Supplementary Material

A Background on Hermite Polynomials

Recall the definition of the probabilist's Hermite polynomials:

$$
H e_{n}(x)=(-1)^{n} e^{x^{2} / 2} \cdot \frac{d^{2}}{d x^{2}} e^{-x^{2} / 2}
$$

Under this definition, the first four Hermite polynomials are

$$
H e_{0}(x)=1, H e_{1}(x)=x, H e_{2}(x)=x^{2}-1, H e_{3}(x)=x^{3}-3 x
$$

In our work, we will consider the normalized Hermite polynomial of degree n to be $h_{n}(x)=$ $\frac{H e_{n}(x)}{\sqrt{n!}}$. These normalized Hermite polynomials form a complete orthogonal basis for inner product space $\mathcal{L}^{2}(\mathbb{R}, \mathcal{N})$. To obtain an orthogonal basis for $\mathcal{L}^{2}\left(\mathbb{R}^{d}, \mathcal{N}_{d}\right)$, we will use a multi-index $J=\left(j_{1}, \ldots, j_{d}\right) \in \mathbb{N}^{d}$ to define the d-variate normalized Hermite polynomial as $H_{J}(\mathbf{x})=$ $\prod_{i=1}^{d} H_{j_{i}}\left(x_{i}\right)$. Let the total degree of H_{J} be $|J|=\sum_{i=1}^{d} j_{i}$. Given a function $f \in \mathcal{L}^{2}\left(\mathbb{R}^{d}, \mathcal{N}_{d}\right)$, we can express it uniquely as $f(\mathbf{x})=\sum_{J \in \mathbb{N}^{d}} \widehat{f}(J) H_{J}(\mathbf{x})$, where $\widehat{f}(J)=\mathbf{E}_{\mathbf{x} \in \mathcal{N}_{d}}\left[f(\mathbf{x}) H_{J}(\mathbf{x})\right]$. We denote by $f^{[k]}(\mathbf{x})$ the degree k part of the Hermite expansion of f, i.e., $f^{[k]}(\mathbf{x})=\sum_{|J|=k} \widehat{f}(J) H_{J}(\mathbf{x})$.
Definition A.1. We say that a polynomial q in d variables is harmonic of degree k if it is a linear combination of degree k Hermite polynomials. That is, q is harmonic if it can be written as

$$
q(\mathbf{x})=q^{[k]}(\mathbf{x})=\sum_{J:|J|=k} c_{J} H_{J}(\mathbf{x})
$$

Notice that, since for a single-dimensional Hermite polynomial it holds $h_{m}^{\prime}(x)=\sqrt{m} h_{m-1}(x)$, we have that $\nabla H_{M}^{(i)}(\mathbf{x})=\sqrt{m_{i}} H_{M-E_{i}}(\mathbf{x})$, where $M=\left(m_{1}, \ldots, m_{d}\right)$. From this fact and the orthogonality of Hermite polynomials, we obtain

$$
\mathbf{E}_{\mathbf{x} \sim \mathcal{N}_{d}}\left[\left\langle\nabla H_{M}(\mathbf{x}), \nabla H_{L}(\mathbf{x})\right\rangle\right]=|M| \mathbb{I}[M=L] .
$$

We will also require the following standard facts:
Fact A.2. Let p be a polynomial of degree k in d variables. Then p is harmonic of degree k if and only if for all $\mathbf{x} \in \mathbb{R}^{d}$ it holds that $k p(\mathbf{x})=\langle\mathbf{x}, \nabla p(\mathbf{x})\rangle-\nabla^{2} p(\mathbf{x})$.
Fact A. 3 (see, e.g., [DKPZ21]). Let p, q be harmonic polynomials of degree k. Then,

$$
\mathbf{E}_{\mathbf{x} \sim \mathcal{N}_{d}}\left[\left\langle\nabla^{\ell} p(\mathbf{x}), \nabla^{\ell} q(\mathbf{x})\right\rangle\right]=k(k-1) \ldots(k-\ell+1) \mathbf{E}_{\mathbf{x} \sim \mathcal{N}_{d}}[p(\mathbf{x}) q(\mathbf{x})] .
$$

In particular,

$$
\left\langle\nabla^{k} p(\mathbf{x}), \nabla^{k} q(\mathbf{x})\right\rangle=k!\mathbf{E}_{\mathbf{x} \sim \mathcal{N}_{d}}[p(\mathbf{x}) q(\mathbf{x})] .
$$

B Omitted Proofs from Section 3

B. 1 Proof of Lemma 3.5

We start with the following claim:
Claim B.1. Let $p: \mathbb{R}^{n_{1}} \rightarrow \mathbb{R}$ and $q: \mathbb{R}^{n_{2}} \rightarrow \mathbb{R}$, where p is a polynomial of degree at most k and $q \in \mathcal{L}^{2}\left(\mathbb{R}^{n_{2}}, \mathcal{N}_{n_{2}}\right)$. Let $\mathbf{U} \in \mathbb{R}^{n_{1} \times n}, \mathbf{V} \in \mathbb{R}^{n_{2} \times n}$ such that $\mathbf{U} \mathbf{U}^{\top}=\mathbf{I}_{n_{1}}, \mathbf{V V}^{\top}=\mathbf{I}_{n_{2}}$. Then, we have that $\mathbf{E}_{\mathbf{x} \sim \mathcal{N}_{n}}[p(\mathbf{U x}) q(\mathbf{V x})]=\sum_{m=0}^{k} \frac{1}{m!}\left\langle\left(\mathbf{U}^{\top}\right)^{\otimes m} \mathbf{R}_{1}^{m},\left(\mathbf{V}^{\top}\right)^{\otimes m} \mathbf{R}_{2}^{m}\right\rangle$, where $\mathbf{R}_{1}^{m}=$ $\nabla^{m} p^{[m]}(\mathbf{x}), \mathbf{R}_{2}^{m}=\nabla^{m} q^{[m]}(\mathbf{x})$.

We require the following lemma:
Lemma B.2. Let p be a harmonic polynomial of degree k. Let $\mathbf{V} \in \mathbb{R}^{m \times n}$ with $\mathbf{V V}^{\boldsymbol{\top}}=\mathbf{I}_{m}$. Then the polynomial $p(\mathbf{V x})$ is harmonic of degree k.

Proof. Let $f(\mathbf{x})=p(\mathbf{V x})$. By Fact A.2, it suffices to show that for all $\mathbf{x} \in \mathbb{R}^{n}$ it holds that $k f(\mathbf{x})=\langle\mathbf{x}, \nabla f(\mathbf{x})\rangle-\nabla^{2} f(\mathbf{x})$. Since $\mathbf{V} \mathbf{V}^{\boldsymbol{\top}}=\mathbf{I}_{m}$, applying Fact A. 2 yields

$$
\langle\mathbf{x}, \nabla f(\mathbf{x})\rangle-\nabla^{2} f(\mathbf{x})=\langle\mathbf{V} \mathbf{x}, \nabla p(\mathbf{V} \mathbf{x})\rangle-\nabla^{2} p(\mathbf{V} \mathbf{x})=k p(\mathbf{V} \mathbf{x})=k f(\mathbf{x})
$$

Proof of Claim B.1 For $m \in \mathbb{N}$, let $f^{(m)}(\mathbf{x})=p^{[m]}(\mathbf{U x})$ and $g^{(m)}(\mathbf{x})=q^{[m]}(\mathbf{V x})$. We can write $p(\mathbf{U x}) \sim \sum_{m=0}^{k} f^{(m)}(\mathbf{x})$ and $q(\mathbf{V x}) \sim \sum_{m=0}^{\infty} g^{(m)}(\mathbf{x})$. Then applying Fact A. 3 and Lemma B. 2 yields

$$
\begin{aligned}
\mathbf{E}_{\mathbf{x} \sim \mathcal{N}_{n}}[p(\mathbf{U x}) q(\mathbf{V x})] & =\sum_{m_{1}=0}^{k} \sum_{m_{2}=0}^{\infty} \mathbf{E}_{\mathbf{x} \sim \mathcal{N}_{n}}\left[f^{\left(m_{1}\right)}(\mathbf{x}) g^{\left(m_{2}\right)}(\mathbf{x})\right]=\sum_{m=0}^{k} \mathbf{E}_{\mathbf{x} \sim \mathcal{N}_{n}}\left[f^{(m)}(\mathbf{x}) g^{(m)}(\mathbf{x})\right] \\
& =\sum_{m=0}^{k} \frac{1}{m!}\left\langle\nabla^{m} f^{(m)}(\mathbf{x}), \nabla^{m} g^{(m)}(\mathbf{x})\right\rangle=\sum_{m=0}^{k} \frac{1}{m!}\left\langle\nabla^{m} p^{[m]}(\mathbf{U x}), \nabla^{m} q^{[m]}(\mathbf{V} \mathbf{x})\right\rangle
\end{aligned}
$$

Denote by $\mathcal{U} \subseteq \mathbb{R}^{n}$ the image of the linear map \mathbf{U}^{\top}. Applying the chain rule, for any function $h(\mathbf{U x}): \mathbb{R}^{n} \rightarrow \mathbb{R}$, it holds $\nabla h(\mathbf{U x})=\partial_{i} h(\mathbf{U x}) U_{i j} \in \mathcal{U}$, where we applied Einstein's summation notation for repeated indices. Applying the above rule m times, we have that

$$
\nabla^{m} h(\mathbf{U x})=\partial_{i_{m}} \ldots \partial_{i_{1}} h(\mathbf{U x}) U_{i_{1}, j_{1}} \ldots U_{i_{m}, j_{m}} \in \mathcal{U}^{\otimes m}
$$

Moreover, denote $\mathbf{S}_{m}=\nabla^{m} p^{[m]}(\mathbf{U x})=\left(\mathbf{U}^{\top}\right)^{\otimes m} \mathbf{R}_{1}^{m} \in \mathcal{U}^{\otimes m}$, and $\mathbf{T}_{m}=\nabla^{m} q^{[m]}(\mathbf{V} \mathbf{x})=$ $\left(\mathbf{V}^{\boldsymbol{\top}}\right)^{\otimes m} \mathbf{R}_{2}^{m} \in \mathcal{V}^{\otimes m}$. We have that

$$
\begin{aligned}
\mathbf{E}_{\mathbf{x} \sim \mathcal{N}_{n}}[f(\mathbf{x}) g(\mathbf{x})] & =\sum_{m=0}^{k} \frac{1}{m!}\left\langle\nabla^{m} p^{[m]}(\mathbf{U} \mathbf{x}), \nabla^{m} q^{[m]}(\mathbf{V x})\right\rangle=\sum_{m=0}^{k} \frac{1}{m!}\left\langle\mathbf{S}_{m}, \mathbf{T}_{m}\right\rangle \\
& =\sum_{m=0}^{k} \frac{1}{m!}\left\langle\left(\mathbf{U}^{\boldsymbol{\top}}\right)^{\otimes m} \mathbf{R}_{1}^{m},\left(\mathbf{V}^{\boldsymbol{\top}}\right)^{\otimes m} \mathbf{R}_{2}^{m}\right\rangle
\end{aligned}
$$

This proves the claim.
Proof of Lemma 3.5. Applying Claim B.1 by taking $\mathbf{U}=\mathbf{I}_{m}$ and $\mathbf{V}=\mathbf{v}^{\boldsymbol{\top}}$, we have that

$$
\mathbf{E}_{\mathbf{z} \sim \mathcal{N}_{m}}\left[p(\mathbf{z}) f\left(\mathbf{v}^{\boldsymbol{\top}} \mathbf{z}\right)\right]=\sum_{d=0}^{k-1} \frac{1}{d!}\left\langle\mathbf{R}_{1}^{d}, \mathbf{v}^{\otimes d} \mathbf{R}_{2}^{d}\right\rangle
$$

which is a polynomial in \mathbf{v} of degree less than k, since $\mathbf{R}_{1}^{d}=\nabla^{d} p^{[d]}(\mathbf{x})$ and $\mathbf{R}_{2}^{d}=\nabla^{d} f^{[d]}(\mathbf{x})$ are constants only depending on p and f. This completes the proof of Lemma 3.5

B. 2 Proof of Lemma 3.6

We start by proving that "there exist non-negative weights w_{1}, \ldots, w_{r} with $\sum_{\ell=1}^{r} w_{\ell}=1$ such that $\sum_{\ell=1}^{r} w_{\ell} q\left(\mathbf{v}_{\ell}\right)=0$ for all odd polynomials q of degree less than k " implies "there does not exist any odd polynomial q of degree less than k such that $q\left(\mathbf{v}_{\ell}\right)>0,1 \leq \ell \leq r$." Suppose for contradiction that there exists an odd polynomial q^{*} of degree less than k such that $q^{*}\left(\mathbf{v}_{\ell}\right)>$ $0,1 \leq \ell \leq r$. For arbitrary non-negative weights w_{1}, \ldots, w_{r} with $\sum_{\ell=1}^{r} w_{\ell}=1$, we have that $\sum_{\ell=1}^{r} w_{\ell} q^{*}\left(\mathbf{v}_{\ell}\right) \geq \min \left\{q^{*}\left(\mathbf{v}_{1}\right), \ldots, q^{*}\left(\mathbf{v}_{r}\right)\right\}>0$, which contradicts to the first statement.

We then prove the opposite direction. We will use the following version of Farkas' lemma.
Fact B. 3 (Farkas' lemma). Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. Then exactly one of the following two assertions is true:

- There exists an $\mathbf{x} \in \mathbb{R}^{n}$ such that $A \mathbf{x}=b$ and $\mathbf{x} \geq 0$.
- There exists a $\mathbf{y} \in \mathbb{R}^{m}$ such that $\mathbf{y}^{\top} A \geq 0$ and $\mathbf{y}^{\top} b<0$.

Suppose for contradiction that there does not exist w_{1}, \ldots, w_{r} with $\sum_{\ell=1}^{r} w_{\ell}=1$ such that $\sum_{\ell=1}^{r} w_{\ell} q\left(\mathbf{v}_{\ell}\right)=0$ holds for every odd polynomial q of degree less than k. Let $s_{k, m}$ denote the total number of m-variate odd monomials of degree less than k, and $\left\{q_{j}^{k, m}\right\}_{1 \leq j \leq s_{k, m}}$ denote such monomials. We consider the following LP with variables $\mathbf{w}=\left(w_{1}, \ldots, w_{r}\right)^{\top}: \sum_{\ell=1}^{r} w_{\ell} q_{j}^{k, m}\left(\mathbf{v}_{\ell}\right)=$ $0,1 \leq j \leq s_{k, m}, \sum_{\ell=1}^{r} w_{\ell}=1, w_{\ell} \geq 0,1 \leq \ell \leq r$. By our assumption, the LP is infeasible. In order to applying the Farkas Lemma (Fact B.3), we write the linear system as $A \mathbf{w}=b$, where

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
q_{1}^{k, m}\left(\mathbf{v}_{1}\right) & q_{1}^{k, m}\left(\mathbf{v}_{2}\right) & \cdots & q_{1}^{k, m}\left(\mathbf{v}_{r}\right) \\
\vdots & \vdots & \ddots & \vdots \\
q_{s_{k, m}}^{k, m}\left(\mathbf{v}_{1}\right) & q_{s_{k, m}}^{k, m}\left(\mathbf{v}_{2}\right) & \cdots & q_{s_{k, m}}^{k, m}\left(\mathbf{v}_{r}\right)
\end{array}\right], \mathbf{w}=\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{r}
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right] .
$$

By Fact B.3, the original linear system is infeasible if and only if there exists a vector $\mathbf{u}=$ $\left[u_{0}, u_{1}, \ldots, u_{s_{k, d}}\right]^{\top}, \mathbf{u}^{\top} \mathbf{A} \geq 0$ and $\mathbf{u}^{\top} \mathbf{b}<0$, which is equivalent to $u_{0}+\sum_{j=1}^{s_{k, m}} u_{j} q_{j}^{k, m}\left(\mathbf{v}_{\ell}\right) \geq$ $0, \forall 1 \leq \ell \leq r$ and $u_{0}<0$. Let $q^{*}(\mathbf{v})=\sum_{j=1}^{s_{k, m}} u_{j} q_{j}^{k, m}(\mathbf{v}), \mathbf{v} \in \mathbb{R}^{m}$, which is an odd polynomial of degree less than k. By our definition of q^{*}, we have that $q^{*}\left(\mathbf{v}_{\ell}\right)=\sum_{j=1}^{s_{k, m}} u_{j} q_{j}^{k, m}\left(\mathbf{v}_{\ell}\right) \geq-u_{0}>$ $0, \forall 1 \leq \ell \leq r$, which contradicts to our assumption that there does not exist any odd polynomial q of degree less than k such that $q\left(\mathbf{v}_{\ell}\right)>0, \forall 1 \leq \ell \leq r$. This completes the proof.

B. 3 Proof of Claim 3.7

We denote by $G(\mathbf{x})$ to be the standard Gaussian density. By definition, we have that

$$
\begin{aligned}
& d_{\mathrm{TV}}\left(D_{\mathbf{U}}, D_{0}\right)=(1 / 2) \int_{\mathbf{x} \in \mathbb{R}^{n}} \sum_{y \in\{ \pm 1\}}\left|D_{\mathbf{U}}(\mathbf{x}, y)-D_{0}(\mathbf{x}, y)\right| d \mathbf{x} \\
= & (1 / 2) \int_{\mathbf{x} \in \mathbb{R}^{n}} G(\mathbf{x}) \sum_{y \in\{ \pm 1\}}\left|\sum_{\ell=1}^{r} w_{\ell} \mathbb{I}\left[\operatorname{sign}\left(\mathbf{v}_{\ell}^{\top} \mathbf{U x}\right)=y\right]-(1 / 2)\right| d \mathbf{x} \\
= & (1 / 2) \mathbf{E}_{\mathbf{x} \sim \mathcal{N}_{n}}\left[\sum_{y \in\{ \pm 1\}}\left|\sum_{\ell=1}^{r} w_{\ell} \mathbb{I}\left[\operatorname{sign}\left(\mathbf{v}_{\ell}^{\top} \mathbf{U x}\right)=y\right]-(1 / 2)\right|\right] \\
= & (1 / 2) \sum_{y \in\{ \pm 1\}} \mathbf{E}_{\mathbf{x} \sim \mathcal{N}_{n}}\left[\left|\sum_{\ell=1}^{r} w_{\ell} \mathbb{I}\left[\operatorname{sign}\left(\mathbf{v}_{\ell}^{\top} \mathbf{U} \mathbf{x}\right)=y\right]-(1 / 2)\right|\right] .
\end{aligned}
$$

Therefore, it suffices to show that

$$
\mathbf{E}_{\mathbf{x} \sim \mathcal{N}_{n}}\left[\left|\sum_{\ell=1}^{r} w_{\ell} \mathbb{I}\left[\operatorname{sign}\left(\mathbf{v}_{\ell}^{\top} \mathbf{U} \mathbf{x}\right)=y\right]-(1 / 2)\right|\right] \geq \Omega(\Delta / r), \quad \forall y \in\{ \pm 1\}
$$

We assume that $w_{\ell_{0}} \geq 1 / r$ for some $\ell_{0} \in[r]$. Let \mathbf{v}^{*} be an arbitrary vector satisfying $\mathbf{v}_{\ell_{0}}^{\top} \mathbf{v}^{*}=0$. We denote by

$$
\begin{aligned}
\mathcal{X}_{1} & =\left\{\mathbf{x} \in \mathbb{R}^{m} \mid \operatorname{sign}\left(\mathbf{v}_{\ell_{0}}^{\top} \mathbf{x}\right)>0, \operatorname{sign}\left(\mathbf{v}_{\ell}^{\top} \mathbf{x}\right)=\operatorname{sign}\left(\mathbf{v}_{\ell}^{\top} \mathbf{v}^{*}\right), \ell \in[r] \backslash\left\{\ell_{0}\right\}\right\}, \\
\mathcal{X}_{2} & =\left\{\mathbf{x} \in \mathbb{R}^{m} \mid \operatorname{sign}\left(\mathbf{v}_{\ell_{0}}^{\top} \mathbf{x}\right)<0, \operatorname{sign}\left(\mathbf{v}_{\ell}^{\top} \mathbf{x}\right)=\operatorname{sign}\left(\mathbf{v}_{\ell}^{\top} \mathbf{v}^{*}\right), \ell \in[r] \backslash\left\{\ell_{0}\right\}\right\} .
\end{aligned}
$$

Roughly speaking, \mathcal{X}_{1} and \mathcal{X}_{2} denote the subsets of vectors which are very close to the boundary of the halfspace with direction $\mathbf{v}_{\ell_{0}}$ and maintain the same label with the boundary for the other halfspaces. By definition, for any $\mathbf{x}_{1} \in \mathcal{X}_{1}, \mathbf{x}_{2} \in \mathcal{X}_{2}$, we have that

$$
\left|\sum_{\ell=1}^{r} w_{\ell} \mathbb{I}\left[\operatorname{sign}\left(\mathbf{v}_{\ell}^{\top} \mathbf{x}_{1}\right)=y\right]-\sum_{\ell=1}^{r} w_{\ell} \mathbb{I}\left[\operatorname{sign}\left(\mathbf{v}_{\ell}^{\top} \mathbf{x}_{2}\right)=y\right]\right|=w_{\ell_{0}} \geq 1 / r
$$

Therefore, we have either

$$
\left|\sum_{\ell=1}^{r} w_{\ell} \mathbb{I}\left[\operatorname{sign}\left(\mathbf{v}_{\ell}^{\top} \mathbf{x}_{1}\right)=y\right]-(1 / 2)\right| \geq 1 / 2 r, \quad \forall \mathbf{x}_{1} \in \mathcal{X}_{1}
$$

or

$$
\left|\sum_{\ell=1}^{r} w_{\ell} \mathbb{I}\left[\operatorname{sign}\left(\mathbf{v}_{\ell}^{\top} \mathbf{x}_{2}\right)=y\right]-(1 / 2)\right| \geq 1 / 2 r, \quad \forall \mathbf{x}_{2} \in \mathcal{X}_{2}
$$

Since $\mathbf{U x}$ is a standard Gaussian for any $\mathbf{U U}^{\top}=\mathbf{I}_{m}$ and $\left\|\mathbf{v}_{i}+\mathbf{v}_{j}\right\|_{2},\left\|\mathbf{v}_{i}-\mathbf{v}_{j}\right\|_{2} \geq \Omega(\Delta), 1 \leq$ $i<j \leq r$, we have that for $y \in\{ \pm 1\}$,

$$
\begin{aligned}
& \quad \mathbf{E}_{\mathbf{x} \sim \mathcal{N}_{n}}\left[\left|\sum_{\ell=1}^{r} w_{\ell} \mathbb{I}\left[\operatorname{sign}\left(\mathbf{v}_{\ell}^{\top} \mathbf{U} \mathbf{x}\right)=y\right]-(1 / 2)\right|\right] \\
& \geq \\
& \operatorname{Pr}_{\mathbf{x} \sim \mathcal{N}_{n}}\left[\mathbf{U x} \in \mathcal{X}_{1}\right] \cdot \mathbf{E}_{\mathbf{x} \sim \mathcal{N}_{n}}\left[\left|\sum_{\ell=1}^{r} w_{\ell} \mathbb{I}\left[\operatorname{sign}\left(\mathbf{v}_{\ell}^{\top} \mathbf{U x}\right)=y\right]-(1 / 2)\right| \mid \mathbf{U x} \in \mathcal{X}_{1}\right] \\
& \\
& \quad+\mathbf{P r}_{\mathbf{x} \sim \mathcal{N}_{n}}\left[\mathbf{U} \mathbf{x} \in \mathcal{X}_{2}\right] \cdot \mathbf{E}_{\mathbf{x} \sim \mathcal{N}_{n}}\left[\left|\sum_{\ell=1}^{r} w_{\ell} \mathbb{I}\left[\operatorname{sign}\left(\mathbf{v}_{\ell}^{\top} \mathbf{U} \mathbf{x}\right)=y\right]-(1 / 2)\right| \mid \mathbf{U x} \in \mathcal{X}_{2}\right] \\
& \geq \\
& \Omega(\Delta / r) .
\end{aligned}
$$

C Omitted Proofs from Section 4

C. 1 Proof of Lemma 4.5

In this section, we prove Lemma 4.5 We start by introducing the following technical results.
Fact C.1. Let $t \geq 2$ and $p, q \in \mathcal{P}_{t}^{d}$. Then, we have that
$t \int_{\|\mathbf{x}\|_{2}=1} p(\mathbf{x}) q(\mathbf{x}) d \mathbf{x}=\frac{1}{d+2 t-2} \int_{\|\mathbf{x}\|_{2}=1}\langle\nabla p(\mathbf{x}), \nabla q(\mathbf{x})\rangle d \mathbf{x}+\frac{1}{d+2 t-2} \int_{\|\mathbf{x}\|_{2}=1} p(\mathbf{x}) \nabla^{2} q(\mathbf{x}) d \mathbf{x}$.
Proof of Fact C.1. Applying the Gaussian Divergence theorem for the function $p(\mathbf{x}) \nabla p(\mathbf{x})$ over the unit ball, we have that

$$
\begin{aligned}
& t \int_{\|\mathbf{x}\|_{2}=1} p(\mathbf{x}) q(\mathbf{x}) d \mathbf{x}=\int_{\|\mathbf{x}\|_{2}=1}\langle p(\mathbf{x}) \nabla q(\mathbf{x}), \mathbf{x}\rangle d \mathbf{x}=\int_{\|\mathbf{x}\|_{2} \leq 1} \nabla \cdot(p(\mathbf{x}) \nabla q(\mathbf{x})) d \mathbf{x} \\
= & \int_{\|\mathbf{x}\|_{2} \leq 1}\langle\nabla p(\mathbf{x}), \nabla q(\mathbf{x})\rangle d \mathbf{x}+\int_{\|\mathbf{x}\|_{2} \leq 1} p(\mathbf{x}) \nabla^{2} q(\mathbf{x}) d \mathbf{x} \\
= & \int_{0}^{1} r^{d-1} d r \int_{\|\mathbf{x}\|_{2}=1}\langle\nabla p(r \mathbf{x}), \nabla q(r \mathbf{x})\rangle d \mathbf{x}+\int_{0}^{1} r^{d-1} d r \int_{\|\mathbf{x}\|_{2}=1} p(r \mathbf{x}) \nabla^{2} q(r \mathbf{x}) d \mathbf{x} \\
= & \int_{0}^{1} r^{2 t+d-3} d r \int_{\|\mathbf{x}\|_{2}=1}\langle\nabla p(\mathbf{x}), \nabla q(\mathbf{x})\rangle d \mathbf{x}+\int_{0}^{1} r^{2 t+d-3} d r \int_{\|\mathbf{x}\|_{2}=1} p(\mathbf{x}) \nabla^{2} q(\mathbf{x}) d \mathbf{x} \\
= & \frac{1}{d+2 t-2} \int_{\|\mathbf{x}\|_{2}=1}\langle\nabla p(\mathbf{x}), \nabla q(\mathbf{x})\rangle d \mathbf{x}+\frac{1}{d+2 t-2} \int_{\|\mathbf{x}\|_{2}=1} p(\mathbf{x}) \nabla^{2} q(\mathbf{x}) d \mathbf{x} .
\end{aligned}
$$

This completes the proof.
Fact C. 2 (see, e.g., Lemma 28 in [Kan15]). For any $p \in \Omega_{t}^{d}$, we have that

$$
\sup _{\|\mathbf{x}\|_{2}=1}|p(\mathbf{x})| \leq \sqrt{N_{t, d}} \sqrt{\mathbf{E}\left[p(\mathbf{x})^{2}\right]}=\sqrt{N_{t, d}}\|p\|_{2}
$$

The following lemma provides upper and lower bounds for the expectation of the L^{2}-norm square of the gradient of any homogeneous polynomial $p \in \Omega_{t}^{d}$ over the unit sphere \mathbb{S}^{d-1}.
Lemma C.3. Let t be an odd positive integer. For any $p \in \mathcal{P}_{t}^{d}$, we have that $\mathbf{E}\left[\left\|\nabla_{o} p(\mathbf{x})\right\|_{2}^{2}\right] \geq$ $(d-1)\|p\|_{2}^{2}$ and $\mathbf{E}\left[\|\nabla p(\mathbf{x})\|_{2}^{2}\right] \leq t(d+2 t-2)\|p\|_{2}^{2}$.

Proof. By Fact C.1. we have that

$$
t(d+2 t-2)\|p\|_{2}^{2}=\mathbf{E}\left[\|\nabla p(\mathbf{x})\|_{2}^{2}\right]+\mathbf{E}\left[p(\mathbf{x}) \nabla^{2} p(\mathbf{x})\right]
$$

We bound $\mathbf{E}\left[p(\mathbf{x}) \nabla^{2} p(\mathbf{x})\right]$ as follows. We consider the linear transformations $\mathcal{A}_{t}: \mathcal{P}_{t}^{d} \rightarrow \mathcal{P}_{t+2}^{d}, \mathcal{B}_{t}$: $\mathcal{P}_{t}^{d} \rightarrow \mathcal{P}_{t-2}^{d}$ as follows: $\mathcal{A}_{t}(p)=\mathbf{x}^{\top} \mathbf{x} p(\mathbf{x}), \mathcal{B}_{t}(p)=\nabla^{2} p(\mathbf{x}), p \in \mathcal{P}_{t}^{d}$. We first show that for any $t \geq 2$, both $\mathcal{A}_{t-2} \mathcal{B}_{t}$ and $\mathcal{B}_{t+2} \mathcal{A}_{t}$ are symmetric. For any $p, q \in \mathcal{P}_{t}^{d}$, applying Fact C.1 yields

$$
\begin{aligned}
& \left\langle\mathcal{A}_{t-2} \mathcal{B}_{t} p, q\right\rangle=\left\langle\mathcal{B}_{t+2} \mathcal{A}_{t} p, q\right\rangle=\mathbf{E}\left[\nabla^{2} p(\mathbf{x}) q(\mathbf{x})\right] \\
= & t(d+2 t-2) \mathbf{E}[p(\mathbf{x}) q(\mathbf{x})]-\mathbf{E}[\langle\nabla p(\mathbf{x}), \nabla q(\mathbf{x})\rangle] \\
= & \mathbf{E}\left[\nabla^{2} q(\mathbf{x}) p(\mathbf{x})\right]=\left\langle\mathcal{A}_{t-2} \mathcal{B}_{t} q, p\right\rangle=\left\langle\mathcal{B}_{t+2} \mathcal{A}_{t} q, p\right\rangle .
\end{aligned}
$$

Therefore, by the eigendecomposition of symmetric linear transformations, we have that $\lambda_{1}\|p\|_{2}^{2} \leq$ $\left\langle\mathcal{A}_{t-2} \mathcal{B}_{t} p, p\right\rangle=\mathbf{E}\left[p(\mathbf{x}) \nabla^{2} p(\mathbf{x})\right] \leq \lambda_{t}\|p\|_{2}^{2}, \forall p \in \Omega_{t}^{d}$, where $\lambda_{1} \leq \cdots \leq \lambda_{t}$ denote the eigenvalues of $\mathcal{A}_{t-2} \mathcal{B}_{t}$. In addition, by elementary calculation, for any $p \in \mathcal{P}_{t}^{d}$,

$$
\begin{aligned}
\mathcal{B}_{t+2} \mathcal{A}_{t} p & =\nabla^{2} \mathbf{x}^{\top} \mathbf{x} p(\mathbf{x})=\nabla \cdot\left(2 p(\mathbf{x}) \mathbf{x}+\mathbf{x}^{\top} \mathbf{x} \nabla p(\mathbf{x})\right)=\sum_{i=1}^{d} \frac{\partial\left(2 p(\mathbf{x}) x_{i}+\mathbf{x}^{\top} \mathbf{x}(\nabla p(\mathbf{x}))_{i}\right.}{\partial x_{i}} \\
& =2 d p(\mathbf{x})+4\langle\mathbf{x}, \nabla p(\mathbf{x})\rangle+\mathbf{x}^{\top} \mathbf{x} \nabla^{2} p(\mathbf{x})=\left(\mathcal{A}_{t-2} \mathcal{B}_{t}+2 d+4 t\right) p
\end{aligned}
$$

If $\mathcal{A}_{t-2} \mathcal{B}_{t}$ has an eigenvector p^{*} corresponding to some eigenvalue λ^{*}, then $\left(\mathcal{A}_{t} \mathcal{B}_{t+2}\right)\left(\mathcal{A}_{t} p^{*}\right)=$ $\mathcal{A}_{t} \mathcal{A}_{t-2} \mathcal{B}_{t} p^{*}+(2 d+4 t) \mathcal{A}_{t} p^{*}=\left(\lambda^{*}+2 d+4 t\right) \mathcal{A}_{t} p^{*}$, which implies that $\mathcal{A}_{t} p^{*}$ is an eigenvector of $\mathcal{A}_{t} \mathcal{B}_{t+2}$ corresponding to the eigenvalue $\lambda^{*}+2 d+4 t$. Note that since \mathcal{B}_{t+2} maps \mathcal{P}_{t+2}^{d} to \mathcal{P}_{t}^{d}, we have that $\operatorname{ker}\left(\mathcal{B}_{t+2}\right) \geq N_{t+2, d}-N_{t, d}$, which implies that $\mathcal{A}_{t} \mathcal{B}_{t+2}$ has eigenvalue 0 with multiplicity at least $N_{t+2, d}-N_{t, d}$. Therefore, the eigenvalues of $\mathcal{A}_{t} \mathcal{B}_{t+2}$ are $0<\lambda_{1}+2 d+4 t \leq$ $\cdots \leq \lambda_{t}+2 d+4 t$, where the multiplicity of eigenvalue 0 is $N_{t+2, d}-N_{t, d}$ and the multiplicity of eigenvalue $\lambda_{i}+2 d+4 t$ is the same as the multiplicity of eigenvalue λ_{i} of $\mathcal{A}_{t-2} \mathcal{B}_{t}$. Therefore, we have that $\lambda_{1}=0$ and $\lambda_{t}=(t-1)(d+t-1)$, which implies that

$$
\mathbf{E}\left[\|\nabla p(\mathbf{x})\|_{2}^{2}\right]=t(d+2 t-2)\|p\|_{2}^{2}-\mathbf{E}\left[p(\mathbf{x}) \nabla^{2} p(\mathbf{x})\right] \in\left[\left(t^{2}+d-1\right)\|p\|_{2}^{2}, t(d+2 t-2)\|p\|_{2}^{2}\right] .
$$

Therefore, we have that $\mathbf{E}\left[\left\|\nabla_{o} p(\mathbf{x})\right\|_{2}^{2}\right]=\mathbf{E}\left[\|\nabla p(\mathbf{x})\|_{2}^{2}-\langle\mathbf{x}, \nabla p(\mathbf{x})\rangle^{2}\right]=\mathbf{E}\left[\|\nabla p(\mathbf{x})\|_{2}^{2}\right]-t^{2}\|p\|_{2}^{2} \geq$ $(d-1)\|p\|_{2}^{2}$, completing the proof.

We need the following technical lemma which provides a universal upper bound for the $L_{2^{-}}^{2}$ norm of the gradient of any homogeneous polynomial $p \in \Omega_{t}^{d}$.
Lemma C.4. For any $p \in \Omega_{t}^{d}$ and any $1 \leq j \leq t$, we have that

$$
\sup _{\|\mathbf{x}\|_{2}=1}\left\|\frac{\partial^{j} p(\mathbf{y})}{\partial \mathbf{y}^{j}}\right\|_{2}^{2} \leq t^{j}(d+2 t-2)^{j} N_{2(t-j), d}\|p\|_{2}^{2}
$$

Proof. Note that $\|\nabla p(\mathbf{x})\|_{2}^{2} \in \Omega_{2(t-1)}^{d}$, by Fact C.2, we have that

$$
\sup _{\|\mathbf{x}\|_{2}=1}\|\nabla p(\mathbf{x})\|_{2}^{2} \leq \sqrt{N_{2(t-1), d}} \sqrt{\mathbf{E}\left[\|\nabla p(\mathbf{x})\|_{2}^{4}\right]} \leq \sqrt{N_{2(t-1), d}} \sqrt{\mathbf{E}\left[\|\nabla p(\mathbf{x})\|_{2}^{2}\right]} \sqrt{\sup _{\|\mathbf{x}\|_{2}=1}\|\nabla p(\mathbf{x})\|_{2}^{2}}
$$

which implies that $\sup _{\|\mathbf{x}\|_{2}=1}\|\nabla p(\mathbf{x})\|_{2}^{2} \leq N_{2(t-1), d} \mathbf{E}\left[\|\nabla p(\mathbf{x})\|_{2}^{2}\right] \leq t(d+2 t-2) N_{2(t-1), d}\|p\|_{2}^{2}$. Since $\left\|\frac{\partial^{j} p(\mathbf{x})}{\partial \mathbf{x}^{j}}\right\|_{2}^{2} \leq\left\|\frac{\partial^{j} p(\mathbf{x})}{\partial \mathbf{x}^{j}}\right\|_{F}^{2}$, it suffices to obtain an upper bound for $\sup _{\|\mathbf{x}\|_{2}=1}\left\|\frac{\partial^{j} p(\mathbf{x})}{\partial \mathbf{x}^{j}}\right\|_{F}^{2}$. Noting that $\left\|\frac{\partial^{j} p(\mathbf{x})}{\partial \mathbf{x}^{j}}\right\|_{F}^{2} \in \Omega_{2(t-j)}^{d}$, by Fact C.2, we have that

$$
\begin{aligned}
\sup _{\|\mathbf{x}\|_{2}=1}\left\|\frac{\partial^{j} p(\mathbf{x})}{\partial \mathbf{x}^{j}}\right\|_{F}^{2} & \leq \sqrt{N_{2(t-j), d}} \sqrt{\mathbf{E}\left[\left\|\frac{\partial^{j} p(\mathbf{x})}{\partial \mathbf{x}^{j}}\right\|_{F}^{4}\right]} \\
& \leq \sqrt{N_{2(t-j), d}} \sqrt{\mathbf{E}\left[\left\|\frac{\partial^{j} p(\mathbf{x})}{\partial \mathbf{x}^{j}}\right\|_{F}^{2}\right]} \sqrt{\sup _{\|\mathbf{x}\|_{2}=1}\left\|\frac{\partial^{j} p(\mathbf{x})}{\partial \mathbf{x}^{j}}\right\|_{F}^{2}},
\end{aligned}
$$

which implies that $\sup _{\mathbf{x} \in \mathbb{S}^{d-1}}\left\|\frac{\partial^{j} p(\mathbf{x})}{\partial \mathbf{x}^{j}}\right\|_{F}^{2} \leq N_{2(t-j), d} \mathbf{E}\left[\left\|\frac{\partial^{j} p(\mathbf{x})}{\partial \mathbf{x}^{j}}\right\|_{F}^{2}\right]$. Noting that $\frac{\partial p(\mathbf{x})}{\partial x_{i}} \in \Omega_{t-1}^{d}$, by Lemma C.3, we have that

$$
\begin{aligned}
& \mathbf{E}\left[\left\|\frac{\partial^{2} p(\mathbf{x})}{\partial \mathbf{x}^{2}}\right\|_{F}^{2}\right]=\mathbf{E}\left[\sum_{i_{1}, i_{2} \in[d]}\left(\frac{\partial^{2} p(\mathbf{x})}{\partial x_{i_{1}} \partial x_{i_{2}}}\right)^{2}\right]=\sum_{i_{1}=1}^{d} \mathbf{E}\left[\sum_{i_{2}=1}^{d}\left(\frac{\partial}{\partial x_{i_{2}}}\left(\frac{\partial p(\mathbf{x})}{\partial x_{i_{1}}}\right)\right)^{2}\right] \\
& \leq(t-1)(d+2 t-4) \sum_{i_{1}=1}^{d} \mathbf{E}\left[\left(\frac{\partial p(\mathbf{x})}{\partial x_{i_{1}}}\right)^{2}\right] \leq t(d+2 t-2) \mathbf{E}\left[\|\nabla p(\mathbf{x})\|_{2}^{2}\right] \leq t^{2}(d+2 t-2)^{2}\|p\|_{2}^{2} .
\end{aligned}
$$

In general, noting that $\frac{\partial^{j-1} p(\mathbf{x})}{\partial x_{i_{1}} \cdots \partial x_{i_{j-1}}} \in \Omega_{t-j+1}^{d}$, by Lemma C.3. we have that

$$
\begin{aligned}
& \mathbf{E}\left[\left\|\frac{\partial^{j} p(\mathbf{x})}{\partial \mathbf{x}^{j}}\right\|_{F}^{2}\right]=\mathbf{E}\left[\sum_{i_{1}, \ldots, i_{j} \in[d]}\left(\frac{\partial^{2} p(\mathbf{x})}{\partial x_{i_{1}} \ldots \partial x_{i_{j}}}\right)^{2}\right] \\
&= \sum_{i_{1}, \ldots, i_{j-1} \in[d]} \mathbf{E}\left[\sum_{i_{j}=1}^{d}\left(\frac{\partial}{\partial x_{i_{j}}}\left(\frac{\partial^{j-1} p(\mathbf{x})}{\partial x_{i_{1}} \ldots x_{i_{j-1}}}\right)\right)^{2}\right] \\
& \leq(t-j+1)(d+2(t-j)) \sum_{i_{1}, \ldots, i_{j-1} \in[d]} \mathbf{E}\left[\left(\frac{\partial^{j-1} p(\mathbf{x})}{\partial x_{i_{1}} \ldots x_{i_{j-1}}}\right)^{2}\right] \\
& \leq t(d+2 t-2) \mathbf{E}\left[\left\|\frac{\partial^{j-1} p(\mathbf{x})}{\partial \mathbf{x}^{j-1}}\right\|_{F}^{2}\right] \leq t^{j}(d+2 t-2)^{j}\|p\|_{2}^{2} .
\end{aligned}
$$

Therefore, we have that

$$
\sup _{\|\mathbf{x}\|_{2}=1}\left\|\frac{\partial^{j} p(\mathbf{x})}{\partial \mathbf{x}^{j}}\right\|_{F}^{2} \leq N_{2(t-j), d} \mathbf{E}\left[\left\|\frac{\partial^{j} p(\mathbf{x})}{\partial \mathbf{x}^{j}}\right\|_{F}^{2}\right] \leq t^{j}(d+2 t-2)^{j} N_{2(t-j), d}\|p\|_{2}^{2} .
$$

This completes the proof.

Proof of Lemma 4.5. By definition of $\nabla_{o} p(\mathbf{y})$, we have that

$$
\begin{aligned}
& p(\mathbf{z})-p(\mathbf{y})=\frac{p\left(\mathbf{y}+\delta \cdot \nabla_{o} p(\mathbf{y})\right)}{\left\|\mathbf{y}+\delta \cdot \nabla_{o} p(\mathbf{y})\right\|_{2}^{t}}-p(\mathbf{y}) \\
= & \frac{p\left(\mathbf{y}+\delta \cdot \nabla_{o} p(\mathbf{y})\right)-p(\mathbf{y})}{\left(1+\delta^{2}\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}\right)^{t / 2}}-\left(1-\frac{1}{\left(1+\delta^{2}\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}\right)^{t / 2}}\right) p(\mathbf{y}) \\
\geq & \frac{p\left(\mathbf{y}+\delta \cdot \nabla_{o} p(\mathbf{y})\right)-p(\mathbf{y})}{\left(1+\delta^{2}\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}\right)^{t / 2}}-\left(1-\exp \left(-t \delta^{2}\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2} / 2\right)\right)|p(\mathbf{y})| \\
\geq & \frac{p\left(\mathbf{y}+\delta \cdot \nabla_{o} p(\mathbf{y})\right)-p(\mathbf{y})}{\left(1+\delta^{2}\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}\right)^{t / 2}}-t \delta^{2}\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}|p(\mathbf{y})| / 2
\end{aligned}
$$

We bound $p\left(\mathbf{y}+\delta \cdot \nabla_{o} p(\mathbf{y})\right)-p(\mathbf{y})$ as follows: Let $f(s)=p(\mathbf{y}+s \mathbf{v})$ for some unit vector $v \in \mathbb{R}^{d}$. Noting that p is a degree- t homogeneous polynomial, by Taylor expansion, we have that $f(s)=f(0)+\sum_{j=1}^{t} \frac{f^{(j)}(0) s^{j}}{j!}$. By elementary calculation, we have that $f^{\prime}(0)=\mathbf{v}^{\top} \nabla p(\mathbf{y}), f^{\prime \prime}(0)=$ $\mathbf{v}^{\top} \frac{\partial^{2} p(\mathbf{y})}{\partial \mathbf{y}^{2}} \mathbf{v}, \ldots, f^{(t)}(0)=\left\langle\mathbf{v}^{\otimes t}, \frac{\partial^{t} p(\mathbf{y})}{\partial \mathbf{y}^{t}}\right\rangle$. By taking \mathbf{v} to be the direction of $\nabla_{o} p(\mathbf{y})$, i.e., $\mathbf{v}=$ $\frac{\nabla_{o} p(\mathbf{y})}{\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}}$, we have that

$$
p\left(\mathbf{y}+\delta \cdot \nabla_{o} p(\mathbf{y})\right)-p(\mathbf{y})=f\left(\delta\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}\right)-f(0)=\sum_{j=1}^{t} \frac{\left\langle\nabla_{o} p(\mathbf{y})^{\otimes j}, \frac{\partial^{j} p(\mathbf{y})}{\partial \mathbf{y}^{j}}\right\rangle \delta^{j}}{j!}
$$

Noting that the first order term is $\delta\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}$, it suffices to show that the absolute value of

$$
\begin{aligned}
& \left|\sum_{j=2}^{t} \frac{\left\langle\nabla_{o} p(\mathbf{y})^{\otimes j}, \nabla^{j} p(\mathbf{y})\right\rangle \delta^{j}}{j!}\right| \leq \sum_{j=2}^{t} \frac{\delta^{j}\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{j}\left\|\frac{\partial^{j} p(\mathbf{y})}{\partial \mathbf{y}^{j}}\right\|_{2}}{j!} \\
= & \delta\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2} \sum_{j=2}^{t} \frac{\delta^{j-1}\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{j-2}\left\|\frac{\partial^{j} p(\mathbf{y})}{\partial \mathbf{y}^{j}}\right\|_{2}}{j!} \\
\leq & \delta\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}\left(\sum_{j=2}^{t} \frac{\delta^{j-1}\|\nabla p(\mathbf{y})\|_{2}^{2 j-4}}{2 j!}+\sum_{j=2}^{t} \frac{\delta^{j-1}\left\|\frac{\partial^{j} p(\mathbf{y})}{\partial \mathbf{y}^{j}}\right\|_{2}^{2}}{2 j!}\right) \\
\leq & \delta\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}\left(\sum_{j=2}^{t} \frac{\delta^{j-1}\left(t(d+2 t-2) N_{2(t-1), d}\right)^{j-2}}{2 j!}+\sum_{j=2}^{t} \frac{\delta^{j-1} t^{j}(d+2 t-2)^{j} N_{2(t-j), d}}{2 j!}\right)
\end{aligned}
$$

Therefore, we will have that $p\left(\mathbf{y}+\delta \cdot \nabla_{o} p(\mathbf{y})\right)-p(\mathbf{y}) \geq C^{\prime} \delta\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}$ for some universal constant $0<C^{\prime}<1$, as long as $\delta \leq 1 / N_{2 t, d}^{2}$. Thus, by Lemma C.3 we have that

$$
\begin{aligned}
p(\mathbf{z})-p(\mathbf{y}) & \geq \frac{p\left(\mathbf{y}+\delta \cdot \nabla_{o} p(\mathbf{y})\right)-p(\mathbf{y})}{\left(1+\delta^{2}\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}\right)^{t / 2}}-t \delta^{2}\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}|p(\mathbf{y})| / 2 \\
& =\frac{C^{\prime} \delta\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}}{\left(1+\delta^{2}\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}\right)^{t / 2}}-t \delta^{2}\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}|p(\mathbf{y})| / 2 \\
& =C^{\prime} \delta\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2} \exp \left(-t \delta^{2}\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2} / 2\right)-t \delta^{2}\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}|p(\mathbf{y})| / 2 \\
& \geq C^{\prime} \delta\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}\left(1-t \delta^{2}\|\nabla p(\mathbf{y})\|_{2}^{2} / 2-t \delta|p(\mathbf{y})| / 2 C^{\prime}\right) \\
& \geq \delta\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}\left(C^{\prime}\left(1-t^{2} \delta^{2}(d+2 t-2) N_{2(t-1), d} / 2\right)-t \delta \sqrt{N_{t, d}} / 2\right) \\
& \geq C \delta\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}
\end{aligned}
$$

for some universal constant $0<C<1$, as long as $\delta \leq 1 / N_{2 t, d}^{2}$. This completes the proof.

C. 2 Proof of Lemma 4.4

Let $p_{1}, \ldots, p_{N} \in \Omega$ be an orthonormal basis, i.e., $\mathbf{E}\left[p_{i}(\mathbf{x}) p_{j}(\mathbf{x})\right]=\mathbb{I}[i=j]$. Let vector $\mathbf{p}(\mathbf{x}) \stackrel{\text { def }}{=}$ $\left[p_{1}(\mathbf{x}), \ldots, p_{N}(\mathbf{x})\right]$. We have that $\mathbf{E}[\mathbf{p}(\mathbf{x})]=0$ and $\operatorname{Cov}[\mathbf{p}(\mathbf{x})]=\mathbf{I}_{N}$.

$$
\begin{aligned}
\operatorname{Pr}\left[\left\|\frac{1}{r} \sum_{i=1}^{r} \mathbf{p}\left(\mathbf{x}_{i}\right)\right\|_{2} \geq \eta\right] & =\mathbf{P r}\left[\frac{1}{r^{2}}\left\|\sum_{i=1}^{r} \mathbf{p}\left(\mathbf{x}_{i}\right)\right\|_{2}^{2} \geq \eta^{2}\right]=\mathbf{P r}\left[\frac{1}{r^{2}} \sum_{j=1}^{N}\left(\sum_{i=1}^{r} p_{j}\left(\mathbf{x}_{i}\right)\right)^{2} \geq \eta^{2}\right] \\
& \leq \frac{1}{\eta^{2} r^{2}} \sum_{j=1}^{N} \mathbf{E}\left[\left(\sum_{i=1}^{r} p_{j}\left(\mathbf{x}_{i}\right)\right)^{2}\right]=\frac{N}{r \eta^{2}}
\end{aligned}
$$

We now assume that $\frac{1}{r}\left\|\sum_{i=1}^{r} \mathbf{p}\left(\mathbf{x}_{i}\right)\right\|_{2} \leq \eta$. Let $p \in \Omega$ be an arbitrary polynomial. We can write $p(\mathbf{x})=\sum_{j=1}^{N} \alpha_{j} p_{j}(\mathbf{x})$, where $\|p\|_{2}^{2}=\sum_{j=1}^{N} \alpha_{j}^{2}$. We have that

$$
\begin{aligned}
& \quad \frac{1}{r}\left|\sum_{i=1}^{r} p\left(\mathbf{x}_{i}\right)\right|=\frac{1}{r}\left|\sum_{i=1}^{r} \sum_{j=1}^{N} \alpha_{j} p_{j}\left(\mathbf{x}_{i}\right)\right| \leq \frac{1}{r} \sum_{j=1}^{N}\left|\alpha_{j}\right|\left|\sum_{i=1}^{r} p_{j}\left(\mathbf{x}_{i}\right)\right| \\
& \leq \frac{1}{r} \sqrt{\sum_{j=1}^{N} \alpha_{j}^{2}} \sqrt{\sum_{j=1}^{N}\left(\sum_{i=1}^{r} p_{j}\left(\mathbf{x}_{i}\right)\right)^{2}}=\frac{\|p\|_{2}}{r}\left\|\sum_{i=1}^{r} \mathbf{p}\left(\mathbf{x}_{i}\right)\right\|_{2} \leq \eta\|p\|_{2}
\end{aligned}
$$

where the second inequality follows from Cauchy-Schwarz. This completes the proof.

C. 3 Proof of Theorem 4.6

Let $p \in \partial \Omega_{t}^{d}$. Since

$$
\|\nabla p(\mathbf{y})\|_{2}^{2}=\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}+\langle\mathbf{y}, \nabla p(\mathbf{y})\rangle^{2}=\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}+t^{2} p(\mathbf{y})^{2}
$$

by Lemma 4.5 , we have that $p(\mathbf{z}) \geq p(\mathbf{y})+C \delta\left(\|\nabla p(\mathbf{y})\|_{2}^{2}-t^{2} p(\mathbf{y})^{2}\right)$. Let

$$
q(\mathbf{y})=p(\mathbf{y})+C \delta\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}=p(\mathbf{y})+C \delta\left(\|\nabla p(\mathbf{y})\|_{2}^{2}-t^{2} p(\mathbf{y})^{2}\right)
$$

By definition, we have that $q(\mathbf{y})-\mathbf{E}[q(\mathbf{y})]=p(\mathbf{y})+C \delta\left(\|\nabla p(\mathbf{y})\|_{2}^{2}-t^{2} p(\mathbf{y})^{2}\right)-C \delta \mathbf{E}\left[\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}\right]$, which is a polynomial of degree at most $2 t$ and contains only monomials of degree $2 t, 2 t-2, t, 0$. Let Ω be the subspace of polynomials in d-variables containing all monomials of degree $2 t, 2 t-2, t, 0$. In this way, the dimension of Ω is

$$
N=\binom{d+2 t-1}{d-1}+\binom{d+2 t-3}{d-1}+\binom{d+t-1}{d-1}+1 \leq 3 N_{2 t, d}
$$

Applying Lemma 4.4 yields that with probability at least $1-\frac{N}{r \eta^{2}}$, we have that

$\frac{1}{r} \sum_{i=1}^{r} p\left(\mathbf{z}_{i}\right) \geq \frac{1}{r} \sum_{i=1}^{r} q\left(\mathbf{y}_{i}\right) \geq \mathbf{E}[q(\mathbf{y})]-\eta\|q(\mathbf{y})-\mathbf{E}[q(\mathbf{y})]\|_{2}=\mathbf{E}[q(\mathbf{y})]-\eta \sqrt{\mathbf{E}\left[q(\mathbf{y})^{2}\right]-\mathbf{E}[q(\mathbf{y})]^{2}}$.
By elementary calculation, we have that

$$
\begin{aligned}
& \mathbf{E}\left[q(\mathbf{y})^{2}\right]-\mathbf{E}[q(\mathbf{y})]^{2}=\mathbf{E}\left[\left(p(\mathbf{y})+C \delta\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}\right)^{2}\right]-C^{2} \delta^{2} \mathbf{E}\left[\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}\right]^{2} \\
= & \mathbf{E}\left[p(\mathbf{y})^{2}\right]+2 C \delta \mathbf{E}\left[p(\mathbf{y})\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}\right]+C^{2} \delta^{2} \mathbf{E}\left[\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{4}\right]-C^{2} \delta^{2} \mathbf{E}\left[\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}\right]^{2} \\
= & \mathbf{E}\left[p(\mathbf{y})^{2}\right]+C^{2} \delta^{2} \mathbf{E}\left[\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{4}\right]-C^{2} \delta^{2} \mathbf{E}\left[\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}\right]^{2} \\
= & 1+C^{2} \delta^{2} \mathbf{E}\left[\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{4}\right]-C^{2} \delta^{2} \mathbf{E}\left[\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}\right]^{2},
\end{aligned}
$$

where the second equality is due to $p(\mathbf{y})$ being odd and

$$
\begin{aligned}
\left\|\nabla_{o} p(-\mathbf{y})\right\|_{2}^{2} & =\|\nabla p(-\mathbf{y})\|_{2}^{2}-t^{2} p(-\mathbf{y})^{2}=\|\nabla(-p(\mathbf{y}))\|_{2}^{2}-t^{2}(-p(\mathbf{y}))^{2} \\
& =\|\nabla p(\mathbf{y})\|_{2}^{2}-t^{2} p(\mathbf{y})^{2}=\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}
\end{aligned}
$$

By Lemma C. 3 and Lemma C. 4 , we have that $\mathbf{E}\left[\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}\right] \geq d-1$ and $\mathbf{E}\left[\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{4}\right] \leq$ $\mathbf{E}\left[\|\nabla p(\mathbf{y})\|_{2}^{2} \sup _{\|\mathbf{y}\|_{2}=1}\|\nabla p(\mathbf{y})\|_{2}^{2} \leq t^{2}(d+2 t-2)^{2} N_{2(t-1), d}\right.$. Therefore, we have that

$$
\begin{aligned}
\frac{1}{r} \sum_{i=1}^{r} p\left(\mathbf{z}_{i}\right) & \geq \mathbf{E}[q(\mathbf{y})]-\eta \sqrt{\mathbf{E}\left[q(\mathbf{y})^{2}\right]-\mathbf{E}[q(\mathbf{y})]^{2}} \\
& \geq C \delta \mathbf{E}\left[\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}\right]-\eta \sqrt{1+C^{2} \delta^{2} \mathbf{E}\left[\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{4}\right]-C^{2} \delta^{2} \mathbf{E}\left[\left\|\nabla_{o} p(\mathbf{y})\right\|_{2}^{2}\right]^{2}} \\
& \geq C \delta(d-1)-\eta \sqrt{1+C^{2} \delta^{2}\left(t^{2}(d+2 t-2)^{2} N_{2(t-1), d}-(d-1)^{2}\right)} \\
& =C \delta\left(d-1-\eta \sqrt{\frac{1}{C^{2} \delta^{2}}+t^{2}(d+2 t-2)^{2} N_{2(t-1), d}-(d-1)^{2}}\right)
\end{aligned}
$$

Taking $\delta=1 / N_{2 t, d}^{2}$ and $\eta=\frac{C d}{3 N_{2 t, d}^{2}}$ yields that with probability at least

$$
1-\frac{N}{r \eta^{2}} \geq 1-\frac{27}{C^{2} d^{2}} \geq 99 / 100
$$

$$
\begin{aligned}
\frac{1}{r} \sum_{i=1}^{r} p\left(\mathbf{z}_{i}\right) & \geq C \delta\left(d-1-\eta \sqrt{N_{2 t, d}^{4} / C^{2}+t^{2}(d+2 t-2)^{2} N_{2(t-1), d}-(d-1)^{2}}\right) \\
& >C \delta\left(d / 2-\eta \sqrt{2 N_{2 t, d}^{4} / C^{2}}\right) \geq 0
\end{aligned}
$$

C. 4 Omitted Calculations in Proof of Theorem 4.2

By elementary calculation, we have that

$$
\begin{aligned}
\left\|\mathbf{z}_{i}^{*}-\mathbf{y}_{i}\right\|_{2} & =\left\|\frac{\mathbf{y}_{i}+\delta \nabla_{o} p^{*}\left(\mathbf{y}_{i}\right)}{\left\|\mathbf{y}_{i}+\delta \nabla_{o} p^{*}\left(\mathbf{y}_{i}\right)\right\|_{2}}-\mathbf{y}_{i}\right\|_{2}=\frac{\left\|\mathbf{y}_{i}+\delta \nabla_{o} p^{*}\left(\mathbf{y}_{i}\right)-\right\| \mathbf{y}_{i}+\delta \nabla_{o} p^{*}\left(\mathbf{y}_{i}\right)\left\|_{2} \mathbf{y}_{i}\right\|_{2}}{\left\|\mathbf{y}_{i}+\delta \nabla_{o} p^{*}\left(\mathbf{y}_{i}\right)\right\|_{2}} \\
& \leq \frac{\left|1-\left\|\mathbf{y}_{i}+\delta \nabla_{o} p^{*}\left(\mathbf{y}_{i}\right)\right\|_{2}\right|+\delta\left\|\nabla p^{*}\left(\mathbf{y}_{i}\right)\right\|_{2}}{1-\delta\left\|\nabla p^{*}\left(\mathbf{y}_{i}\right)\right\|_{2}} \leq \frac{2 \delta\left\|\nabla p^{*}\left(\mathbf{y}_{i}\right)\right\|_{2}}{1-\delta\left\|\nabla p^{*}\left(\mathbf{y}_{i}\right)\right\|_{2}} \leq O\left(1 / N_{2 t, d}\right)
\end{aligned}
$$

where the last inequality follows from for any $\mathbf{y} \in \mathbb{S}^{d-1},\left\|\nabla p^{*}(\mathbf{y})\right\|_{2} \leq$ $\sqrt{t(d+2 t-2) N_{2(t-1), d}\left\|p^{*}\right\|_{2}^{2}} \leq N_{2 t, d}$ by Lemma C.3.

C. 5 Omitted Calculations in Proof of Theorem 1.2

In this section, we provide calculation details to show that $r \geq N_{2 k, m}$ and $N_{2 k, m} \leq \Omega\left((1 / \Delta)^{1.89}\right)$. We have the following chain of inequalities:

$$
\begin{aligned}
N_{2 k, m}^{5} & \leq\binom{ m+2 k}{2 k}^{5}=\binom{\left(1+2 c^{\prime}\right) m}{m}^{5} \leq 2^{5\left(1+2 c^{\prime}\right) m H\left(\frac{1}{1+2 c^{\prime}}\right)}=2^{5\left(1+2 c^{\prime}\right) m\left(\frac{\log \left(1+2 c^{\prime}\right)}{1+2 c^{\prime}}+\frac{2 c^{\prime} \log \left(1+1 / 2 c^{\prime}\right)}{1+2 c^{\prime}}\right)} \\
& =2^{5 m\left(\log \left(1+2 c^{\prime}\right)+2 c^{\prime} \log \left(1+1 / 2 c^{\prime}\right)\right)} \leq 2^{\frac{5 c \log r\left(\log \left(1+2 c^{\prime}\right)+2 c^{\prime} \log \left(1+1 / 2 c^{\prime}\right)\right)}{\log (1 / \Delta)}} \leq r,
\end{aligned}
$$

where $H(p)=-p \log p-(1-p) \log (1-p), p \in[0,1]$, is the standard binary entropy function. On the other hand, by our choice of m, we have that

$$
\begin{aligned}
N_{2 k, m} & =\binom{m+2 k-1}{m-1}=\binom{\left(1+2 c^{\prime}\right) m-1}{m-1} \geq\left(\frac{\left(1+2 c^{\prime}\right) m-1}{m-1}\right)^{m-1} \geq\left(1+2 c^{\prime}\right)^{m-1} \\
& \geq\left(1+2 c^{\prime}\right)^{\frac{1.99 \log r}{\log (1 / \Delta)}-1}=\left((1 / e)(1 / \Delta)^{1 / 5 c}\right)^{\frac{1.89 \log r}{\log (1 / \Delta)}} \geq \Omega\left((1 / \Delta)^{1.89}\right)
\end{aligned}
$$

