482 A Proofs

Lemma 15 (A one-step good policy is close to optimal). Let $\Delta(h) := |V_{\xi}^{*}(h) - V_{\xi}^{\pi}(h)|$ with $h \in (\mathcal{A} \times \mathcal{E})^{t}$ for $t \geq t_{0} \in \mathbb{N}$.

$$\begin{split} & \textit{If} \quad \mathbb{E}_{\xi}^{\pi} |\max_{a} Q_{\xi}^{\pi}(h,a) - V_{\xi}^{\pi}(h)| < \beta \quad \forall t \geq t_{0} \\ & \textit{and} \quad \mathbb{E}_{\xi}^{\pi} [\max_{a} \sum_{e} \xi(e|ha) \Delta(hae)] \leq (1+\alpha) \mathbb{E}_{\xi}^{\pi} \Delta(hae) \quad \forall t \geq t_{0} \\ & \textit{then} \quad \mathbb{E}_{\xi}^{\pi} \Delta(h) < \frac{\beta}{1-\gamma(1+\alpha)} \quad \forall t \geq t_{0} \quad \textit{provided} \quad 1+\alpha < 1/\gamma \end{split}$$

 $\text{485} \quad \textit{Proof. Let } \delta := \sup_{t \ge t_0} \mathbb{E}\Delta(h) \text{, where } h \in (\mathcal{A} \times \mathcal{E})^t \text{ and } \mathbb{E} \text{ is short for } \mathbb{E}_{\xi}^{\pi}.$

$$\begin{split} \mathbb{E}\Delta(h) &= \left| \max_{a} Q_{\xi}^{*}(h,a) - V_{\xi}^{\pi}(h) \right| \\ &= \mathbb{E} \left| \max_{a} Q_{\xi}^{*}(h,a) - \max_{a} Q_{\xi}^{\pi}(h,a) + \max_{a} Q_{\xi}^{\pi}(h,a) - V_{\xi}^{\pi}(h) \right| \\ &\leq \mathbb{E} \left| \max_{a} Q_{\xi}^{\pi}(h,a) - V_{\xi}^{\pi}(h) \right| + \mathbb{E} \left| \max_{a} Q_{\xi}^{*}(h,a) - \max_{a} Q_{\xi}^{\pi}(h,a) \right| \\ &\stackrel{(1)}{\leq} \beta + \mathbb{E} \left| \max_{a} \sum_{e} \xi(e|ha) \left(r + \gamma V_{\xi}^{*}(hae) \right) - \max_{a} \sum_{e} \xi(e|ha) \left(r + \gamma V_{\xi}^{\pi}(hae) \right) \right| \\ &\leq \beta + \gamma \mathbb{E} \max_{a} \sum_{e} \xi(e|ha) |V_{\xi}^{*}(hae) - V_{\xi}^{\pi}(hae)| \\ &\leq \beta + \gamma(1+\alpha) \mathbb{E}\Delta(hae) \end{split}$$

486 Taking $\sup_{t \ge t_0}$ on both sides implies $\delta < \beta + \gamma(1+\alpha)\delta$ implies $\delta < \beta/(1-\gamma(1+\alpha))$. \Box

487 Lemma 17 ($\mathbb{E}^{\pi}_{\xi} \to 0$ implies $\mathbb{E}^{\pi}_{\mu} \to 0$). If π is such that

$$\mathbb{E}_{\xi}^{\pi} \left[V_{\xi}^{*}(h_{< t}) - V_{\xi}^{\pi}(h_{< t}) \right] \to 0 \quad as \quad t \to \infty.$$

488 then for all $\mu \in \mathcal{M}$ we have

$$\mathbb{E}^{\pi}_{\mu} \left[V^*_{\xi}(h_{< t}) - V^{\pi}_{\xi}(h_{< t}) \right] \to 0 \quad as \quad t \to \infty.$$

Proof.

$$\mathbb{E}_{\mu}^{\pi} \left[V_{\xi}^{*}(h_{< t}) - V_{\xi}^{\pi}(h_{< t}) \right] \leq \frac{1}{w(\mu)} \mathbb{E}_{\xi}^{\pi} \left[V_{\xi}^{*}(h_{< t}) - V_{\xi}^{\pi}(h_{< t}) \right] \to 0$$

489 by the dominance of $\xi(\cdot) \ge w(\mu)\mu(\cdot)$.

490 **Lemma 20** $(V_{\xi}^{\pi'} \to V_{\xi}^{\pi} \text{ implies } V_{\mu}^{\pi'} \to V_{\mu}^{\pi} \text{ in } \mu\text{-expectation})$. If π is such that for all $\mu \in \mathcal{M}$

$$\mathbb{E}^{\pi}_{\mu}\left[V^{\pi'}_{\xi}(h_{< t}) - V^{\pi}_{\xi}(h_{< t})\right] \to 0 \quad as \quad t \to \infty.$$

491 and $D_{\infty}(\mu^{\pi'},\xi^{\pi'}|h_{< t}) \rightarrow 0 \ \mu^{\pi}$ -almost surely then we have

$$\mathbb{E}_{\mu}^{\pi'} \left[V_{\mu}^{\pi'}(h_{< t}) - V_{\mu}^{\pi}(h_{< t}) \right] \to 0 \quad as \quad t \to \infty.$$

Proof.

$$\begin{split} & \mathbb{E}_{\mu}^{\pi} \left[|V_{\mu}^{\pi'}(h_{< t}) - V_{\mu}^{\pi}(h_{< t})| \right] \\ & = \mathbb{E}_{\mu}^{\pi} \left[|V_{\mu}^{\pi'}(h_{< t}) - V_{\xi}^{\pi'}(h_{< t}) + V_{\xi}^{\pi'}(h_{< t}) - V_{\xi}^{\pi}(h_{< t}) + V_{\xi}^{\pi}(h_{< t}) - V_{\mu}^{\pi}(h_{< t})| \right] \\ & \leq \mathbb{E}_{\mu}^{\pi} \left[|V_{\mu}^{\pi'}(h_{< t}) - V_{\xi}^{\pi'}(h_{< t})| \right] + \mathbb{E}_{\mu}^{\pi} \left[|V_{\xi}^{\pi'}(h_{< t}) - V_{\xi}^{\pi}(h_{< t})| \right] + \mathbb{E}_{\mu}^{\pi} \left[|V_{\xi}^{\pi'}(h_{< t}) - V_{\xi}^{\pi}(h_{< t})| \right] \\ \end{split}$$

The second and third term go to 0 as $t \to \infty$ by the assumptions and Lemma 3 with Lemma 13. The first term goes to 0 as $D_{\infty}(\mu^{\pi'}, \xi^{\pi'}|h_{< t}) \to 0 \ \mu^{\pi}$ -almost surely implies $\mathbb{E}^{\pi}_{\mu} \left[D_{\infty}(\mu^{\pi'}, \xi^{\pi'}|h_{< t}) \right] \to 0$ and we have $\mathbb{E}^{\pi}_{\mu} \left[|V^{\pi'}_{\mu}(h_{< t}) - V^{\pi'}_{\xi}(h_{< t})| \right] \leq \mathbb{E}^{\pi}_{\mu} \left[D_{\infty}(\mu^{\pi'}, \xi^{\pi'}|h_{< t}) \right].$

Theorem 22 (Self-AIXI is Self-optimizing). Let μ be some environment. If there is a policy and a sequence of policies $\overline{\pi_1}, \overline{\pi_2} \dots$ all contained within \mathcal{P} such that for all $t, h_{< t}$ we have $V_{\xi}^{\zeta}(h_{< t}) \geq V_{\xi}^{\overline{\pi_t}}(h_{< t}) - \epsilon_t$ with $\epsilon_t \to 0$, and for all $\nu \in \mathcal{M}$

$$V_{\nu}^{*}(h_{< t}) - V_{\nu}^{\overline{\pi_{t}}}(h_{< t}) \to 0 \quad as \quad t \to \infty \quad \mu^{\pi} \text{-almost surely}$$

$$\tag{4}$$

499 *then*

$$V_{\nu}^{*}(h_{< t}) - V_{\nu}^{\pi_{S}}(h_{< t}) \to 0 \quad as \quad t \to \infty \quad \mu^{\pi}\text{-almost surely}$$

If $\pi = \pi_S$ and Equation 4 holds for all $\mu \in M$, then π_S is strongly asymptotically optimal in the class \mathcal{M} .

Proof.

$$0 \le w(\mu|h_{< t}) \left(V_{\mu}^{*}(h_{< t}) - V_{\mu}^{\pi_{S}}(h_{< t}) \right)$$
(5)

$$\leq \sum_{\nu \in \mathcal{M}} w(\nu | h_{< t}) \left(V_{\nu}^{*}(h_{< t}) - V_{\nu}^{\pi_{S}}(h_{< t}) \right)$$
(6)

$$= \sum_{\nu \in \mathcal{M}} w(\nu | h_{< t}) V_{\nu}^{*}(h_{< t}) - V_{\xi}^{\pi_{S}}(h_{< t})$$
(7)

$$\leq \sum_{\nu \in \mathcal{M}} w(\nu | h_{< t}) V_{\nu}^{*}(h_{< t}) - V_{\xi}^{\zeta}(h_{< t})$$
(8)

$$\leq \sum_{\nu \in \mathcal{M}} w(\nu|h_{< t}) V_{\nu}^*(h_{< t}) - V_{\xi}^{\overline{\pi_t}}(h_{< t}) + \epsilon_t \tag{9}$$

$$= \sum_{\nu \in \mathcal{M}} w(\nu | h_{< t}) \left(V_{\nu}^{*}(h_{< t}) - V_{\nu}^{\overline{\pi_{t}}}(h_{< t}) \right) + \epsilon_{t}$$
(10)

$$\rightarrow 0$$
 (11)

- Equation 6 comes from adding positive terms. Equations 7 and 10 comes from the linearity of the value function. Equation 8 comes from π_S being one step optimal then following ζ and . Equation 9
- comes from the assumptions. Lastly, 11 comes from Equation 4 and [14, Lem.5.28ii].
- 505 $w(\mu|h_{< t}) \neq 0$ as $h_{< t}$ is generated from μ^{π} (for more details see Self-Optimizing proof in [14]). 506 Therefore $V^*_{\mu}(h_{< t}) - V^{\pi_S}_{\mu}(h_{< t}) \rightarrow 0 \ \mu^{\pi}$ -almost surely.
- 507