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Abstract

We study the problem of learning mixtures of linear classifiers under Gaussian
covariates. Given sample access to a mixture of r distributions on Rn of the form
(x, yℓ), ℓ ∈ [r], where x ∼ N (0, In) and y = sign(⟨vℓ,x⟩)) for an unknown
unit vector vℓ, the goal is to learn the underlying distribution in total variation
distance. Our main result is a Statistical Query (SQ) lower bound suggesting
that known algorithms for this problem are essentially best possible, even for the
special case of uniform mixtures. In particular, we show that the complexity of any
SQ algorithm for the problem is npoly(1/∆) log(r), where ∆ is a lower bound on the
pairwise ℓ2-separation between the vℓ’s. The key technical ingredient underlying
our result is a new construction of spherical designs that may be of independent
interest.

1 Introduction

The motivation behind this work is to understand the computational complexity of learning high-
dimensional latent variable (aka mixture) models. The task of learning various mixture models has a
long history in statistics with an early focus on sample efficiency, starting with the pioneering work
of Karl Pearson [Pea94] on learning Gaussian mixtures. During the past decades, an extensive line
of work in machine learning and theoretical computer science has made significant progress on the
computational aspects of this general question for a range of mixture models, including mixtures of
high-dimensional Gaussians [Das99, AK01, VW02, AM05, KSV08, BV08, MV10, RV17, HL18,
DKS18], mixtures of linear regressions [SJA16, LL18, CLS20, DK20], and more generally mixtures
of experts [JJ94, XA09, ME14, MVKO19, HYJ22].

In this paper, we focus on mixtures of linear classifiers, a classical supervised probabilistic
model that has been intensely investigated from both statistical and algorithmic standpoints [SIM14,
LLYH17, GMP20, CDV22]. A linear classifier (or halfspace) is any Boolean function h : Rn →
{±1} of the form h(x) = sign(⟨v,x⟩), where v ∈ Rn is known as the weight vector and the
univariate function sign is defined by sign(t) = 1 for t ≥ 0 and sign(t) = −1 otherwise. For
an integer r ≥ 2, we can now formally describe an r-mixture of linear classifiers. The parameters
of the model contain r unknown positive weights w1, . . . , wr with

∑r
ℓ=1 wℓ = 1, and r unknown

unit vectors v1, . . . ,vr ∈ Rn. A random sample is drawn from the underlying distribution D(x, y)
as follows: the sample oracle selects the index ℓ ∈ [r] with probability wℓ, and we then receive
a random point (x, y) ∈ Rn × {±1} where x ∼ N (0, In) and y = sign(⟨vℓ,x⟩)). The goal is
to approximately estimate the model either by learning the underlying distribution D(x, y) in total
variation distance (density estimation), or by approximately recovering the hidden parameters, i.e.,
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wℓ and vℓ, ℓ ∈ [r] (parameter estimation). An algorithm for parameter estimation can be used
for density estimation (because closeness in parameters can be shown to imply closeness in total
variation distance). In that sense, parameter estimation is a harder problem.

Before we proceed to describe prior algorithmic work, we provide basic background on the
sample complexity of the problem. We start by noting that density estimation for r-mixtures of linear
classifiers on Rn is information-theoretically solvable using poly(n, r) samples (with the optimal
bound being Θ̃(nr/ϵ2) for total variation error ϵ) without any assumptions on the components. In
contrast, for parameter estimation to be information-theoretically solvable with polynomial sample
complexity, some further assumptions are needed. The typical assumption involves some kind of
pairwise separation between the component vectors and a lower bound on the mixing weights. Let
∆

def
= mini̸=j{∥vi−vj∥2, ∥vi+vj∥2} > 0 be the pairwise separation between the components and

wmin be the minimum mixing weight. Under these assumptions, the parameter estimation problem is
solvable using poly(n, r, 1/∆, 1/wmin, 1/ϵ) samples to achieve parameter error of ϵ. In both cases,
the term “information-theoretically solvable” is used to mean that a sample-efficient algorithm exists,
without any constraints on computational efficiency. The main question addressed in this paper is to
what extent a computationally efficient learning algorithm exists.

On the algorithmic front, [CDV22] gave provable parameter estimation algorithms un-
der a ∆-separation assumption. Specifically, [CDV22] provided two algorithms with
different complexity guarantees. Their first algorithm has sample and computational
complexity poly(nO(log(r)/∆2), 1/wmin, 1/ϵ), while their second algorithm has complexity
poly((n/∆)r, 1/wmin, 1/ϵ). Here we focus on settings where the number of components r is large
and cannot be viewed as a constant. For the sake of intuition, it is instructive to simplify these upper
bounds for the regime of uniform mixtures (corresponding to the special case that wℓ = 1/r for all
ℓ ∈ [r]) and ϵ is not too small. For this regime, the complexity upper bound achieved in [CDV22]
is min{nO(log(r)/∆2), (n/∆)O(r)}. Concretely, if the separation ∆ is Ω(1) or even 1/polylog(r),
the first term yields a quasi-polynomial upper bound. On the other hand, for ∆ = O(1/rc), for
a constant c > 0, the resulting upper bound is npoly(r). In both regimes, we observe a super-
polynomial gap between the information-theoretic sample complexity — which is poly(n, r,∆) —
and the sample complexity of the [CDV22] algorithms. It is thus natural to ask if this gap is inherent.

What is the complexity of learning mixtures of linear classifiers?
Is there an algorithm with significantly better sample-time tradeoff?

We study these questions in a well-studied restricted model of computation, known as the Statistical
Query (SQ) model [Kea98] (and, via [BBH+20], also for low-degree polynomial tests). Our main
result is that in both of these models the complexity of the above-mentioned algorithms is essentially
best possible. Along the way, we establish new results on the existence of spherical designs on the
unit sphere that may be of independent interest.

1.1 Our Results

Basics on SQ Model SQ algorithms are a class of algorithms that, instead of having direct access
to samples, are allowed to query expectations of bounded functions of the distribution. Formally, an
SQ algorithm has access to the following standard oracle.
Definition 1.1 (STAT Oracle). Let D be a distribution on Rn. A Statistical Query is a bounded
function f : Rn → [−1, 1]. For τ > 0, the STAT(τ) oracle responds to the query f with a value
v such that |v − Ex∼D[f(x)]| ≤ τ . A Statistical Query (SQ) algorithm is an algorithm whose
objective is to learn an unknown distribution D by making adaptive calls to the STAT(τ) oracle.

The SQ model was introduced in [Kea98]. Subsequently, the model has been extensively studied in
a range of contexts [Fel16]). The class of SQ algorithms is broad and captures a range of known
supervised learning algorithms. More broadly, several known algorithmic techniques in machine
learning are known to be implementable using SQs [FGR+17, FGV17].

Our main result is a near-optimal SQ lower bound for mixtures of linear classifiers that applies
even for the uniform case. Specifically, we establish the following:
Theorem 1.2 (Main Result: SQ Lower Bound for Uniform Mixtures). Let ϵ ≤ c∆/r for some
universal constant c > 0 sufficiently small. Then, any SQ algorithm that learns a uniform mixture of
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linear classifiers with directions v1, . . . ,vr ∈ Sn−1 satisfying mini̸=j{∥vi − vj∥2, ∥vi + vj∥2} ≥
Ω(∆) for some r−1/10 ≤ ∆ < 1, within error ϵ in total variation distance must either use queries
of tolerance n−poly(1/∆) log r, or make at least 2n

Ω(1)

queries.

Informally speaking, Theorem 1.2 shows that no SQ algorithm can perform density estimation
for uniform mixtures of linear classifiers to small accuracy with a sub-exponential in nΩ(1) many
queries, unless using queries of very small tolerance – that would require at least npoly(1/∆) log r

samples to simulate. This result can be viewed as a near-optimal information-computation tradeoff
for the problem, within the class of SQ algorithms. In more detail, for ∆ = Ω(1), we obtain a quasi-
polynomial SQ lower bound of nΩ(log r); while for ∆ = 1/rc, for some constant 0 < c < 1/2, we
obtain an SQ lower bound of npoly(r). In both cases, our SQ lower bounds qualitatively match the
previously known algorithmic guarantees [CDV22] (that are easily implementable in the SQ model).

A conceptual implication of Theorem 1.2 is that the uniform (i.e., equal mixing weights) case is
essentially as hard as the general case for density estimation of these mixtures. In contrast, for related
mixture models, specifically for mixtures of Gaussians, there is recent evidence that restricting the
weights may make the problem computationally easier [BS21].

Remark 1.3. We note that the condition ∆ ≥ r−c, for some constant 0 < c < 1, is necessary in
the statement of Theorem 1.2 for the following reason: the algorithmic result of [CDV22] has sam-
ple and computational complexity min{nO(log(r)/∆2), (n/∆)O(r)}, which will be (n/∆)O(r) <<
npoly(1/∆) log r if ∆ is sufficiently small by inverse polynomial in r.

Remark 1.4. Our SQ lower bound result has immediate implications to another well-studied re-
stricted computational model — that of low-degree polynomial tests [HS17, HKP+17, Hop18].
[BBH+20] established that (under certain assumptions) an SQ lower bound also implies a qualita-
tively similar lower bound in the low-degree model. This connection can be used as a black-box to
show a similar lower bound for low-degree polynomials.

The key technical ingredient required for our SQ lower bound is a theorem establishing the existence
of spherical designs with appropriate properties. The definition of a spherical design follows.

Definition 1.5 (Spherical Design). Let t be an odd integer. A set of points x1, . . . ,xr ∈ Sn−1

is called a spherical t-design if E[p(x)] = 1
r

∑r
i=1 p(xi) holds for every homogeneous n-variate

polynomial p of degree t, where the expectation is taken over the uniform distribution on the unit
sphere Sn−1.

We note that this definition differs slightly from the usual definition of spherical design, which
requires that the equation in Definition 1.5 holds for all polynomials p of degree at most t. However,
by multiplying by powers of ∥x∥22, we note that our definition implies that the equation holds for
every odd polynomial of degree at most t, and it is sufficient for the requirement of establishing our
SQ lower bound.

Spherical designs have been extensively studied in combinatorial design theory and a number
of efficient constructions are known, see, e.g., [Ban79, DGS91, GP11, BRV13, Kan15, Wom18].
However, none of the known constructions seem to be compatible with our separation assumptions.
We establish the following result that may be of independent interest in this branch of mathematics.

Theorem 1.6 (Efficient Spherical Design). Let t be an odd integer and r ≥
(
n+2t−1
n−1

)5
. Let

y1, . . . ,yr be uniform random vectors over Sn−1. Then, with probability at least 99/100, there
exist unit vectors zi ∈ Sn−1 very close to yi such that (z1, . . . , zr) form a spherical t-design.

We mention here that the optimal sample complexity for the existence of spherical t-design
(for even t) is r = Θ

((
n+t
n

))
and our result matches this within a polynomial factor. Theorem 1.6

is essential for our construction of moment-matching. Roughly speaking, the resulting mixture
matches moments in the sense we require if and only if the weight vectors (v1, . . . ,vr) form a
spherical design. We mention that the closeness between zi and yi is necessary since this leads to
the separation of the hidden weight vectors in the mixture of linear classifiers. In order to guarantee
the pairwise separation of the weight vectors vi’s, we note that with high probability the yi’s are
pairwise separated and therefore if zi is sufficiently close to yi they will be too.
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1.2 Technical Overview

Our starting point is the SQ lower bound technique of [DKS17] and its generalization in [DKPZ21].
In particular, our overall strategy is to find a mixture of homogeneous halfspaces in some “small”
number m of dimensions that matches its first k moments with the distribution on (x, y), where y
is independent of x. By appropriately embedding this low-dimensional construction into Rn via a
random projection of Rn → Rm, the SQ lower bound machinery of [DKPZ21] can be shown to
imply that learning the projection requires either 2n

Ω(1)

queries or some query of accuracy n−Ω(k).
This generic step reduces our problem to finding an appropriate m-dimensional construction. Such
a construction is the main technical contribution of this work.

Note that specifying a mixture of halfspaces is equivalent to specifying a probability distribu-
tion with support consisting of at most r unit vectors and specifying the orthogonal vectors of the
halfspaces. It is not hard to see that the resulting mixture matches moments in the sense we require
if and only if these vectors form a spherical k-design [DGS91]: namely, that for any odd polynomial
p of degree less than k that the average value of p over our distribution is the same as the average
value of p over the unit sphere (namely, equal to zero). The bulk of our problem now reduces to
finding constructions of weighted designs, where: (1) The support size of the design is relatively
small. (2) The points in the design are pairwise separated. (3) For equally weighted mixtures, we
require that the weight of each vector in the design is uniform.

In m = 2 two dimensions, there is a relatively simple explicit construction that can be given.
In particular, if we take k evenly spaced points over the unit circle for some odd k, this matches the
first k−1 moments and has separation Ω(1/k). (This is similar to an SQ construction in [DKKZ20]
for a different setting.) Unfortunately, we cannot obtain better separation in two dimensions, since
any k unit vectors in two dimensions will necessarily have some pair separated by at most O(1/k).
Therefore, if we want constructions with greater separation, we will need to pick larger values of m.
Indeed, we show (Proposition 3.2) that a random collection of approximately mO(k) points can form
the support of an appropriate design. This can be proved by applying linear programming duality.
Unfortunately, this argument does not allow us to control the mixing weights. Specifically, it may
be the case that the minimum weight is exponentially small which seems unnatural in practice.

The case of equal weights requires a significantly more sophisticated argument. In this case,
we need to find a spherical design with uniform weight. Indeed, merely selecting a random sup-
port will no longer work. Although there is an extensive literature on finding efficient spherical
designs [Ban79, DGS91, GP11, BRV13, Kan15, Wom18], none of the known constructions seem
to be compatible with our separation assumptions. In particular, [BRV13] proves that for each
r ≥ cmkm, there exists a spherical k-design, where cm is a constant depending only on the di-
mension m. Although it is plausible that their construction can be adapted to satisfy our separation
requirement, their sample complexity has a potentially bad dependence on the dimension m. On
the other hand, [Kan15] achieves the optimal sample complexity r up to polynomials for all m and
k. However, the construction in [Kan15] definitely does not satisfy our separation requirement. We
note that the sample complexity of r = Θ

((
m+k
k

))
should be optimal, and our results are polynomial

in this bound. In conclusion, to establish our SQ lower bound, we need to prove a new technical
result. Our starting point to that end will be the work of [BRV13]. The basic plan here will be to
select random unit vectors y1,y2, . . . ,yr ∈ Rn, and then — applying topological techniques — to
show that there is some small perturbation set x1,x2, . . . ,xr ∈ Rn that is a spherical design. In
particular, we will find a continuous function F mapping degree-k odd polynomials to sets of r unit
vectors such that, for all unit-norm polynomials p, if F (p) = (z1, . . . , zr) then

∑r
i=1 p(zi) > 0.

Given this statement, a standard fixed point theorem [CC06] will imply that our design can be found
as F (q) for some q with norm less than one. To construct the mapping F , we start with the points
y1, . . . ,yr and perturb each yi in the direction of ∇op(yi) in order to try to increase the average
value of p, where ∇op(yi) is the component of ∇p(yi) orthogonal to the direction yi. Intuitively,
this construction should work because with high probability the average value of p(yi) is already
small (since the empirical average should approximate the true average), the average gradient of
p(yi) is not too small, and the contributions to p(zi) coming from higher-order terms will not be
large as long as zi is sufficiently close to yi. These facts can all be made precise with some careful
analysis of spherical harmonics (Lemma 4.5).

Finally, we need to show that the hardness of learning the appropriate projection implies hard-
ness of learning the mixture. By standard facts, it suffices to show that mixtures of linear classifiers
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are far from the distribution (x, y), where the uniform label y is independent of x, in total variation
distance. To show this, we prove that the total variation distance between any projection and the
distribution where y is independent of x is at least Ω(∆/r) (Lemma 3.8).

2 Preliminaries
For n ∈ Z+, we denote [n]

def
= {1, . . . , n}. For two distributions p, q over a probability space Ω,

let dTV(p, q) = supS⊆Ω |p(S) − q(S)| denote the total variation distance between p and q. In this
article, we typically use small letters to denote random variables and vectors. For a real random
variable x, we use E[x] to denote the expectation. We use Pr[E ] and I[E ] for the probability and the
indicator of event E . Let Nn denote the standard n-dimensional Gaussian distribution and N denote
the standard univariate Gaussian distribution. Let Sn−1 = {x ∈ Rn : ∥x∥2 = 1} denote the n-
dimensional unit sphere. For a subset S ⊆ Rn, we will use U(S) to denote the uniform distribution
over S. We will use small boldface letters for vectors and capital boldface letters for matrices. Let
∥x∥2 be the ℓ2-norm of the vector x ∈ Rn. For vectors u,v ∈ Rn, we use ⟨u,v⟩ to denote their
inner product. We denote by L2(Rn,Nn) the function space of all functions f : Rn → R such that
Ez∈Nn [f

2(z)] < ∞. The usual inner product for this space is Ez∈Nn [f(z)g(z)].

For a matrix P ∈ Rm×n, we denote ∥P∥2, ∥P∥F to be its spectral norm and Frobenius norm
respectively. For a tensor A ∈ (Rn)⊗k, let ∥A∥2 denote its spectral norm and ∥A∥F denote its
Frobenius norm. We will use Ai1,...,ik to denote the coordinate of the k-tensor A indexed by the k-
tuple (i1, . . . , ik). The inner product between k-tensors is defined by thinking of tensors as vectors
with nk coordinates. We use the framework of Statistical Query (SQ) algorithms for problems over
distributions [FGR+17] and require the following standard definition.

Definition 2.1 (Decision/Testing Problem over Distributions). Let D be a distribution and D be a
family of distributions over Rn. We denote by B(D, D) the decision (or hypothesis testing) problem
in which the input distribution D′ is promised to satisfy either (a) D′ = D or (b) D′ ∈ D, and the
goal of the algorithm is to distinguish between these two cases.

Basics on VC-Inequality We recall the definition of VC dimension for a set system.

Definition 2.2 (VC-Dimension). For a class C of boolean functions on a set X , the VC-dimension
of C is the largest integer d such that there exist d points x1, . . . , xd ∈ X such that for any boolean
function g : {x1, . . . , xd} → {±1}, there exists an f ∈ C satisfying f(xi) = g(xi), 1 ≤ i ≤ d.

We will use the following probabilistic inequality.

Lemma 2.3 (VC inequality, see, e.g., [Ver18]). Let C be a class of boolean functions on X with
VC-dimension d, and let X be a distribution on X . Let ϵ > 0 and let N be an integer at least a
sufficiently large constant multiple of d/ϵ2. Then, if X1, X2, . . . , XN are i.i.d. samples from X , we
have that:

Pr

[
sup
f∈C

∣∣∣∣∣
∑N

j=1 f(Xj)

N
−E[f(X)]

∣∣∣∣∣ > ϵ

]
= exp(−Ω(Nϵ2)).

To apply the VC inequality in our context, we additionally need the following fact which gives
the VC-dimension of the class of bounded-degree polynomial threshold functions (PTFs).

Fact 2.4. Let Ck denote the class of degree-k polynomial threshold functions (PTFs) on Rm, namely
the collection of functions of the form f(x) = sign(p(x)) for some degree at most k real polynomial
p. Then, the VC-dimension of Ck is VC(Ck) =

(
m+k
k

)
.

3 Warmup: SQ Lower Bounds for General Weight Mixtures

SQ Lower Bound Machinery. We start by defining the family of distributions that we will use to
prove our SQ hardness result.

Definition 3.1 ([DKPZ21]). Given a function g : Rm → [−1,+1], we define Dg to be the class of
distributions over Rn × {±1} of the form (x, y) such that x ∼ Nn and E[y | x = z] = g(Uz),
where U ∈ Rm×n with UU⊺ = Im.
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The following proposition states that if g has zero low-degree moments, then distinguishing Dg

from the distribution (x, y) with x ∼ Nn, y ∼ U({±1}) is hard in the SQ model.
Proposition 3.2 ([DKPZ21]). Let g : Rm → [−1, 1] be such that Ex∼Nm [g(x)p(x)] = 0, for every
polynomial p : Rm → R of degree less than k, and Dg be the class of distributions from Defini-
tion 3.1. Then, if m ≤ na, for some constant a < 1/2, any SQ algorithm that solves the decision
problem B(Dg,Nn×U({±1})) must either use queries of tolerance n−Ω(k), or make at least 2n

Ω(1)

queries.

We will apply Proposition 3.2 to establish our SQ lower bound for learning mixtures of linear
classifiers. The main technical contribution required to achieve this is the construction of a class of
distributions Dg , where each element in Dg represents a distribution of mixture of linear classifiers.
In particular, we will carefully choose some appropriate unit vectors v1, . . . ,vr ∈ Rm and non-
negative weights w1, . . . , wr with

∑r
ℓ=1 wℓ = 1, such that vℓ are pairwise separated by ∆ > 0.

Let g(z) =
∑r

ℓ=1 wℓsign(v
⊺
ℓ z), z ∈ Rm. For an arbitrary matrix U ∈ Rm×n with UU⊺ = Im,

we denote by DU the instance of mixture of linear classifiers with weight vectors U⊺v1, . . . ,U
⊺vr

and weights w1, . . . , wr. In this way, we have that

E(x,y)∼DU
[y | x = z] =

r∑
ℓ=1

wℓsign((U
⊺vℓ)

⊺z) =

r∑
ℓ=1

wℓsign(v
⊺
ℓUz) = g(Uz), z ∈ Rn.

3.1 Low-degree Moment Matching

The following proposition shows that there exist unit vectors v1, . . . ,vr and non-negative weights
w1, . . . , wr with

∑r
ℓ=1 wℓ = 1 such that vℓ are pairwise separated by some parameter ∆ > 0 and

the low-degree moments of g vanish. Note that since g is odd (as the sign function is odd), we only
require Ez∈Nm

[g(z)p(z)] = 0 for every odd polynomial p of degree less than k.

Proposition 3.3. Let m = c log r
log(1/∆) , where r−1/10 ≤ ∆ < 1 and 1.99 ≤ c ≤ 2 is a universal con-

stant. Let k be a positive integer such that r ≥ C
(
m+k
k

)
for some constant C > 0 sufficiently large.

There exist vectors v1, . . . ,vr over the unit sphere Sm−1 and non-negative weights w1, . . . , wr with∑r
ℓ=1 wℓ = 1, such that

• Ez∼Nm
[g(z)p(z)] = 0 holds for every odd polynomial p of degree less than k, where g(z) =∑r

ℓ=1 wℓsign(v
⊺
ℓ z).

• ∥vi + vj∥2, ∥vi − vj∥2 ≥ Ω(∆),∀1 ≤ i < j ≤ r.

The proof proceeds as follows: We uniformly sample unit vectors v1, . . . ,vr ∈ Sm−1. We will
prove by the probabilistic method that both statements in Proposition 3.3 hold with high probability.
We begin by showing that Pr[min1≤i<j≤r{∥vi−vj∥2, ∥vi+vj∥2} < O(∆)] is small. By symme-
try, it suffices to bound Pr[min1≤i<j≤r ∥vi−vj∥2 < O(∆)]. Let Θ = min1≤i<j≤r arccos⟨vi,vj⟩.
We require the following facts:

Fact 3.4 (Proposition 3.5 in [BRS+18]). Pr
[
Θ ≥ γr−

2
m−1

]
≥ 1 − κm−1

2 γm−1, where κm =

Γ((m+1)/2)
m

√
πΓ(m/2)

∈
[

1
m

√
m−1
2π , 1

m

√
m+1
2π

]
.

Applying Fact 3.4 by taking γ =
(

1
50κm−1

) 1
m−1

and r = 1√
50κm−1∆m−1

yields that

Pr[Θ ≥ ∆] ≥ 99/100. Given some fixed random vectors v1, . . . ,vr ∈ Sm−1, we will prove
that with high probability there exist non-negative weights w1, . . . , wr with

∑r
ℓ=1 wℓ = 1 such

that Ez∼Nm
[g(z)p(z)] = 0 holds for every odd polynomial p of degree less than k, where

g(z) =
∑r

ℓ=1 wℓsign(v
⊺
ℓ z). Noting that Ez∼Nm [g(z)p(z)] =

∑r
ℓ=1 wℓEz∼Nm [p(z)sign(v⊺

ℓ z)], it
suffices to bound the probability that there exist non-negative weights w1, . . . , wr with

∑r
ℓ=1 wℓ = 1

such that
∑r

ℓ=1 wℓEz∼Nm [p(z)sign(v⊺
ℓ z)] = 0 holds for every odd polynomial p of degree less

than k. Our main technical lemma is the following:
Lemma 3.5. Let p : Rm → R be a polynomial of degree less than k and f ∈ L2(R,N ). Let
v ∈ Sm−1 be a unit vector. We have that Ez∼Nm

[p(z)f(v⊺z)] is a polynomial in v of degree less
than k.
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The proof proceeds by analyzing p and f as Hermite expansions. For complete-
ness, we defer the proof of Lemma 3.5 to Appendix B. From Lemma 3.5, we can write∑r

ℓ=1 wℓEz∼Nm
[p(z)sign(v⊺

ℓ z)] =
∑r

ℓ=1 wℓq(vℓ) for some odd polynomial q of degree less than
k (since sign is odd). In this way, it suffices to show that with high probability there exist non-
negative weights w1, . . . , wr with

∑r
ℓ=1 wℓ = 1 such that

∑r
ℓ=1 wℓq(vℓ) = 0 for all odd polyno-

mials q of degree less than k. To prove this, we leverage the following lemma:

Lemma 3.6. The following two statements are equivalent.

1. There exist non-negative weights w1, . . . , wr with
∑r

ℓ=1 wℓ = 1 such that
∑r

ℓ=1 wℓq(vℓ) = 0
for all odd polynomials q of degree less than k.

2. There does not exist any odd polynomial q of degree less than k such that q(vℓ) > 0, 1 ≤ ℓ ≤ r.

The proof of Lemma 3.6 follows via a careful application of LP duality; see Appendix B.

Proof of Proposition 3.3. Let Θ = min1≤i<j≤r arccos⟨vi,vj⟩. Applying Fact 3.4 by taking γ =(
1

50κm−1

) 1
m−1

yields Pr[Θ ≥ ∆] ≥ Pr
[
Θ ≥ γr−

2
m−1

]
≥ 99/100 (since our choice of m will

imply r = 1/
√
50κm−1∆m−1). This will imply that

Pr
[

min
1≤i<j≤r

{∥vi − vj∥2, ∥vi + vj∥2} ≥ Ω(∆)
]
≥ 99/100 .

We then show that there exist non-negative weights w1, . . . , wr with
∑r

ℓ=1 wℓ = 1 such that
Ez∼Nm

[g(z)p(z)] = 0 holds for every odd polynomial p with degree less than k, where g(z) =∑r
ℓ=1 wℓsign(v

⊺
ℓ z). By Lemma 3.5, it suffices to show that there exist non-negative weights

w1, . . . , wr with
∑r

ℓ=1 wℓ = 1 such that
∑r

ℓ=1 wℓq(vℓ) = 0 for all odd polynomials q of de-
gree less than k. By Fact 2.4, we have that r ≥ C

(
m+k
k

)
= CVC(Ck) for some sufficiently large

constant C > 0. Note that for any odd polynomial q in m variables of degree less than k, we have
that E[sign(q(v))] = 0. Therefore, by the VC-inequality (Lemma 2.3), we have that

Pr[∃ odd polynomial q of degree less than k such that q(vℓ) > 0, 1 ≤ ℓ ≤ r]

≤ Pr

[
sup

f∈Ck−1

∑r
ℓ=1 f(vℓ)

r
= 1

]
≤ Pr

[
sup
f∈Ck

∣∣∣∣∑r
ℓ=1 f(vℓ)

r
−E[f(v)]

∣∣∣∣ ≥ 1

]
≤ exp(−Ω(r)) ≤ 1/100.

Finally, applying Lemma 3.6 completes our proof.

3.2 Proof of SQ Lower Bound for General Weights

Let k be a positive integer such that r ≥ C
(
m+k
k

)
for some constant C > 0 sufficiently large. Let

m = c log r
log(1/∆) , where r−1/10 ≤ ∆ < 1 and 1.99 ≤ c ≤ 2. By Proposition 3.3, there exist unit

vectors v1, . . . ,vr ∈ Rm such that

• There exist non-negative weights w1, . . . , wr with
∑r

ℓ=1 wℓ = 1 such that Ez∼Nm
[g(z)p(z)] = 0

holds for every odd polynomial p with degree less than k, where g(z) =
∑r

ℓ=1 wℓsign(v
⊺
ℓ z).

• ∥vi + vj∥2, ∥vi − vj∥2 ≥ Ω(∆),∀1 ≤ i < j ≤ r for some ∆ > 0.

For an arbitrary matrix U ∈ Rm×n with UU⊺ = Im, denote by DU the instance of mixture of linear
classifiers with weight vectors U⊺v1, . . . ,U

⊺vr and weights w1, . . . , wr. Let Dg = {DU | U ∈
Rm×n,UU⊺ = Im}. We have that ∥U⊺vi ±U⊺vj∥2 = ∥vi ± vj∥2 ≥ Ω(∆), 1 ≤ i < j ≤ r, and
E(x,y)∼DU

[y | x = z] =
∑r

ℓ=1 wℓsign((U
⊺vℓ)

⊺z) =
∑r

ℓ=1 wℓsign(v
⊺
ℓUz) = g(Uz), z ∈ Rn.

By Proposition 3.2, any SQ algorithm for the decision problem B(Dg,Nn × U({±1})) must either
use queries of tolerance n−Ω(k), or make at least 2n

Ω(1)

queries. The last step is to reduce the
decision problem B(Dg,Nn × U({±1})) to the problem of learning mixture of linear classifiers.

Claim 3.7 (see, e.g., Lemma 8.5 in [DK23]). Suppose there exists an SQ algorithm to learn an
unknown distribution in a family D to total variation distance ϵ using at most N statistical queries
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of tolerance τ . Suppose furthermore that for each D′ ∈ D we have that dTV(D,D′) > 2(τ + ϵ).
Then there exists an SQ algorithm that solves the testing problem B(D, D) using at most n + 1
queries of tolerance τ .

To apply Claim 3.7, we need to show that the distribution DU in the class Dg is sufficiently far
from the null hypothesis D0 = Nn × U({±1}) in total variation distance.
Lemma 3.8. Let U ∈ Rm×n with UU⊺ = Im. We have that dTV(DU, D0) ≥ Ω(∆/r).

We briefly sketch the proof idea and defer the proof details to Appendix B. We consider wℓsign(v
⊺
ℓ x)

a halfspace of heaviest weight in DU, and pick points z and z′ close to the defining hyperplane that
are mirrors of each other over it. We note that under D0 the expectations of y conditioned on x being
z or z′ are both 0, whereas under DU they likely (in particular, unless they are also on opposite sides
of another halfspace) differ by at least wℓ.

4 SQ Lower Bound for Uniform Mixtures via Spherical Designs

In this section, we prove our SQ lower bound for mixture of linear classifiers with uniform weights,
thereby establishing Theorem 1.2. Our basic lower bound technique is essentially the same as in the
previous section, but we need to construct a spherical design with uniform weight.

Proposition 4.1. Let m = c log r
log(1/∆) , where r−1/10 ≤ ∆ < 1 and 1.99 ≤ c ≤ 2 is a constant. Let k

be an odd integer such that r ≥
(
m+2k−1

2k

)5
. There exist vectors v1, . . . ,vr on Sm−1 such that:

• Ez∼Nm
[g(z)p(z)] = 0 holds for every odd polynomial p with degree less than k, where g(z) =

1
r

∑r
ℓ=1 sign(v

⊺
ℓ z).

• ∥vi + vj∥2, ∥vi − vj∥2 ≥ Ω(∆)−O
(
1/
(
m+2k−1

2k

))
,∀1 ≤ i < j ≤ r.

By Lemma 3.5, we can write
∑r

ℓ=1 Ez∼Nm
[p(z)sign(v⊺

ℓ z)] =
∑r

ℓ=1 q(vℓ) for some odd poly-
nomial q of degree less than k. Therefore, it suffices to show that with high probability there exist
unit vectors v1, . . . ,vr such that

∑r
ℓ=1 q(vℓ) = 0 holds for every odd polynomial q of degree less

than k. To achieve this, we will leverage some techniques from [BRV13].

4.1 Spherical Design Construction

Notation. We start by introducing some additional notations we will use throughout this section.
Let Pd

t denote the set of homogeneous polynomials in d variables of some odd degree t. For any
p, q ∈ Pd

t , we consider the inner product ⟨p, q⟩ = Ex∼U(Sd−1)[p(x)q(x)]. For any p ∈ Pd
t ,

we define ∥p∥22 = ⟨p, p⟩. We denote by Nt,d =
(
t+d−1
d−1

)
to be the dimension of Pd

t and Ωd
t ={

p ∈ Pd
t | ∥p∥2 ≤ 1

}
. Let ∂Ωd

t denote the boundary of Ωd
t , i.e., ∂Ωd

t = {p ∈ Pd
t | ∥p∥2 =

1}. In the remaining part of this section, we will assume that the underlying distribution (over the
expectation) is U(Sd−1).

The following theorem — a more detailed version of Theorem 1.6 — establishes the existence
of a spherical t-design of size poly(N2t,d) with the desired pairwise separation properties.

Theorem 4.2 (Spherical Design Construction). Let t be an odd integer and r ≥ N5
2t,d. Let

y1, . . . ,yr be uniform random vectors over Sd−1. Then, with probability at least 99/100, there
exist unit vectors z1, . . . , zr ∈ Sd−1 such that ∥zi − yi∥2 ≤ O(1/N2t,d), i ∈ [r], and (z1, . . . , zr)
form a spherical t-design.

To prove Theorem 4.2, we will start from the following result.
Theorem 4.3 ([BRV13]). If there exists a continuous mapping F : Pd

t → (Sd−1)r such that for all
p ∈ ∂Ωd

t ,
∑r

i=1 p(xi(p)) > 0, where F (p) = (x1(p), . . . ,xr(p)), then there exists a polynomial
p∗ ∈ Ωd

t such that E[p(x)] = 1
r

∑r
i=1 p(xi(p

∗)) holds for every polynomial p ∈ Pd
t .

To apply Theorem 4.3, we need to find a continuous function F mapping Pd
t to (Sd−1)r such

that for any p ∈ ∂Ωd
t ,
∑r

i=1 p(zi) > 0, where F (p) = (z1, . . . , zr). We will construct the mapping
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F as follows: we sample y1, . . . ,yr uniformly over the unit sphere Sd−1, and then try to make
the value of p(yi) larger by moving each point yi in the direction of the gradient. In particular,
we let zi =

yi+δ∇op(yi)
∥yi+δ∇op(yi)∥2

for some δ > 0 sufficiently small, where ∇op(y) is the component of
∇p(y) orthogonal to the direction y. We will prove that with high probability, for any p ∈ ∂Ωd

t ,∑r
i=1 p(zi) > 0. Intuitively, this works because of two facts:

1. With high probability over the choice of yi, for all p ∈ Ωd
t , the average value of p(y) is already

close to zero.
2. Moving in the direction of ∇op(yi) increases p(yi) by a notable amount.
Lemma 4.4. Let Ω be a subspace of polynomials in d variables with mean zero. Let N be the
dimension of Ω. Let x1, . . . ,xr be i.i.d. random vectors over Sd−1. Then, with probability at least
1− N

rη2 , we have that for any p ∈ Ω,
∣∣ 1
r

∑r
i=1 p(xi)

∣∣ ≤ η∥p∥2.

To prove Lemma 4.4, we take an orthonormal basis p1, . . . , pN ∈ Ω and define p(x)
def
=

[p1(x), . . . , pN (x)]⊺. Noting that p(x) is a random vector with mean zero and covariance iden-
tity, applying Markov’s inequality will yield the result. We defer the proof details to Appendix C.

Lemma 4.5. Let y ∈ Sd−1 and 0 < δ ≤ 1/N2
2t,d. For any p ∈ ∂Ωd

t , let z = y+δ∇op(y)
∥y+δ∇op(y)∥2

. We
have that p(z)− p(y) ≥ Cδ∥∇op(y)∥22 for some universal constant 0 < C < 1.

The proof of Lemma 4.5 follows by Taylor expansion, where the contributions to p(z) coming
from higher-order terms will not be large as long as z is sufficiently close to y. We defer the proof
details to Appendix C. By applying the above two lemmas, we establish the following:
Theorem 4.6. Let y1, . . . ,yr be i.i.d. random vectors over Sd−1. Let δ = 1/N2

2t,d and r ≥ N5
2t,d.

We consider the mapping F : Pd
t → (Sd−1)r as follows: for any p ∈ Pd

t , let

zi =
yi + δ∇op(yi)

∥yi + δ∇op(yi)∥2
,

where ∇op(y) is the component of ∇p(y) orthogonal to the direction y. Let F (p) := (z1, . . . , zr).
Then, with probability at least 99/100, we have that for any p ∈ ∂Ωd

t ,
∑r

i=1 p(zi) > 0.

To prove Theorem 4.6, we consider p̃(y) = p(y) + Cδ(∥∇op(y)∥22 − E[∥∇op(y)∥22]), where
C, δ comes from Lemma 4.5. Noting that E[p̃(y)] = 0 and p̃(y) is a polynomial containing only
monomials of degree 2t, 2t − 2, t, 0, we are able to apply Lemma 4.4 to obtain the desired result.
See Appendix C for the proof.

We now prove our main technical result, Theorem 4.2.

Proof of Theorem 4.2. Let δ = 1/N2
2t,d. We consider the mapping F : Pd

t → (Sd−1)r as follows:

for any p ∈ Pd
t , let zi =

yi+δ∇op(yi)
∥yi+δ∇op(yi)∥2

, where ∇op(y) is the component of ∇p(y) orthogonal to
the direction y. By Theorem 4.6, with probability at least 99/100, we have that for any p ∈ ∂Ωd

t ,∑r
i=1 p(zi) > 0. Applying Theorem 4.3 yields that there exists some p∗ ∈ Ωd

t such that F (p∗) =
(z∗1, . . . , z

∗
r) form a spherical t-design. Furthermore, we can show that ∥z∗i − yi∥2 ≤ O(1/N2t,d)

by elementary calculation (see Appendix C).

4.2 Proof of Theorem 1.2

We first prove Proposition 4.1 based on our construction of spherical t-design. To achieve this, it
suffices to show that with high probability there exist v1, . . . ,vr ∈ Sm−1 such that

• v1, . . . ,vr is a spherical k-design.
• ∥vi + vj∥2, ∥vi − vj∥2 ≥ Ω(∆),∀1 ≤ i < j ≤ r for some ∆ > 0.

Proof of Proposition 4.1. Let Θ = min1≤i<j≤r arccos⟨yi,yj⟩. Applying Fact 3.4 by taking γ =(
1

50κm−1

) 1
m−1

yields Pr[Θ ≥ ∆] ≥ Pr
[
Θ ≥ γr−

2
m−1

]
≥ 99/100. This will give

Pr
[

min
1≤i<j≤r

{∥yi − yj∥2, ∥yi + yj∥2} ≥ Ω(∆)
]
≥ 99/100 ,
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since our choice of m will imply that r = 1/
√
50κm−1∆m−1. By Theorem 4.2, with probability at

least 99/100, there exist unit vectors z∗1, . . . , z
∗
r ∈ Sm−1 such that ∥z∗i−yi∥2 ≤ O(1/N2k,m), i ∈ [r]

and (z∗1, . . . , z
∗
r) form a spherical k-design. Therefore, for any odd homogeneous polynomial p in

m variables of odd degree t < k, we have that

1

r

r∑
i=1

p(z∗i ) =
1

r

r∑
i=1

(∥z∗i ∥22)
k−t
2 p(z∗i ) = E

[
(∥z∥22)

k−t
2 p(z)

]
= 0 ,

which implies that
∑r

i=1 q(z
∗
i ) = 0 holds for any polynomial q in m variables of degree less than

k. In addition, for every 1 ≤ i < j ≤ r, we have that

∥z∗i ± z∗j∥2 = ∥(yi ± yj) + (z∗i − yi)± (z∗j − yj)∥2 ≥ ∥yi ± yj∥ − ∥z∗i − yi∥2 − ∥z∗j − yj∥2
≥ ∥yi ± yj∥2 −O(1/N2k,m) .

This completes the proof.

Proof of Theorem 1.2. Let m = c log r
log(1/∆) , where r−1/10 ≤ ∆ < 1 and 1.99 ≤ c ≤ 2 is a constant.

Let c′ = (1/e)(1/∆)1/(5c)−1
2 and k = c′m =

((1/e)(1/∆)1/(5c)−1)c log r

2 log(1/∆) . In this way, we will have
that r ≥ N5

2k,m (see Appendix C for calculation details). Therefore, by Proposition 4.1, there exist
vectors v1, . . . ,vr ∈ Sm−1 such that

• Ez∼Nm
[g(z)p(z)] = 0 holds for every odd polynomial p of degree less than k, where g(z) =

1
r

∑r
ℓ=1 sign(v

⊺
ℓ z).

• ∥vi + vj∥2, ∥vi − vj∥2 ≥ Ω(∆)−O(1/N2k,m),∀1 ≤ i < j ≤ r.

For an arbitrary matrix U ∈ Rm×n with UU⊺ = Im, denote by DU the instance of mixture of
linear classifiers with weight vectors U⊺v1, . . . ,U

⊺vr. Let Dg = {DU | U ∈ Rm×n,UU⊺ =
Im}. By definition, we have that E(x,y)∼DU

[y | x = z] = 1
r

∑r
ℓ=1 sign((U

⊺vℓ)
⊺z) =

1
r

∑r
ℓ=1 sign(v

⊺
ℓUz) = g(Uz), z ∈ Rn, and ∥U⊺vi±U⊺vj∥2 = ∥vi±vj∥2 ≥ Ω(∆), 1 ≤ i < j ≤

r, since N2k,m ≥ Ω((1/∆)1.89) (see Appendix C for the calculation details). Therefore by Proposi-
tion 3.2, any SQ algorithm that solves the decision problem B(Dg,Nn ×U({±1})) must either use
queries of tolerance n−Ω(k), or make at least 2n

Ω(1)

queries. By Lemma 3.8, for any U ∈ Rm×n with
UU⊺ = Im, we have that dTV(DU, D0) ≥ Ω(∆/r) ≥ 2(n−Ω(k)+ϵ), where D0 = Nn×U({±1}).
Therefore, by Claim 3.7, any SQ algorithm that learns a distribution in Dg within error ϵ in total
variation distance must either use queries of tolerance n−Ω(log r/(∆1/(5c) log(1/∆))), or make at least
2n

Ω(1)

queries. This completes the proof.

5 Conclusion

This work establishes a near-optimal Statistical Query (SQ) lower bound for learning uniform mix-
tures of linear classifiers under the Gaussian distribution. Our lower bound nearly matches prior
algorithmic work on the problem [CDV22]. Our result applies for the simplest (and well-studied)
distributional setting where the covariates are drawn from the standard Gaussian distribution. This
directly implies similar information-computation tradeoffs for the setting that the covariates are
drawn from a more general distribution family (e.g., an unknown subgaussian or log-concave distri-
bution) that includes the standard normal.

From a technical perspective, we believe that our new efficient construction of spherical de-
signs is a mathematical contribution of independent interest that could be used to establish SQ lower
bounds for other related latent variable models (e.g., various mixtures of experts). A natural di-
rection is to establish information-computation tradeoffs for a fixed non-Gaussian distribution on
covariates (e.g., the uniform distribution over the Boolean hypercube), for which a different hard-
ness construction is needed.
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