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Abstract

Modern deep networks are highly complex and their inferential outcome very hard
to interpret. This is a serious obstacle to their transparent deployment in safety-
critical or bias-aware applications. This work contributes to post-hoc interpretabil-
ity, and specifically Network Dissection. Our goal is to present a framework that
makes it easier to discover the individual functionality of each neuron in a network
trained on a vision task; discovery is performed in terms of textual description
generation. To achieve this objective, we leverage: (i) recent advances in multi-
modal vision-text models and (ii) network layers founded upon the novel concept
of stochastic local competition between linear units. In this setting, only a small
subset of layer neurons are activated for a given input, leading to extremely high
activation sparsity (as low as only ≈ 4%). Crucially, our proposed method infers
(sparse) neuron activation patterns that enables the neurons to activate/specialize
to inputs with specific characteristics, diversifying their individual functionality.
This capacity of our method supercharges the potential of dissection processes:
human understandable descriptions are generated only for the very few active neu-
rons, thus facilitating the direct investigation of the network’s decision process.
As we experimentally show, our approach: (i) yields Vision Networks that retain
or improve classification performance, and (ii) realizes a principled framework for
text-based description and examination of the generated neuronal representations.

1 Introduction

In recent years, Deep Neural Networks (DNNs) have exhibited an overwhelming success in a variety
of tasks and applications, achieving state-of-the-art results in Machine Vision, Automatic Speech
Recognition, and NLP. This unprecedented success is however accompanied with a limited capacity
to audit them in view of reliability standards. Indeed, due to the immense complexity of their
architectures, DNNs are usually employed as off-the-shelf solutions for a variety of applications.
However, their vast and highly accelerated adoption rate emphasizes the importance of being able
to explain how DNNs function and interpret how predictions are made. This process will allow for
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uncovering their inherent biases and even for correcting the failures in their decision making process,
facilitating a safe, trustworthy and robust real-world deployment in safety-critical applications.

Fortunately, this limitation has recently received a lot of attention in the Deep Learning (DL) re-
search community, leading to the development of ways forward towards Interpretable Deep Net-
works. In this context, we can identify two major approaches: ante- and post-hoc methods. In the
former, the main rationale is to build networks from scratch, that integrate intepretability components
into the network itself; Concept Bottleneck Models (CBMs) are a characteristic case [13, 17, 19, 25].
In post-hoc approaches, backbone architectures are augmented with novel frameworks aiming to
provide explanations of the prediction process, e.g. saliency maps [15, 27] and Network Dissection
[2, 9]. Each approach exhibits its own advantages and drawbacks. For example, ante-hoc models
usually suffer from significant performance drop, often requiring additional data to train. On the
other hand, even though post-hoc models avoid the complexity of re-training, the results may lend
themselves to subjective interpretations that depend on the method’s assumptions.

This work takes a novel route: it aims at improving the efficacy of post-hoc methods by addressing
some fundamental building blocks of Deep Networks. Specifically, we depart from the commonly
used forms of non-linearities in Deep Networks and propose the use of competition-based activa-
tions imposed upon otherwise linear projection units; these form the so-called Stochastic Local
Winner-Takes-All (LWTA) layers [22]. Our inspiration stems from biological arguments: it has
been shown that brain neurons with similar functions aggregate together in blocks and locally com-
pete for their activation; the winner gets to pass its response to other neurons outside the block while
the rest are inhibited to silence [30, 1, 14]. Stochastic LWTA activations have recently been em-
ployed on DNNs with striking success, exhibiting: (i) significant compression capabilities [22], (ii)
unique representation diversification ability [23], (iii) strong adversarial robustness against powerful
adversarial attacks [24], (iv) the best ever reported performance in model-agnostic meta-learning
(MAML), in terms of both accuracy and network footprint [11]. Other significant properties of
LWTA-based networks include noise suppression, specialization, automatic gain control and robust-
ness to catastrophic forgetting[29, 8, 3], while their prowess has also been shown in Transformer
networks dealing with end-to-end translation of sign-language video into text [32].

In building interpretable networks, the proposed competition-based rationale comes with two impor-
tant benefits: (i) a naturally arising activation sparsity: only the winner unit in each block passes its
computed output to the next layer, while the rest pass zero values; and (ii) a data-driven pattern of
neuron functionality, based on the probability of a unit being the active winner for a given input.

This mode of operation naturally lends itself to the post-hoc paradigm of unraveling and inspect-
ing individual neuron functionality, which this work addresses. In this setting, recent works on
automated methods aim to provide high quality descriptions of neurons by leveraging multi-modal
models to match neuron functionality to text-based unrestricted concepts.

We leverage these ideas to address the interpretation limitations of conventional architectures, by
introducing the Dissection of Competitive Vision Networks (DISCOVER) approach, a novel frame-
work towards interpretable Vision Networks. Our contributions can be summarized as follows:

• We construct, implement and train a variety of Competitive Vision Networks (CVNs) uti-
lizing novel competition arguments, including both CNN and Transformer-based architec-
tures. This is the first time in the literature that CVNs are trained on a large scale and
their behavior is investigated with respect to both: (i) performance, and (ii) interpretation
properties.

• We perform post-hoc network dissection using multimodal models to identify the under-
lying functionality and contribution of each individual neuron; to this end, we leverage
the unique characteristics of competition between neurons and novel Network Dissection
approaches.

• We examine the specialization properties of CVNs in the context of interpretability by
investigating the generated per-example neuronal representations.

2 Background

Image-Text Models. Contrastive Language-Image Pre-training (CLIP) [26] constitutes one of the
best-known methods for multimodal deep learning, combining visual representations with natural
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language supervision. The main operating principle of CLIP relies on the usage of image-caption
pairs in order to obtain representations. Specifically, CLIP comprises an image encoder, denoted
by ET (·) and a text encoder EI(·) that are trained simultaneously on the grounds of a contrastive
learning objective[28, 4]. Specifically, assuming a batch of N (image, text) pairs, i.e. {(xi, ti)}Ni=1,
CLIP learns a multi-modal embedding space by maximizing the cosine similarity of the embeddings
Ii = EI(xi) and Ti = ET (ti), between the N correct pairs, while minimizing the cosine similarity
between the other N2−N combinations. During inference, we can use natural language supervision
to perform zero-shot classification of any given image and labels. Thus, given a test image xtest and
some labels {tj}Mj=1, we can use the learned encoders and select the image-label pair that has the
highest similarity of all the possible combinations.

Network Dissection. Network Dissection constitutes one of the most popular approaches for un-
derstanding and describing the contribution of individual deep network units in the produced infer-
ential outcomes. In [2], a method that yields descriptive outcomes in terms of concepts is presented.
To this end, the authors introduce a newly developed densely-labeled dataset, named Broden; this
contains pre-determined concepts, images and their associated pixel-level labels. The main principle
is to use the Intersection over Union (IoU) score as a measure of relevance between each concept
and neuron in the set. However, the proposed method requires the use of dense labels for training,
while at the same time the concepts are restricted to the pre-defined label set.

This limitation inspired the development of MILAN [9], an automated method that addresses the
notion of pre-defined concepts through the generation of unrestricted description via generative
image-to-text models. Nevertheless, the requirement for human annotation is still present, simi-
lar to Network Dissection [2]. CLIP-Dissect [20] bypasses this restriction by leveraging multimodal
image-text models, and specifically CLIP; this allows for decoupling the dependence between the
concept set and the probing dataset. Thus, any network can be dissected, using any text corpus to
form the concept set, any image probing dataset, and any appropriate similarity measure for match-
ing concepts to neurons.

In this work, we exploit the flexibility of CLIP-Dissect and extend it in the context of Competitive
Vision Networks. Differently than CLIP-Dissect, we mainly focus our analysis on the properties of
Vision Transformer architectures with respect to neuron identification.

Competitive Vision Networks. Recent works have explored a fundamentally different paradigm
for the latent unit operation of DNNs, based on the concept of local competition among units
(LWTA) [29]. In this setting, latent units compute their response and compete for their activation.
The winner passes its (linear) response to the next layer, while the rest output zero values. In the
following, we will be referring to these networks as Competitive Vision Networks (CVNs).

Let us consider an input x ∈ RJ presented to a hidden layer of a DNN comprising K hidden units
and a weight matrix W ∈ RJ×K . To compute a typical non-linear activation, each hidden unit in
the layer performs an inner product computation with its respective weights wk ∈ RJ yielding the
intermediate response hk = wT

k x ∈ R; this usually passes through a non-linear activation σ(·),
such that the final layer output reads: y = [y1, . . . , yK ], where yk = σ(hk), ∀k.

In a corresponding LWTA-based layer, U singular units are grouped together forming the so-called
LWTA blocks. Hereinafter, we denote by B the number of LWTA blocks in the layer, and with U the
number of linear competing units therein. The aggregation operation is manifested via the definition
of the layer’s weights as a three-dimensional matrix W ∈ RJ×B×U ; this structural modification
implies that each input dimension of x is now presented to each block b and each unit u therein; in
turn, all units compute their response via the standard inner-product computation hb,u = wT

b,ux ∈
R, ∀b, u and competition takes place among them. The fundamental principle of competition is that
out of the U competing units, only one can be the winner. This unit gets to convey its activation
outside the block, i.e. the next layer, while the rest output zero values. This process is instantiated
via an appropriate competition function that encodes the outcome of the competition in each block.

Contrary to the conventional definition, where the layer’s output arises as the concatenation of the
individual response of each unit, in the LWTA-based framework, the final output yB·U is now con-
structed from B sub-vectors, one for each LWTA block that contains a single non-zero entry; this
corresponds to the response of the winner unit in said block. Thus, an inherent property of the LWTA
mechanism is the naturally emerging sparse representations. Indeed, considering a fixed number of
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Figure 1: Detailed bisection of the bth Stochastic LWTA block. Presented with an input x ∈ RJ ,
each unit u computes its activation hb,u via different weights wb,u ∈ RJ , i.e., hb,u = wT

b,ux. The
linear responses are concatenated, s.t., hb = [hb,1, . . . , hb,U ], and transformed into probabilities via
the softmax operation. Then, a Discrete sample ξb = [ξb,1, . . . , ξb,U ] is drawn, which is a one-hot
vector with a single non-zero entry at position u′, denoting the winner unit in the block; unit u′,
passes its linear response to the next layer, while the rest pass zero values. Image from [23].

units per layer, we can observe that the higher the number of competitors U , the sparser the layer
output: when U = 2, only 50% of the units will be active per example, when U = 4 only 25% and
so on. This gives rise to a sparse activation mode of operation that has been empirically shown to en-
dow deep architectures with significant properties including strong adversarial robustness [24] and
substantial representation diversification [23]. One design choice that we need to address concerns
the nature of the competition: deterministic or stochastic. The former is the most typical approach
in the LWTA literature; in this case, the unit with the highest activation is deemed the winner each
time. The latter is founded upon novel stochastic arguments proposed in [22]. This formulation has
been shown to consistently outperform its deterministic counterpart [21, 24, 32, 11]. Thus, we adopt
stochastic competition in our approach.

The stochastic variant of the competition function entails the introduction of an appropriate set of
discrete latent variables for each LWTA block b, ξb ∈ one_hot(U), that encode the (stochastic)
outcome of the competition therein. The latent indicators constitute one-hot vectors with U compo-
nents; that is, vectors containing a single non-zero entry at the index position corresponding to the
winner unit in the block. The output y of a stochastic LWTA layer’s (b, u)th component yb,u yields:

yb,u = ξb,u

J∑
j=1

wj,b,u · xj ∈ R (1)

We postulate that these latent indicators ξb, ∀b, are drawn from a Categorical distribution driven from
the intermediate linear inner-product computations that each unit performs. Evidently, the higher the
response of a particular unit in a block (relative to the others), the higher its probability of being the
winner; however, the final decision remains stochastic. We can formulate this rationale as:

q(ξb) = Categorical

(
ξb

∣∣∣∣∣Πb(x)

)
, Πb(x) = Softmax

 J∑
j=1

[wj,b,u]
U
u=1 · xj

 , ∀b (2)

where Πb(x) is a vector comprising the activation probability of each neuron in the block, and
[wj,b,u]

U
u=1 denotes the vector concatenation of the set {wj,b,u}Uu=1. Each unit in each block com-

putes its intermediate linear inner-product; these are then passed to a softmax transformation and
used to draw samples from a categorical distribution. The resulting discrete vector contains a single
non-zero entry denoting the winner of the block. The intermediate computation of the winner unit
passes out as its activation; the rest units pass zero-valued activations. A graphical illustration of the
stochastic LWTA structure is provided in Fig. 1.

In the context of attention-based architectures, the encoder of Vision Transformers (ViTs) [6] com-
prises alternating layers of Multi-head Self-Attention (MSA), MLP blocks, Layer Normalization
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(LN) and residual connections. Each MLP block comprises two layers with a GELU non-linearity
in between. Within the CVN framework, we replace GELU layers with stochastic LWTA layers.
This modeling decision is motivated by recent works that have shown that transformer MLPs en-
code knowledge attributes [5, 7, 18]. We posit that this formulation facilitates neuron identification
and interpretation via analysis of the arising competition patterns; we explore its potency in the
following sections.

Further, convolutional operations also constitute an integral part of various architectures. To account
for this fact, and for completeness, we also consider the convolutional variant of the stochastic
LWTA layer proposed in [22]. Due to space constraints, and since we mainly focus our analysis on
attention-based architectures, we provide the formulation in the Supplemental Material.

3 DISCOVER

3.1 Training and Inference Algorithms for CVNs

CVNs comprise additional auxiliary variables denoting the winner in each LWTA block; thus, we
need to devise an appropriate training regime that takes into consideration the stochastic nature of
said variables. To this end, we turn to Stochastic Gradient Variational Bayes (SGVB) [12], and
construct an Evidence Lower Bound (ELBO) objective. Assuming a dataset D = {Xi, yi}Ni=1,
and denoting as f(Xi; ξ̂) the cross-entropy between the target labels yi and the target probabilities
emerging from a CVN, the objective reads:

LCVN = −
∑

Xi,yi∈D

CE
(
yi, f(Xi; ξ̂)

)
−KL[q(ξ)||p(ξ)] (3)

where ξ̂ denotes samples from the (posterior) distributions of all latent variables, ξ, in all lay-
ers, and KL[q(ξ)||p(ξ)] denotes the Kullback-Leibler divergence between the posterior and the
prior. We assume a symmetric Categorical prior for the latent variable indicators ξ; hence,
p(ξb) = Categorical(1/U), ∀b. For all the computations we draw just one sample, but we consider
it as a differentiable expression; this allows for very low variance gradients during training, which
ensures convergence (reparameterization trick). Since the Categorical distribution is not amenable
to differentiation, we enable reparameterization by resorting to a continuous relaxation, namely
Gumbel-Softmax (GS) [16, 10]. In contrast to previous works [22, 23], we use the Straight-Through
variant of GS, which we have seen to offer better convergence properties. We present the exact sam-
pling procedure in the Supplemental Material. During inference, we directly draw samples from the
trained posteriors and determine the winning units in each layer along with their responses (Eq. 2).

3.2 Dissection

For dissecting the considered CVNs, we draw inspiration from CLIP-Dissect [20]. We employ a
CLIP model to identify the functionality of each neuron in a stochastic LWTA block in terms of a
given concept set; this will be matched with a textual description. There are three key components
that define the approach: (i) a concept set S , where |S| = M , (ii) a dataset that is used as a probe to
identify the individual functionality of neurons denoted by Dprobe, where |Dprobe| = N , and (iii) the
network to be investigated, denoted by f(x). The main principle is to match neuronal activations
with concepts using: (i) the activation matrix P that measures the similarity between images and
concepts, and (ii) a summary of the individual neuronal activations of the network being probed to
the given probe dataset.

Concept Activation Matrix. We use the image and text encoder of the CLIP model, denoted by
EI and ET respectively, and compute the respective embeddings Ii and Ti for each image xi and
concept ti. This results in a concept activation matrix P ∈ RN×M , where each entry (i, j) denotes
the cosine similarity between image xi and concept tj in the CLIP embedding space.

Record Activations for each Competitive Neuron. Given a neuron k and for each image in the
probe dataset {Xn}Nn=1, CLIP-Dissect computes the neuron’s non-linear responses {Ak(Xn)}Nn=1,
and records them into a single vector qk ∈ RN , s.t., qk = [Ak(X1), . . . , Ak(XN )]. Each acti-
vation vector qk essentially encodes the activation of neuron k across the whole probing dataset.
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Figure 2: The DISCOVER framework. Given a probe dataset Dprobe : {Xn}Nn=1, a concept set
S, |S| = M , and a layer to be dissected: compute the concept activation matrix P ∈ RN×M

using CLIP; then, for each LWTA block b and each neuron u therein, compute the responses
Ab,u(Xn), ∀n, s.t. qb,u = [Ab,u(X1), . . . , Ab,u(XN )]. Each neuron b, u is then matched to the
concept tl whose activation vector P :,l has the highest similarity (sim) with the neuron’s activation
vector qb,u.

Subsequently, it can be exploited as a data-wide neuron representation to match neurons to textual
descriptions as we describe next. When the response Ak(Xn) is not a scalar, a summary function
that maps it to a real number is employed. For inner-product neurons, the response is already a
real-number. For convolutional kernels, we consider a mean over the spatial dimensions.

Our approach. Building on these outcomes, CVNs adopt a novel regard toward interpretation,
which leverages the sparse nature of the representations obtained from stochastic LWTA layers;
here, we focus on attention-based architectures. In this setting, the MLP blocks contain patch-
specific information relating to the tokens of each image; in principle, we could introduce a summary
function to aggregate the patch-wise information and output a real-number. However, we have access
to another representation: the feature embedding pertaining to the class token; this comprises a set
of units dedicated to capturing both global and local contextual information in each layer.

Within the framework of CVNs, this is treated in a local competition fashion: CVN units on each
MLP are grouped together in blocks of competitors and compete for the output of the block. Contrary
to the singular recording of activations in the base formulation for each neuron k, {Ak(Xn)}Nn=1,
the activations are computed for each LWTA block b and unit u therein, yielding {Ab,u(Xn)}Nn=1.
These activations can be negative, positive or exactly zero, depending not only on the linear compu-
tation of the unit in consideration, but also the responses of the remaining units in its LWTA block,
following the form of Eq.1. We concatenate them to construct a summary for each competitive unit,
such that qb,u = [Ab,u(X1), . . . , Ab,u(XN )].

Due to the nature of the proposed stochastic local competition, the emerging summary vectors will
be sparse; only the winner of each LWTA block will retain its linear computation and pass it as a non-
zero activation for each example Xn; the rest units in the block pass zero activations. This mode of
operation not only encourages specialization, but can also diversify individual neuron identification;
we explore its potency in the next section.

Matching Neurons to Concepts. Having recorded the activations vectors for each LWTA block
b and each neuron u therein, qb,u ∈ RN , we aim to discover the most similar concept {tm}Mm=1 to
describe each neuron. To achieve this matching, a similarity function sim(tm, qb,u;P ) is defined;
this is used to quantify the relation (in terms of similarity) between the neuron’s activation vector
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qb,u ∈ RN and the concept’s m activation vector, P :,m ∈ RN . For example, considering the cosine
similarity, we compute:

sim(tm, qb,u;P ) ∝ P :,mqT
b,u (4)

Thus, for assigning a concept to neuron b, u, we compute its similarity to each concept in the set and
select the one that exhibits the highest value, s.t., tl = argmaxm sim(tm, qb,u;P ). Characteristic
similarity functions include, Rank Reorder, WPMI and SoftWPMI [20].

At this point, it is important to highlight a principal benefit of CVNs: After neuron identification, i.e.,
matching neurons to concepts, and since only a small subset of neurons is active for each example,
it becomes practically tractable to perform a per-example analysis on that particular small subset of
"winner" (active) neurons; this greatly facilitates practical concept interrogation.

4 Experimental Analysis

For evaluating and dissecting the proposed CVNs, we train two sets of models: (i) Transfomer-based,
and (ii) Convolutional architectures. We consider stochastic LWTA layers with different numbers
of competitors, ranging from U = 2 to U = 24. In every architecture, we retain the total number
of parameters of the conventional model by splitting a layer comprising K singular neurons to B
blocks of U competing neurons, such that B · U = K. This choice facilitates a fair -sizewise-
comparison between an original network and its CVN counterpart. The number of competitors has
a direct effect on the per example neuron activation in the respective layers. For example, when
U = 2, only 50% of neurons are activated for a given input, when U = 8 only 12.5% and so on.

For the Transformer architecture, we select the DeiT model, specifically DeiT-Tiny (DeiT-T, 5M pa-
rameters) and DeiT-Small (DeiT-S, 22M parameters), which we train from scratch on ImageNet-1k.
For the convolutional paradigm, we chose the same network as in CLIP-Dissect [20] for compara-
bility; that is ResNet-18 trained on Places365. In all cases, we follow the original training schemes
concerning the hyperparameters, and remove the excessive augmentations of DeiT, i.e., DropPath,
Color Jittering, Random Erase, CutMix and MixUp; we have found that these do not improve ac-
curacy of CVNs. For completeness, all hyperparameter settings for each model are provided in
the Supplementary Material. All models were trained on a single NVIDIA A6000 GPU. Our code
implementation is available at: https://github.com/konpanousis/DISCOVER.

Accuracy. We begin our evaluation with classification results pertaining to CVNs and how block
size (number of competitors in each block) affects performance. This is essential, since CVNs have
not been explored in the literature, especially when dealing with larger datasets and architectures,
and no baselines exist for the considered setup. However, it is highly important to note that this
work is not focused on achieving state-of-the-art performance for vision tasks using CVNs. Instead,
our focus is on providing a fundamental component towards a novel Network Dissection paradigm.
Thus, we focus on Network Dissection efficacy, as opposed to optimally tuning hyperparameters
and augmentation to increase accuracy by few points.

The obtained comparative results are presented in Table 1. Therein, we observe that despite the fact
that we did not aim for performance improvements, CVNs exhibit near or even superior performance
compared to their conventional counterparts. This finding persists even when using a large number
of competitors, which directly translates to high activation sparsity. Let us consider for example
DeiT-T/16; this model comprises LWTA blocks with 16 competing units each, leading to 1/16 =
6.25% active (winning) neurons in each layer. We observe that this network exhibits only a 1%
drop in prediction accuracy (again without any tuning). On the other hand, when using a smaller
number of competitors, e.g., DeiT-T/2 or DeiT-T/8, we obtain better and on par performance to the
conventional architecture, respectively. Also note that, even though there is a minor computational
overhead during training (up to 10%), the computational costs of inference are comparable. Thus,
accuracy-wise, CVNs provide a realistic alternative to conventional Vision Networks that can even
yield accuracy improvements when trained with the same (potentially suboptimal) setup.

Quantitative Analysis. We follow the novel proposal of [20] to compare our CVN-based approach
to conventional non-competitive networks. In this context, we can compare the generated neuron
labels, for a specific layer of a network, with the ground truth descriptions, i.e., the class labels.
Specifically, we measure the cosine similarity in a text embedding space between the ground truth

7

https://github.com/konpanousis/DISCOVER


Table 1: Classification results for ImageNet and Places365. /None denotes a non-competitive archi-
tecture, e.g., using ReLU/GELU, while numbers denote the number of competitors U .
{⋆/ ∗}Locally reproduced results due to unavailability of pretrained models/resource limitations.

ImageNet-1k
Model/Competitors Accuracy + Std (%) Active Neurons Proportion
DeiT-T/None 72.2± N/A Data Specific
DeiT-T/2 72.5± 0.10 0.500
DeiT-T/8 71.7± 0.15 0.125
DeiT-T/16 71.1± 0.25 0.062
DeiT-T/24 70.5± 0.45 0.041
DeiT-S/None 77.0± N/A∗ Data Specific
DeiT-S/2 77.3± 0.30 0.500
DeiT-S/12 77.0± 0.25 0.083
DeiT-S/16 76.7± 0.50 0.062

Places365
ResNet-18/None 52.25± N/A⋆ Data Specific
ResNet-18/2 53.9± 0.20 0.500
ResNet-18/4 51.0± 0.50 0.250
ResNet-18/8 49.5± 0.75 0.125

class name and the description of the neuron. We use two different text encoders: (i) CLIP ViT-B/16,
denoted as CLIP cos and (ii) all-mpnet-base-v2, denoted as mpnet cos. Here, we focus on the last
layer of the MLP block of the DeiT-T model. The obtained comparative results are depicted in Table
2. Therein, we observe that the CVN consistently outperforms its non-competitive counterpart when
using both the best-performing softWPMI and the Cubed Cosine Similarity function proposed in
[20].

Table 2: Cosine similarity between the last layer neuron descriptions and ground truth labels on DeiT-
T/None and DeiT-T/16 trained on ImageNet. For the former we use softWPMI for identification,
while for CVNs, softWPMI and the cubed cosine similairity measure [20]. We use two text encoders:
(i) CLIP ViT-B/16 and (ii) all-mpnet-base-v2, denoted as mpnet cos.

Dprobe Concept Set S
Vision Network

DeiT-T/None (SoftWMPI) DeiT-T/16 (SoftWPMI) DeiT-T/16 (CosSimCubed)
CLIP cos mpnet cos CLIP cos mpnet cos CLIP cos mpnet cos

ImageNet Val Broden 0.6250 0.1800 0.6460 0.1829 0.6543 0.1918
—"— 3k 0.6226 0.1688 0.6650 0.1895 0.6699 0.1842
—"— 10k 0.6187 0.1715 0.6553 0.1878 0.6616 0.1831
—"— 20k 0.6128 0.1758 0.6455 0.1929 0.6519 0.1899
—"— ImageNet 0.5850 0.1782 0.5854 0.1842 0.5840 0.1835
CIFAR100 Train 20k 0.6392 0.1765 0.6533 0.1969 0.6530 0.1876
Broden 20k 0.6338 0.1780 0.6470 0.1815 0.6606 0.1546
ImageNet Val & Broden 20k 0.6299 0.1821 0.6333 0.1876 0.6729 0.1433

To further assess the quality of the obtained neuronal descriptions, we turn to the neuron identifica-
tion accuracy metric proposed in [20]. In this context, and in situations where the considered concept
set contains exact class labels, we compute the percentage of neurons that have been assigned the
exact correct label. Evidently, this metric pertains to the classification layer of a considered network.
We consider four datasets: CIFAR-100 Train, Broden, ImageNet Val and ImageNet Val & Broden;
we use the ImageNet classes as the concept set S . For matching neurons to concepts, we use Soft-
WPMI, since it outperformed all other similarity functions. Further results with the other similarity
metrics are provided in the Supplemental Material.

The comparative results for all conventional and competitive configurations are presented in Table
3. We observe that on average, CVNs consistently outperform their conventional ReLU/GELU
based counterparts, with up to 2% improvement. It is striking, that DeiT-S/12 improves accuracy
on CIFAR-100 Train by a staggering 10% compared to the conventional ResNet-50 that has the
same number of parameters; at the same time, DeiT-T/8, also provided a significant improvement of
≈ 7%.
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Table 3: Accuracy as the percentage of neurons assigned the correct label, i.e., class name. Concept
Set S: ImageNet, Similarity: SoftWPMI. ResNet-50 results from [20].
Dprobe

Vision Network
ResNet-50/None DeiT-T/None DeiT-T/8 DeiT-T/16 DeiT-S/2 DeiT-S/12

CIFAR-100 Train 46.20% 53.00% 53.10% 50.80% 55.20% 56.10%
Broden 70.50% 68.80% 67.40% 67.40% 68.30% 68.10%
ImageNet Val 95.00% 95.00% 96.00% 95.30% 95.60% 95.60%
ImageNet Val & Broden 95.40% 95.20% 95.70% 95.50% 95.00% 94.80%
Average 76.78% 78.00% 78.05% 78.30% 78.70% 78.65%

Neuron 10: CLIP-Dissect (Soft WPMI): snorkeling

Neuron 20: CLIP-Dissect (Soft WPMI): green

Neuron 70: CLIP-Dissect (Soft WPMI): red

Neuron 302: CLIP-Dissect (Soft WPMI): maroon

Neuron 41: CLIP-Dissect (Soft WPMI): dog

Neuron 218: CLIP-Dissect (Soft WPMI): wine

Neuron 357: CLIP-Dissect (Soft WPMI): snow

Neuron 512: CLIP-Dissect (Soft WPMI): coyote

Figure 3: Neuron Identification for the first and last DeiT-T/16 MLP blocks using: SoftWPMI,
Dprobe: ImageNet & Broden, S: 20K most common English words [20].

Qualitative Analysis. We now turn to a qualitative analysis of the obtained neuronal representa-
tion. In this context, we visualize several neuron identification results in terms of generated descrip-
tions in Fig. 3. To this end, we select random neurons of the first and last MLP blocks of DeiT-T/16
and use a combination of the ImageNet and Broden datasets as a probe; the concept set S comprises
the 20, 000 most common English words similar to [20]. Since we do not use the same pretrained
backbone, and the considered CVNs were trained from scratch, there isn’t an exact matching be-
tween the neurons presented therein and the neurons of our networks, enumeration-wise. Thus, we
can not make direct comparisons pertaining to the exact same neuron on an illustration basis. Nev-
ertheless, we observe that in the context of CVNs we obtain highly accurate descriptions of the
functionality of the networks’ neurons. We observe that the randomly selected neurons are activated
by semantically similar inputs that may contain only a part of the matching concept.

A principal property of CVNs is the per-example sparsity that naturally arises due to the competition
mechanism; this can facilitate specialization and accelerate the process of examining the active con-
cepts for each test point, greatly enhancing the interpretability of the network. Indeed, we perform
this analysis for the last MLP block of the GELU-based DeiT-T/None, and its DeiT-T/8 and DeiT-
T/16 competitive counterparts. This block comprises 768 neurons; for each example, DeiT-T/8 will
activate only 768/8 = 96 neurons and DeiT-T/16 only 48 neurons. The number of activated neurons
for the conventional DeiT-T/None will vary according to the probing dataset. For ImageNet Val, we
found that on average, 98% of neurons are activated for each example when using DeiT-T/None.

Thus, in Table 4, and for each architecture, we present the 7 most relevant concepts tied to neurons
with the highest magnitude of activation to the considered example, along with 6 concepts tied to
neurons with the lowest magnitude. Therein, we observe that the most contributing concepts in
the conventional setting contain descriptions that are highly irrelevant or even contradicting to the
presented input as “red/orange beak & legs”, “black coat/tan markings” and “reddish brown fur”;
at the same time 757/768 neurons are active for this example, rendering the concept investigation
a strenuous process. In stark contrast, the considered CVNs exhibit substantially more relevant
concepts, while allowing for a straightforward examination of the emerging per-example concepts.
Similar qualitative visualizations for different settings can be found in the Supplemental Material.
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Table 4: Concepts tied to activated neurons for a random image from the ImageNet validation set
for both DeiT-T/None and DeiT-T/16. For the former, 757/768 = 98.56% neurons are activated
leading to an arduous interpretation process; for DeiT-T/16 only 48/768 = 6.25% of neurons are
active.

DeiT-T/None DeiT-T/8 DeiT-T/16

Concepts Act Concepts Act Act Concepts

white fur under tail +3.06 white fur under tail +10.5 fluffy/white appearance +11.6
red/orange beak & legs +2.53 a cucumber plant +9.32 large/fluffy white dog +9.89
white plumage +2.19 a fox +8.90 large/fluffy white dog +7.71
black coat/tan markings +2.14 pale/gray or cream fur +8.36 egret +7.37
large/fluffy white dog +1.46 white plumage +7.33 white/cream coloured coat +7.07
reddish/brown fur +1.03 white/gray plumage +7.27 blue/gray body +6.87
shaggy/gray coat +0.71 cabbage-like leaves +7.04 white plumage +5.96
a fox −0.17 small/black dog +1.57 a cub +1.29
large/fluffy white dog −0.17 shaggy/black-brown coat +0.56 wolf-like appearance +0.96
chicken −0.17 product displays +0.46 bandage +0.68
klin −0.17 a large/elegant dog +0.34 egg-laying mammal +0.37
sharp talons/beak −0.17 a bus driver +0.18 large/fluffy white dog +0.35
camel rider −0.17 an insect +0.08 black/tan coat +0.08

5 Limitations & Conclusions

Limitations. Considering the use of the CLIP-Dissect approach for identifying neuron functional-
ity in CVNs, this comes with its respective limitations, such as disregarding the spatial information;
this, could allow for identifying lower level concepts and patterns. However, the structure of CVNs
could potentially accommodate such a functionality via block (high) level and unit (low) level de-
scriptions; we leave these explorations for future work. Finally, even though incorporating the com-
petition mechanism to Vision Networks is a quite straightforward task, they aren’t still implemented
in an optimized way in popular frameworks, due to their limited adoption.

Conclusions. In this work, we introduced DISCOVER, a novel framework towards Interpretable
vision architectures through Competitive Vision Networks and Network Dissection. For the first
time in the literature, we trained LWTA networks using sufficiently large datasets and architectures.
Despite the fact that we did not perform any hyperparameter tuning, the resulting networks yielded
on par or even improved performance, even when using up to 4% of active neurons per example.
Our qualitative and quantitative results vouch for the efficacy and interpretation capabilities of our
approach. We yielded highly interpretable neuron functionality, while using a small and explorable
subset of all the available neurons per datapoint.
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A Supplemental Material

A.1 Experimental Details

Integrating the competition mechanism in modern architectures constitutes a pretty straightforward
task. One just needs to replace the existing calls to the conventional non-linear activations with
a call to a module/function implementing the LWTA rationale. This can be performed in-place
without any other changes necessary. Thus, in the accompanied code, we can directly change the
definitions of the Transformer or ResNet based models and train the model in the same manner
as in the conventional Vision Networks. In this context, for the DeiT architectures, we alter the
definitions in the timm library, while for ResNet-based architectures, we slightly alter the example
implementation found in the official Pytorch repository1. For dissecting CVNs, we use the official
repository of CLIP-Dissect [20]. We describe all changes in the respective README file. Our code
and trained models will be public after publication.

Transformers. For training the CVN counterparts of the DeiT-T and DeiT-S models, we use the of-
ficial implementation.2 We train both architectures from scratch using ImageNet-1k for 300 epochs
with the default parameters found therein. Specifically, we use a 5-epoch warm-up period, starting
with an initial learning rate of 10−6, following a cosine annealing schedule up to 5·10−4. We use the
same AdamW optimizer and changed the used weight decay from 0.05 to 0.02 since we found that
it hurt performance. We re-run the conventional GELU-based architectures with this selection and
observed no change in the obtained accuracy. In contrast, we turned off the excessive augmentation
setup, since it hurt the performance of CVNs. In this context, and in line with the initial ablation
study presented in [31], we found that performance deteriorates when augmentations are removed
in GELU-based networks. For training, we use a single sample for the Monte Carlo sampling es-
timation for the Evidence Lower Bound loss, described in the main text. For this, we turn to the
continuous relaxation of the categorical distribution that allows for reparameterized samples and
low variance estimation, as we describe in the next section. During inference, we draw 4 samples,
average the logits in the Bayesian Averaging sense; we then compute the predicted loss and accuracy.
We did not observe any improvement when drawing more samples.

ResNet. For training the ResNet-18 model, we used the ResNet ImageNet example PyTorch script
and adapted the data loading for Places 365. We train the model for 90 epochs, using SGD with an
initial learning rate of 0.1 that is reduced by a factor of 0.1 every 30 epochs, a weight decay of
10−4 and 0.9 momentum. The batch size was set to 256. For the Gumbel-Softmax trick, we set
the temperature to 0.67 and used the Straight-Through estimator. During training, we only draw
one sample for the reparameterization trick, while during inference we draw 4 samples from the
trained posterior. We trained both conventional and CVN architectures since the official pretrained
models were not available online. For both methods, we used the standard RandomResizedCrop and
RandomHorizontal Flip augmentations.

A.2 The Gumbel-Softmax Trick

In our work, we perform Monte-Carlo sampling using a single reparameterized sample for each
of the corresponding latent variables. These are obtained via the reparameterization trick of the
continuous relaxation of the Categorical distribution [16, 10] as described next. We focus on the
reparameterization trick for the dense case; the convolutional case is analogous.

As a reminder, the latent indicators ξb, ∀b, are drawn from a Categorical distribution driven from the
intermediate linear inner-product computations that each unit performs.of q(ξ) (Eq. (2) in the main
text):

q(ξb) = Categorical

(
ξb

∣∣∣∣∣Πb(x)

)
, ∀b, Πb(x) = Softmax

 J∑
j=1

[wj,b,u]
U
u=1 · xj

 (5)

where Πb(x) is a vector comprising the activation probability of each neuron in the block, and
[wj,b,u]

U
u=1 denotes the vector concatenation of the set {wj,b,u}Uu=1.

1https://github.com/pytorch/examples/tree/main/imagenet
2https://github.com/facebookresearch/deit.
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Then, the samples ξ̂ are expressed as:

ξ̂b,u = Softmax (log[Πb(x)]u + gb,u)/τ) , ∀b = 1, . . . , B, u = 1, . . . , U (6)

where gb,u = − log(− log Vb,u), Vb,u ∼ Uniform(0, 1), and τ ∈ (0,∞) is a temperature factor,
controlling how “closely” the continuous relaxation approximates the Categorical distribution. In
this work, we use a temperature of τ = 0.67 as suggested in [16], and used in several other works
[22, 21].

A.3 Convolutional Formulation

In this setting, local competition is performed among feature maps on a position-wise basis. Each
kernel is treated as an LWTA block with competing feature maps; each layer comprises B kernels.
Specifically, each feature map u = 1, . . . , U in the bth LWTA block of a convolutional LWTA layer
computes:

Hb,u = W b,u ⋆X ∈ RH×L (7)

Competition remains stochastic, and is now implemented on a position-wise basis as follows:

q(ξb,h′,l′) = Categorical
(
ξb,h′,l′

∣∣∣Πb,h′,l′(X)
)
, ∀h′, l′ (8)

where Πb,h′,l′(X) = Softmax ([Hb,1,h′,l′ , . . . ,Hb,U,h′,l′ ]) comprises the position-wise activation
probabilities for all neurons in the block.

For each position in a kernel, only the feature map that wins the said position contains a non-zero
entry. This yields sparse feature maps with mutually exclusive activated positions. Now, the output
Y ∈ RH×L×B·U is obtained via concatenation of the sub-tensors Y b,u that read:

Y b,u = Ξb,u

(
W b,u ⋆X

)
, ∀b, u (9)

where Ξb,u = [ξb,u,h′,l′ ]
H,L
h′,l′=1. The corresponding detailed bisection of a convolutional stochastic

LWTA block can be found in the Appendix.

In the following, we use these definitions to construct Competitive Vision Networks by replacing
the usually employed non-linearities with the competition mechanism in each hidden layer of the
considered architecture.

Figure 4: A detailed bisection of the bth convolutional stochastic LWTA block. Presented with input
X ∈ RH×L×C , competition takes place among feature maps on a position-specific basis. Only the
winner feature map contains a non-zero entry in a specific position. This leads to sparse feature
maps, each comprising uniquely position-wise activated pixels. Image from [23].

B Further Qualitative Analysis

In this section, we provide further qualitative neuron identification results for various architectures
and similarity functions.
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Neuron 146: CLIP-Dissect (Soft WPMI): motif

Neuron 365: CLIP-Dissect (Soft WPMI): green

Neuron 461: CLIP-Dissect (Soft WPMI): pattern

Neuron 662: CLIP-Dissect (Soft WPMI): blue

Neuron 6: CLIP-Dissect (Soft WPMI): wildlife

Neuron 32: CLIP-Dissect (Soft WPMI): labrador

Neuron 357: CLIP-Dissect (Soft WPMI): espresso

Neuron 450: CLIP-Dissect (Soft WPMI): compass

Figure 5: Neuron Identification for the first and last DeiT-T/8 MLP blocks using: SoftWPMI, Dprobe:
ImageNet & Broden, S: 20K most common English words[20].

Neuron 21: CLIP-Dissect (Cos Similarity3): stripe

Neuron 672: CLIP-Dissect (Cos Similarity3): crimson

Neuron 783: CLIP-Dissect (Cos Similarity3): yellow

Neuron 1084: CLIP-Dissect (Cos Similarity3): dark

Neuron 21: CLIP-Dissect (Cos Similarity3): lobster

Neuron 672: CLIP-Dissect (Cos Similarity3): guinea

Neuron 783: CLIP-Dissect (Cos Similarity3): eagle

Neuron 1084: CLIP-Dissect (Cos Similarity3): frog

Figure 6: Neuron Identification for the first and last DeiT-S/12 MLP block using the Cosine Sim-
ilarity Cubed similarity function [20]. For the former we use Dprobe: (i) ImageNet Val & Broden
(Left), and for the latter: (ii) ImageNet Val. We use the S: 20K most common English words for
both settings.

Neuron 227: CLIP-Dissect (Rank Reorder): yellow

Neuron 726: CLIP-Dissect (Rank Reorder): blue

Neuron 1104: CLIP-Dissect (Rank Reorder): mammals

Neuron 1206: CLIP-Dissect (Rank Reorder): blue

Neuron 193: CLIP-Dissect (Rank Reorder): tort

Neuron 224: CLIP-Dissect (Rank Reorder): gentoo

Neuron 726: CLIP-Dissect (Rank Reorder): birding

Neuron 820: CLIP-Dissect (Rank Reorder): antarctic

Figure 7: Neuron Identification for the first and last DeiT-S/12 MLP block using the Rank Reorder
similarity function [20]. We use Dprobe: ImageNet Val and S: 20K most common English words for
both settings.
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Table 5: Concepts tied to activated neurons for a random image from the ImageNet validation set
for DeiT-T/8 using various similarity functions.

Cos Similarity WPMI SoftWPMI

Concepts Act Concepts Act Act Concepts

Belgian Malinois +10.5 ferret +10.5 ferret +10.5
green/yellow eyes +9.55 ferret +9.55 ferret +9.55
white fur underside +8.90 white fur under tail +8.90 white fur under tail +8.90
herd Alpine ibex +8.51 black stripes on legs +8.51 black/white stripes +8.51
long/sharp quills +8.02 long/sharp quills +8.01 long/sharp quills +8.01
gray fur/white tips +7.53 fox +7.53 fox +7.53
white/gray head +7.52 white/gray head +7.52 white/gray head +7.52
baby stork +0.96 black ruff around neck +1.09 black ruff around neck +1.09
black fur/white markings +0.44 black/tan coloration +0.44 black/tan coloration +0.44
large/fluffy white dog +0.35 organ +0.37 organ +0.37
gills +0.18 salamander +0.18 salamander +0.18
car towing RV +0.12 headsail +0.12 headsail +0.12
other crocodiles +0.12 egg-laying mammal +0.12 egg-laying mammal +0.12

Table 6: Concepts tied to activated neurons for a random image from the ImageNet validation set
for DeiT-T/None and DeiT-S/12 using various similarity functions.

DeiT-T/None (SoftWPMI) DeiT-S/12 (SoftWPMI) DeiT-S/12 (Rank Reorder)

Concepts Act Concepts Act Act Concepts

a coast +1.18 sea turtle +15.0 sea turtle +15.2
hard/shiny exoskeleton +1.06 cygnet +11.7 large/webbed hind feet +11.7
sea turtle +0.54 large/elephant animal +10.9 dark-colored carapace +10.9
large/red crab +0.54 hard shell covered in spines +9.96 large/fleshy cap +9.96
large/red crustacean +0.53 sea turtle +9.52 marine ecosystem +9.52
large/plant eating dinosaur +0.51 python +9.32 tough/scaly exterior +9.32
short/bristly fur +0.46 doberman +9.08 black/tan coloration +9.08
white bill +0.20 dome-shaped cap +1.14 round/spouted body +1.41
a race +0.17 iguana +0.63 fluffy/white appearance +0.33
large/fluffy white dog +0.06 other crocodiles +0.67 operating system +0.22
two-metal plates/trays −0.16 case +0.22 opponent +0.10
white markings wings −0.16 players +0.10 wings attached +0.10
small/crab like body −0.17 exoskeleton +0.01 hard/shiny exoskeleton +0.10
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