
Regularizing Neural Networks
with Meta-Learning Generative Models

Shin’ya Yamaguchi†,‡∗ Daiki Chijiwa† Sekitoshi Kanai†
Atsutoshi Kumagai† Hisashi Kashima‡

†NTT ‡Kyoto University

Abstract

This paper investigates methods for improving generative data augmentation for
deep learning. Generative data augmentation leverages the synthetic samples
produced by generative models as an additional dataset for classification with
small dataset settings. A key challenge of generative data augmentation is that
the synthetic data contain uninformative samples that degrade accuracy. This is
because the synthetic samples do not perfectly represent class categories in real
data and uniform sampling does not necessarily provide useful samples for tasks.
In this paper, we present a novel strategy for generative data augmentation called
meta generative regularization (MGR). To avoid the degradation of generative
data augmentation, MGR utilizes synthetic samples in the regularization term for
feature extractors instead of in the loss function, e.g., cross-entropy. These synthetic
samples are dynamically determined to minimize the validation losses through
meta-learning. We observed that MGR can avoid the performance degradation of
naïve generative data augmentation and boost the baselines. Experiments on six
datasets showed that MGR is effective particularly when datasets are smaller and
stably outperforms baselines.

1 Introduction

While deep neural networks achieved impressive performance on various machine learning tasks,
training them still requires a large amount of labeled training data in supervised learning. The labeled
datasets are expensive when a few experts can annotate the data, e.g., medical imaging. In such
scenarios, generative data augmentation is a promising option for improving the performance of
models. Generative data augmentation basically adds pairs of synthetic samples from conditional
generative models and their target labels into real training datasets. The expectations of generative
data augmentation are that the synthetic samples interpolate missing data points and perform as
oversampling for classes with less real training samples [1]. This simple method can improve the
performance of several tasks with less diversity of inputs such as medical imaging tasks [2, 3, 4, 5].

However, in general cases that require the recognition of more diverse inputs (e.g., CIFAR
datasets [6]), generative data augmentation degrades rather than improves the test accuracy [7].
Previous studies have indicated that this can be caused by the low quality of synthetic samples in
terms of the diversity and fidelity [7, 8]. If this hypothesis is correct, we can expect high-quality
generative models (e.g., StyleGAN2-ADA [9]) to resolve the problem; existing generative data
augmentation methods adopt earlier generative models e.g., ACGAN [10] and SNGAN [11].
Contrary to the expectation, this is not the case. We observed that generative data augmentation
fails to improve models even when using a high-quality StyleGAN2-ADA (Figure 1). Although
the samples partially appear to be real to humans, they are not yet sufficient to train classifiers in

∗Corresponding author. Email: shinya.yamaguchi@ntt.com

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

40 60 80 100
Dataset Size (%)

50

60

70

80

T
op

-1
A

cc
ur

ac
y

(%
)

Base Model

Generative Data Augmentation

MGR (Ours)

Figure 1: Accuracy gain using meta generative
regularization on Cars [12] with ResNet-18 clas-
sifier [13] and StyleGAN2-ADA [9] (FID: 9.5)

Generative Model Main Model

Regularizing with synthesized samples

Meta-learning by validation performance

Figure 2: Meta generative regularization

existing generative data augmentation methods. This paper investigates methodologies for effectively
extracting useful information from generative models to improve model performance.

We address this problem based on the following hypotheses. First, synthetic samples are actually
informative but do not perfectly represent class categories in real data. This is based on a finding by
Brock et al. [14] called “class leakage," where a class conditional synthetic sample contains attributes
of other classes. For example, they observed failure samples including an image of “tennis ball"
containing attributes of “dogs" (Figure 4(d) of [14]). These class leaked samples do not perfectly
represent the class categories in the real dataset. If we use such class leaked samples for updating
classifiers, the samples can distort the decision boundaries, as shown in Figure 3. Second, regardless
of the quality, the generative models originally contain uninformative samples to solve the tasks.
This is simply because the generative models are not explicitly optimized to generate informative
samples for learning the conditional distribution p(y|x); they are optimized only for learning the
data distribution p(x). Further, the generative models often fail to capture the entire data distribution
precisely due to their focus on the high-density regions. These characteristics of generative models
might disturb the synthesis of effective samples for generative data augmentation. To maximize the
gain from synthetic samples, we should select appropriate samples for training tasks.

In this paper, we present a novel regularization method called meta generative regularization (MGR).
Based on the above hypotheses, MGR is composed of two techniques for improving generative data
augmentation: pseudo consistency regularization (PCR) and meta pseudo sampling (MPS). PCR is a
regularization term using synthetic samples in training objectives for classifiers. Instead of supervised
learning with negative log-likelihood − log p(y|x), i.e., cross-entropy, on synthetic samples, we
regularize the feature extractor to avoid the distortions on decision boundaries. That is, PCR leverages
synthetic samples only for learning feature spaces. PCR penalizes the feature extractors by minimizing
the gap between variations of a synthetic sample, which is inspired by consistency regularization in
semi-supervised learning [15, 16, 17]. MPS corresponds to the second hypothesis and its objective
is to select useful samples for training tasks by dynamically searching optimal latent vectors of the
generative models. Therefore, we formalize MPS as a bilevel optimization framework of a classifier
and a finder that is a neural network for searching latent vectors. Specifically, this framework updates
the finder through meta-learning to reduce the validation loss and then updates the classifier to reduce
the PCR loss (Figure 2). By combining PCR and MPS, we can improve the performance even when
the existing generative data augmentation degrades the performance (Figure 1).

We conducted experiments with multiple vision datasets and observed that MGR can stably improve
baselines on various settings by up to 7 percentage points of test accuracy. Further, through the
visualization studies, we confirmed that MGR utilizes the information in synthetic samples to learn
feature representations through PCR and obtain meaningful samples through MPS.

2 Preliminary

2.1 Problem Setting

We consider a classification problem in which we train a neural network model fθ : X → Y on a
labeled dataset D = {(xi, yi) ∈ X × Y}Ni=1, where X and Y are the input and output label spaces,

2

𝑦! = “ball”

True boundary of
“dog” and “ball”
Distorted boundary
by ℓ!(𝑥!, 𝑦!)

Figure 3: Distortion of decision boundary caused
by generative data augmentation with conditional
synthetic samples leaking another class attribute.
If the synthetic sample xp is “tennis ball dog”
(reprinted from [18]) with its conditional label
yp = “ball”, the supervised learner of a task head
hω distorts the decision boundary of “dog” and
“ball” to classify xp as “ball”.

𝒵

𝒵
𝐹!: finder

𝐺!
𝑥"

𝑥"𝑥

ℒ(𝜃) 𝜆ℒ#$%(𝜃, 𝜙)

𝜃"

ℒ#$%(𝜃")

+
minimize w.r.t. 𝜃

validate

minimize w.r.t. 𝜙

1. Generating samples with 𝐹! 2. Meta-learning of 𝐹!

Figure 4: Meta pseudo sampling framework. We
meta-optimize the finder Fϕ to generate a useful
latent vector Fϕ(z) for training a model parameter
θ through minimizing the validation loss with the
once updated parameter θ′ by a real sample x and
a synthetic sample xp = GΦ(Fϕ(z)).

respectively. Here, we can use a generative model GΦ : Z × Y → X , which is trained on D. We
assume that GΦ generates samples from a latent vector z ∈ Z and conditions on samples with a
categorical label y ∈ Y , where z is sampled from a standard Gaussian distribution p(z) = N (0, I)
and y is uniformly sampled from Y2. We refer to the classification task on D as the main task,
and fθ as the main model. fθ is defined by a composition of a feature extractor gψ and a classifier
hω, i.e., fθ = hω ◦ gψ and θ = [ψ, ω]. To validate fθ, we can use a small validation dataset
Dval = {(xival, y

i
val) ∈ X × Y}Nval

i=1, which has no intersection with D (i.e., D ∩Dval = ∅).

2.2 Generative Data Augmentation

A typical generative data augmentation trains a main model fθ with both real data and synthetic data
from the generative models [19]. We first generate synthetic samples to be utilized as additional
training data for the main task. Most previous studies on generative data augmentation [19, 20, 8]
adopt conditional generative models for GΦ, and generate a pseudo dataset Dp as

Dp = {(xip, yip) | xip = GΦ(z
i, yip)}

Np

i=1, (1)

where zi is sampled from a prior distribution p(z), and yip is uniformly sampled from Y . Subsequently,
fθ is trained on both of D and Dp using the following objective function.

min
θ

L(θ) + λLp(θ), (2)

L(θ) = E(x,y)∈Dℓ(fθ(x), y), (3)
Lp(θ) = E(xp,yp)∈Dp

ℓp(fθ(xp), yp), (4)
where ℓ is a loss function of the main task (e.g., cross-entropy), ℓp is a loss function for the synthetic
samples, and λ is a hyperparameter for balancing L and Lp. In previous works, ℓp is often set the
same as ℓ. Although optimizing Eq. (2) with respect to θ is expected to boost the test performance by
interpolating or oversampling conditional samples [1], its naïve application degrades the performance
of fθ on general settings [7]. In this paper, we explore methods to resolve the degradation of
generative data augmentation and maximize the performance gain from Dp.

3 Proposed Method

In this section, we describe our proposed method, MGR. The training using MGR is formalized
as alternating optimization of a main model and finder network for searching latent vectors of GΦ,
as shown in Figure 2. To maximize the gain from synthetic samples, MGR regularizes a feature
extractor gψ of fθ using PCR by effectively sampling useful samples for the generalization from GΦ

using MPS. We show the overall algorithm of MGR in Appendix A.
2 Although we basically use conditional GΦ for comparing our method and generative data augmentation, our
method can be used with unconditional GΦ (see Sec. 4.6).

3

3.1 Pseudo Consistency Regularization

As discussed in Secion 1, we hypothesize that the synthetic samples do not perfectly represent
class categories, and training classifiers using them can distort the decision boundaries. This is
because yp is not reliable due to Dp can contain class leaked samples [14]. To avoid the degradation
caused by the distortion, we propose utilizing xp to regularize only the feature extractor gψ of fθ
by discarding a conditional label yp. For the regularization, we borrow the concept of consistency
regularization, which was originally proposed for semi-supervised learning (SSL) [15, 16, 17]. These
SSL methods were designed to minimize the dissimilarity between the two logits (i.e., the output
of hω) of strongly and weakly transformed unlabeled samples to obtain robust representations. By
following this concept, the PCR loss is formalized as

ℓPCR(xp;ψ) = ∥gψ(T (xp))− gψ(xp)∥22, (5)
where T is a strong transformation such as RandAugment [21], which is similar to the one used in
UDA [16] for SSL. The difference between PCR and UDA is that PCR penalizes only gψ, whereas
UDA trains the entire fθ = hω ◦ gψ . ℓPCR can be expected to help gψ learns features of inter-cluster
interpolated by xp without distorting the decision boundaries. Using ℓPCR, we rewrite Eq. (4) as

LPCR(θ) = Exp∈Dp
ℓPCR(xp;ψ). (6)

3.2 Meta Pseudo Sampling

Most generative data augmentation methods generate a synthetic sample xp fromGΦ with a randomly
sampled latent vector z. This is not the best option as GΦ is not optimized for generating useful
samples to train fθ in predicting the conditional distribution p(y|x); it is originally optimized to
replicate p(x|y) or p(x). The main concept of MPS is to directly determine useful samples for
training fθ by optimizing an additional neural network called a finder Fϕ : Z → Z . Fϕ takes a latent
vector z ∼ p(z) as input and outputs a vector of the same dimension as z. By using Fϕ, we generate
a synthetic sample as xp = GΦ(Fϕ(z), y). The role of Fϕ is to find the optimal latent vectors that
improve the training of fθ through xp. Although we can consider optimizing GΦ instead of Fϕ, we
optimize Fϕ because the previous work showed that transforming latent variables according to loss
functions efficiently reaches the desired outputs [22] and we observed that optimizing GΦ is unstable
and causes the performance degradations of fθ (Section 4.5).

The useful samples for generalization should reduce the validation loss of fθ by using them for
optimization. Based on this simple suggestion, we formalize the following bilevel optimization
problem for Fϕ.

min
ϕ

Lval(θ
∗) = E(xval,yval)∈Dvalℓ(fθ∗(xval), yval)

subject to θ∗ = argmin
θ

L(θ) + λLPCR(θ, ϕ). (7)

Note that the finder parameter ϕ is added to the arguments of LPCR. We can optimize Fϕ with
a standard gradient descent algorithm because Fϕ, GΦ, and fθ are all composed of differentiable
functions as well as existing meta-learning methods such as MAML [23] and DARTS [24]. We
approximate θ∗ because the exact computation of the gradient ∇ϕLval(θ

∗) is expensive [23, 24]:
θ∗ ≈ θ′ = θ − η∇θ(L(θ) + λLPCR(θ, ϕ)), (8)

where η is an inner step size. Thus, we update Fϕ by using θ′ that is updated for a single step and
then alternately update θ by applying Eq. (6) with xp generated from the updated Fϕ. The overall
optimization flow is shown in Figure 4.

Approximating gradients with respect to ϕ. Computing ∇ϕLval(θ
′) requires the product com-

putation including second-order gradients: ∇2
ϕ,θLPCR(θ, ϕ)∇θ′Lval(θ

′). This causes a computation
complexity of O((|Φ|+ |ϕ|)|θ|). To avoid this computation, we approximate the term using the finite
difference method [24] as

∇2
ϕ,θLPCR(θ, ϕ)∇θ′Lval(θ

′) ≈ ∇ϕLPCR(θ
+, ϕ)−∇ϕLPCR(θ

−, ϕ)

2ε
, (9)

where θ± is θ updated by θ±εη∇θLval(θ). ε is defined by const.
∥∇θLval(θ)∥2

. We used 0.01 of the constant
for ε based on [24]. This approximation reduces the computation complexity to O(|Φ|+ |ϕ|+ |θ|).
We confirm the speedup by Eq. (9) in Appendix B.1.

4

Techniques for improving finder We introduce two techniques for improving the training of Fϕ in
terms of the architectures and a penalty term for the outputs.

While arbitrary neural architectures can be used for the implementation of Fϕ, we observed that the
following residual architecture produces better results.

Fϕ(z) := z + tanh(MLPϕ(z)), (10)

where MLP is multi layer perceptron.

To ensure that Fϕ(z) does not diverge too far from the distribution p(z), we add a Kullback–Leibler
divergence term DKL(pϕ(z)∥p(z)), where pϕ(z) is the distribution of Fϕ(z) into Eq. (7). When p(z)
follows the standard Gaussian N (0, I), DKL(pϕ(z)∥p(z)) can be computed by

DKL(pϕ(z)∥p(z)) = −1

2
(1 + log σϕ − µ2

ϕ − σϕ), (11)

where µϕ and σϕ is the mean and variance of {Fϕ(zi)}
Np

i=1. In Appendix B.2, we discuss the effects
of design choice based on the ablation study.

4 Experiments

In this section, we evaluate our MGR (the combination of PCR and MPS with the experiments on
multiple image classification datasets. We mainly aim to answer three research questions with the
experiments: (1) Can PCR avoid the negative effects of xp in existing methods and improve the
performance of fθ? (2) Can MPS find better samples for training than those by uniform sampling?
(3) How practical is the performance of MGR? We compare MGR with baselines including conven-
tional generative data augmentation and its variants in terms of test performance (Sec. 4.2 and 4.3).
Furthermore, we conduct a comprehensive analysis of PCR and MPS such as the visualization
of trained feature spaces (Sec. 4.4), quantitative/qualitative evaluations of the synthetic samples
(Sec. 4.5), performance studies when changing generative models (Sec. 4.6), and comparison to data
augmentation methods such as TrivialAugment [25] (Sec. 4.7).

4.1 Settings

Baselines. We compare our method with the following baselines. Base Model: training fθ with only
D. Generative Data Augmentation (GDA): training fθ with D and GΦ using Eq. (2). GDA+MH:
training fθ with D and GΦ by decoupling the heads into hω for D and hωp for Dp. MH denotes
multi-head. This is a naïve approach to avoid the negative effect of xp on hω by not passing xp
through hω. GDA+MH optimizes the parameters as argmin

θ
L(fθ(x), y) + λL(hωp(gψ(xp)), yp).

GDA+SSL: training fθ with D and GΦ by applying an SSL loss for Dp that utilizes the output of
hω unlike PCR. This method was originally proposed by Yamaguchi et al. [26] for transfer learning,
but we note that GΦ was trained on the main task dataset D in contrast to the original paper. By
following [26], we used UDA [16] as the SSL loss and the same strong transformation T as of MGR
for the consistency regularization.

Datasets. We used six image datasets for classification tasks in various domains: Cars [12],
Aircraft [27], Birds [28], DTD [29], Flowers [30], and Pets [31]. Furthermore, to evaluate smaller
dataset cases, we used subsets of Cars that were reduced by {10, 25, 50, 75}% in volume; we reduced
them by random sampling on a fixed random seed. We randomly split a dataset into 9 : 1 and used
the former as D and the latter as Dval.

Architectures. We used ResNet-18 [13] as fθ and generators of conditional StyleGAN2-ADA
for 256× 256 images [18] as GΦ. Fϕ was composed of a three-layer perceptron with a leaky-ReLU
activation function. We used the ImageNet pre-trained weights of ResNet-18 distributed by PyTorch.3
For StyleGAN2-ADA, we did not use pre-trained weights. We trained GΦ on each D from scratch
according to the default setting of the implementation of StyleGAN2-ADA.4 Note that we used the
same GΦ in the baselines and our proposed method.

3 https://github.com/pytorch/vision 4 https://github.com/NVlabs/stylegan2-ada

5

Table 1: Top-1 accuracy (%) of ResNet18. Underlined scores outperform that of Base Model, and
Bolded scores are the best among the methods.

(a) Multiple Datasets

Method / Dataset Cars Aircraft Birds DTD Flower Pets

Base Model 85.80±.10 62.61±.79 72.24±.32 68.16±.35 94.18±.08 87.21±.13

GDA 84.50±.25 61.29±.05 67.55±.11 67.68±.37 93.46±.15 87.37±.21

GDA+MH 85.77±.10 63.16±.15 71.95±.09 68.49±.21 93.83±.11 87.77±.10

GDA+SSL 85.75±.21 62.87±.54 71.28±.42 68.49±.59 93.66±.08 87.75±.21

GDA+MPS 85.28±.05 62.11±.34 72.25±.13 68.87±.22 94.39±.14 87.92±.11

PCR 86.36±.08 64.43±.21 73.69±.10 69.17±.18 94.66±.22 88.59±.44

MGR (PCR+MPS) 87.22±.15 65.11±.57 74.24±.34 69.53±.28 95.42±.20 88.98±.01

(b) Small Datasets (Cars)

Method / Dataset size 10% 25% 50% 75%

Base Model 20.11±.03 49.33±.54 72.91±.38 81.68±.18

GDA 18.91±.54 46.56±.07 68.81±.52 80.67±.10

GDA+MH 18.40±.93 46.63±.32 71.51±.10 81.25±.32

GDA+SSL 19.71±.41 47.80±.30 71.99±.40 81.55±.38

MGR 23.49±.53 53.16±.32 75.24±.21 83.13±.27

Training. We trained fθ by the Nesterov momentum SGD for 200 epochs with a momentum of
0.9, and an initial learning rate of 0.01; we decayed the learning rate by 0.1 at 60, 120, and 160
epochs. We trained Fϕ by the Adam optimizer for 200 epochs with a learning rate of 1.0× 10−4. We
used mini-batch sizes of 64 for D and 64 for Dp. The input samples were resized into a resolution
of 224× 224; xp was resized by differentiable transformations. For synthetic samples from GΦ in
PCR and GDA+SSL, the strong transformation T was RandAugment [21] by following [16], and
it was implemented with differentiable transformations provided in Kornia [32]. We determined
the hyperparameter λ by grid search among [0.1, 1.0] with a step size of 0.1 for each method by
Dval. To avoid overfitting, we set the hyperparameters of MGR that are searched with only applying
PCR i.e., we did not use meta-learning to choose them. We used λKL of 0.01. We selected the final
model by checking the validation accuracy for each epoch. We ran the experiments three times on a
24-core Intel Xeon CPU with an NVIDIA A100 GPU with 40GB VRAM and recorded average test
accuracies with standard deviations evaluated on the final models.

4.2 Evaluation on Multiple Datasets

We confirm the efficacy of MGR across multiple datasets. Table 1a shows the top-1 accuracy scores
of each method. As reported in [7], GDA degraded the base model on many datasets; it slightly
improved the base model on only one dataset. GDA+MH, which had decoupled classifier heads for
GDA, exhibited a similar trend to GDA. This indicates that simply decoupling the classifier heads is
not a solution to the performance degradation caused by synthetic samples. In contrast, our MGR
stably and significantly outperformed the baselines and achieved the best results. The ablation of
MGR discarding PCR or MPS is listed in Table 1a. We confirm that both PCR and GDA+MPS
improve GDA. While GDA+SSL underperforms the base models, PCR outperforms the base models.
This indicates that using unsupervised loss alone is not sufficient to eliminate the negative effects
of the synthetic samples and that discarding the classifier hω from the regularization is important to
obtain the positive effect. MPS yields only a small performance gain when combined with GDA,
but it significantly improves its performance when combined with PCR i.e., MGR. This suggests
that there is no room for performance improvements in GDA, and MPS can maximize the potential
benefits of PCR.

4.3 Evaluation on Small Datasets

A small dataset setting is one of the main motivations for utilizing generative data augmentation.
We evaluate the effectiveness of MGR on smaller datasets. Table 1b shows the performance when
reducing the Cars dataset into a volume of {10, 25, 50, 75}%. Note that we trained GΦ on each
reduced dataset, not on 100% of Cars. In contrast to the cases of the full dataset (Table 1a), no
baseline methods outperformed the base model in this setting. This is because GΦ trained on the
small datasets generates low-quality samples with less reliability on the conditional label yp that
are not appropriate in supervised learning. On the other hand, MGR improved the baselines in large
margins. This indicates that, even when the synthetic samples are not sufficient to represent the class
categories, our MGR can maximize the information obtained from the samples by utilizing them
to regularize feature extractors and dynamically finding useful samples.

6

5 epoch 15 epoch 30 epoch

G
D

A

10 5 0 5 10 15
5

0

5

10

15

20 Real
Synthetic

10 5 0 5 10 15 20
15

10

5

0

5

10

15 Real
Synthetic

15 10 5 0 5 10 15
15

10

5

0

5

10

15
Real
Synthetic

PC
R

5 0 5 10 15 20

10

5

0

5

10

15 Real
Synthetic

5 0 5 10 15 20 25

10

5

0

5

10

15

20 Real
Synthetic

5 0 5 10 15 20 25

10

5

0

5

10

15

20 Real
Synthetic

PC
R

+M
PS

5 0 5 10 15 20 25
15

10

5

0

5

10

15
Real
Synthetic

5 0 5 10 15 20 25

10

5

0

5

10

15

20 Real
Synthetic

5 0 5 10 15 20 25
15

10

5

0

5

10

15
Real
Synthetic

Figure 5: UMAP visualization of feature spaces on training. The plots in the figures represent real
and synthetic samples in the feature spaces. Our methods (PCR and PCR+MPS) can help the feature
extractors separate real sample clusters. In contrast, the existing method (GDA) confuses the feature
extractor by leaking synthetic samples out of the clusters.

4.4 Visualization of Feature Spaces

In this section, we discuss the effects of PCR and MPS through the visualizations of feature spaces in
training. To visualize the output of gψ in 2D maps, we utilized UMAP [33] to reduce the dimensions.
UMAP is a visualization method based on the structure of distances between samples, and the
low dimensional embeddings can preserve the distance between samples of the high dimensional
input. Thus, the distance among the feature clusters on UMAP visualization of gψ can represent
the difficulty of the separation by hω. We used the official implementation by [33]5 and its default
hyperparameters. We plotted the UMAP embeddings of gψ(x) and gψ(xp) at {5, 15, 30} epochs, as
shown in Figure 5; we used ResNet-18 trained on the Cars dataset. At first glance, we observe that
GDA and PCR formed completely different feature spaces. GDA forms the feature spaces by forcing
to treat the synthetic samples the same as the real samples through cross-entropy loss and trying to
separate the clusters of samples according to the class labels. However, the synthetic samples leaked
to the inter-cluster region at every epoch because they could not represent class categories perfectly
as discussed in Sec. 1. This means that the feature extractor might be distorted to produce features
that confuse the classifier. On the other hand, the synthetic samples in PCR progressively formed a
cluster at the center, and the outer clusters can be seen well separated. Since UMAP can preserve
the distances between clusters, we can say that the sparse clusters that exist far from the center are
considered easy to classify, while the dense clusters close to the center are considered difficult to
classify. In this perspective, PCR helps gψ to leverage the synthetic samples for learning feature
representations interpolating the dense difficult clusters. This is because the synthetic samples tend
to be in the middle of clusters due to their less representativeness of class categories. That is, PCR
can utilize the partial but useful information contained in the synthetic samples while avoiding the
negative effect. Further, we observe that applying MPS accelerates the convergence of the synthetic
samples into the center.

For a more straightforward visualization of class-wise features, we designed a simple binary clas-
sification task that separates Pets [31] into dogs and cats, and visualized the feature space of a model
trained on this task. Fig. 6 shows the feature space after one epoch of training. While GDA failed to
separate the clusters for each class, MGR clearly separated the clusters. Looking more closely, MGR
helps samples to be dense for each class. This is because PCR makes the feature extractor learn slight
differences between the synthetic samples that interpolate the real samples. From these observations,
we conclude that our MGR can help models learn useful feature representations for solving tasks.

5 https://github.com/lmcinnes/umap

7

2 0 2 4 6 8 10
0
1
2
3
4
5
6
7

Real Dog
Real Cat
Synthetic Dog
Synthetic Cat

(a) GDA

5 0 5 10 15
2

0

2

4

6

8 Real Dog
Real Cat
Synthetic Dog
Synthetic Cat

(b) MGR

Figure 6: UMAP visualization (ResNet-18). We used the Pets dataset by modifying the class
definition to the binary classes (dogs and cats). The visualization results are plotted after one epoch
training with 2048 real samples and 2048 synthetic samples.

0 50 100 150 200
epoch

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

va
l_l

os
s

Uniform
MPS

(a) Validation Loss

0 50 100 150 200
epoch

20

21

22

23

24

25

FI
D

Uniform
MPS

(b) FID

Figure 7: Statistics in training (Cars)
(a) Uniform (b) MPS

Figure 8: Synthetic samples (class: Hummer)

4.5 Analysis of MPS

Evaluation of validation loss. We investigate the effects on validation losses when using MPS.
Through the meta-optimization by Eq. (7), MPS can generate samples that reduce the validation loss
of fθ. We recorded the validation loss per epoch when applying uniform sampling (Uniform) and
when applying MPS. We used the models trained on Cars and applied the PCR loss on both models.
Figure 7a plots the averaged validation losses. MPS reduced the validation loss. In particular, MPS
was more effective in early training epochs. This is related to accelerations of converging the central
cluster of synthetic samples discussed in Section 4.4 and Figure 5. That is, MPS can produce effective
samples for regularizing features and thus speed up the entire training of fθ.

Quantitative evaluation of synthetic samples. We evaluate the synthetic samples generated by
MPS. To assess the characteristics of the samples, we measured the difference between the data
distribution and distribution of the synthetic samples. We leveraged the Fréchet Inception distance
(FID, [34]), which is a measurement of the distribution gap between two datasets using the closed-
form computation assuming multivariate normal distributions:

FID(D,Dp) = ∥µ− µp∥22 +Tr
(
Σ+ Σp − 2

√
ΣΣp

)
,

where µ and Σ are the mean and covariance of the feature vectors on InceptionNet for input {xi}.
Since FID is a distance, the lower FID(D,Dp) means that Dp contains more high-quality samples
in terms of realness. We computed FID scores using 2048 samples in D and 2048 synthetic samples
every epoch; the other settings are given in Section 4.1. The FID scores in training are plotted in
Figure 7b. We confirm that MPS consistently produced higher-quality samples than Uniform. This
indicates that the sample quality is important for generalizing fθ even in PCR, and uniform sampling
can miss higher quality samples in generative models. Since the performance gain by GDA+MPS in
Table 1a did not better than MGR, the higher-quality samples by MPS can still contain uninformative
samples for the cross-entropy loss, but they are helpful for PCR learning good feature representations.

Qualitative evaluation of synthetic samples. We evaluate the qualitative properties of the synthetic
samples by visualizing samples of a class. The samples generated by Uniform and MPS are shown in
Figure 8a and 8b, where the dataset was Cars and the class category was Hummer. Compared with

8

Table 2: Performance of MGR varying GΦ

(ResNet-18, Cars).
GΦ Conditional FID Top-1 Acc. (%)

None (Base Model) – – 85.50±.10

Real CR – – 86.16±.02

FastGAN [35] No 23.1 86.30±.16

BigGAN [14] Yes 15.6 86.86±.06

StyleGAN2-ADA [9] Yes 9.5 87.22±.15

StyleGAN-XL [36] Yes 6.2 88.37±.20

Table 3: Performance comparison between MGR
and data augmentation methods (ResNet-18, Cars,
Top-1 Acc. (%)).

Data Augmentation Base Model +MGR

None 85.50±.10 87.22±.15

MixUp [37] 86.87±.30 87.60±.46

CutMix [38] 86.13±.19 87.80±.51

AugMix [39] 86.25±.11 87.65±.03

RandAugment [21] 87.47±.05 88.67±.10

SnapMix [40] 87.11±.20 88.21±.13

TrivialAugment [25] 87.83±.16 89.10±.19

Uniform, MPS produced samples with more diverse body colors and backgrounds. That is, MPS
focuses on the color and background of the car as visual features for solving classifications. In fact,
since Hummer has various colors of car bodies and can drive on any road with four-wheel drive, these
selective generations of MPS are considered reasonable in solving classification tasks.

4.6 Effect of Generative Models

Here, we evaluate MGR by varying the generative model GΦ for producing synthetic samples. As
discussed in Sec. 3.1 and 3.2, MGR can use arbitrary unconditional/conditional generative models
as GΦ unless it has a latent space. To confirm the effects when changing GΦ, we tested MGR
with FastGAN [35], BigGAN [18], and StyleGAN-XL [36]. Table 2 shows the results on Cars.
The unconditional FastGAN achieved similar improvements as conditional cases. However, since
unconditional generative models are generally of low quality in FID, they are slightly less effective.
For the conditional generative models, we observe that MGR performance improvement increases
as the quality of synthetic samples improves. These results suggest the potential for even greater
MGR gains in the future as the performance of the generative model improves. We also evaluate
MGR with recent diffusion models in Appendix B.3. Meanwhile, to evaluate the value of synthetic
samples in the consistency regularization, we compare MGR with the case where we use real samples
in Eq. (6) (Real CR). Our method outperformed Real CR. This can be because interpolation by the
generators helps the feature extractor to capture the difference between images. Furthermore, our
method searches the optimal synthetic samples by using latent vectors of generative models with
MPS. In contrast, Real CR cannot search the optimal real samples for CR loss because real data is
fixed in the data space.

4.7 Combination of MGR and Data Augmentation

To assess the practicality of MGR, we evaluate the comparison and combination of MGR and
existing data augmentation methods. Data augmentation (DA) is a method applied to real data
and is an independent research field from generative data augmentation. Therefore, MGR can be
combined with DA to improve performance further. Table 3 shows the evaluation results when
comparing and combining MGR and DA methods; we used MixUp [37], CutMix [38], AugMix [39],
RandAugment [21], SnapMix [40], and TrivialAugment [25] as the DA methods. The improvement
effect of MGR is comparable to that of DA, and the highest accuracy was achieved by combining
the two methods. In particular, MGR was stably superior to sample-mix-based such as MixUp and
AugMix. This result also indicates that synthetic samples, which non-linearly interpolate the real
samples, elicit better performance than linearly interpolating real samples by the sample-mix-based
DA methods. We consider this strength to be an advantage of using generative models.

5 Related Work

We briefly review generative data augmentation and training techniques using generative models.

The earliest works of generative data augmentation are [19, 41, 42]. They have demonstrated that
simply adding synthetic samples as augmented data for classification tasks can improve performance
in few-shot learning, person re-identification, and medical imaging tasks. Tran et al.[20] have

9

proposed a generative data augmentation method that simultaneously trains GANs and classifiers
for optimizing θ to maximize the posterior p(θ|x) by an EM algorithm. Although this concept is
similar to our MPS in terms of updating both GΦ and fθ, it requires training the specialized neural
architectures based on GANs. In contrast, MPS is formalized for arbitrary existing generative models
with latent variables, and it requires no restrictions to the training objectives of generative models.

On the analysis of generative data augmentation, Shmelkov et al. [7] have pointed out that leveraging
synthetic samples as augmented data degrades the performance in general visual classification tasks.
They have hypothesized that the cause of the degradation is the less diversity and fidelity of synthetic
samples from generative models. Subsequent research by Yamaguchi et al. [8] have shown that the
scores related to the diversity and fidelity of synthetic samples (i.e., SSIM and FID) are correlated
to the test accuracies when applying the samples for generative data augmentation in classification
tasks. Based on these works, our work reconsiders the training objective and sampling method in
generative data augmentation and proposes PCR and MPS.

More recently, He et al. [43] have reported that a text-to-image generative model pre-trained on
massive external datasets can achieve high performance on few-shot learning tasks. They also found
that the benefit of synthetic data decreases as the amount of real training data increases, which they
attributed to a domain gap between real and synthetic samples. In contrast, our method does not
depend on any external dataset and successfully improves the accuracy of the classifier even when
synthetic data are not representatives of class labels (i.e., having domain gaps).

6 Limitation

One of the limitations of our method is the requirement of bilevel optimization of classifier and finder
networks. This optimization is computationally expensive particularly when used with generative
models that require multiple inference steps, such as diffusion models as discussed in Appendix B.3.
We have tried other objective functions not requiring bilevel optimization, but at this time, we have
not found an optimization method that outperforms MPS (see Appendix B.4). Nevertheless, since
recent studies rapidly and intensively focus on the speedup of diffusion models [44, 45, 46], we
can expect that this limitation will be negligible in near the future. Additionally, applying MGR to
pre-trained text-to-image diffusion models (e.g., [44]) is also important for future work because they
have succeeded in producing effective samples for training downstream task models in a zero-shot
manner [43].

7 Conclusion

This paper presents a novel method for generative data augmentation called MGR. MGR is composed
of two techniques: PCR and MPS. To avoid the degradation of classifiers, PCR utilizes synthetic
samples to regularize feature extractors by the simple consistency regularization loss. MPS searches
the useful synthetic samples to train the classifier through meta-learning on the validation loss of main
tasks. We empirically showed that MGR significantly improves the baselines and brings generative
data augmentation up to a practical level. We also observed that the synthetic samples in existing
generative data augmentation can distort the decision boundaries on feature spaces, and the PCR loss
with synthetic samples dynamically generated by MPS can resolve this issue through visualization.
We consider that these findings will help future research in this area.

Acknowledgements

We thank the members of the Kashima Laboratory and the PRMU community for discussing the
initial concepts of this paper and giving useful advice.

References

[1] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep
learning. Journal of big data, 2019.

10

[2] Francesco Calimeri, Aldo Marzullo, Claudio Stamile, and Giorgio Terracina. Biomedical data
augmentation using generative adversarial neural networks. In International conference on
artificial neural networks, pages 626–634. Springer, 2017.

[3] Maayan Frid-Adar, Idit Diamant, Eyal Klang, Michal Amitai, Jacob Goldberger, and Hayit
Greenspan. Gan-based synthetic medical image augmentation for increased cnn performance in
liver lesion classification. Neurocomputing, 2018.

[4] Maayan Frid-Adar, Eyal Klang, Michal Amitai, Jacob Goldberger, and Hayit Greenspan.
Synthetic data augmentation using gan for improved liver lesion classification. In 2018 IEEE
15th International Symposium on Biomedical Imaging, 2018.

[5] Abdul Waheed, Muskan Goyal, Deepak Gupta, Ashish Khanna, Fadi Al-Turjman, and Plá-
cido Rogerio Pinheiro. Covidgan: data augmentation using auxiliary classifier gan for improved
covid-19 detection. Ieee Access, 2020.

[6] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

[7] Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. How good is my gan? In
Proceedings of the European Conference on Computer Vision, 2018.

[8] Shin’ya Yamaguchi, Sekitoshi Kanai, and Takeharu Eda. Effective data augmentation with
multi-domain learning gans. In Proceedings of the AAAI Conference on Artificial Intelligence,
2020.

[9] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila.
Training generative adversarial networks with limited data. In Advances in Neural Information
Processing Systems, 2020.

[10] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with
auxiliary classifier gans. In International Conference on Machine Learning, 2017.

[11] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. International Conference on Learning Representations,
2018.

[12] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for
fine-grained categorization. In 4th International IEEE Workshop on 3D Representation and
Recognition, Sydney, Australia, 2013.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
2016.

[14] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity
natural image synthesis. In International Conference on Learning Representations, 2019.

[15] Philip Bachman, Ouais Alsharif, and Doina Precup. Learning with pseudo-ensembles. In
Advances in neural information processing systems, 2014.

[16] Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Unsupervised data aug-
mentation for consistency training. In Advances in Neural Information Processing Systems,
2020.

[17] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raf-
fel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-
supervised learning with consistency and confidence. In Advances in Neural Information
Processing Systems, 2020.

[18] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity
natural image synthesis. In International Conference on Learning Representations, 2018.

[19] Antreas Antoniou, Amos Storkey, and Harrison Edwards. Data augmentation generative
adversarial networks. arXiv:1711.04340, 2017.

[20] Toan Tran, Trung Pham, Gustavo Carneiro, Lyle Palmer, and Ian Reid. A bayesian data
augmentation approach for learning deep models. In Advances in Neural Information Processing
Systems 30, 2017.

11

[21] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical
automated data augmentation with a reduced search space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, pages 702–703, 2020.

[22] Ruoshi Liu, Chengzhi Mao, Purva Tendulkar, Hao Wang, and Carl Vondrick. Landscape learning
for neural network inversion. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2023.

[23] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In International conference on machine learning, 2017.

[24] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search.
In International Conference on Learning Representations, 2019.

[25] Samuel G Müller and Frank Hutter. Trivialaugment: Tuning-free yet state-of-the-art data
augmentation. In Proceedings of the IEEE/CVF international conference on computer vision,
pages 774–782, 2021.

[26] Shin’ya Yamaguchi, Sekitoshi Kanai, Atsutoshi Kumagai, Daiki Chijiwa, and Hisashi
Kashima. Transfer learning with pre-trained conditional generative models. arXiv preprint
arXiv:2204.12833, 2022.

[27] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi. Fine-grained visual classification
of aircraft. arXiv, 2013.

[28] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-UCSD
Birds 200. Technical report, California Institute of Technology, 2010.

[29] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi. Describing textures in the wild.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2014.

[30] M-E. Nilsback and A. Zisserman. Automated flower classification over a large number of
classes. In Proceedings of the Indian Conference on Computer Vision, Graphics and Image
Processing, 2008.

[31] Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In
IEEE Conference on Computer Vision and Pattern Recognition, 2012.

[32] Edgar Riba, Dmytro Mishkin, Daniel Ponsa, Ethan Rublee, and Gary Bradski. Kornia: an open
source differentiable computer vision library for pytorch. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, 2020.

[33] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation
and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

[34] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Advances
in Neural Information Processing Systems, 2017.

[35] Bingchen Liu, Yizhe Zhu, Kunpeng Song, and Ahmed Elgammal. Towards faster and stabilized
gan training for high-fidelity few-shot image synthesis. In International Conference on Learning
Representations, 2021.

[36] Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large diverse
datasets. In ACM SIGGRAPH, 2022.

[37] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. In International Conference on Learning Representations, 2018.

[38] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon
Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. In
Proceedings of the IEEE/CVF international conference on computer vision, 2019.

[39] Dan Hendrycks, Norman Mu, Ekin D. Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. AugMix: A simple data processing method to improve robustness and uncertainty.
In Proceedings of the International Conference on Learning Representations, 2020.

[40] Shaoli Huang, Xinchao Wang, and Dacheng Tao. Snapmix: Semantically proportional mix-
ing for augmenting fine-grained data. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2021.

12

[41] Zhedong Zheng, Liang Zheng, and Yi Yang. Unlabeled samples generated by gan improve the
person re-identification baseline in vitro. In Proceedings of the IEEE International Conference
on Computer Vision, 2017.

[42] Francesco Calimeri, Aldo Marzullo, Claudio Stamile, and Giorgio Terracina. Biomedical data
augmentation using generative adversarial neural networks. In International Conference on
Artificial Neural Networks. Springer, 2017.

[43] Ruifei He, Shuyang Sun, Xin Yu, Chuhui Xue, Wenqing Zhang, Philip Torr, Song Bai, and
Xiaojuan Qi. Is synthetic data from generative models ready for image recognition? arXiv
preprint arXiv:2210.07574, 2022.

[44] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022.

[45] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. In Advances in Neural Information Processing Systems,
2022.

[46] Chenlin Meng, Ruiqi Gao, Diederik P Kingma, Stefano Ermon, Jonathan Ho, and Tim Salimans.
On distillation of guided diffusion models. In Proceedings of the IEEE/CVF international
conference on computer vision, 2022.

[47] Ron Mokady, Omer Tov, Michal Yarom, Oran Lang, Inbar Mosseri, Tali Dekel, Daniel Cohen-
Or, and Michal Irani. Self-distilled stylegan: Towards generation from internet photos. In ACM
SIGGRAPH 2022 Conference Proceedings, 2022.

[48] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In International Conference on Learning Representations, 2019.

13

Appendix

The following manuscript provides the supplementary materials of the main paper: Regularizing
Neural Networks with Meta-Learning Generative Models.

A Algorithm of Meta Generative Regularization

Algorithm 1 Meta Generative Regularization
Require: Training dataset D, validation dataset Dval main model fθ , generator G, finder Fϕ, training batchsize

B, pseudo batchsize Bp, validation batchsize Bval, step size η and ξ, hyperparameter λ and λKL
Ensure: Trained main model fθ

1: while not converged do
2: {(xi, yi)}Bi=1 ∼ D
3: {zi}Bp

i=1 ∼ N (0, I)
4: // Updating ϕ for MPS
5: {(xival, y

i
val)}

Bval
i=1 ∼ D

6: {xip}
Bp

i=1 = {GΦ(Fϕ(z
i), yip)}

Bp

i=1

7: θ′ ← θ − η∇θ(
1
B
ℓ(fθ(x

i), yi) + λ
Bp
ℓPCR(x

i
p;ψ))

8: ϕ← ϕ− ξ∇ϕ(
1

Bval
ℓ(fθ′(xval), yval) + λKL(DKL(pϕ(z)∥p(z))))

9: // Updating θ with PCR
10: {xip}

Bp

i=1 = {GΦ(Fϕ(z
i), yip)}

Bp

i=1

11: θ ← θ − η∇θ(
1
B
ℓ(fθ(x

i), yi) + λ
Bp
ℓPCR(x

i
p;ψ))

12: end while

B Additional Experiments

B.1 Evaluation of Gradient Approximation

Here, we evaluate the gradient approximation by Eq. (9). As shown in Table 4, Eq. (9) well
approximated the second-order gradients in speeding up over 10% with 0.08 of the accuracy drop.

Table 4: Performance comparison between MPS with 2nd-order gradients and 1st-order approximated
gradients (ResNet-18, Cars).

Method Top-1 Acc. (%) Wall Clock Time (hours)

2nd-Order 87.30±.39 6.55
1st-Order Approx. 87.22±.15 5.79

B.2 Ablation study of Fϕ

In Section 3.2, we introduce Fϕ for meta-optimized parameters and the residual architectures with
MLP defined by Eq. (10). We performed an ablation study of MPS with respect to the meta-optimized
parameters and the architectures of Fϕ. We compared MPS with a variant of MPS optimizing GΦ

instead of Fϕ. We also attempted other architectures for Fϕ including Linear: Wϕ(z) + b, MLP:
MLPϕ(z), and Residual+Shallow: z + tanh(Wϕ(z) + b). The results of these variations are shown
in Table 5. We observed that MPS with GΦ caused failures of training fθ and degraded the accuracy.
On the other hand, all variants of MPS with Fϕ succeeded in boosting the models without MPS.
Thus, restricting the number of optimized parameters is important, and determining an optimal z with
the finder Fϕ is effective on the optimization problems of MPS. For the variants of MPS with Fϕ,
we observed that the residual architectures and regularization by DKL(pϕ(z)∥p(z)) contributed to
the successes. Interestingly, MPS with Linear Fϕ outperformed MPS with MLP Fϕ, i.e., significantly
transforming the input z ∼ p(z) by complex functions results in low accuracy. These results suggest
that better latent vectors in Z to train fθ can exist near the uniformly sampled input z. Thus, limiting
the search range by tanh in the residual architectures can help in finding better latent vectors.

14

Table 5: Ablation study of MPS (ResNet-18, Cars).1
Method Top-1 Acc. (%)

Without MPS (PCR) 86.32±.07

MPS 87.22±.15

MPS with GΦ 84.47±.05

MPS with Linear Fϕ 86.51±.09

MPS with MLP Fϕ 86.35±.13

MPS with Residual+Shallow Fϕ 86.88±.16

MPS w/o DKL(pϕ(z)∥p(z)) 86.92±.22

B.3 MGR with Diffusion Models

We tested our method on EDM [45], a recent diffusion model. Due to the computation cost, we used a
10% reduced CIFAR-10 as the dataset. We optimized Fϕ to search the first step noise of the diffusion
process. Table B-4 shows that our method with EDM improves Base Model. However, the overhead
of incorporating diffusion models was significant; it takes more than ten times longer training than
GANs. In future work, we will investigate lighter-weight methods using the diffusion model.

Table 6: Performance studies on Diffusion Model (ResNet-18 on Cars)
Method Top-1 Acc. (%)

Base Model 86.49±.48

GDA (EDM) 85.80±.30

MGR 88.49±.12

B.4 Updating Fϕ without Meta-optimization

MPS consists of meta-learning on validation losses requiring bi-level optimization, which is a
relatively heavy computation. One can consider if Fϕ could be trained without meta-optimization.
Here, we try alternative methods other than meta-learning to update Fϕ. Instead of meta-learning, we
used a strategy of choosing hard examples via optimizing Fϕ. That is, we optimize Fϕ by maximizing
the training cross-entropy (CE) loss and the PCR loss on synthetic samples. Note that, in both cases,
we used the PCR loss for synthetic samples when training classifiers. Table A-2 shows the results.
Optimizing Fϕ with CE and PCR slightly improved the baselines but significantly underperformed
our method (MGR). This result can justify using meta-optimizing Fϕ to generate useful samples for
classifiers. Nevertheless, this idea could inspire a sampling method that does not require bi-level
optimization in future work.

Table 7: Performance comparison of updating strategies for Fϕ (ResNet-18 on Cars)
Method Top-1 Acc. (%)

Base Model 85.50±.10

PCR 86.36±.08

Optimizing Fϕ w/ CE 86.52±.21

Optimizing Fϕ w/ PCR 86.44±.68

MGR 87.22±.15

B.5 ImageNet Classification

We evaluated our MGR on ImageNet by randomly initializing ResNet-18 as the classifier and the
pre-trained BigGAN as the generator. Table 8 shows that MGR successfully improves top-1 accuracy,
while naive generative data augmentation (GDA) does not; this is the same trend as Table 1 (a) of
the main paper. This result indicates that our method consistently works on complex and large-scale
datasets. We will add the result in multiple trials with standard deviation to the paper.

15

Table 8: ImageNet Classification (ResNet-18)
Method Top-1 Acc. (%)

Base Model 68.10
GDA 64.74
MGR 70.55

B.6 Latent Augmentation

Some readers may wonder why not also utilize augmentation in the generative model’s latent space
instead of data space. We implemented this approach by adding Gaussian noise to the latent vector
as z′ = z + s, where s ∼ N (0, 10−3). Then, we compute the consistency regularization between
g(G(z)) and g(G(z′)), instead of g(G(z)) and g(T (G(z))). We call this variant LatentAugment. We
found that LatentAugment improves the performance of our MGR (Table 9). Interestingly, LatentAug-
ment can improve when it is used solely without image data augmentation T , i.e., RandAugment. This
indicates that we can obtain meaningful variants by perturbing latent vectors, which is challenging for
conventional data augmentation. However, this approach doubles the number of generators’ forward
computations and thus leads to increased computation time and memory footprint.

Table 9: Classification on Cars (ResNet-18)
Method Top-1 Acc. (%)

Base Model 85.50±.10

MGR (LatentAugment) 86.49±.33

MGR (RandAugment) 87.22±.15

MGR (RandAugment + LatentAugment) 87.85±.53

B.7 Comparison to Existing Sampling Technique

Here, we evaluate MPS by comparing it with an existing sampling technique called multi-modal
truncation sampling [47], which was originally proposed for sampling better quality samples for
image generation. Table 10 shows the result of combining multi-modal truncation sampling and PCR.
Although the FID score of multi-modal truncation sampling certainly outperforms MPS, the gain
of the classification accuracy underperforms MPS. This implies that improving sample quality is a
necessary condition for performance improvements, not a sufficient condition. Meanwhile, since
MPS explicitly searches for samples that minimize the validation loss, it can improve classifiers more
directly than incorporating existing sampling methods.

Table 10: Classification on Cars (ResNet-18)
Method Running Mean FID Top-1 Acc. (%)

PCR 22.96 86.36±.08

Multi-modal Truncation + PCR 21.12 86.51±.21

MGR (MPS + PCR) 22.08 87.22±.15

B.8 Performance Study when using Pre-trained Generators

We tried to use ImageNet pre-trained BigGAN and confirmed that this does not solve the degradation
problem of GDA (Table 11). However, the use of pre-trained models can enhance our method.

B.9 Evaluation of Robustness toward Natural Corruption

Our method can improve the robustness against natural corruption and MPS does not generate biased
samples toward training distribution. We tested the robustness of our method on CIFAR-10-C [48],
which is a test set for CIFAR-10 corrupted by various transformations. Table 12 shows the results.

16

Table 11: Classification on Cars (ResNet-18, ImageNet pre-trained BigGAN). Underlined scores
outperform that of Base Model, and Bolded scores are the best among the methods.

Method / Dataset size 10% 25% 50% 100%

Base Model 20.11±.03 49.33±.54 72.91±.38 85.80±.18

GDA 18.82±.22 46.38±.59 70.23±.66 86.11±.16

MGR 24.55±.24 53.41±.89 75.46±.12 87.17±.18

While GDA degraded the performance for all corruptions, PCR significantly improved the base
model. Furthermore, MGR achieved even higher robustness. This indicates MPS in MGR can provide
samples that are useful for generalization through meta-optimization.

Table 12: Classification on CIFAR-10-C (ResNet-18).
Method clean gaussian noise shot noise impulse noise defocus blur glass blur motion blur zoom blur snow frost fog brightness contrast elastic transform pixelate jpeg compression mean

Base Model 86.49 53.32 53.12 39.01 34.06 37.15 31.08 36.14 46.68 36.38 19.14 52.45 10.51 41.14 46.59 53.02 42.27
GDA 84.11 52.70 52.98 39.94 29.39 38.66 28.97 28.82 45.04 40.08 24.00 50.29 13.07 40.91 45.11 52.85 41.68
PCR 87.06 59.35 60.65 37.71 47.51 50.89 41.71 47.11 63.94 57.33 31.13 73.43 13.66 58.00 63.77 68.55 53.86
MGR 88.02 61.69 62.53 41.62 52.21 51.91 47.94 51.09 65.78 59.50 34.49 73.23 14.83 60.65 65.32 71.10 56.37

17

	Introduction
	Preliminary
	Problem Setting
	Generative Data Augmentation

	Proposed Method
	Pseudo Consistency Regularization
	Meta Pseudo Sampling

	Experiments
	Settings
	Evaluation on Multiple Datasets
	Evaluation on Small Datasets
	Visualization of Feature Spaces
	Analysis of MPS
	Effect of Generative Models
	Combination of MGR and Data Augmentation

	Related Work
	Limitation
	Conclusion
	Algorithm of Meta Generative Regularization
	Additional Experiments
	Evaluation of Gradient Approximation
	Ablation study of F
	MGR with Diffusion Models
	Updating F without Meta-optimization
	ImageNet Classification
	Latent Augmentation
	Comparison to Existing Sampling Technique
	Performance Study when using Pre-trained Generators
	Evaluation of Robustness toward Natural Corruption

