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This document, ‘supplement_5115.pdf’, is part of our supplementary material, which consists of three1

distinct files: (1) ‘code’ containing the implementation of our framework, (2)‘pre-survey.pdf’ that2

includes the instructional material provided to participants for the user study, and (3) this document3

itself which provides extensive analysis and additional findings that have been omitted in the main4

paper due to the page limit. Sec. A presents a thorough explanation of the user study conducted5

to compare the cost of dominant class labeling and multi-class labeling. In Sec. B, we explain6

further details of our experiment, including configurations of our implementation (Sec. B.1) and our7

code (Sec. B.2). Section C presents an in-depth analysis of our framework, including the effect of8

hyper-parameters (Sec. C.1), the budget size (Sec. C.2), and the size of the local regions (Sec. C.3).9

Lastly, a comparison with partial label learning loss baselines (Sec. D.1), a comparison with pseudo10

labeling baselines (Sec. D.2), and a qualitative result of our final model (Sec. D.3) are provided in11

Section D.12

A Details of user study13

We conducted a user study to compare the dominant class labeling and multi-class labeling in terms14

of actual labeling cost and accuracy versus the number of classes in region queries. The examples15

of the questionnaire are illustrated in Fig. 1 and the results are summarized in Table 1. As shown16

in Fig. 1(a), for each question, annotators received an instruction, an image patch along with a marked17

local region, and class options. They were requested to select the relevant class options as directed by18

the instruction. The instructions for dominant class labeling and multi-class labeling were as follows:19

“Select the dominant class that corresponds to the inside of the red boundary.”,20

“Select the all classes that exist within the red boundary.”.21

Prior to the survey, we ensured that every participant reviewed the pre-survey instructional material.22

This material covered the class composition of Cityscapes, offered the definition of the dominant23

class and the multi-class labeling, and provided example questions. The pre-survey instructional24

material is included in the supplementary materials under the name ‘pre-survey.pdf’.25

As shown in Fig. 1(b), each image patch was a 360-pixel square mostly centered on a local region.26

Using ground-truth segmentation mask, we divided regions into three groups based on the number of27

classes (from 1 to 3) present in each region. Twenty regions were then randomly selected from each28

group for each survey, excluding those containing pixels irrelevant to the original 19 classes, referred29

to as the ‘undefined’ class.30

A total of 45 volunteers participated in the survey. We report the results excluding five cases31

considered outliers in terms of time and accuracy. A unique survey was prepared for each group of32

regions, categorized by the number of classes. Given three groupings and two labeling methods, a33

total of six unique forms were prepared. If an annotator annotates the same region twice, there would34
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(b) Example queries with different number of classes(a) Questionnair for multi-class labeling

1 class 2 classes 3 classesSelect the all classes that exist within the red boundary.

Figure 1: Questionnaire and local region examples used in the user study. (a) Questionnaire of
multi-class labeling survey, consisting of instruction, image patch along with local region marked
with red boundary, and class options allowing multiple selections. (b) Examples of local regions used
in the user study according to the number of classes present in each region.

Table 1: The result of user study showing the labeling time (second) and accuracy (%) of dominant
class labeling and multi-class labeling according to the number of classes within each region.

Query # of classes Total time (s) Total clicks Time per click (s) Accuracy (%)

Dominant

1 127.6±39.4 20.0±0.0 6.38±1.97 95.63±6.00

2 160.5±33.0 20.0±0.0 8.02±1.65 72.05±5.36

3 172.1±35.8 20.0±0.0 8.60±1.79 65.83±6.07

average 153.4±41.1 20.0±0.0 7.67±2.05 77.84±14.24

Multi-class

1 145.5±41.8 21.6±2.1 6.75±1.65 95.97±4.10

2 191.6±65.8 39.1±3.7 4.89±1.54 87.14±5.21

3 295.8±65.3 49.0±8.6 6.37±1.51 71.52±8.42

average 211.0±86.3 36.5±12.5 6.01±1.75 84.88±11.76

be a risk of memorizing the image during the first annotation. To avoid this, we asked each participant35

to answer three out of the six forms, ensuring no region was annotated twice by the same person.36

The responses from annotators are evaluated by calculating the Jaccard Similarity (JS) between the37

ground-truth class set and the responded class set. We define the JS of annotator u as follows:38

JS(u) =
1

|X|
∑
i∈X

|Gi ∩ Yi,u|
|Gi ∪ Yi,u|

, (1)

where X is a set of regions, Gi is ground-truth multi-class label and Yi,u is the set of classes selected39

by annotator u for region i. Note that for dominant class labeling, |Gi| = |Yi,u| = 1. We compute40

the final accuracy as the average JS of all annotators, given by:41

Accuracy =
1

|U |
∑
u∈U

JS(u) . (2)

As shown in Table 1, multi-class labeling demonstrates comparable efficiency to dominant class42

labeling for regions with a single class. Moreover, when it comes to regions with multiple classes,43

multi-class labeling requires less annotation time per click compared to the dominant class labeling.44

B Further experiment details45

B.1 Implementation details46

Configurations. We implement our method using the PyTorch framework [7]. Following the previous47

literature [5], we make a slight modification to the original ResNet architecture by replacing the48
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Figure 2: Average accuracy of our stage 1 model over 5 rounds, represented as mIoU (%), as a
function of varying hyperparameters. The model is evaluated on Cityscapes using a ResNet50
backbone in combined with PixBal sampling. (a) The class balancing regulation term ν. (b) Loss
balancing term λMP. (c) Loss balancing term λCE. The blue diamond marker indicates the value
selected for our final model.

initial 7×7 convolutional layer with two 3× 3 convolutional layers. The output stride of the network49

is set to 16. We set the learning rate of the backbone to be ten times lower than the standard rate,50

and we apply a weight decay of 1e−5. During the training phase, we incorporate several data51

augmentation techniques, including random scaling ranging from 0.5 to 2.0, random cropping, and52

random horizontal flipping. To ensure reproducibility and to test the robustness of our approach, we53

conduct three independent experiments, each initialized with different seed values: 0, 1, and 2.54

Label generation. Following previous work [2], we assign both dominant class labels and multi-class55

labels to each region using the ground-truth mask labels. For the dominant class label, we assign56

the class that dominates the majority of pixels within each region, in accordance with its definition.57

For the multi-class labels, we attribute all existing classes present within each region. Notably,58

we disregard classes that appear minimally along the region’s boundary during this process. This59

procedure reflects realistic scenarios where a labeler might fail to recognize classes represented60

insignificantly on the boundary. More specifically, we implement a binary dilation operation with61

a 5×5 kernel along the region boundaries, consequently excluding classes that appear on these62

expanded boundaries. In the user study, we reflect this by marking each local region with a thick,63

translucent boundary.64

Handling undefined class. In the Cityscapes dataset [3], pixels not covered by the original 1965

semantic classes are typically ignored when training segmentation models. On the other hand, in66

multi-class labeling setting, the precise locations of such uncovered pixels remain unspecified since67

the multi-class label only provide partial labels. Treating such pixels as belonging to one of the 1968

semantic classes naively can misguide the model by providing confusing supervision. Furthermore,69

active sampling methods like BvsB, ClsBal, PixBal tend to prefer uncertain regions, often leading to70

the selection of regions containing these uncovered pixels, despite their lack of utility. To address71

this, we assign an additional undefined class for pixels not covered by the initial 19 classes and train72

the model to predict these undefined classes. As for active sampling, we introduce an extra condition73

to exclude regions where the predicted dominant class is the undefined class. This undefined class74

handling strategy is implemented for both dominant class labeling and multi-class labeling.75

B.2 Code76

In the supplementary materials, we include a implementation of our proposed framework, along77

with pre-trained checkpoint files. Detailed instructions for training and running the model are78

available in the ‘README.md’ file. The script for our sampling method can be found in the ‘ac-79

tive_selection/my_bvsb_predclsbal_pwr_banignore.py’ file. The implementation of LMP and LPP are80

located at lines 64-70 and lines 97-128 of the ‘trainer/active_joint_multi_predignore_lossdecomp.py’81

file, respectively. The techniques used for intra-region label localization and label expansion are82

coded into lines 120-305 of the ‘trainer/eval_save_cosplbl_prop_includeonehot.py’ file. We would83

like to acknowledge that parts of our code were borrowed from the implementation of D2ADA [8]1.84

Due to the parallelization of training each region via GPU, the time complexity remains comparable85

1https://github.com/tsunghan-wu/D2ADA/tree/main
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Figure 3: Accuracy in mIoU (%) versus the number of clicks (budget) evaluated on Cityscapes using
ResNet50 combined with PixBal sampling. (a) The accuracy of our final model (Mul) with different
budget sizes and the number of rounds: 50K × 10 rounds, and 100K × 5 rounds. (b) The accuracy
of the proposed model (Mul) and dominant class labeling model (Dom) with different region sizes:
16×16 (sp16), 32×32 (sp32), and 64×64 (sp64).

to that of the dominant class labeling approach. The training process of our model consists of two86

stages and includes the generation of pseudo labels for five rounds. This process takes approximately87

65 hours when executed on a single RTX3090 GPU.88

C Further analysis of our framework89

C.1 Effect of hyper-parameters90

In Fig. 2, we evaluate the sensitivity of our stage 1 model to variations in the hyperparameters: ν,91

λMP, and λCE. This evaluation is conducted on Cityscapes using a ResNet50 backbone and combined92

with PixBal sampling. Our model demonstrates robustness to these hyperparameter changes, with93

accuracy fluctuations of less than 1.5%. It’s noteworthy that our final model doesn’t use the optimal94

hyperparameter values. This indicates that we didn’t exhaustively tune these parameters using the95

validation set.96

C.2 Effect of budget size97

In Fig. 3(a), we evaluate the accuracy of our final model (Mul) under different budget sizes and98

round numbers, namely 50K over 10 rounds and 100K over 5 rounds. This analysis is performed on99

Cityscapes, using a ResNet50 backbone combined with PixBal sampling. As depicted in Fig. 3(a),100

when the total budget is kept constant, increasing the frequency of active sampling and model training101

enhances performance. This improvement can be attributed to the more frequent interactions between102

the model and the Oracle, leading to more informative active sampling.103

C.3 Effect of region size104

In Fig. 3(b), we evaluate the accuracy of the proposed model (Mul) and the dominant class labeling105

baseline (Dom) across different region sizes: 16×16 (sp16), 32×32 (sp32), and 64×64 (sp64). Both106

labeling methods achieve their best performance with the 32×32 region size. However, when the107

region size increases from 32×32 to 64×64, the dominant class labeling model suffers a significant108

performance drop due to increased label noise. In contrast, our proposed model with a region size of109

64×64 shows a smaller decrease in performance from its 32×32 counterpart. This suggests that the110

multi-class labeling effectively mitigates label noise introduced by dominant class labeling.111
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Figure 4: Accuracy in mIoU (%) versus the number of clicks (budget) evaluated on Cityscapes using
ResNet50 backbone, combined with PixBal sampling. (a) The accuracy of our stage 1 model trained
with proposed losses (LMP + LPP), compared with baseline partial label learning losses: Infimum
loss [1], and RC loss [4, 6]. (b) The accuracy of stage 1 multi-class labeling model (stage 1), stage 2
multi-class labeling model solely employing intra-region label localization (w/ proto), and a baseline
pseudo labeling method without prototype (w/o proto). (c) The accuracy of stage 2 multi-class
labeling model with (Local+Expand) and without (Local) label expansion, compared with dominant
class labeling model with (Dom+Expand) and without (Dom) label expansion.

D Additional results112

D.1 Comparison with partial label learning loss baselines113

In Fig. 4(a), we compare our proposed losses with baseline partial label learning losses: Infimum114

loss [1], and RC loss [4,6]. This comparison is performed on Cityscapes, using a ResNet50 backbone115

combined with PixBal sampling. As shown in Fig. 4(a), the model with proposed losses (LMP + LPP)116

demonstrates superior performance over the models using the baseline losses, particularly in the early117

rounds.118

D.2 Comparison with pseudo labeling baselines119

In Fig. 4(b), we conduct an ablation study comparing our proposed intra-region label localization120

method (denoted as ‘w/ proto’) with a baseline intra-region pseudo labeling method that assigns the121

most confident class among multi-class labels as the pixel-wise pseudo label (denoted as ‘w/o proto’).122

This comparison takes place on the Cityscapes dataset, utilizing a ResNet50 backbone in conjunction123

with PixBal sampling. While both of the intra-region pseudo-labeling methods improve upon the124

stage 1 model, the proposed prototype-based label localization demonstrates superior performance125

over the baseline, specifically in the initial round, where the stage 1 model may lack accuracy.126

In Fig. 4(c), we compare the performance improvement brought by label expansion when applied to127

both the multi-class labeling model (denoted as ‘Local+Expand’) and the dominant class labeling128

model (denoted as ‘Dom+Expand’). This comparison is also conducted on the Cityscapes dataset,129

using a ResNet50 backbone paired with PixBal sampling. As shown in Fig. 4(c), label expansion130

proves to be more beneficial when used with multi-class labeling, as it allows the spread of pseudo131

labels across multiple classes, resulting in a broader expansion of pseudo labels.132

D.3 Qualitative results of our final model133

Fig. 5 provides a qualitative result of the predictions of our final model at different rounds. As134

illustrated in Fig. 5, the quality of the predictions markedly improves as the rounds progress. Notably,135

the predictions produced by our final model at round 5 exhibit impressive quality, especially when136

taking into account that it requires only 9.8% of the labeling cost associated with a fully supervised137

model.138
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(a) (b) (c) (d) (e)
Figure 5: Qualitative results of our final model on the Cityscapes dataset. (a) Inputs. (b) Prediction in
round 1. (c) Prediction in round 3. (d) Prediction in round 5. (e) Ground Truth.
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