
Supplemental Material
DISCOVER:

Making Vision Networks Interpretable via
Competition and Dissection

Konstantinos Panousis
Department of Electrical Eng., Computer Eng., and Informatics

Cyprus University of Technology
Limassol 3036, Cyprus

k.panousis@cut.ac.cy

Sotirios Chatzis
Department of Electrical Eng., Computer Eng., and Informatics

Cyprus University of Technology
Limassol 3036, Cyprus

sotirios.chatzis@cut.ac.cy

A Experimental Details

Integrating the competition mechanism in modern architectures constitutes a pretty straightforward
task. One just needs to replace the existing calls to the conventional non-linear activations with
a call to a module/function implementing the LWTA rationale. This can be performed in-place
without any other changes necessary. Thus, in the accompanied code, we can directly change the
definitions of the Transformer or ResNet based models and train the model in the same manner
as in the conventional Vision Networks. In this context, for the DeiT architectures, we alter the
definitions in the timm library, while for ResNet-based architectures, we slightly alter the example
implementation found in the official Pytorch repository1. For dissecting CVNs, we use the official
repository of CLIP-Dissect [3]. We describe all changes in the respective README file. Our code
and trained models will be public after publication.

Transformers. For training the CVN counterparts of the DeiT-T and DeiT-S models, we use the of-
ficial implementation.2 We train both architectures from scratch using ImageNet-1k for 300 epochs
with the default parameters found therein. Specifically, we use a 5-epoch warm-up period, starting
with an initial learning rate of 10−6, following a cosine annealing schedule up to 5·10−4. We use the
same AdamW optimizer and changed the used weight decay from 0.05 to 0.02 since we found that
it hurt performance. We re-run the conventional GELU-based architectures with this selection and
observed no change in the obtained accuracy. In contrast, we turned off the excessive augmentation
setup, since it hurt the performance of CVNs. In this context, and in line with the initial ablation
study presented in [7], we found that performance deteriorates when augmentations are removed
in GELU-based networks. For training, we use a single sample for the Monte Carlo sampling es-
timation for the Evidence Lower Bound loss, described in the main text. For this, we turn to the
continuous relaxation of the categorical distribution that allows for reparameterized samples and
low variance estimation, as we describe in the next section. During inference, we draw 4 samples,

1https://github.com/pytorch/examples/tree/main/imagenet
2https://github.com/facebookresearch/deit.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/pytorch/examples/tree/main/imagenet
https://github.com/facebookresearch/deit


average the logits in the Bayesian Averaging sense; we then compute the predicted loss and accuracy.
We did not observe any improvement when drawing more samples.

ResNet. For training the ResNet-18 model, we used the ResNet ImageNet example PyTorch script
and adapted the data loading for Places 365. We train the model for 90 epochs, using SGD with an
initial learning rate of 0.1 that is reduced by a factor of 0.1 every 30 epochs, a weight decay of
10−4 and 0.9 momentum. The batch size was set to 256. For the Gumbel-Softmax trick, we set
the temperature to 0.67 and used the Straight-Through estimator. During training, we only draw
one sample for the reparameterization trick, while during inference we draw 4 samples from the
trained posterior. We trained both conventional and CVN architectures since the official pretrained
models were not available online. For both methods, we used the standard RandomResizedCrop and
RandomHorizontal Flip augmentations.

A.1 The Gumbel-Softmax Trick

In our work, we perform Monte-Carlo sampling using a single reparameterized sample for each
of the corresponding latent variables. These are obtained via the reparameterization trick of the
continuous relaxation of the Categorical distribution [2, 1] as described next. We focus on the
reparameterization trick for the dense case; the convolutional case is analogous.

As a reminder, the latent indicators ξb, ∀b, are drawn from a Categorical distribution driven from the
intermediate linear inner-product computations that each unit performs.of q(ξ) (Eq. (2) in the main
text):

q(ξb) = Categorical

(
ξb

∣∣∣∣∣Πb(x)

)
, ∀b, Πb(x) = Softmax

 J∑
j=1

[wj,b,u]
U
u=1 · xj

 (1)

where Πb(x) is a vector comprising the activation probability of each neuron in the block, and
[wj,b,u]

U
u=1 denotes the vector concatenation of the set {wj,b,u}Uu=1.

Then, the samples ξ̂ are expressed as:

ξ̂b,u = Softmax (log[Πb(x)]u + gb,u)/τ) , ∀b = 1, . . . , B, u = 1, . . . , U (2)

where gb,u = − log(− log Vb,u), Vb,u ∼ Uniform(0, 1), and τ ∈ (0,∞) is a temperature factor,
controlling how “closely” the continuous relaxation approximates the Categorical distribution. In
this work, we use a temperature of τ = 0.67 as suggested in [2], and used in several other works
[5, 4].

A.2 Convolutional Formulation

In this setting, local competition is performed among feature maps on a position-wise basis. Each
kernel is treated as an LWTA block with competing feature maps; each layer comprises B kernels.
Specifically, each feature map u = 1, . . . , U in the bth LWTA block of a convolutional LWTA layer
computes:

Hb,u = W b,u ⋆X ∈ RH×L (3)

Competition remains stochastic, and is now implemented on a position-wise basis as follows:

q(ξb,h′,l′) = Categorical
(
ξb,h′,l′

∣∣∣Πb,h′,l′(X)
)
, ∀h′, l′ (4)

where Πb,h′,l′(X) = Softmax ([Hb,1,h′,l′ , . . . ,Hb,U,h′,l′ ]) comprises the position-wise activation
probabilities for all neurons in the block.

For each position in a kernel, only the feature map that wins the said position contains a non-zero
entry. This yields sparse feature maps with mutually exclusive activated positions. Now, the output
Y ∈ RH×L×B·U is obtained via concatenation of the sub-tensors Y b,u that read:

Y b,u = Ξb,u

(
W b,u ⋆X

)
, ∀b, u (5)

2



where Ξb,u = [ξb,u,h′,l′ ]
H,L
h′,l′=1. The corresponding detailed bisection of a convolutional stochastic

LWTA block can be found in the Appendix.

In the following, we use these definitions to construct Competitive Vision Networks by replacing
the usually employed non-linearities with the competition mechanism in each hidden layer of the
considered architecture.

B Further Qualitative Analysis

In this section, we provide further qualitative neuron identification results for various architectures
and similarity functions.

Neuron 146: CLIP-Dissect (Soft WPMI): motif

Neuron 365: CLIP-Dissect (Soft WPMI): green

Neuron 461: CLIP-Dissect (Soft WPMI): pattern

Neuron 662: CLIP-Dissect (Soft WPMI): blue

Neuron 6: CLIP-Dissect (Soft WPMI): wildlife

Neuron 32: CLIP-Dissect (Soft WPMI): labrador

Neuron 357: CLIP-Dissect (Soft WPMI): espresso

Neuron 450: CLIP-Dissect (Soft WPMI): compass

Figure 2: Neuron Identification for the first and last DeiT-T/8 MLP blocks using: SoftWPMI, Dprobe:
ImageNet & Broden, S: 20K most common English words[3].

Neuron 21: CLIP-Dissect (Cos Similarity3): stripe

Neuron 672: CLIP-Dissect (Cos Similarity3): crimson

Neuron 783: CLIP-Dissect (Cos Similarity3): yellow

Neuron 1084: CLIP-Dissect (Cos Similarity3): dark

Neuron 21: CLIP-Dissect (Cos Similarity3): lobster

Neuron 672: CLIP-Dissect (Cos Similarity3): guinea

Neuron 783: CLIP-Dissect (Cos Similarity3): eagle

Neuron 1084: CLIP-Dissect (Cos Similarity3): frog

Figure 3: Neuron Identification for the first and last DeiT-S/12 MLP block using the Cosine Similar-
ity Cubed similarity function [3]. For the former we use Dprobe: (i) ImageNet Val & Broden (Left),
and for the latter: (ii) ImageNet Val. We use the S: 20K most common English words for both
settings.

3



Neuron 227: CLIP-Dissect (Rank Reorder): yellow

Neuron 726: CLIP-Dissect (Rank Reorder): blue

Neuron 1104: CLIP-Dissect (Rank Reorder): mammals

Neuron 1206: CLIP-Dissect (Rank Reorder): blue

Neuron 193: CLIP-Dissect (Rank Reorder): tort

Neuron 224: CLIP-Dissect (Rank Reorder): gentoo

Neuron 726: CLIP-Dissect (Rank Reorder): birding

Neuron 820: CLIP-Dissect (Rank Reorder): antarctic

Figure 4: Neuron Identification for the first and last DeiT-S/12 MLP block using the Rank Reorder
similarity function [3]. We use Dprobe: ImageNet Val and S: 20K most common English words for
both settings.

Table 1: Concepts tied to activated neurons for a random image from the ImageNet validation set
for DeiT-T/8 using various similarity functions.

Cos Similarity WPMI SoftWPMI

Concepts Act Concepts Act Act Concepts

Belgian Malinois +10.5 ferret +10.5 ferret +10.5
green/yellow eyes +9.55 ferret +9.55 ferret +9.55
white fur underside +8.90 white fur under tail +8.90 white fur under tail +8.90
herd Alpine ibex +8.51 black stripes on legs +8.51 black/white stripes +8.51
long/sharp quills +8.02 long/sharp quills +8.01 long/sharp quills +8.01
gray fur/white tips +7.53 fox +7.53 fox +7.53
white/gray head +7.52 white/gray head +7.52 white/gray head +7.52
baby stork +0.96 black ruff around neck +1.09 black ruff around neck +1.09
black fur/white markings +0.44 black/tan coloration +0.44 black/tan coloration +0.44
large/fluffy white dog +0.35 organ +0.37 organ +0.37
gills +0.18 salamander +0.18 salamander +0.18
car towing RV +0.12 headsail +0.12 headsail +0.12
other crocodiles +0.12 egg-laying mammal +0.12 egg-laying mammal +0.12

Table 2: Concepts tied to activated neurons for a random image from the ImageNet validation set
for DeiT-T/None and DeiT-S/12 using various similarity functions.

DeiT-T/None (SoftWPMI) DeiT-S/12 (SoftWPMI) DeiT-S/12 (Rank Reorder)

Concepts Act Concepts Act Act Concepts

a coast +1.18 sea turtle +15.0 sea turtle +15.2
hard/shiny exoskeleton +1.06 cygnet +11.7 large/webbed hind feet +11.7
sea turtle +0.54 large/elephant animal +10.9 dark-colored carapace +10.9
large/red crab +0.54 hard shell covered in spines +9.96 large/fleshy cap +9.96
large/red crustacean +0.53 sea turtle +9.52 marine ecosystem +9.52
large/plant eating dinosaur +0.51 python +9.32 tough/scaly exterior +9.32
short/bristly fur +0.46 doberman +9.08 black/tan coloration +9.08
white bill +0.20 dome-shaped cap +1.14 round/spouted body +1.41
a race +0.17 iguana +0.63 fluffy/white appearance +0.33
large/fluffy white dog +0.06 other crocodiles +0.67 operating system +0.22
two-metal plates/trays −0.16 case +0.22 opponent +0.10
white markings wings −0.16 players +0.10 wings attached +0.10
small/crab like body −0.17 exoskeleton +0.01 hard/shiny exoskeleton +0.10

References
[1] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparametrization with gumbel-softmax. In

Proc. ICLR, 2017.

[2] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. In Proc. ICLR, 2017.

4



[3] Tuomas Oikarinen and Tsui-Wei Weng. CLIP-dissect: Automatic description of neuron repre-
sentations in deep vision networks. In Proc. ICLR, 2023.

[4] Konstantinos Panousis, Sotirios Chatzis, Antonios Alexos, and Sergios Theodoridis. Local com-
petition and stochasticity for adversarial robustness in deep learning. In Proc. AISTATS, 2021.

[5] Konstantinos Panousis, Sotirios Chatzis, and Sergios Theodoridis. Nonparametric Bayesian
deep networks with local competition. In Proc. ICML, 2019.

[6] Konstantinos P Panousis, Anastasios Antoniadis, and Sotirios Chatzis. Competing mutual infor-
mation constraints with stochastic competition-based activations for learning diversified repre-
sentations. In Proc. AAAI, 2022.

[7] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Herve Jegou. Training data-efficient image transformers & distillation through attention. In
Proc. ICML, 2021.

5


	Experimental Details
	The Gumbel-Softmax Trick
	Convolutional Formulation
	Further Qualitative Analysis


