K is related to the randomness introduced by the
sampling path Z1:K from S. Moreover, for the convex loss function, we have:

EW,SLS(W)− ESLS(w∗) = ES
[
EW∼PW |S,uLS(W)− LS(w∗)

]
= ES

[
EW1:K

LS(
1

K

K∑
k=1

Wk)− LS(w∗)

]

≤ ES

[
EW1:K

1

K

K∑
k=1

LS(Wk)− LS(w∗)

]

≤ ES

[
EW1:K

1

K

K∑
k=1

〈Wk − w∗,∇LS(Wk)〉

]

= ES

[
EV1:K−1

1

K

K∑
k=1

〈Wk − w∗,∇LS(Wk)〉

]

= ES

[
1

K

K∑
k=1

EV1:k−1
〈Wk − w∗,∇LS(Wk)〉

]
,

where Vk = ∇`(Wk, Zk). The inequalities are obtained by using Jensen’s inequality and the last two
equalities are obtained with the fact that W1:K is determined by V1:K−1.

Moreover, we have E[Vk|Wk] = E[Vk|V1:k−1] = ∇LS(Wk). The first equality comes from the
update rule, where Wk is determined by the previous k − 1 gradients and the meta parameter
u = (η, φ). Note that u is not a random variable and hence no randomness needs to be considered.
The second equality holds because Zk is uniformly sampled from S, so Vk is an unbiased estimator
of∇LS(Wk).

Hence,

21

EV1:K

(
1

K

K∑
k=1

〈Wk − w∗, Vk〉

)
=

1

K

K∑
k=1

EV1:K
[〈Wk − w∗, Vk〉]

=
1

K

K∑
k=1

EV1:k
[〈Wk − w∗, Vk〉]

=
1

K

K∑
k=1

EV1:k−1
EVk [〈Wk − w∗, Vk〉|V1:k−1]

=
1

K

K∑
k=1

EV1:k−1
[〈Wk − w∗,EVk [Vk|V1:k−1]〉]

=
1

K

K∑
k=1

EV1:k−1
[〈Wk − w∗,∇LS(Wk)〉]

By using Lemma14.1 in Shalev-Shwartz and Ben-David [51], we can obtain that

EW,SLS(W)− ESLS(w∗) ≤ ES

[
EV1:K

(
1

K

K∑
k=1

〈Wk − w∗, Vk〉

)]

≤ ‖W1 − w∗‖2

2ηK
+

η

2K

K∑
k=1

E‖Vk‖2.

Since the loss function is L-Lipschitz, we can further obtain:

EW,SLS(W)− Lµ(w∗) ≤ ‖W1 − w∗‖2

2ηK
+
η

2
L2 .

We have assumed that the loss function is convex and β-smooth. Therefore, following Theorem 4.7
in Hardt et al. [50], we have the following upper bound for the generalization gap of SGD if the step
size is smaller than 2

β :

|gen(µ, SGD)| ≤ L2K

m
η .

So, we can conclude

Rexcess(SGD, u) = EW,S [Lµ(W)]− inf
w∈W

Lµ(w) ≤ ‖φ− w
∗‖2

2ηK
+ (

L2

2
+
L2K

m
)η.

22

B.3 Excess risk bound for SGLD

Theorem B.5 (Excess risk bound for SGLD of meta-parameter u = (η, φ)). SupposeW = Rd, let
w∗

def
= arg minw∈W Lµ(w) be the hypothesis that achieves the minimum population risk inW . For

SGLD algorithm with K adaptation starting from W1 = φ: Wk+1 = Wk − η∇`(Wk, Zk) + ξk,
where Zk is a sample randomly selected from data set S, ξk is the independently injected isotropic
Gaussian noise N (0, σ21d). Assume the loss function `(·, z) is convex and L-Lipschitz for all z ∈ Z .
And let the output of the algorithm be W = 1

K

∑K
k=1Wk. Then we have the following excess risk

bound:

Rexcess(SGLD, u)
def
= EW,S [Lµ(W)]− inf

w∈W
Lµ(w) ≤ ‖φ− w

∗‖2

2ηK
+
η

2
L2 +

dσ2

2η
+

√
K

4m

ηL

σ
.

Proof. Analogous to the proof of SGD, we can decompose the excess risk as

EW,S [Lµ(W)−min
w
Lµ(w)] = EW,S [Lµ(W)− LS(W)] + EW,SLS(W)−min

w
Lµ(w)

= EW,S [Lµ(W)− LS(W)] + EW,SLS(W)− ES [LS(w∗)]

= gen(µ,SGLD) + EW,SLS(W)− ESLS(w∗) .

According to Pensia et al. [38], we have |gen(µ,SGLD)| ≤
√

1
4m

Kη2L2

σ2 .

In addition, we have the update for SGLD:Wk+1 = Wk−η∇`(Wk, Zk)+ξk, whereW1:K is related
to the randomness introduced by the sampling path Z1:K from S and the injected noise ξ1:K .

Denote Vk = ∇`(Wk, Zk) + ξk
η , then we have E[Vk|Wk] = E[Vk|V1:k−1] = ∇LS(Wk).

Conduct similar proof as the above SGD algorithm and use Lemma 14.1 in [51], we can obtain that

EW,SLS(W)− ESLS(w∗) ≤ ES

[
EV1:K

(
1

K

K∑
k=1

〈Wk − w∗, Vk〉

)]

≤ ‖W1 − w∗‖2

2ηK
+

η

2K

K∑
k=1

E‖Vk‖2 .

Since the loss function is L-Lipschitz, we have

EW,SLS(W)− Lµ(w∗) ≤ ‖W1 − w∗‖2

2ηK
+
η

2
(L2 + d

σ2

η2
) .

Combining the aforementioned generalization gap bound of SGLD, we conclude the proof.

23

B.4 Excess risk bound for Regularized Loss Minimization (RLM)

Theorem B.6 (Excess risk bound for RLM of meta-parameter u = (β, φ)). SupposeW = Rd, let
w∗

def
= arg minw∈W Lµ(w) be the hypothesis that achieves the minimum population risk inW . Let us

denote the output of RLM with Tikhonov regularization as W = arg minw∈W LS(w) + 1
β ‖w − φ‖

2.
Suppose the loss function ` : W ×Z → [0, 1] is convex and L-Lipschitz, so the excess risk of the
above algorithm is bounded by:

Rexcess(RLM, u)
def
= EW,S [Lµ(W)]− inf

w∈W
Lµ(w) ≤ ‖φ− w

∗‖2

β
+

2L2β

m
.

Proof. Here, since the algorithm is deterministic, we can consider PW |S,u as a delta distribution
centered on w∗S = A(u, S). Then, the bound becomes

EW,S [Lµ(W)] = ES [Lµ(w∗S)] = ES [Lµ(A(u, S)]

≤ inf
w∈W

Lµ(w) +
1

β
‖φ− w∗‖2 +

2L2β

m
,

which is equivalent to Corollary 13.8 in [51] with φ = 0, β = 1
λ .

To prove the above bound, we use the same decomposition of excess risk:

EW,S [Lµ(W)−min
w
Lµ(w)] = ES [Lµ(w∗S)− LS(w∗S)] + ESLS(w∗S)−min

w
Lµ(w)

= ES [Lµ(w∗S)− LS(w∗S)] + ESLS(w∗S)− ES [LS(w∗)]

= gen(µ,RLM) + ESLS(w∗S)− ESLS(w∗) .

From Corollary 13.6 in [51], the stability of RLM rule satisfies

gen(µ,RLM) = ES [Lµ(w∗S)− LS(w∗S)] ≤ 2L2β

m
,

which means the RLM rule using Tikhonov regularization described above is on average-replace-one-
stable with rate 2L2β

m . From the definition of this algorithm, we have for any w ∈ W ,

LS(w∗S) ≤ LS(w∗S) +
1

β
‖w∗S − φ‖2 ≤ LS(w) +

1

β
‖w − φ‖2 .

Take expectation w.r.t S, we can obtain ESLS(w∗S) ≤ Lµ(w) + 1
β ‖w − φ‖

2,∀w ∈ W . Finally,
combining the stability bound and letting w = w∗, we conclude the proof.

24

B.5 Unified form of excess risk upper bound

Lemma B.7. Assume that Lµt(·) has α-quadratic growth (defined in Appendix A.2) ∀t ∈ [T]

and that for a given base learner A, we have Rexcess(A, ut) ≤ bt+ct‖φt−w∗t ‖
2

βt
+ dtβt + et , with

bt, et ≥ 0, ct, dt > 0. Then we have Rexcess(A, ut) ≤ ft(ut), where ft(ut) is given by eq. (1).

Proof. Let w̄t = EWt be the expected output, and ξ0
def
= ‖wt − w̄t‖2 characterizes the randomness

of the algorithm output, which should be small enough.

Then, using Titu’s lemma, Jensen’s inequality, and the α-quadratic growth assumption, we get:

‖φt − w∗t ‖2 = ‖φt − w̄t + w̄t − w∗t ‖2

≤ 2‖φt − w̄t‖2 + 2‖w̄t − w∗t ‖2

= 2‖φt − w̄t‖2 + 2‖EWt − w∗t ‖2

≤ 2‖φt − w̄t‖2 + 2E‖Wt − w∗t ‖2

≤ 2‖φt − w̄t‖2 +
4E[Lµt(Wt)− Lµt(w∗t)]

α

≤ 2‖φt − w̄t‖2 +
4(
bt+ct‖φt−w∗t ‖

2

βt
+ dtβt + et)

α
.

Rearrange and put the upper bound of ‖φt − w∗t ‖2 into the excess risk bound, replace
√
ct/dtβ

′
t =

αβt − 4ct with βt > 4ct/α and use again the Titu’s lemma, we get

Rexcess(A, ut) ≤ 4α
√
ctdt

(
‖φt − wt‖2 + ξ0 + bt

4ct
+ 4dtct

α2 + et
α

β′t
+

2
√
dtct
α2

+
β′t

4α2
+

et

4α
√
dtct

)
It’s easy to relate κt,∆t, εt, ε0 to the terms in the above bound. Consequently, we have ε0 = 2αξ0 =

2α‖wt−EWt‖2, κt = 2
√
ctdt, a = 1

2α , b = 2α, εt = αbt
2ct

+ 8dtct
α +2et, and ∆t = 4

√
ctdt
α + et

2
√
ctdt

.

We prove Proposition E.1 and Proposition E.4 without using this Lemma and provide more details in
the corresponding derivations.

Theorem B.8. For any t ∈ [T], assume that Lµt(·) has α-quadratic growth 4 (see Definition A.2),
then whenever the base learner is SGD, SGLD, RLM, or the Gibbs algorithm, there exists ft(·) that
gives

Rexcess(A, ut) ≤ ft(ut) = κt

(
aβt+

b‖φt − wt‖2 + εt + ε0
βt

+∆t

)
, κt, εt, βt,∆t ∈ R+, a, b, ε0 > 0 .

The meta-parameter ut = (βt, φt) decomposes into an initialization or bias φt and a learning rate
βt (if A ∈ {SGD, SGLD}) or a regularization coefficient (if A ∈ {RLM,Gibbs}). Moreover, wt
denotes the (single) output for the (possibly randomized) base learner, and ε0

def
= 2α||wt − EWt||2

characterizes the randomness of the output. Finally, a and b are constants, and εt, κt,∆t are functions
of the task sample size mt that characterize the base learner (see Appendix B and D).

Proof. According to Theorem B.3, Theorem B.4, Theorem B.5 and Theorem B.6, we have

Rexcess(Gibbs, (ηt, φt)) ≤
ηt

2mt
+m

−1/4
t L1/2d1/4 +

d1/2m
1/2
t L

2ηt
‖φt − w∗t ‖2 ,

Rexcess(SGD, (ηt, φt)) ≤
‖φt − w∗t ‖2

2ηtKt
+ (

L2

2
+
L2Kt

mt
)ηt ,

Rexcess(SGLD, (ηt, φt)) ≤
‖φt − w∗t ‖2

2ηtKt
+
ηt
2
L2 +

dσ2

2ηt
+

√
Kt

4mt

ηtL

σ
,

Rexcess(RLM, (ηt, φt)) ≤
‖φt − w∗t ‖2

ηt
+

2L2ηt
mt

.

4We assumed quadratic growth for `(·, z),∀z ∈ Z in the submitted version, which is stronger than the
current assumption and is unnecessary.

25

Combining Lemma B.7, we observe that bt = 0, ct =
d1/2m

1/2
t L

2 , dt = 1
2mt

, et = m
−1/4
t L1/2d1/4

for Gibbs algorithm; bt = 0, ct = 1
2Kt

, dt = L2

2 + L2Kt
mt

, et = 0 for SGD; bt = dσ2

2 , ct = 1
2Kt

, dt =

L2

2 +
√

Kt
4mt

L
σ , et = 0 for SGLD; and bt = 0, ct = 1, dt = 2L2

mt
, et = 0 for RLM. Therefore,

simply adding the transformation ηt =
√
ct/dtβt/α+ 4ct/α inside the algorithm 5, the algorithms

mentioned above have a unified form of excess risk upper bound as defined in eq. (1).

B.6 Convexity of the unified upper bound

Lemma B.9. ∀t ∈ [T], the cost function that has the following form:

ft(ut) = ft(βt, φt) = κt(aβt +
b‖φt − wt‖2 + εt + ε0

βt
+ ∆t), βt, κt, εt,∆t ∈ R+, a, b, ε0 > 0,

is convex w.r.t ut = (βt, φt), where φt, wt ∈ W ⊆ Rd.

Proof.

∂βtft = κt(a−
b‖φt − wt‖2 + εt + ε0

β2
t

)

∂φtft = κt
2b(φt − wt)

βt

The Hessian matrix of ft(βt, φt):

∇2ft =

(
2κt

b‖φt−wt‖2+εt+ε0
β3
t

−2b(φt−wt)
β2
t

κt
−2b(φt−wt)

β2
t

κt κt
2b
βt
1d×d

)

For any h = (h0, hd) ∈ R× Rd, and βt > 0, φ ∈ Rd we have:

(∇2f(ut)h, h) = κt
2(εt + ε0)h2

0 + 2b‖h0(φt − wt)− βthd‖2

β3
t

≥ 0

, so ft is convex w.r.t ut.

5Such transformation is not unique, e.g., βt can be scaled by
√
α. It depends on the concrete implementation.

26

C Table of Notations

Table 2: Summary of major notations
Notation Description

T length of task sequence
N number of slots (environments)
t index of task at time t
n, k k-th task insider n-th slot

Mn,M number of tasks inside slot
mt,mn,k,m number of examples for each task

τt environment distribution
µt task distribution

Z = X × Y example space
A base leaner/learning algorithm

W ⊂ Rd hypothesis/model parameter space
wt, wn,k task-model, algorithm output
U meta-parameter space

ut, un,k meta-parameter
u∗ = (β∗, φ∗) optimal meta-parameter in hindsight
φt, φn,k model initialization/bias
βt, βn,k learning rate/regularization coefficient of A
γt, γn,k learning rate of meta-parameter
ρ hopping learning rate

Kt,Kn,k number of gradient steps for SGD
D diameter ofW
D̂ diameter of all the algorithm outputs space Ŵ
D̃ diameter of all meta-parameters
V variance of all the algorithm outputs

D̃n, D̂n diameter in n-th slot
D̃max = max{D̃n}Nn=1 maximum of slot diameters

Vn slot variance
Gn maximum of cost function gradient norm in n-th slot
P ∗ path length
L Lipschitz constant
α quadratic-growth parameter
ε0 randomness of algorithm output
εv parameter for controlling range of βt

B =

[√
ε̃0/a,

√
(bD̂2

n + ε+ ε̃0)/a

]
range of βn,k, where ε̃0 = ε0 + εv

γn,0 = D̃n
Gn
√
k

theoretically optimal value

ρ =

√
2P∗D̃2

max∑N
n=1G

2
n

theoretically optimal hopping learning rate

27

D Missing Proofs in Section 5

D.1 AER bound in static environments

Algorithm 2 Meta-OGD (Static Environment)
Require: Convex setW, T, φ1 = 0 ∈ W, β1 > 0, initial learning rate γ;
for t← 1 to T do

Sample task distribution: µt ∼ τt;
Sample dataset St ∼ µt;
Select meta parameter ut = (βt, φt) ∈ U ;
Learn base parameter wt = A(ut, St),
Estimate excess risk upper bound ft(ut) in Eq. (1);
Update learning rate of the meta-parameter: γt = γ/

√
t;

Update the meta-parameter:
ut+1 = ΠU (ut − γt∇ft(ut)),∇ft(ut) = (aκt − bκt‖φt−wt‖2+κtεt+κtε0

β2
t

, 2bκt(φt−wt)
βt

);
i.e.:
φt+1 = (1− 2bκtγt

βt
)φt + 2bκtγt

βt
wt ; βt+1 = βt − γt(aκt − κt(b‖φt−wt‖2+εt+ε0)

βt2
);

end

Theorem D.1 (AER bound in static environment). Let us consider the static environment. If the
excess risk’s upper bound of the base learner A(βt, φt) can be formulated as the aforementioned
unified cost function form in Lemma B.6. Then, running Meta-OGD (Algo. 2) as the meta learner ,
the AER is bounded as:

AERTA ≤ (2
√
a(bV 2 + ε+ ε0))

T∑
t=1

κt
T

+

T∑
t=1

κt∆t

T

+
3κmax

2ε̃0

√
T

√(D̂2 +
bD̂2 + εmax

a
)(4ab2ε̃0D̂2 + a2(εmax + bD̂2)2)

 ,

where D̂ is the diameter of the base learner outputs, φ∗ =
∑T
t=1

κt∑T
t=1 κt

wt is the optimal initial-

ization (or bias) in hindsight, V 2 =
∑T
t=1

κt∑T
t=1 κt

‖φ∗ − wt‖2 is the variance of the base learner

outputs, and ε =
∑T
t=1 κtεt∑T
t=1 κt

, κmax = max{κ1:T }, εmax = max{ε1:T }, ε̃0 = ε0 + εv. ε0 is the across

tasks maximum corresponding term in eq.(1), and εv ∈ R+, If εv > bV 2 + ε, we replace ε0 in the

bound with ε̃0. Let B def
=

[√
ε̃0/a,

√
(bD̂2 + ε+ ε̃0)/a

]
, then, the meta-parameter set in Algo. 2 is

U def
= B ×W .

Proof. At first, in a static environment, all the tasks share the same optimal prior information
u∗ = arg minu∈U

∑T
t=1 ft(u) (the comparator in static regret). As proved in Lemma B.6, the cost

functions are convex, so the sum of T convex functions
∑T
t=1 ft(u) is convex. Then we have the

minimum attained at u∗ = (β∗, φ∗). By solving minu
∑T
t=1 ft(u), we get φ∗ =

∑T
t=1

κt∑T
t=1 κt

wt

and β∗ =
√

(bV 2 + ε+ ε0)/a, where ε =
∑T
t=1 κtεt∑T
t=1 κt

and V 2 =
∑T
t=1

κt∑T
t=1 κt

‖φ∗ − wt‖2.

According to Algo. 2, φt is determined by the previous base learner outputs w1:t−1 and the initializa-
tion φ1 = 0. As long as 2bκtγt

βt
≤ 1,∀t, we have φt is always constrained within the ball (of diameter

D̂) that contains Ŵ . So we have 0 ≤ ‖φt − wt‖ ≤ D̂ and V 2 =
∑T
t=1

κt∑T
t=1 κt

‖φ∗ − wt‖2 ≤ D̂2.

Moreover, we constrain βt ∈
[√

ε̃0/a,

√
(bD̂2 + ε+ ε̃0)/a

]
, where ε̃0 = ε0 + εv is related to the

randomness of the base learner output ε0 and a factor εv to control the range of βt. We will see later
that εv can affect the gradient norm of the meta-parameter.

28

To derive the static regret bound, we need to use the following result first:

‖ut+1 − u∗‖2 = ‖ΠU (ut − γt∇ft(ut))− u∗‖ ≤ ‖ut − γt∇ft − u∗‖2

≤ ‖ut − u∗‖2 + γ2
t ‖∇ft‖2 − 2γt〈∇ft, (ut − u∗)〉 .

So we have 〈∇ft, (ut − u∗)〉 ≤ ‖ut−u
∗‖2−‖ut+1−u∗‖2

2γt
+ γt‖∇ft‖2

2 .

Moreover, with βt ∈
[√

ε̃0/a,

√
(bD̂2 + ε+ ε̃0)/a

]
, we have

|∂βtft| = |κt(a−
b‖φt − wt‖2 + εt + ε0

β2
t

)| ≤ aκt(bD̂
2 + εmax)

ε̃0
,

|∂φft| =
2bκt‖φt − wt‖

βt
≤ 2bκtD̂√

ε̃0/a
.

Hence, ‖∇ft‖2 ≤ a2κ2
t (bD̂

2+εmax)
2

ε̃20
+

4ab2κ2
t D̂

2

ε̃0
.

In addition, ‖ut − u∗‖2 = ‖φt − φ∗‖2 + |βt − β∗|2 ≤ D̂2 + bD̂2+εmax
a .

So the static regret is bounded by:

Rstatic
T (u∗) =

T∑
t=1

ft(ut)− ft(u∗) ≤
T∑
t=1

〈∇ft, (ut − u∗)〉

≤
T∑
t=1

‖ut − u∗‖2 − ‖ut+1 − u∗‖2

2γt
+

T∑
t=1

γt‖∇ft‖2

2

≤
T∑
t=1

‖ut − u∗‖2(
1

2γt
− 1

2γt−1
) +

T∑
t=1

γt‖∇ft‖2

2

≤ (D̂2 +
bD̂2 + εmax

a
)

1

2γT
+ (

4ab2D̂2

ε̃0
+
a2(εmax + bD̂2)2

ε̃20
)

T∑
t=1

γtκ
2
t

2

≤ 3κmax

2ε̃0

√
T

√(D̂2 +
bD̂2 + εmax

a
)(4ab2ε̃0D̂2 + a2(εmax + bD̂2)2)

 .

We have the learning rate schedule γt = γ√
t

and 1/γ0 = 0. The third inequality holds because
of the aforementioned bounds of ‖ut − u∗‖2 and ‖∇ft‖. The last step is obtained by setting γ =

ε̃0

√
D̂2+ bD̂2+εmax

a

κmax

√
4ab2ε̃0D̂2+a2(εmax+bD̂2)2

and
∑T
t=1

1√
t
≤ 2
√
T , where κmax = max{κ1:T }, εmax = max{ε1:T }.

According to the setting of ε̃0, we have two conditions.

1. If εv ≤ bV 2 + ε, β∗ =
√

(bV 2 + ε+ ε0)/a ∈
[√

ε̃0/a,

√
(bD̂2 + ε+ ε̃0)/a

]
can be attained.

Then, for the optimal comparator in hindsight u∗ = (β∗, φ∗), we have the accumulated cost:

T∑
t=1

ft(u
∗) =

T∑
t=1

κt(aβ
∗ +

b‖φ∗ − wt‖2 + εt + ε0
β∗

+ ∆t)

= (2
√
a(bV 2 + ε+ ε0))

T∑
t=1

κt +

T∑
t=1

κt∆t .

29

Finally, we obtain:

AERTA ≤
1

T

T∑
t=1

ft(ut)

≤ 1

T
(

T∑
t=1

ft(u
∗) +Rstatic

T (u∗))

= (2
√
a(bV 2 + ε+ ε0))

T∑
t=1

κt
T

+

T∑
t=1

κt∆t

T

+
3κmax

2ε̃0
√
T

√(D̂2 +
bD̂2 + εmax

a
)(4ab2ε̃0D̂2 + a2(εmax + bD̂2)2)

 .

2. If εv > bV 2 + ε, β∗ =
√

(bV 2 + ε+ ε0)/a <
√
ε̃0/a cannot be attained. We can simply upper

bound the cost function by replacing ε0 with ε̃0 and obtain a newly attainable optimal comparator

in hindsight ũ∗ = (β̃∗, φ∗), where β̃∗ =
√

(bV 2 + ε+ ε̃0)/a ∈
[√

ε̃0/a,

√
(bD̂2 + ε+ ε̃0)/a

]
.

Then, we have the accumulated cost:

T∑
t=1

ft(ũ
∗) =

T∑
t=1

κt(aβ̃
∗ +

b‖φ∗ − wt‖2 + εt + ε̃0

β̃∗
+ ∆t)

= (2
√
a(bV 2 + ε+ ε̃0))

T∑
t=1

κt +

T∑
t=1

κt∆t .

Finally, we obtain:

AERTA ≤
1

T

T∑
t=1

ft(ut)

≤ 1

T
(

T∑
t=1

ft(ũ
∗) +Rstatic

T (ũ∗))

= (2
√
a(bV 2 + ε+ ε̃0))

T∑
t=1

κt
T

+

T∑
t=1

κt∆t

T

+
3κmax

2ε̃0
√
T

√(D̂2 +
bD̂2 + εmax

a
)(4ab2ε̃0D̂2 + a2(εmax + bD̂2)2)

 .

30

D.2 AER bound in possibly shifting environments (Proof of Theorem 5.1)

Theorem D.2. Consider both static and shifting environments. If the excess risk’s upper bound of
the base learner A(ut, St) can be formulated as a unified form in Eq.(1), then, the AER of DCML
(in Algo. 1) is upper bounded by:

AERTA ≤
2

T

N∑
n=1

(
√
a(bV 2

n + εn + ε0)κn +
∆n

2
)︸ ︷︷ ︸

optimal trade-off in hindsight

+
3

2T

N∑
n=1

D̃nGn
√
Mn − 1︸ ︷︷ ︸

average regret over slots

+
D̃max

T

√√√√2P ∗
N∑
n=1

G2
n︸ ︷︷ ︸

regret w.r.t environment shift

,

Here, κn =
∑Mn

k=1 κn,k, ∆n =
∑Mn

k=1 κn,k∆n,k, where the subscript n, k indicates k-th task in n-th
slot. The optimal meta-parameter in hindsight of n-th slot is u∗n = (β∗n, φ

∗
n) and the path length of N

slots is P ∗ =
∑N−1
n=1 ‖u∗n − u∗n+1‖+ 1. φ∗n =

∑Mn

k=1
κn,k
κn

wn,k is the weighted average of the base

learner outputs within the slot. β∗n =
√

(bV 2
n + εn + ε0)/a, where V 2

n =
∑Mn

k=1
κn,k
κn
‖φ∗n − wn,k‖22

is the variance in n-th slot and εn =
∑Mn

k=1
κn,k
κn

εn,k. Moreover, Gn is the maximal gradient norm of
the cost function, D̃n is the diameter of meta-parameters in n-th slot, and D̃max = max{D̃n}Nn=1.

Proof. A possibly shifting environment can be considered slot-wise static or static, so we need to
derive the dynamic regret bound. We use the subscript n, k to indicate the k-th task inside the n-th
slot and the corresponding timestep is t =

∑n−1
i=1 Mi + k. To obtain such a bound, we first use the

following result for the meta-parameter updates inside the n-th slot:

‖un,k+1 − u∗n‖2 = ‖ΠU (un,k − γn,k∇fn,k(un,k))− u∗n‖ ≤ ‖un,k − γn,k∇fn,k − u∗n‖2

≤ ‖un,k − u∗n‖2 + γ2
n,k‖∇fn,k‖2 − 2γn,k〈∇fn,k, (un,k − u∗n)〉 .

So we have 〈∇fn,k, (un,k − u∗n)〉 ≤ ‖un,k−u
∗
n‖

2−‖un,k+1−u∗n‖
2

2γn,k
+

γn,k‖∇fn,k‖2
2 .

Let Gn be the upper bound of the gradient norm related to the n-th slot, i.e., maxk{‖∇fn,k‖} ≤ Gn.
Applying the above result and the update rule in Algo. 1, we have the dynamic regret:

Rdynamic
T (u∗1:N) =

N∑
n=1

Mn∑
k=1

fn,k(un,k)− fn,k(u∗n)

≤
N∑
n=1

(
Mn−1∑
k=1

∇f>n,k(un,k − u∗n) +∇f>n,Mn
(un,Mn

− u∗n)

)

≤
N∑
n=1

Mn−1∑
k=1

[
‖un,k − u∗n‖2 − ‖un,k+1 − u∗n‖2

2γn,k
+G2

n

γn,k
2

]

+

N∑
n=1

(
‖un,Mn

− u∗n‖2 − ‖un+1,1 − u∗n‖2

2ρ
+G2

n

ρ

2

)
.

The meta-parameter updates that transition between slots adopt the hopping learning rate ρ, which
reflects the environment change.

Denote

T1 =

N∑
n=1

(
Mn−1∑
k=1

[
‖un,k − u∗n‖2 − ‖un,k+1 − u∗n‖2

2γn,k
+G2

n

γn,k
2

]
+G2

n

ρ

2

)
and

T2 =

N∑
n=1

‖un,Mn
− u∗n‖2 − ‖un+1,1 − u∗n+1‖2 + ‖un+1,1 − u∗n+1‖2 − ‖un+1,1 − u∗n‖2

2ρ
.

31

First, let us tackle T2,

T2 =

N∑
n=1

‖un,Mn
− u∗n‖2 − ‖un+1,1 − u∗n+1‖2

2ρ
+

N∑
n=1

‖u∗n+1‖2 − ‖u∗n‖2 + 2u>n+1,1(u∗n − u∗n+1)

2ρ

=

N−1∑
n=1

‖un,Mn
− u∗n‖2 − ‖un+1,1 − u∗n+1‖2

2ρ

+

N−1∑
n=1

‖u∗n+1‖2 − ‖u∗n‖2 + 2u>n+1,1(u∗n − u∗n+1)

2ρ

+
‖uN,MN

− u∗N‖2 − ‖uN+1,1 − u∗N+1‖2 + ‖u∗N+1‖2 − ‖u∗N‖2 + 2u>N+1,1(u∗N − u∗N+1)

2ρ

≤
N−1∑
n=1

‖un,Mn
− u∗n‖2 − ‖un+1,1 − u∗n+1‖2

2ρ
+
‖u∗N‖2 − ‖u∗1‖2

2ρ
+
D̃max

ρ

N−1∑
n=1

‖u∗n − u∗n+1‖

+
‖uN,MN

− u∗N‖2 − ‖uN+1,1‖2 + 2u>N+1,1u
∗
N − ‖u∗N‖2

2ρ

≤
N−1∑
n=1

‖un,Mn
− u∗n‖2 − ‖un+1,1 − u∗n+1‖2

2ρ
+
‖u∗N‖2 − ‖u∗1‖2

2ρ
+
D̃max

ρ

N−1∑
n=1

‖u∗n − u∗n+1‖

+
‖uN,MN

− u∗N‖2

2ρ
.

The first inequality is obtained with

u>n+1,1(u∗n − u∗n+1) ≤ ‖un+1,1‖‖u∗n − u∗n+1‖ ≤ D̃max‖u∗n − u∗n+1‖ ,

where D̃max = max{D̃n}Nn=1 is the maximal slot-wise diameter of the set of meta-parameters. Since
we have assumed that 0 ∈ W , it gives ‖un+1,1‖ ≤ D̃max,∀n. The last inequality of the above proof

holds because
−‖uN+1,1‖2+2u>N+1,1u

∗
N−‖u

∗
N‖

2

2ρ =
−‖uN+1,1−u∗N‖

2

2ρ ≤ 0.

Let D̂n be the diameter of the base learner outputs in n-th slot, and let D̂max = max{D̂n}Nn=1,
κmax
n = max{κn,k}Mn

k=1, εmax
n = max{εn,k}Mn

k=1, εmax = max{εmax
n }Nn=1.

We constrain βn,k ∈
[√

ε̃0/a,

√
(bD̂2

n + εmax + ε̃0)/a

]
, where ε̃0 = ε0 + εv is related to the

randomness of the base learner ε0 and a factor εv to control the range of βt. We will see later that εv
can affect the upper bound of the gradient norm of the meta-parameter. We can further verify that
2bγn,kκn,k

βn,k
≤ 1 can always hold with ε̃0 <

a2(εmax+bD̂
2
n)

4b2 . Hence, φn,k is always inside the smallest

ball that contains Ŵn. Then, we can define D̃2
n

def
= D̂2

n +
bD̂2

n+εmax
n +ε̃0
a . Therefore, we have

D̃2
max = (1 + b/a)D̂2

max + (εmax + ε̃0)/a .

Now we tackle T1. Since we scale the learning rate of the meta-parameter for shifting environments,
we need to set ρ > γn,k for better tracking of the change. Then, we note that if we define 1

γn,0
= 0,

we have
Mn−1∑
k=1

‖un,k+1 − u∗n‖2

2γn,k
=

Mn−1∑
k=0

‖un,k+1 − u∗n‖2

2γn,k
=

Mn−2∑
k=0

‖un,k+1 − u∗n‖2

2γn,k
+
‖un,Mn

− u∗n‖2

2γn,Mn−1

≥
Mn−2∑
k=0

‖un,k+1 − u∗n‖2

2γn,k
+
‖un,Mn

− u∗n‖2

2ρ

=

Mn−1∑
k=1

‖un,k − u∗n‖2

2γn,k−1
+
‖un,Mn

− u∗n‖2

2ρ
.

32

In addition, we have ‖un,k − u∗n‖2 = ‖φn,k − φ̂∗n‖2 + |βn,k − β∗n|2 ≤ D̂2
n +

bD̂2
n+εmax

n

a ≤ D̃2
n.

So, we can bound the dynamic regret as

Rdynamic
T (u∗1:N) ≤ T1 + T2

≤
N∑
n=1

(
Mn−1∑
k=1

[
‖un,k − u∗n‖2

2γn,k
− ‖un,k − u

∗
n‖2

2γn,k−1
+G2

n

γn,k
2

]
− ‖un,Mn − u∗n‖2

2ρ
+G2

n

ρ

2

)

+

N−1∑
n=1

‖un,Mn
− u∗n‖2 − ‖un+1,1 − u∗n+1‖2

2ρ

+
‖u∗N‖2 − ‖u∗1‖2

2ρ
+
D̃max

ρ

N−1∑
n=1

‖u∗n − u∗n+1‖+
‖uN,MN

− u∗N‖2

2ρ

=

N∑
n=1

(
Mn−1∑
k=1

[
‖un,k − u∗n‖2

2γn,k
− ‖un,k − u

∗
n‖2

2γn,k−1
+G2

n

γn,k
2

]
+G2

n

ρ

2

)

+

N∑
n=1

‖un,Mn
− u∗n‖2

2ρ
+

N−1∑
n=1

−‖un+1,1 − u∗n+1‖2

2ρ
−

N∑
n=1

‖un,Mn
− u∗n‖2

2ρ

+
‖u∗N‖2 − ‖u∗1‖2

2ρ
+
D̃max

ρ

N−1∑
n=1

‖u∗n − u∗n+1‖

≤
N∑
n=1

(
Mn−1∑
k=1

D̃2
n

[
1

2γn,k
− 1

2γn,k−1

]
+G2

n

γn,k
2

+G2
n

ρ

2

)

+
D̃2

max

ρ
+
D̃2

max

ρ

N−1∑
n=1

‖u∗n − u∗n+1‖ .

The last inequality is derived with ‖u∗N‖ ≤ D̃max and ignoring the negative terms.

Denote the path length of the reference sequence as P ∗ =
∑N−1
n=1 ‖u∗n − u∗n+1‖ + 1. By setting

γn,k = D̃n
Gn
√
k

(satisfies 1/γn,0 = 0), ρ =

√
2P∗D̃2

max∑N
n=1G

2
n

, and using
∑Mn−1
k=1

1√
k
≤ 2
√
Mn − 1, we

have

Rdynamic
T (u∗1:N) ≤

N∑
n=1

(
3D̃nGn

√
Mn − 1

2
+
G2
n

2
ρ

)
+
D̃2

maxP
∗

ρ

≤
N∑
n=1

3D̃nGn
√
Mn − 1

2
+ D̃max

√√√√2P ∗
N∑
n=1

G2
n .

For each slot n, the optimal prior in hindsight is u∗n = (φ∗n, β
∗
n). By solving minu

∑Mn

k=1 fn,k(u), we
can get:

φ∗n =

Mn∑
k=1

κn,k∑Mn

k=1 κn,k
wn,k, β

∗
n =

√
(bV 2

n + εn + ε0)/a ,

where V 2
n =

∑Mn

k=1
κn,k∑Mn
k=1 κn,k

‖φ∗n − wn,k‖2 and εn =
∑Mn
k=1 κn,kεn,k∑Mn
k=1 κn,k

.

Thus, the accumulated cost for the slot-wise optimal priors in hindsight:

N∑
n=1

Mn∑
k=1

fn,k(u∗n) =

N∑
n=1

Mn∑
k=1

κn,k(aβ∗n +
b‖φ∗n − wn,k‖2 + εn,k + ε0

β∗n
+ ∆n,k)

=

N∑
n=1

(2
√
a(bV 2

n + εn + ε0))

Mn∑
k=1

κn,k +

Mn∑
k=1

κn,k∆n,k

33

Finally, we obtain the bound in the main theorem:

AERTA ≤
1

T

T∑
t=1

ft(ut)

≤ 1

T

(
N∑
n=1

Mn∑
k=1

fn,k(u∗n) +Rdynamic
T (u∗1:N)

)

=
1

T

N∑
n=1

(2
√
a(bV 2

n + εn + ε0))

Mn∑
k=1

κn,k +
1

T

N∑
n=1

Mn∑
k=1

κn,k∆n,k

+
1

T

N∑
n=1

3D̃nGn
√
Mn − 1

2
+

1

T
D̃max

√√√√2P ∗
N∑
n=1

G2
n .

Moreover, by limiting the range of βn,k ∈ B
def
=

[√
ε̃0/a,

√
(bD̂2

n + εmax + ε̃0)/a

]
, we have

|∂βn,kfn,k| = |κn,k(a− b‖φn,k − wn,k‖2 + εn,k + ε0
β2
n,k

)| ≤ aκmax
n (bD̂2

n + εmax
n)

ε̃0
,

|∂φn,kfn,k| =
2bκn,k‖φn,k − wn,k‖

βn,k
≤ 2bκmax

n D̂n√
ε̃0/a

.

Therefore, ‖∇fn,k‖2 ≤ a2(κmax
n)2(bD̂2

n+εmax
n)2

ε̃20
+

4ab2(κmax
n)2D̂2

n

ε̃0
,∀k ∈ [Mn].

Moreover, we let G2
n =

a2(κmax
n)2(bD̂2

n+εmax
n)2

ε̃20
+

4ab2(κmax
n)2D̂2

n

ε̃0
, replace D̃n with the tighter√

D̂2
n +

bD̂2
n+εmax

n

a and use D̃2
max = (1 + b/a)D̂2

max + (εmax + ε̃0)/a.

Analogous to the proof of static AER, if εv ≤ bV 2
n + εn, β∗n =

√
(bV 2

n + εn + ε0)/a ∈ B can be
attained. Then, the above AER can be alternately bounded as:

AERTA ≤
1

T

N∑
n=1

(2
√
a(bV 2

n + εn + ε0))

Mn∑
k=1

κn,k +
1

T

N∑
n=1

Mn∑
k=1

κn,k∆n,k

+
3

2ε̃0T

N∑
n=1

κmax
n

√(D̂2
n +

bD̂2
n + εmax

n

a
)(Mn − 1)

√
a2(bD̂2

n + εmax
n)2 + 4ab2ε̃0D̂2

n

+

1

T

√
(a+ b)D̂2

max + εmax + ε̃0
a

√√√√2P ∗

[
N∑
n=1

(a2(bD̂2
n + εmax

n)2 + 4ab2ε̃0D̂2
n)(κmax

n)2

ε̃20

]
.

Otherwise, if εv > bV 2
n +εn, β∗n =

√
(bV 2

n + εn + ε0)/a <
√
ε̃0/a cannot be attained by optimizing

within B. We can simply upper bound the cost function by replacing ε0 with ε̃0 and obtain newly
attainable optimal comparators in hindsight ũ∗n = (β̃∗n, φ

∗
n), where β̃∗n =

√
(bV 2

n + εn + ε̃0)/a ∈[√
ε̃0/a,

√
(bD̂2 + εmax + ε̃0)/a

]
. Finally, we can obtain a bound for this case by replacing ε0 in

the first line of the above dynamic AER bound with ε̃0.

34

E Missing Proofs in Section 6

E.1 Cost function for Gibbs base learner

Proposition E.1. SupposeW ⊂ Rd, let w∗t be the hypothesis that achieves the minimum population
risk among W . Suppose ` ∈ [0, 1], and `(·, z) is L-Lipschitz ∀z ∈ Z . Assume that Lµt(·) has
α-quadratic-growth for all t ∈ [T]. Let wt = A(φt, βt) denote the output of the Gibbs algorithm
applied on dataset St, and Qt be the prior distribution and βt the inverse temperature of t-th task.
Assume Qt is a gaussian distribution N (φt, σ

2
t 1d) with σt = m

−1/4
t d−1/4L−1/2. To meet the

general form of the cost function, we replace βt with β′t by αβt − 2
√
dmtL = m

3
4
t d

1
4

√
Lβ′t. Hence,

the upper bound of the excess risk of the Gibbs algorithm is given by

ft(β
′
t, φt) =

(
d

1
4

√
L

m
1
4
t

) β′t
2α

+ 1 +
2d

1
4

√
L

αm
1
4
t

+

2α‖φt − wt‖2 + ε0 + 2
α

√
d
mt
L+ 2

√
Ld

1
4

m
1
4
t

β′t

 .

Proof. From Theorem B.3, we have:

Rexcess(Gibbs, ut) ≤
βt

2mt
+m

−1/4
t L1/2d1/4 +

d1/2m
1/2
t L

2βt
‖φt − w∗t ‖2 .

Let w̄t = EWt be the expected output of the Gibbs algorithm, and let ε0 = 2α‖wt − w̄t‖2 be the
randomness of the algorithm, which should be a small. Then, using Titu’s lemma and the α-quadratic
growth assumption on the loss function, we get

‖φt − w∗t ‖2 = ‖φt − w̄t + w̄t − w∗t ‖2

≤ 2‖φt − w̄t‖2 + 2‖w̄t − w∗t ‖2

≤ 2‖φt − w̄t‖2 + 2‖EWt − w∗t ‖2

≤ 2‖φt − w̄t‖2 + 2E‖Wt − w∗t ‖2

≤ 2‖φt − w̄t‖2 +
4E[Lµt(Wt)− Lµt(w∗t)]

α

≤ 2‖φt − w̄t‖2 +
4(βt

2mt
+m

−1/4
t L1/2d1/4 +

d1/2m
1/2
t L

2βt
‖φt − w∗t ‖2)

α
.

Then, we have ‖φt − w∗t ‖2 ≤
2α‖φt−w̄t‖2+

2βt
mt

+4m
−1/4
t L1/2d1/4

α− 2d1/2m
1/2
t L

βt

.

Consequently, we can obtain:

Rexcess(Gibbs, ut) ≤
βt

2mt
+m

−1/4
t L1/2d1/4 +

d1/2m
1/2
t L(α‖φt − w̄t‖2 + βt

mt
+ 2m

−1/4
t L1/2d1/4)

αβt − 2d1/2m
1/2
t L

.

Replace αβt − 2d1/2m
1/2
t L = m

3/4
t d1/4L1/2β′t, we have

35

Rexcess(Gibbs, ut) ≤
(m

3/4
t d1/4L1/2β′t + 2d1/2m

1/2
t L)/α

2mt
+m

−1/4
t L1/2d1/4

+
α‖φt − w̄t‖2 +

(m
3/4
t d1/4L1/2β′t+2d1/2m

1/2
t L)/α

mt
+ 2m

−1/4
t L1/2d1/4

m
1/4
t d−1/4L−1/2β′t

=
1

2α
m
−1/4
t d1/4L1/2β′t +

1

α
m
−1/2
t d1/2L+m

−1/4
t L1/2d1/4

+
α‖φt − w̄t‖2 + 1

αm
−1/4
t d1/4L1/2β′t + 2

αm
−1/2
t d1/2L+ 2m

−1/4
t L1/2d1/4

m
1/4
t d−1/4L−1/2β′t

=
1

2α
m
−1/4
t d1/4L1/2β′t +m

−1/4
t L1/2d1/4 +

2

α
m
−1/2
t d1/2L

+
α‖φt − w̄t‖2 + 2

αm
−1/2
t d1/2L+ 2m

−1/4
t L1/2d1/4

m
1/4
t d−1/4L−1/2β′t

=
d

1
4

√
L

m
1
4
t

(
β′t
2α

+ 1 +
2

α
m
−1/4
t d1/4L1/2

+
α‖φt − w̄t‖2 + 2

αm
−1/2
t d1/2L+ 2m

−1/4
t L1/2d1/4

β′t

)

≤ d
1
4

√
L

m
1
4
t

 β′t
2α

+ 1 +
2d

1
4

√
L

αm
1
4
t

+

α‖φt − w̄t‖2 + 2
α

√
d
mt
L+ 2

√
Ld

1
4

m
1
4
t

β′t

≤ d
1
4

√
L

m
1
4
t

 β′t
2α

+ 1 +
2d

1
4

√
L

αm
1
4
t

+

2α‖φt − wt‖2 + ε0 + 2
α

√
d
mt
L+ 2

√
Ld

1
4

m
1
4
t

β′t

= ft(β

′
t, φt) .

36

E.2 Static AER of Gibbs

Theorem E.2. Consider the Gibbs algorithm as described in Proposition E.1 to be the base learner.
Apply the Meta-OGD (Algo. 2) on the cost function ft(β′t, φt). Further, assume that each task uses
the same sample number m. Then

AERTGibbs ∈ O
((

(V + 1) +
1√
T

)
1

m
1
4

)
.

Proof. From Lemma B.6, we know that ft is convex w.r.t u, so we can directly apply OGD. Following
Proposition E.1, we have

ft(β
′
t, φt) =

(
d

1
4

√
L

m
1
4
t

) β′t
2α

+ 1 +
2d

1
4

√
L

αm
1
4
t

+

2α‖φt − wt‖2 + ε0 + 2
α

√
d
mt
L+ 2

√
Ld

1
4

m
1
4
t

β′t

 .

To apply Theorem D.1, we first find a = 1
2α , b = 2α, εt = 2

α

√
d
mt
L+ 2

√
Ld

1
4

m
1
4
t

, ∆t = 1 + 2d
1
4
√
L

αm
1
4
t

,

ε0 = 2α‖wt − w̄t‖2, and κt = d
1
4
√
L

m
1
4
t

. Since we have assumed mt = m,∀t ∈ [T], then we have

κ = κt = κmax = d1/4
√
L

m1/4 , ε = εt = εmax = 2
α

√
d
mL+ 2

√
Ld

1
4

m
1
4

.

Taking the above values into Theorem D.1, we have:

AERTGibbs ≤ (
√

2(2αV 2 + ε+ ε0)/α+ 1)

T∑
t=1

d1/4
√
L

Tm1/4
+

T∑
t=1

2
√
dL

Tα
√
m

+
3d1/4

√
L

2ε̃0
√
Tm1/4

√
((1 + 4α2)D̂2 + 4

√
d/mL+

4α
√
Ld1/4

m1/4
)

×

√
8αε̃0D̂2 + (

1

α2

√
d

m
L+

√
Ld

1
4

αm
1
4

+ D̂2)2 .

Since we have assumed the bounded gradient norm for the cost function, i.e., L′-Lipschitz, then we
can obtain:

D̂2 ≤ ε̃0L
′ − aκε
abκ

,

which implies ε̃0 ≥ aκε/L′, where aκε/L′ ∈ O(1/
√
m). So it suffices to ensure ε̃0 > Ω(1/

√
m).

For the Gibbs algorithm, by the law of large numbers, we have ε0 = 2α‖wt − ESt,AWt‖2 →
2α‖wt−EAWt‖2 asm→∞. In addition, since the variance of Gaussian is σ = m−1/4d−1/4L−1/2,
we have ε0 ∈ om(1).

So if we set εv = bV 2 < bV 2 + ε with constant V , then ε̃0 = ε0 + εv satisfies the above condition.
Consequently, we have

AERTGibbs ∈ O
((

(V + 1) +
1√
T

)
1

m
1
4

)
.

37

E.3 Proof of Theorem 6.1 (Dynamic AER of Gibbs)

Theorem E.3. Let W ⊂ Rd. Assume that `(·, z) ∈ [0, 1] is L-Lipschitz ∀z ∈ Z . Assume that
Lµt(·) has α-quadratic-growth for all t ∈ [T]. Let wt = AGibbs(βt, φt, St) be the output of the
Gibbs algorithm (Definition B.2) on St, where φt is the mean of a prior Gaussian N (φt, σ

2
t 1d) with

σt = m
−1/4
t d−1/4L−1/2 and βt is the inverse temperature. Consider Algo. 1 (DCML) and further

assume that each slot has equal length M and each task uses the sample number m. Then

AERTGibbs ∈ O

((
(1 +

1

N

N∑
n=1

Vn +
1√
M

) +

√
P ∗

M
√
N

)
1

m
1
4

)
.

Proof. From Proposition E.1, we first obtain a = 1
2α , b = 2α, εn,k = 2

α

√
d

mn,k
L + 2

√
Ld

1
4

m
1
4
n,k

,

∆n,k = 1 + 2d
1
4
√
L

αm
1
4
n,k

, and κn,k = d
1
4
√
L

m
1
4
n,k

. Moreover, κmax
n = d1/4

√
L

m∗n
1/4 , εmax

n = 2
α

√
d
m∗n

L + 2
√
Ld

1
4

m∗n
1
4

,

where m∗n = min{mn,k}Mn

k=1.

For simplicity, let us assume that each environment slot has the same number of tasks, i.e., Mn = M ,
T = NM , and each task has the same number of samples, i.e., mn,k = m. So we have κn,k =

κmax
n = κ = d1/4L1/2m−1/4 and εn,k = εmax

n = ε = 2
α

√
d/mL+ 2

√
Ld1/4m−1/4.

Taking these values into Theorem 5.1, we can obtain:

AERTGibbs ≤
1

N

N∑
n=1

(
√

2(2αV 2
n + εn + ε0)/α)

d
1
4

√
L

m
1
4

+
d

1
4

√
L

m
1
4

+
2
√
dL

α
√
m

+
3

2ε̃0NM

d
1
4

√
L

m
1
4

√
M − 1×

N∑
n=1

√
(1 + 4α2)D̂2

n + 4

√
d

m
L+

4α
√
Ld

1
4

m
1
4

√
(D̂2

n +

√
d

m
L

1

α2
+

√
Ld

1
4

αm
1
4

)2 + 8αε̃0D̂2
n

+
1

NM

√
ε̃0(1 + 4α2)D̂2

max + 4

√
d

m
L+

4α
√
Ld1/4

m1/4
× d1/4

√
L

m
1
4

×

√√√√√2P ∗
N∑
n=1

(D̂2
n + 1

α2

√
d/mL+

√
Ld

1
4

αm
1
4

)2

ε̃20
+

8αD̂2
n

ε̃0
.

Since we have assumed the bounded gradient norm for the cost function, i.e., L′-Lipschitz, then we
can obtain:

D̂2
n ≤

ε̃0L
′ − aκε
abκ

,

which implies ε̃0 ≥ aκε/L′, where aκε/L′ ∈ O(1/
√
m). So it suffices to ensure ε̃0 > Ω(1/

√
m).

For the Gibbs algorithm, by the law of large numbers, we have ε0 = 2α‖wt − ESt,AWt‖2 →
2α‖wt−EAWt‖2 asm→∞. In addition, since the variance of Gaussian is σ = m−1/4d−1/4L−1/2,
we have ε0 ∈ om(1). So if we set εv = bV 2

n < bV 2
n + ε with constant Vn, ε̃0 = ε0 + εv satisfies the

above condition. Consequently, we have

AERTGibbs ∈ O

((
(1 +

1

N

N∑
n=1

Vn +
1√
M

) +

√
P ∗

M
√
N

)
1

m
1
4

)
.

38

E.4 Cost function for SGD base leaner

Proposition E.4. ConsiderW ⊂ Rd. Letw∗t be the hypothesis that achieves the minimum population
risk amongW . Suppose `(·, z) is convex, β-smooth, and L-Lipschitz for all z ∈ Z . Assume that
Lµt(·) has α-quadratic-growth ∀t ∈ [T]. Let wt denote the output of the SGD algorithm applied
on dataset St and φt be the initialization of t-th task, ηt is the learning rate, and Kt is the gradient
updates number. To meet the unified form in Eq. (1), let η′t = (Ktαηt − 2)κt. Then, the upper bound
of the excess risk is given by

f(η′t, φt) = κt

(
2α‖φt − wt‖2 + ε0 + 2(L2 + 2L2Kt

mt
)/(Ktα)

η′t
+

1

2
η′t + 2κt

)
,

where κt =
√

(1/(Ktα) + 2/(mtα)L.

From Theorem .B.4, we have the following excess risk bound for SGD:

Proof.

Rexcess(SGD, ut) ≤
‖φt − w∗t ‖2

2ηtKt
+ (

L2

2
+
L2Kt

mt
)ηt .

Let w̄t = EWt be the expected output of the SGD algorithm of t-th task, and wt is the actual output.
Let ε0 = 2α‖wt − w̄t‖2 be the randomness of the algorithm, which should be small. With the
quadratic growth property, we have

‖φt − w∗t ‖2 = ‖φt − w̄t + w̄t − w∗t ‖2

≤ 2‖φt − w̄t‖2 + 2‖w̄t − w∗t ‖2

≤ 2‖φt − w̄t‖2 + 2E‖Wt − w∗t ‖2

≤ 2‖φt − w̄t‖2 +
4E[Lµt(Wt)− Lµt(w∗t)]

α

≤ 2‖φt − w̄t‖2 +
4(
‖φt−w∗t ‖

2

2ηtKt
+ (L

2

2 + L2Kt
mt

)ηt)

α
.

Therefore, we can obtain

‖φt − w∗t ‖2 ≤
2α‖φt − w̄t‖2 + (2L2 + 4L2Kt

mt
)ηt

α− 2
Ktηt

,

Rexcess(SGD, ut) ≤
2α‖φt − wt‖2 + ε0 + (L2 + 2L2Kt

mt
)ηt

Ktαηt − 2
+ (

L2

2
+
L2Kt

mt
)ηt .

Let

f(ηt, φt) =
2α‖φt − wt‖2 + ε0 + (L2 + 2L2Kt

mt
)ηt

Ktαηt − 2
+ (

L2

2
+
L2Kt

mt
)ηt ,

and replace η′t = (Ktαηt − 2)κt, κt =

√
(L2+2L2 Kt

mt
)

Ktα
, we have

f(η′t, φt) =
2α‖φt − wt‖2 + ε0 + (L2 + 2L2Kt

mt
)(η′t/κt + 2)/(Ktα)

η′t/κt

+ (
L2

2
+ L2Kt

mt
)(η′t/κt + 2)/(Ktα)

= κt

(
2α‖φt − wt‖2 + ε0 + 2(L2 + 2L2Kt

mt
)/(Ktα)

η′t
+

1

2
η′t + 2κt

)

39

E.5 Static AER of SGD

Theorem E.5. Consider the SGD algorithm as described in Proposition E.4 to be the base learner.
Apply the Meta-OGD(Algo. 2) algorithm on the cost function ft(η′t, φt). Further, assume that for
each task, we have the same sample number m and that SGD performs the same number of gradient
steps K. Then

AERTSGD ∈ O

(
(V +

1√
T

)

√
1

K
+

1

m

)
.

Proof. According to Proposition E.4, we have κt =

√
(L2+2L2 Kt

mt
)

Ktα
, a = 1/2, b = 2α and εt =

2(L2+2L2 Kt
mt

)

Ktα
= 2κ2

t ,∆t = 2κt, ε0 = 2α‖wt − w̄t‖2.

For simplicity, we assume the SGD step and sample number are the same for different tasks. Hence,

we have Kt = K, mt = m, κt = κmax =
√

1
Kα + 2

mαL = κ and εt = ε = εmax = 2κ2.

Put these variable into the bound of Theorem D.1, we have:

AERTSGD ≤ (

√
2(2αV 2 + (

2

Kα
+

4

mα
)L2 + ε0))

√
1

Kα
+

2

mα
L+ 2(

1

Kα
+

2

mα
)L2

+
3

2ε̃0
√
T

√
1

Kα
+

2

mα
L×

√√√√((1 + 4α)D̂2 + 4(
1

Kα
+

2

mα
)L2

)(
8α2ε̃0D̂2 +

(
(

1

Kα
+

2

mα
)L2 + αD̂2

)2
) .

Since we have assumed the bounded gradient norm for the cost function, i.e., L′-Lipschitz, then we
can obtain:

D̂2 ≤ ε̃0L
′ − aκε
abκ

,

which implies ε̃0 ≥ aκε/L′, where aκε/L′ ∈ O(m−3/2 + K−3/2). So it suffices to ensure ε̃0 ∈
Ω(m−3/2 +K−3/2).

For SGD, by the law of large numbers, we have ε0 = 2α‖wt −ESt,AWt‖2 → 2α‖wt −EAWt‖2 as
m→∞. In addition, 2α‖wt − EAWt‖2 → 0 as K →∞, so we have ε0 ∈ om(1) + oK(1).

Then, if we set εv = bV 2 < bV 2 + ε, s.t. ε̃0 = ε0 + εv satisfies the above condition, we have

AERTSGD ≤ O

(
(V + om(1) + oK(1) +

1
om(1)+oK(1)+V 2

√
T

)

√
1

K
+

1

m

)
.

Considering a constant variance, it gives the following bound that has the same complexity factor and
rate as Theorem 3.2 in [31] (Khodak et al. [31] used OGD as the base learner, where each step only
takes one sample, i.e., K = m).

AERTSGD ∈ O

(
(V +

1√
T

)

√
1

K
+

1

m

)
.

If we have V → 0, we can set εv = bV 2 + ε + 1/T 1/4 > bV 2 + ε, s.t. ε̃0 = ε0 + εv satisfies the
above condition. In this case, we have:

AERTSGD ≤ O

((
V + om(1) + oK(1) +

1√
T

+

1
om(1)+oK(1)+V 2+1/T 1/4

√
T

)√
1

K
+

1

m

)

= O

((
1

4
√
T

+ om(1) + oK(1)

)√
1

K
+

1

m

)
,when V → 0 ,

which has an additional term om(1) + oK(1) compared to Theorem 3.2 in [31]. This is because the
variance V 2 (task similarity) in our paper is calculated via the average SGD iterates. A similar term
will be introduced using the same output for estimating V in [31].

40

E.6 Proof of Theorem 6.2 (Dynamic AER of SGD)

Theorem E.6. LetW ⊂ Rd. Consider that `(·, z) is convex, β-smooth, L-Lipschitz forallz ∈ Z .
Assume that Lµt(·) has α-quadratic-growth for all t ∈ [T]. Let SGD be the base learner for each
task where it outputs wt = ASGD(ηt, φt, St) with learning rate ηt and initialization φt. Consider the
Algo. 1 (DCML) on the SGD cost function. Further, assume each slot has equal length M , each task
has the sample number m, and that SGD performs the same number of updating steps K. Then

AERTSGD ∈ O

((
1

N

N∑
n=1

Vn +
1√
M

+

√
P ∗

M
√
N

)√
1

K
+

1

m

)
.

Proof. For simplicity, we assume the SGD step and sample number are the same for different tasks.
Hence, Kn,k = K and mn,k = m. Based on Proposition E.4, we have a = 1/2, b = 2α. Then, we

get κn,k =
√

1
Kα + 2

mαL = κ εn,k = ε = 2κ2, and ∆n,k = 2κn,k.

Put these variable into the bound of Theorem 5.1, we can obtain:

AERTSGD ≤

(
1

N

N∑
n=1

√
2(2αV 2

n + 2(
1

Kα
+

2

mα
)L2 + ε0)

)√
1

Kα
+

2

mα
L+ 2(

1

Kα
+

2

mα
)L2

+
3

2ε̃0M

√
1

Kα
+

2

mα
L
√
M − 1×

1

N

N∑
n=1

(√
(1 + 4α)D̂2

n + (
4

Kα
+

8

mα
)L2

√
(αD̂2

n + (
1

Kα
+

2

mα
)L2)2 + 8α2ε̃0D̂2

n

)

+
1

M

√
(1 + 4α)D̂2

max + 4L2(
1

Kα
+

2

mα
) + 2ε̃0 ×

√
1

Kα
+

2

mα
L

×

√√√√2P ∗

N

1

N

N∑
n=1

[
(αD̂2

n + (1
Kα + 2

mα)L2)2

ε̃20
+

8α2D̂2
n

ε̃0

]
.

Since we have assumed the bounded gradient norm for the cost function, i.e., L′-Lipschitz, then we
can obtain:

D̂2
n ≤

ε̃0L
′ − aκε
abκ

,

which implies ε̃0 ≥ aκε/L′, where aκε/L′ ∈ O(m−3/2 + K−3/2). So it’s sufficient to ensure
ε̃0 ∈ Ω(m−3/2 +K−3/2).

For SGD, by the law of large numbers, we have ε0 = 2α‖wt −ESt,AWt‖2 → 2α‖wt −EAWt‖2 as
m→∞. In addition, 2α‖wt − EAWt‖2 → 0 as K →∞, so we have ε0 ∈ om(1) + oK(1).

Then, if we set εv = bV 2
n < bV 2

n + ε s.t. ε̃0 = ε0 + εv satisfies the above condition, we have

AERTSGD ≤ O

 1

N

N∑
n=1

Vn + om(1) + oK(1) +
1

ε0+V 2√
M

+

1
ε0+V 2

√
P∗

N

M

√ 1

K
+

1

m

 .

The above bound has additional om(1) + oT (1) compared to Theorems in [31]. Since the variance
V 2
n (task similarity) in this paper is calculated via the average SGD iterates. A similar term will be

introduced using the same algorithm outputs for estimating V in [31]. Moreover, our bound is in
terms of average task excess risk, while [31] upper bounds the average task regret for online base
learners using a different meta-learning algorithm.

Considering a constant variance, we have

AERTSGD ∈ O

((
1

N

N∑
n=1

Vn +
1√
M

+

√
P ∗

M
√
N

)√
1

K
+

1

m

)
.

When we have a large P ∗ with a small N (the environment occasionally changes with a large shift),
the above bound has an improved rate of O(1/

√
M) or

√
P ∗ on the path length P ∗ (reflecting

41

environment similarities and shifts) compared to O
(

1
N

∑N
n=1 Vn + 1√

M
+ min{

√
P∗

MN ,
P∗

NM }
)

–
the equivalent form of Theorem 3.3 [31] in this case.

If we have Vn → 0, we can set εv = bV 2
n + ε+ 1/M1/4 > bV 2

n + ε, s.t. ε̃0 = ε0 + εv satisfies the
aforementioned condition. In this case, we have:

O

 1

N

N∑
n=1

Vn + om(1) + oK(1) +
1 + 1

ε0+V 2+1/M1/4

√
M

+

1
ε0+V 2+1/M1/4

√
P∗

N

M

√ 1

K
+

1

m

= O

((
1

4
√
M

(
1 +

√
P ∗

NM

)
+ om(1) + oK(1)

)√
1

K
+

1

m

)
,when Vn → 0 .

The above bound has an improvement of rate O(1/ 4
√
M) on P ∗ as Vn → 0 compared to the

equivalent term O
(

1
4√
M

+
√

P∗

NM + om(1) + oK(1)
)

of Theorem 3.3 in [31].

42

F Experiments

In this section, we provide experimental settings, some additional experimental results, and experi-
mental details. The code is available in https://github.com/livreQ/DynamicCML.

F.1 Experimental settings

Figure 6: Summary of experimental settings

F.1.1 Detailed setting in OSAKA

Task data generating process Following OSAKA, we use a pre-trained meta-model as initializa-
tion. The datasets in OSAKA contain three environments. One is used for pre-training, and the other
two are considered unseen, consisting of OOD tasks compared to the pre-trained environment. We
run 10 CML episodes for each method, where each episode has a length of T = 10000 time steps.

At each time step, we choose to change to another environment with probability p. We select the
new environment with a probability of 0.5 for the pre-trained environment and 0.25 for one of the
other two. Then, a task is sampled from the selected environment. The above generation process
is slightly different from the original OSAKA, which mainly considers a task-agnostic setting (i.e.,
unknown task boundary). They used a single probability for switching the task and environment
simultaneously. In contrast, we focus on shifting environments under the task-aware setting, where
the task switches with probability 1, and the environment changes with the process described above.
A visualization of the data-generating process is presented in Fig. 6.

Datasets We test DCML on two representative datasets in OSAKA.

• The Synbols [43] dataset uses characters from different alphabets on randomized back-
grounds as the pre-training environment. A new alphabet and font classification tasks are
considered unseen environments. This is a large and complex dataset including a heteroge-
neous environment (font) with extremely large concept shift w.r.t other environments. We
conduct a 4-way 5-shot classification for this dataset.

• For Omniglot-MNIST-FashionMNIST(OMF), we pre-train the meta-model on the first 1000
classes of Omniglot [44]. Then, at CML time, the models are updated on a stream of tasks
generated by the process discussed in the previous section exposed to the full Omniglot
dataset and two OOD datasets – MNIST [45] and FashionMNIST [46]. In this study, we
conduct 10-way 5-shot classification as the benchmark does.

43

https://github.com/livreQ/DynamicCML

Table 3: Comparison of computational complexities with baselines
Methods Computational complexity

Fine-tuning O(T ∗K)
MetaCOG O(T ∗ (K +M))
MetaBGD O(T ∗ (K +M))

ANIL O(T ∗K)
MAML O(T ∗K)

CMAML O(T ∗ (K + 1))
DCML O(T ∗ (K + 1))

Baselines We compared the proposed algorithm with different baselines. For a fair comparison,
we further use the same meta-model pre-trained with MAML [4] for all the methods. During the
continual learning phase, all the methods adapt with few-shot data and are then evaluated on separate
test data for each task.

• ANIL is a variation of MAML that only adapts the network’s head w.r.t new tasks. Following
OSAKA, MAML, and ANIL do not update the meta-model during the CL phase. so they
will not suffer from forgetting but lack the plasticity to learn from tasks in new environments.
They are compared to show the problem with static representations in shifting environments.

• CMAML [13] includes an update modulation phase and a prolonged adaptation phase. The
former uses a function gλ : R → (0, 1) to modulate the learning rate of the meta-model
proportionally to the loss value. The latter updates the meta-model with buffered tasks when
the environment changes or a task switch is detected. Otherwise, it keeps updating w.r.t the
previous model. When λ = 0, CMAML is equivalent to MAML, which never updates the
meta-model. When λ → ∞, CMAML updates the meta-model with a constant learning
rate.

• MetaBGD and MetaCOG [8] perform CML based on MAML and Bayesian Gradient
Descent (BGD), where Meta-COG introduced a per-parameter mask.

• Fine-tuning uses the meta-model as initialization and consistently updates this model w.r.t
the tasks encountered, which can be considered a lower bound in the setting to illustrate
catastrophic forgetting.

Remark F.1. Two modifications w.r.t original OSAKA benchmark: (1) We consider a task-aware
setting, where the task constantly shifts at each timestep. (2) The cumulative performance in the
original OSAKA is evaluated on the model before updating to current task data, which does not use
the support query splits. Instead, we follow the CML setting and evaluate all the baseline algorithms
on the model after updating to the current task.

Computational Complexity The computational complexities of all the methods are provided in
Tab. 3, where the run time is measured in terms of the number of gradient computations. All the
methods are assumed to use a K-step SGD as the inner algorithm.

• Fine-tuning uses the meta-model as initialization and consistently updates this model w.r.t
the tasks encountered. MAML and ANIL do not update the meta-model during the learning
phase. Therefore, these methods need to compute T ∗K gradients for the T encountered
tasks.

• MetaBGD and MetaCOG perform CML based on MAML and use Bayesian Gradient
Descent (BGD) for meta-model adaptation, which requires M Monte Carlo samplings for
the meta-gradient computation. Hence, the computation complexity is O(T ∗ (K +M)).

• DCML and CMAML need one meta-gradient and K inner gradients computations for each
task, so the complexity is O(T ∗ (K + 1)).

44

0.0 0.2 0.4 0.6 0.8 1.0
p

1

0

1

2

3

4

5

6

Av
er

ag
e

te
st

 lo
ss

 (l
og

 sc
al

e)
 a

t t
=2

00
oracle
detect

window
static

(a) Average test loss w.r.t changing probability p. (b) Bayes online changing-point detection

Figure 7: Additional experiments for moving 2D Gaussian

F.2 Additional results

F.2.1 Moving 2D Gaussian

Comparison of different environment shift detection methods In Fig. 7 (a), we plot the average
test loss at t = 200 w.r.t the environment changing probability p in log scale, where we set the
window size to 10 for "window". We can see that the "window" performs similarly to the "oracle"
when the environment changes occur not too frequently. "Static" shows the worst result, then the
"detect ." We simply (without carefully adjusting the hyper-parameters) adapted the Bayes Online
Changing-point Detection (BOCD) to the algorithm output, which, in fact, highly depends on the
performance of the base learner. Fig. 7 (b) illustrates the detection results of BOCD, where the green
lines are the detection results and the red lines are the actual changing points. The upper figure shows
one of the dimensions of the algorithm output wt with blue points. The lower figure illustrates the
run-length posterior at each time step using a logarithmic color scale, where darker indicates a higher
probability. We can see that with the current hyper-parameter setting, detection results are delayed
compared to the actual changing points. BOCD is more likely to miss detecting some changing points
rather than conducting false detection. The pseudo-code for BOCD is provided in Algo. 3.

Not always a necessity for the exact detection of changing points We observed a better perfor-
mance of "window" than "oracle" for the OSAKA dataset in the main paper, which implies that the
exact changing points detection may not be necessary.

This result is related to the algorithm, which does not necessarily hold for other methods that maintain
multiple meta-models. By updating a single meta-model online, the context switch cost exists
for reconstructing the meta-knowledge in each slot. Setting a fixed window size can ensure the
meta-knowledge quality of each slot and yield good performance on average.

In addition, the phenomenon is related to the overlap between the consecutive environment distribu-
tions and the environment shift probability p. We empirically tested these factors, and the result is
presented in Fig. 8. In Fig. 8, "oracle" is better than "window" when p < 0.1, and the gap becomes
more evident when the distribution overlap is smaller.
Remark F.2. A larger overlap between distributions indicates that they are more similar, which can
provide a better transfer performance (smaller test loss in Fig. 8 (a) than in (b)). In this case, the two
distributions are close, so it’s hard to determine precisely which distribution the encountered task
belongs to. When two distributions are well-separated, it’s easy to detect the shift correctly, but the
transfer error is larger.

F.2.2 OSAKA benchmark

We present in Tab. 6 additional results for the Synbols dataset with the environment changing
probability p = 0.4 and p = 1.0. We can see DCML performs much better than baselines on new
environments, especially the hardest one – Font.

45

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
p

0

1

2

3

4

5

Av
er

ag
e

te
st

 lo
ss

 (l
og

 sc
al

e)
 a

t t
=2

00

oracle
detect

window
static

(a)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
p

1

0

1

2

3

4

5

6

7

Av
er

ag
e

te
st

 lo
ss

 (l
og

 sc
al

e)
 a

t t
=2

00

oracle
detect

window
static

(b)

Figure 8: Justification of "Oracle" and "Window" (window size = 1/p) methods on the Moving
2D Gaussian mean estimation: (a) Consecutive environment distributions with a large overlap,
where τt = N (φ̃∗t , I2), and φ̃∗t = φ̃∗t−1 + (1, 1) with probability of p. (b) Consecutive environment
distributions with a small overlap, where τt = N (φ̃∗t , 0.1I2), and φ̃∗t = φ̃∗t−1+(2, 2) with probability
of p.

(a) (b)

(c) (d)

Figure 9: Average test accuracy on (a) all environments (b) Omniglot, the pre-trained environment (c)
Fashion MNIST, the unseen environment (d) MNIST, the unseen environment when the environment
changes with probability p = 0.8.

In addition, we provide the experimental records in wandb for the OMF dataset when the environment
changes with probability p = 0.8. The average test accuracies w.r.t timesteps in the CL phase are
plotted in Fig. 9.

46

Table 4: Average test accuracy (%) at t = 10000 on Synbols datasets of OSAKA benchmark

SYNBOLS, p = 0.4 SYNBOLS, p = 1.0

MODEL ALL ENV. ALPHA. NEW ALPHA. FONT TOTAL ALPHA. NEW ALPHA. FONT
FINE TUNING 25.3± 0.8 25.4± 1.2 25.2± 0.5 25.1± 0.3 25.2± 0.7 25.4± 1.0 25.2± 0.5 25.1± 0.4
METACOG [8] 25.1± 0.9 25.1± 1.3 25.0± 0.7 25.0± 0.3 25.0± 0.8 25.7± 0.9 25.0± 0.8 25.0± 1.0
METABGD [8] 29.2± 7.5 30.9± 10.8 27.8± 5.0 27.0± 3.2 28.6± 6.7 30.2± 9.6 27.4± 4.6 26.6± 3.2
ANIL [47] 60.6± 0.3 77.5± 0.1 53.4± 0.2 32.6± 0.2 60.4± 0.1 77.6± 0.1 53.7± 0.1 32.8± 0.2
MAML [4] 77.0± 0.3 96.8± 0.1 72.9± 0.2 40.3± 0.3 76.8± 0.1 96.8± 0.2 73.0± 0.2 40.2± 0.4
CMAML [13] 64.9± 1.5 79.0± 3.8 60.2± 0.6 40.3± 1.4 63.1± 1.1 77.0± 3.1 58.6± 0.8 40.1± 1.6
DCML(ORACLE) 77.1± 0.6 95.8± 0.2 73.2± 0.3 42.3± 0.4 77.1± 0.1 95.7± 0.5 73.1± 0.4 43.4± 1.2
DCML(WINDOW) 77.2± 0.5 96.0± 0.3 73.4± 0.4 42.2± 0.8 77.2± 0.2 95.6± 0.6 73.2± 0.5 44.2± 1.6

F.3 Experimental details

F.3.1 Moving 2D Gaussian

Model As we described in the main paper, the hypothesis space of the moving 2D Gaussian is R2.
And we adopt mean square loss ‖w−x‖2, which is 2-strongly convex, so it’s 2-quadratic growth with
α = 2. Moreover, we limited the data to [−10, 10]× [−10, 10]. Thus, for the given loss function, the
Lipshitz constant is L = 20

√
2, and we set L = 30 in the code.

Training Details The hyper parameter settings and training details for Moving 2D Gaussian are
presented in Table 5. We can see with the Algorithm 1 provided in the main paper. There is no
need to set the hyper-parameters for the base learner. They are automatically adapted to the derived
equations. Moreover, the initial learning rate of the meta learner is controlled by D_hat_guess. Then,
it’s also scheduled automatically with time and environment changing points.

Table 5: Moving 2D Gaussian experimental details

Hyper-parameters Fig. 3(b) Fig. 7(a)
task horizon T 200

loss mean square loss
Lipschitz constant L 30

α 2
hopping lr ρ 0.8
D_hat_guess 5

sample numbers m 100 100
inner epoch K 1 2

changing prob p 0.05 [0.025, 0.063, 0.158, 0.398, 0.631, 1]

Computing Resource All experiments for Moving 2D Gaussian were tested on a Mac with an Intel
Core i5 CPU and 8G memory.

F.3.2 OSAKA benchmark

Model for OMF dataset We used a CNN network architecture as the basic model. The four modules
are identical: A 3× 3 2d convolution layer with 64 filters, stride 1, and padding 1. The following
are a batch normalization layer, a Relu layer, and a max-pooling layer of stride 2. The image data
passing the aforementioned modules form a 64× 1× 1 feature map, which was further taken into a
fully connected layer. Then the fully connected layer outputs the logits for a 10-class classification.
At last, the cross-entropy loss is calculated with the logits and the corresponding labels.

Model for Synbols dataset We used a CNN network architecture as the basic model. The four
modules are identical: A 3 × 3 2d convolution layer with 64 filters, stride 1, and padding 1. The
following are a batch normalization layer, a Relu layer, and a max-pooling layer of stride 2. The
image data passing the aforementioned modules form a 64× 2× 2 feature map, which was further
flattened and taken into a fully connected layer. Then, the fully connected layer outputs the logits for a
4-class classification. At last, the cross-entropy loss is calculated with the logits and the corresponding
labels.

Training Details The hyper-parameter settings and training details for OSAKA data sets are outlined
in Table 6.

47

Computing Resource The experiments for OSAKA were run on a server node with 6 CPUs and 1
GPU of 32GB memory.

Table 6: OSAKA experimental details

Hyper-parameters OMF Synbols
task horizon T 10000

loss cross entropy
α 4

D_hat_guess 100
image size 28*28 32*32

image channel 1 3
n_shots 5 5

n_shots_test 15 15
n_ways 10 4

prob_statio 0.0 0.0
sample number m =n_shots * n_ways 50 20

inner epoch K 8 16
prob_env_switch p [0.2, 0.4, 0.6, 0.8, 1.0] [0.2, 0.4, 1.0]

Lipschitz constant L 200 100
hopping lr ρ 1.0 0.2

eta_0 6.0 20
epsilon_0_rate 1.0 4.0

Hyper-parameter Search Following OSAKA, the hyper-parameters were tuned by random search,
and the same number of trials were allocated for each algorithm. For each trial, we sampled hyper-
parameter combinations uniformly from the search space presented in Tab. 7 for baselines and in
Tab. 8 for DCML.

According to the experimental setting of OSAKA, we do not need a validation dataset for searching
the hyper-parameters. New CML episodes (task sequences) generated with different random seeds
can be considered held-out data. The results reported in the paper are tested on 10 new CML episodes
using the learned hyper-parameters.

Table 7: Hyper-parameter search space for baselines

Hyper-parameters Search space
meta-learning rate η 0.0001, 0.0005, 0.001, 0.005, 0.01

base learning rate 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5
inner steps 1, 2, 4, 8, 16
first-order True, False

modulation λ 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 2.0, 2.5, 3.0
parameter variance σ 0.0001, 0.01, 0.1

step-size for parameter mean β 0.5, 1.0, 10
MC samples 5

threshold for task switch γ -2

F.4 Bayes Online Changing-point Detection

We modify the implementation of BOCD in [52] for our experiments. The detailed method is
presented in [42]. Given a sequence of tasks, we use the base leaner outputs w1:t as observations of
BOCD to be divided into non-overlapping product partitions. Each partition can be considered as
sampled from the same static environment slot. BOCD model the detection of changing point as
estimating the posterior distribution over the current run-length rt ∈ [0, 1, ..., t], i.e., P (rt|w1:t) =
P (rt,w1:t)
P (w1:t)

. Thus, rt = 0 means to start a new partition.

We treat the hypothesis as factorized Gaussian and apply BOCD on each dimension of the algorithm
output wt. For Moving 2D Gaussian, we detect the whole wt, since it’s just 2D. Here, we provide the
pseudo-code in Algorithm 3 with Gaussian Prior for each dimension applied in our experiments.

48

Table 8: Hyper-parameter search space for DCML

Hyper-parameters Search space
quadratic growth parameter α 0.05, 0.5, 1, 2, 4, 6, 8, 10

Lipschitz constant L 50, 100, 150, 200, 250, 300, 350, 400
number of inner steps K 1, 2, 4, 8, 16

slot diameter guess D̂ 50, 100, 200, 400, 600
hopping learning rate ρ 0.2, 0.4, 0.6, 0.8, 1.0

initialization β1 2, 4, 6, 8, 10, 12, 14, 16, 18, 20
initialization of ε0 1, 2, 4, 6, 8, 10

Algorithm 3 Pseudo code for detecting environment change
Require: P (r0 = 0) = 1, prior mean µ0

1 = 0, prior precision δ0
1 = 1/0.1, changing probability p,

data precision δw = 1
for t← 1 to T do

observe new algorithm output wt
evaluate the predictive probability πrt = P (wt|µrt , δrt)
calculate the growth probability P (rt = rt−1 + 1, w1:t) = P (rt−1, w1:t−1)πrt (1− p)
calculate the changepoint probability P (rt = 0, w1:t) =

∑
rt−1

P (rt−1, w1:t−1)πrt p

calculate evidence P (w1:t) =
∑
rt
P (rt, w1:t)

update run length distribution P (rt|w1:t) = P (rt, w1:t)/P (w1:t)
update statistics:
δrt+1 = δrt , δ

r+1
t+1 = δrt + δw

µrt+1 = µrt , µ
r+1
t+1 = 1/δr+1

t+1 ∗ (δrtµ
r
t + wtδw)

if arg maxk P (rt = k|w1:t) < arg maxk P (rt−1 = k|w1:t−1) then
changing point detected

end
end

49

G Additional Discussion

G.1 Learning-forgetting w.r.t meta-updates

In this section, we offer some intuitive interpretations for the adaptive updates of the meta-parameter
of the base learner.

The updates of the meta-parameter (φ and β) in Algo. 1 and 2 can be separately expressed as:

φt+1 = (1− 2bκtγt
βt

)φt + 2bκtγt
βt

wt and βt+1 = βt − γt(aκt − κt(b‖φt−wt‖2+εt+ε0)
βt2

).

Considering the case that all the tasks have the same sample number. βt reflects the confidence of A
on the given initialization for learning the task t. For example, βt is the learning rate (step size) for
SGD. A large learning rate means that the learner relies more on the data, and a small one means
believing the prior. From the update of β, we can see a large βt+1 implies that the current task output
is far from its initialization (‖φt − wt‖ is large), which indicates the current task t may be an outlier,
exceeding the range of meta-model for recovering its performance. Hence, the environment may
have changed. So in the next task, the base learner learns more from the task data instead of keeping
close to the initialization (βt+1 is large).

The learning rate of the initialization (or bias) is determined by 2bκtγt
βt

. As mentioned above, a large
distance from the initialization indicates that the current task t may be an outlier. So from t+ 1 step,
the tasks are treated with low confidence to update the common initialization φt+1 with 2bκγt

βt+1
being

small (βt+1 is large). Then until the distance w.r.t the common initialization holds a small value for
several rounds, β also decays to a smaller value. The tasks start to contribute more to updating the
initialization.

The above mechanism works well for static environments and can address forgetting in shifting
environments. But it will lose tracking ability in the shifting environment, so we need slot-wise
adjusting for γt to obtain a better trade-off.

G.2 Real-world examples for practicality and necessity of CML

A typical real-world application of CML is the online recommendation system, where we aim to
predict the user’s preference for various products. Different users’ preferences are considered as
different task distributions. The distribution of users can be regarded as a task environment. The
recommendation system maintains a meta-model that predicts the recent preferences shared across
users and adapts task-specific models that predict the user-specific preferences.

The user queries for displaying products arrive sequentially, and the system randomly distributes
several (e.g.,mt = 200) products in response to the query. Denote the products and the corresponding
preferences for t-th user as (Xi, Yi) ∼ µt,∀i ∈ [mt], which are i.i.d.. The labels are initially unknown
for this setting, but a few labels can be acquired through the following interaction:

• The meta-model predicts the preferences over products and displays them according to the
predicted preference order.

• Normally, the user will only view a small part (m′t = 50) of the distributed products, and
the preference can be determined with the clicks or view time over these products, which
gives the few-shot labeled samples.

• Then, the task-specific model is adapted from the meta-model with these examples. We
hope the model can generalize on the rest of the unseen examples with correct preference
prediction, which can provide new recommendations.

• Finally, the task-specific model of each user is used for updating the meta-model. Since the
shared preferences change with the season, fashion trends, and accidental events, the task
environment is shifting.

G.3 More details on DCML

Relate parameters in eq. 1 to specific base learner Since the proposed framework is valid for
different base learners, the parameters like a, b, and κ in the unified form of excess risk upper bounds

50

(cost function) are related to the specific algorithm. Since all of the experiments adopt SGD, we give
here a detailed description of it.

According to Proposition D.4, the K-step SGD with learning rate ηt and initialization φt for the t-th
task has the following cost function:

f(βt, φt) = κt

(
1

2
βt +

2α‖φt − wt‖2 + ε0 + 2κ2
t

βt
+ 2κt

)
,

where a = 1
2 , b = 2α, κt = L

√
1
Kα + 2

mtα
, εt = 2κ2

t ,∆t = 2κt. The learning rate of the base

learner ηt = (βtκt + 2)/(Kα) is related to the sample number mt of each task via κt, which can
reflect the generalization.

Impact of the initial meta-parameter on the model’s behavior The initial meta-parameter sub-
stantially affects the model’s behavior. For instance, the aforementioned recommendation system
suffers from a well-known cold-start problem. A well-pertained model initialization φ1 can help
address the problem.

Given a good initialization φ1, β1 also affects the performance substantially. According to the
meta-parameter adaptation, if β1 is too large, the algorithm tends to keep the prior knowledge and
will not learn from the data. If β1 is too small, the algorithm will ignore the initialization and learn
from scratch.

How does DCML adjust the meta-parameter The updates in Algo. 1 for the meta-parameter
u = (βt, φt) are:

φt+1 = (1− 2bκtγt
βt

)φt +
2bκtγt
βt

wt, βt+1 = βt − γt(aκt −
κt(b‖φt − wt‖2 + εt + ε0)

βt
2) .

We adjust the learning rate of the meta-parameter (γt) with the following strategy:

• For k-th task inside the n-th environment (slot), γt = γ0/
√
k, where the initialization is

determined by the theoretical optimal value γ0 = ε0
κt

√
(1+b/a)D̂2+εt/α

4ab2D̂2ε0+a2(b∗D̂2+ε2t)
2

.

• When an environment change is detected, γt is set to a large hopping rate γt = ρ, which is
related to the path length.

How to set hyper-parameters In the experiments, we tune the following hyper-parameters
α,K,L, D̂, ε0, ρ, β1 by random search on the defined space in Tab. 8. Specifically for the sim-
ple moving 2D Gaussian: since the loss function is 2-strongly convex, we have α = 2.

G.4 Limitations

The proposed theory works for non-convex loss when using the Gibbs algorithm. However, We do
not offer analysis for SGD with non-convex loss, where it’s hard to find an easily optimizable form
for the excess risk upper bound. Excess risk analysis for gradient-based learning algorithms with
non-convex loss is a promising but challenging direction for the deep learning community. We hope
to work on this topic in the future.

In this paper, we do not provide theoretical guarantees for memory-based approaches, which can
better address meta-level forgetting with additional memory cost. Future theoretical studies can be
conducted to complete the framework.

G.5 Broader Impacts

In general, this work is fundamental. It aims to understand the bi-level learning-forgetting trade-off
in CML and improve the model performance in real-time intelligent systems with a better trade-off
balance. The potential negative impacts depend on the specific application.

51

Potential negative impacts Since the main objective is to obtain the optimal average excess risk
over rounds, when each task relates to a person in some applications like personalized recommendation
systems or medical diagnosis systems, it may cause some fairness issues for individuals, especially
those who appear around the changing points.

How to address? The aforementioned potential unfairness can be mitigated by adding calibration
modules as in [53–55] or providing more training data for tasks around changing points.

H Additional Related Works

H.1 Summary and comparison of related settings

Table 9: Comparison of different settings adapted from [13], where S and Q represent the train and
test data from the same distribution, respectively. Train data S = S̄ ∪ S̃ is further divided into the
support and query sets. µt is a sub-task in CL with i.i.d. data, CLP1:M represent whole CL problems
of infinite non-i.i.d. data stream and p(T) is the distribution over them.

Settings Task Datasets Tasks & Environments Task Parameter (base) Meta Updates Evaluation
SL S,Q ∼ µ — w = A(S) — L(w,Q)

CL S1:T , Q1:T ∼ µ1:T
µ1:T ∼ τ (static)

µ1:T ∼ τ1:T (shifting) w = ACL(S1:T) —
∑T
t=1 L(w,Qt)

ML S1:M ∼ µ1:M (train tasks),
SM :N ∼ µM :N (test tasks) µ1:N ∼ τ wi = A(u, S̄i),

∀i ∈ [M],M < N
∇u
∑M
i=1 L(A(u, S̄i), S̃i)

∑N
i=M L(A(u, S̄i), S̃i)

CML S1:T , Q1:T ∼ µ1:T
µ1:T ∼ τ (static)

µ1:T ∼ τ1:T (shifting) wt = A(ut, S̄t)
∇ft(ut) or

∇utL(A(ut, S̄t), S̃t)

∑
t L(A(ut, S̄t), Qt)

MCL Si,1:T , Qi,1:T ∼ CLPi
∀i ∈ [M]

CLP1:M ∼ p(T) wi = ACL(u, S̄i,1:T) ∇u
∑
t L(ACL(u, S̄i,1:T), S̃i,t)

∑M
i=1

∑
t L(ACL(u, S̄i,1:T), Qi,t)

We present different settings related to the Continual Meta-Learning (CML) problem studied in this
paper in Tab. 9. The detailed discussions in each setting can be found in the following sections.

Supervised Learning (SL) methods learn as a single task from the train data and evaluate on inde-
pendent test data. The data points are assumed, i.i.d. sampled from the same distribution. Continual
Learning (CL) aims to learn from a sequence of non-i.i.d. tasks, where the data points inside each
task are i.i.d. Meta-Learning (ML) has many settings. Here, we present the statistical version. All the
tasks are assumed to be i.i.d. sampled from the same task environment. The evaluation is conducted
on test tasks to measure the generalization performance of the algorithm on new tasks.

In Meta-Continual Learning (MCL), a continual learning prediction problem (CLP) is defined as
a non-i.i.d. data stream, which is a task sampled from the stationary distribution p(T). Random
subsequences of dependent data points of length k are sampled from each CLP task for training. The
major difference between CML and MCL settings is that the non-stationarity of CML comes from
the sequentially encountered non-i.i.d. task distributions. In contrast, the non-stationarity of MCL
comes from the non-i.i.d. data points within a task.

H.2 Continual Learning

Except for the taxonomy w.r.t different approaches mentioned in the main paper, CL can also be
divided into the following three scenarios w.r.t the different properties of the task distributions
[56, 57]. Class Incremental Learning (CIL) [58] involves learning new classes over time without
having access to all classes at once during training. The label space is growing over time, where
Yt ⊂ Yt+1,∀t. In the final step, the predictor is aimed to be capable of classifying all the seen
classes. Domain Incremental Learning (DIL) [59] defines on the same label space Y that has a fixed
associated semantic meaning, and the marginal distributions on input space µt(X) varies over time.
Task Incremental Learning (TIL) [5] can define on different label spaces Yt 6= Yt+1,∀t or the same
label space Y associated to different semantic meanings over tasks. In conventional definitions, CIL
and DIL are under a weak task-agnostic setting (the task identities or task boundaries are unknown
during testing but known during training), while TIL is under the task-aware setting with known task
identities. However, with increasing research diversities, TIL has also been studied in task-agnostic
settings recently. In this paper, we study CML within a similar TIL scenario of CL.

52

Key Differences between CL and CML The two settings share the common objective of address-
ing the stability-plasticity dilemma, which is the typical objective for learning from non-stationary
data. Their key differences are:

Continual Learning:

• Standard CL methods sequentially adapt a task model and aim for a final model that
performs well on all the tasks encountered. (Some memory-based approaches like dynamic
architecture grow a subnet for each task.)

• The current task model is adapted from the previous task model.
• Standard CL reports the final performance of the agent on all the tasks at the end of its

lifetime.
• Standard CL approaches mainly focus on minimizing catastrophic forgetting without con-

sidering quick generalization for tasks with few-shot data, e.g., the replay-based and
regularization-based methods.

Continual Meta-Learning:

• CML methods sequentially adapt a meta-model and aim to recover the performance on
previous tasks by adapting the meta-model with few additional samples. Therefore, it’s
more suitable for learning few-shot tasks. (Some memory-based approaches grow a subnet
for each environment.)

• The current task model is adapted from the meta-model.
• CML reports the cumulative performance of the agent throughout its lifetime.
• CML focuses on quick generalization for new tasks and fast recovering performance of

previous tasks with few-shot data.

H.3 Meta-Continual Learning

Javed and White [60] and Gupta et al. [61] study a different Meta-Continual Learning (MCL) setting.
A continual learning prediction problem (CLP) is defined as a non-i.i.d. data stream, which can be
considered a CLP task T . The CLP tasks are sampled from a stationary distribution p(T), where
for each CLP task, random subsequences of dependent data points are sampled from the task for
training. [60] conducts offline meta-representation learning w.r.t two objectives MAML-REP and
OML. MAML-REP uses batch data for inner adaptation. OML is calculated with a single data
point for each inner adaptation, which can reflect the degree of forgetting in CLP tasks. Gupta
et al. [61] proposes La-MAML, which adopts a replay buffer and conducts meta-initialization with
optimization on the OML objective in an online manner. In addition, La-MAML adopts a modulation
of per-parameter learning rates in the meta-learning updates. The optimization of learning rates in
La-MAML is w.r.t empirical loss, while our learning rates optimization is based on the excess risk
upper bound. So, our approach suffers less from over-fitting.

H.4 Continual Meta-Learning

Static environments Harrison et al. [32] studies continual meta-learning (CML) under task agnostic
setting, where the task boundaries are unknown. It proposed an algorithmic framework MOCA
that incorporates different meta-learning methods with Bayesian Online Changing-point Detection
(BOCD) to identify unknown task boundaries during the meta-learning process. The task environment
is still assumed static. On the contrary, we focus on the bi-level trade-off in shifting task environments
with known task boundaries, where we detect the environmental distribution shift, not the task
distribution shift.

Shifting environments To address the environment shift, Jerfel et al. [14] proposes a non-
parametric Dirichlet process mixture of hierarchical Bayesian models that allows adaptively adding
new task clusters and selecting over a set of learned meta-initialization parameters for the newly
encountered task. A similar approach is also used to detect the task shift in a task-agnostic setting.
For both task-agnostic and task-aware settings, [14] has tested the proposed algorithm on datasets
with two times environment shifts. The proposed method requires additional O(K) memory for

53

storing the initialization parameters for the detected K clusters. For each task, it needs to update the
task-specific model and the meta-model for all the K initializations. K can grow with the time.

Zhang et al. [15] use a Dynamic Gaussian Mixture Model (DGMM) to model the distribution of the
meta-parameters. Different from [14], which applies point estimation during inference, [15] derived
a structured variational inference method that can reduce overfitting. The experiment is conducted
with three times environment shifts of four datasets. [15] needs O(K) extra memory for storing the
meta-parameters.

Wang et al. [16] studies a slightly different setting where each environment has a super long task
sequence. In this case, the cartographic forgetting for meta-knowledge is more obvious. To address
this, they use a memory buffer to store a small number of training tasks from previous environments
and a shared representation for different task environments and grow the subnets when a new
environment is detected on latent space using BOCD. For deciding which cluster the task belongs
to, they store the average embedding for each environment for calculating the distances. Hence, its
memory complexity is O(K +M).

H.5 Meta-Learning

Statistical Learning to Learn (LTL) LTL [62] has been intensively studied with various theoretic
tools. The early theoretical framework was proposed by Baxter [24], where they first defined the
notion of the task environment and derived the uniform convergence bounds. And the tasks are
i.i.d sampled from the environment. Denevi et al. [63, 28] provided excess risk for ridge regression
and discussed the train-validation split impact. Amit and Meir [25] applied PAC Bayes theory and
provided generalization bounds for stochastic neural networks. They also derived a joint training
algorithm that simultaneously updates the meta-parameter and task parameters, which cannot be
extended to the sequential learning scenario. Recently, Chen et al. [26] derived an information-
theoretic generalization bound for the MAML-like algorithm, which provides non-vacuous bounds
for deep few-shot learning and can be applied to sequential task learning.

Statistical Lifelong Learning The difference between Lifelong learning [64] and LTL is that the
tasks are observed sequentially, while LTL has all the tasks in hand. Pentina and Lampert [65] first
applied PAC Bayes theory to Lifelong Learning, where they also assumed that all the tasks are, i.i.d.
sampled from the task environment. In a subsequent work [66], they relaxed the i.i.d. assumption
with two scenarios. The first is that the tasks are dependent, but a dependency graph is known so that
they can prove a statistic bound. In the second, they also consider a shifting environment change.
However, they assume that the base learner output of the current task only depends on the current and
the previous task data, and the expected performance of the base learner does not change with time.
Under these assumptions, they obtain statistical guarantees for the gradually changing environment.

Online LTL The online LTL methods have all the tasks in hand, but at each round t, they sample
a task from the N tasks in hand. Cavallanti et al. [67] works on this setting for online multi-task
learning. Multi-task learning is often treated as a simplified version of LTL in previous works [68].

Online Meta-Learning Two main settings to meta-learn sequential tasks in an online manner are
referred to as online-within-online (OWO) [28–31] and batch-within-online (BWO) [9, 27]. The
former applies online algorithms for both base and meta learners. The latter treats task-level learning
differently as a statistical batch setting. The BWO setting is close to the CML studied in this paper,
while the theoretical work is rare, and none of the previous BWO methods considers shifting task
environments. Khodak et al. [31] first considered shifting environments in the OWO setting, where
the base learner is the gradient-based online learner. In contrast, we consider more choices of batch
base learners and a fine-grained algorithm w.r.t environment change. Even though their bounds are
not w.r.t AER and the results are not directly comparable, we make an intuitive comparison, which
suggests the proposed algorithm in this paper has an improved rate for gradient-based base learners
in slot-wise stationary environments over their related results. Moreover, we conducted a rigorous
analysis of the bi-level trade-off, which is missing in the related works mentioned above. Finally,
although not clearly defined in previous meta-learning literature, we note Meta Continual Learning
(MCL) [60, 61] can be named in a similar way as Online-Within-Batch (OWB), where the tasks are
processed in one batch, but the data within each task are processed online.

54

Other related works Model-Agnostic Meta-Learning (MAML) [4] that uses the higher-order
gradients for meta-updates has gained tremendous success in practice. Therefore, a lot of work
emerges to improve MAML. Finn et al. [69], Grant et al. [70], Yoon et al. [71] combine MAML with
Bayesian methods. Rajeswaran et al. [72] improves MAML with implicit gradient calculation for the
meta-updates. Since meta-learning considers learning and generalization for both seen and unseen
tasks, it has not only been applied to CL for addressing catastrophic forgetting but has also been
applied to Test-Time Domain Adaptation (DA) for quick generalization. For more related works in
Test-Time DA or DA, please refer to [73–75].

55

	Introduction
	Related work
	Problem setup
	Base learner
	Meta learner
	Continual Meta-Learning objective

	Balancing bi-level learning-forgetting trade-off
	An illustrative example
	Dynamic algorithm

	Main theorem
	Results on specific base learners
	Gibbs algorithm
	Stochastic Gradient Descent (SGD)

	Experiments
	Moving 2D Gaussian
	OSAKA benchmark

	Conclusion
	Appendix
	 Appendix
	Preliminaries
	Definitions
	Online Convex Optimization (OCO)
	Definitions of regrets
	Static regret may be vacuous in shifting environments
	Online algorithms

	Missing Proofs in Section 3
	Excess risk bound for Gibbs algorithm
	Excess risk bound for SGD
	Excess risk bound for SGLD
	Excess risk bound for Regularized Loss Minimization (RLM)
	Unified form of excess risk upper bound
	Convexity of the unified upper bound

	Table of Notations
	Missing Proofs in Section 5
	AER bound in static environments
	AER bound in possibly shifting environments (Proof of Theorem 5.1)

	Missing Proofs in Section 6
	Cost function for Gibbs base learner
	Static AER of Gibbs
	Proof of Theorem 6.1 (Dynamic AER of Gibbs)
	Cost function for SGD base leaner
	Static AER of SGD
	Proof of Theorem 6.2 (Dynamic AER of SGD)

	Experiments
	Experimental settings
	Detailed setting in OSAKA

	Additional results
	Moving 2D Gaussian
	OSAKA benchmark

	Experimental details
	Moving 2D Gaussian
	OSAKA benchmark

	Bayes Online Changing-point Detection

	Additional Discussion
	Learning-forgetting w.r.t meta-updates
	Real-world examples for practicality and necessity of CML
	More details on DCML
	Limitations
	Broader Impacts

	Additional Related Works
	Summary and comparison of related settings
	Continual Learning
	Meta-Continual Learning
	Continual Meta-Learning
	Meta-Learning

