
Appendix
This appendix is organized as follows:

• Section A provides more details about our algorithms. In particular, Section A.1 describes the
rank-statistics clustering algorithm. Section A.2 describes the REx implementation of invariance in
Eq. (2). Section A.3 discusses the two implementation of the self-training used in our experiments:
FixMatch [16] and Noisy Student [19].

• Section B gives the preliminaries of group theory.
• Section C gives the full proof of our theorem.
• Section D provides more details on the datasets, our feature backbone, how we use seeds in the

evaluation, self-training details, and other implementation details.
• Section E shows more comparisons and standard deviations on WILDS 2.0 benchmark [14],

VISDA-2017 [12], and the break-down of accuracy in each domain for OFFICE-HOME [17].
• Codes are also provided, which include the training and testing scripts on the two classic datasets,

WILDS 2.0 benchmark, and the live demo code for Figure 2 using MNIST [3]. The setup instruc-
tions and commands used in our experiments are included in the README.md file.

Abbreviation/Symbol Meaning

Abbreviation
DA Domain Adaptation
UDA Unsupervised Domain Adaptation
BCE Binary Cross-Entropy
CE Cross-Entropy

Symbol in Algorithm
S Source domain
T Target domain
c Causal feature
e Environmental feature
Φ (Hidden) Data generator
x Sample feature
y Sample label
θ Parameters of the backbone
N,M Number of samples in S, T , respectively
f Classification head
g Cluster head
Lst Self-training loss
α Self-training loss weight
β Invariance loss weight

Symbol in Theory
G Group of semantics
X Feature space
H Subgroup of G that transforms environmental feature e
g ◦ x Group action

Table A1: List of abbreviations and symbols used in the paper.
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A Additional Details on Algorithm

A.1 Rank-Statistics Clustering

Recall that in UDA training, a set of M unlabelled sample features {xi}Mi=1 (features extracted
by the backbone θ) from C classes is available in the target domain T . Rank-statistics clustering
algorithm [5] learns a cluster head g, whose output g(xi) are the softmax-normalized probabilities
for xi belonging to each of the C clusters. We use the pair-wise binary cross-entropy (BCE) loss to
learn g:

min
g

E
xi,xj∈T

− yi,j log (g(xi)
⊺g(xj))

− (1− yi,j)log (1− g(xi)
⊺g(xj)) ,

(A1)

where yi,j = 1 if the top-5 values of xi,xj have the same indices, and 0 otherwise. In practice,
the above optimization can be implemented efficiently in a batch-wise sampling manner, where we
compute the pair-wise BCE loss over each sample batch, instead of the entire unlabelled sample set
in T .

A.2 REx

REx circumvents the challenging bi-level optimization from line 2 of Eq. (2) by adding the following
invariant constraint loss LREx to line 1:

LREx = βVar ({BCE(S, f),BCE(T, f)}) , (A2)

which computes the variance between BCE(S, f) and BCE(T, f) with a trade-off parameter β. We
performed ablations on β in Section 5.4. Please refer to [8] for a theoretical explanation.

A.3 Self-Training

We adopt three implementations of self-training, and use a trade-off parameter α to balance the
weight of self-training loss.

FixMatch [16]. Given the classifier f and a pair of features x,x′ corresponding to a sample’s feature
under weak and strong augmentations, respectively, the FixMatch self-training loss Lfm is given by:

Lst = 1(argmaxf(x) > τ)CE(x′, argmaxf(x)), (A3)

where 1 is the indicator function that returns 1 if and only if the condition in the bracket is true, τ
is the confident threshold, and CE denotes the cross-entropy loss. In our experiments, we use the
standard [10] fixed threshold τ = 0.97 for the two classic datasets, and follow the standard threshold
settings in WILDS 2.0 without searching. Hence we did not perform ablations on τ .

Noisy Student [19]. Compared to FixMatch, Noisy Student has the following differences: 1) Instead
of minimizing the self-training loss in an online fashion, Noisy Student generates the pseudo-labels
argmaxf(x) for all samples in T at the start of epoch using the current model, and the model is
updated for one epoch using the fixed pseudo-labels. 2) It does not perform selection by confident
threshold (i.e., 1(·) in Eq. (A3)), and hence the pseudo-labels for all samples participate in training.
3) Unlike FixMatch that relies on the use of strong augmentations to prevent model collapsing, Noisy
Student can still be used when only weak augmentations are well-defined on the dataset, allowing it
to run on more datasets (Table 1).

Pseudo-Label [9]. We adopt the implementation by WILDS 2.0 benchmark:

Lst = 1(argmaxf(x′) > τ)CE(x′, argmaxf(x′)), (A4)

which uses only one augmented view of each sample, instead of the weak and strong augmented
views in FixMatch. Note that the augmentation is optional in Eq. (A4), e.g., on modalities where
data augmentation is not available/difficult (e.g., text data), one can use Pseudo-Label without
augmentation. This implementation also linearly scales up the self-training weight from 0 to the
specified α through the course of 40% total training steps.
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B Group Theory Preliminaries

A group is a set together with a binary operation, which takes two elements in the group and maps
them to another element. For example, the set of integers is a group under the binary operation of
plus. We formalize the notion through the following definition.

Binary Operation. A binary operation · on a set S is a function mapping S × S into S. For each
(s1, s2) ∈ S × S , we denote the element ·(s1, s2) by s1 · s2.

Group. A group ⟨G, ·⟩ is a set G, closed under a binary operation ·, such that the following axioms
hold:

1. Associativity. ∀g1, g2, g3 ∈ G, we have (g1 · g2) · g3 = g1 · (g2 · g3).
2. Identity Element. ∃e ∈ G, such that ∀g ∈ G, e · g = g · e = g.

3. Inverse. ∀g ∈ G, ∃g′ ∈ G, such that g · g′ = g′ · g = e.

The binary operator · is often omitted, i.e., we write g1g2 instead of g1 · g2. Groups often arise
as transformations of some space, such as a set, vector space, or topological space. Consider an
equilateral triangle. The set of clockwise rotations w.r.t. its centroid to retain its appearance forms a
group {60◦, 120◦, 180◦}, with the last element corresponding to an identity mapping. We say this
group of rotations act on the triangle, formally defined below.

Group Action. Let G be a group and S be a set. An action of G on S is a map π : G → Hom(S,S)
so that π(e) = idS and π(g)π(h) = π(gh), where g, h ∈ G. ∀g ∈ G, s ∈ S , denote π(g)(s) as g ◦ s.

Direct Product of Group. Let G1, . . . ,Gn be groups with the binary operation ·. Let ai, bi ∈ Gi

for i ∈ {1, . . . , n}. Define (a1, . . . , an) · (b1, . . . , bn) to be the element (a1 · b1, . . . , an · bn). Then
G1 × . . .× Gn is the direct product of the groups G1, . . . ,Gn under the binary operation ·.
Quotient Group. Let ϕ : G → G′ mapping to some group G′ be a group homomorphism, i.e.,
ϕ(gh) = ϕ(g)ϕ(h), such that H = {h ∈ G | ϕ(h) = e′}. Let g ∈ G. Then the coset aH of H is
defined as {g ∈ G | ϕ(g) = ϕ(a)}, and the cosets of H form a quotient group G/H.

Theorem. Let G = K×H be the direct product of group K and H. Let H̄ = {(e, h) | h ∈ H}. Then
G/H̄ is isomorphic to K in a natural way.

In our formulation, we consider a semantic space S = C × E as the Cartesian product of the causal
feature space C and the environmental feature space E . The group G acting on S corresponds to all
semantic transformations, e.g., g ∈ G may correspond to “turn darker” of the digit color. In particular,
G has a corresponding direct product decomposition G = K ×H, where K acts on C and H acts on
E . With slight abuse of notation, we write K as G/H with the above theorem.

G-Equivariant Map. Let G be a group acting on the set S. Then Φ : S → X mapping to the set X
is said to be a G-equivariant map if f(g ◦ s) = g ◦ f(s) for all g ∈ G, s ∈ S.

In our work, we consider the mapping from the causal and environmental features to the learned
sample features as a G-equivariant map, hence we write g ◦ x for g ∈ G,x ∈ X as the transformed
feature from x by g.

Group Representation. Let G be a group. A representation of G (or G-representation) is a pair
(π,X ), where X is a vector space and π : G → Homvect(X ,X ) is a group action, i.e., for each
g ∈ G, π(g) : X → X is a linear map.

Intuitively, each g ∈ G corresponds to a linear map, i.e., a matrix Mg that transforms a vector x ∈ X
to Mgx ∈ X .

C Proof of Theorem

We include our assumptions and theorem in the main paper below for easy reference.

Assumption (Identificability of G/H).
1) ∀xi,xj ∈ T , yi = yj iff xi ∈ {h ◦ xj | h ∈ H};
2) There exists no linear map l : X → R such that l(x) > l(h ◦ x), ∀x ∈ S, h ◦ x ∈ T and
l(g ◦ x) < l(gh ◦ x), ∀g ◦ x ∈ S, gh ◦ x ∈ T , where h ̸= e ∈ H, g ̸= e ∈ G/H.
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Theorem. When the above assumptions hold, ICON (optimizing Eq. 2) learns a backbone θ mapping
to a feature space X that generalizes under G/H×H. In particular, the learned f is the optimal
classifier in S and T .

Proof sketch. We will start by proving the binary classification case: we first show that the classifier
satisfying the invariance objective in Eq. (2) (i.e., line 2) separates the two classes among all samples
in S and T . Then by minimizing line 1, samples are mapped to two class-specific features (i.e., one
feature for each class). Finally, by minimizing CE using labelled samples in S, we learn the optimal
classifier that assigns the correct labels to all samples in S and T . We expand the binary classification
case to C-class classification by formulating it as C 1-versus-(C − 1) binary classification problems.

Proof. Consider a binary classification problem, where f outputs a single probability of belong
to the first class, G/H = {g, e}, i.e., x, g ◦ x are from different classes for all x ∈ X . Let f
satisfies the invariance objective in Eq. (2), i.e., f ∈ argminf̄BCE(S, f̄) ∩ argminf̄BCE(T, f̄). As
BCE(S, f) is computed using the ground-truth labels, we must have f(x1) → 1, f(x2) → 0 or
f(x1) → 0, f(x2) → 1, ∀x1 ∈ H(x) ∩ S,x2 ∈ H(g ◦ x) ∩ S, where x ∈ X . To see this, we shall
expand BCE(S, f̄) on a pair of samples x,x′ ∈ S with label y, y′:

−1(y = y′)log(ŷ⊺ŷ′)− 1(y ̸= y′)log(1− ŷ⊺ŷ′), (A5)

where 1 is the indicator function, and ŷ is given by (f(x), 1− f(x)) (similarly for ŷ′). Note that it
is not difficult to show that ŷ⊺ŷ′ ∈ [0, 1], where the lower (or upper) bound is attained when they
take different (or same) values from (0, 1), (1, 0). As f minimizes BCE(S, f̄), it minimizes the loss
for each x,x′ ∈ S: if y = y′, ŷ⊺ŷ′ → 1, and if y ̸= y′, ŷ⊺ŷ′ → 0. This is only possible when the
aforementioned condition holds. In the target domain T , although there is no ground-truth label, we
prove that the evaluation of 1(y = y′) (or ̸=) using the cluster labels is always the same as using
ground-truth class labels, for all x,x′ ∈ T given Assumption 1: 1) suppose that x ∈ {h◦x′ | h ∈ H},
then by the sufficient condition of Assumption 1, 1(y = y′) = 1, reflecting that they are from the same
class; 2) suppose that x ̸∈ {h ◦ x′ | h ∈ H}, then by the contra-position of the necessary condition,
1(y ̸= y′) = 1, reflecting that they are from the different classes. Hence in the same way as S, we can
show that f(x1) → 1, f(x2) → 0 or f(x1) → 0, f(x2) → 1, ∀x1 ∈ H(x)∩T,x2 ∈ H(g ◦x)∩T .
Now considering the samples in S and T . Denote D = S ∪ T . There are two possibilities: 1)
f(x1) → 1, f(x2) → 0 or f(x1) → 0, f(x2) → 1, ∀x1 ∈ H(x) ∩ D,x2 ∈ H(g ◦ x) ∩ D; 2)
f(x1) → 1, f(x2) → 0 (or f(x1) → 0, f(x2) → 1), ∀x1 ∈ H(x) ∩ S,x2 ∈ H(g ◦ x) ∩ S and
f(x1) → 0, f(x2) → 1 (or f(x1) → 0, f(x2) → 1), ∀x1 ∈ H(x)∩ T,x2 ∈ H(g ◦ x)∩ T . Case 2
corresponds to the horizontal black line in Figure 4b. However, it contradicts with Assumption 2.
Hence the only possibility is case 1, where f linearly separates the two classes in D, i.e., all samples
in S and T . In particular, as Assumption 2 prevents the failure case where f separates the samples
not based on the class (or causal feature c), it intuitively means that the only invariance between
S and T is c. Overall, this shows that a linear map f ∈ argminf̄BCE(S, f̄) ∩ argminf̄BCE(T, f̄)
separates the two classes in D.

We will now analyze the general case of c-class classification. Specifically, w ∈ Rc×d corresponds to
a linear map that transforms each sample feature x ∈ Rd to the c-dimensional logits. The classifier f
parameterized by w outputs the softmax-normalized logits as the probability of belong to each of the c
class. Without loss of generality, we consider the case where ∥wi∥ = ∥wj∥ for i, j ∈ {1, . . . , c} and
∥x∥ = M for all x ∈ X , e.g., through the common l2-regularization and feature normalization. From
the previous analysis, we prove that a linear classifier satisfying the invariance objective separates
the two classes in D. We can generalize the results to multi-class classification by considering it
as C 1-versus-(C − 1) binary classification problem (e.g., separating class 1 samples and the rest
of samples). We can further show that minimizing line 1 of Eq. (2) leads to a feature space X
that generalizes under G/H×H. In particular, to minimize BCE(S, f) + BCE(T, f) (expanded in
Eq. (A5)), the prediction p of f on the correct class is maximized (i.e., p → 1). Specifically, the
probability of belonging to class i ∈ {1, . . . , c} for a feature x using softmax normalization is given
by:

exp(w⊺
i x)∑c

j=1 exp(w
⊺
j x)

. (A6)

We show that to maximize p, a sample feature in class i is given by Mw̄i, where M → ∞, w̄i is from
normalizing wi, and for each i ̸= j ∈ {1, . . . , c}, w⊺

i wj ≤ 0: the first condition is easily derived by
maximizing exp(w⊺

i x) → ∞ under ∥x∥ = M ; the second condition is derived by limiting p → 1,
i.e., exp(w⊺

j x) = 0 or exp(w⊺
j x) → −∞. Overall, this shows that minimizing Eq. (2) leads to X
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where the samples in class i are mapped to the same feature Mw̄i, and samples in different classes
are mapped to different features as wi ̸= wj for i ̸= j (from w⊺

i wj ≤ 0). The classifier f is optimal
by predicting the probability of each feature in S and T belonging to its ground-truth class as 1. Note
that to further equip X with the equivariant property as introduced in Section ??, one can leverage a
specially designed backbone θ (e.g., equivariant neural networks [2]). Hence we complete the proof
of our Theorem.

D Dataset and Implementations

Additional Dataset Details. For datasets in WILDS 2.0 benchmark, we drop their suffix -WILDS
for simplicity in the main text (e.g., denoting AMAZON-WILDS as AMAZON). For IWILDCAM,
the test data comes from a disjoint set of 48 camera traps (i.e., different from the 3215 camera
traps in the training T ). For POVERTYMAP, each sample is a multi-spectral satelite image with 8
channels. OGB-MOLPCBA corresponds to a multi-task classification setting, where each label y is
a 128-dimensional binary vector, representing the binary outcomes of the biological assay results.
y could contain NaN values, i.e., the corresponding biological assays were not performed on the
given molecule. Hence there is no way to determine the ground-truth class numbers in this dataset.
In AMAZON, S and T each contains a disjoint set of reviewers, and models are evaluated at their
performance on the reviewer at the 10th percentile.

Feature Backbone. We used the followings pre-trained on ImageNet [13]: ResNet-50 [6] on 2
classic datasets and IWILDCAM, DenseNet-121 [7] on FMOW and Faster-RCNN [4] on GLOB-
ALWHEAT. We used DistilBERT [15] with pre-trained weights from the Transformers library on
CIVILCOMMENTS and AMAZON. On CAMELYON17, we used DenseNet-121 [7] pre-trained by
the self-supervised SwAV [1] with the training data in S and T . On POVERTYMAP and OGB-
MOLPCBA with no pre-training available, we used multi-spectral ResNet-18 [6] and graph isomor-
phism network [20] trained with the labelled samples in the source domain S, respectively.

Seeds. We followed the standard evaluation protocol: POVERTYMAP provides 5 different cross-
validation folds that split the dataset differently. Hence we used a single seed (0), and average the
performances on the 5 folds. We evaluated our model on CAMELYON17 with 10 seeds (0-9), and
CIVILCOMMENTS with 5 seeds (0-4). We used 3 seeds (0-2) on other datasets in WILDS 2.0. We
fixed the seed for Python, NumPy and PyTorch as per standard.

Self-Training Details. We used FixMatch [16] on the two classic UDA datasets. On the WILDS 2.0
datasets with text data, we used pseudo-label method [9], which is similar to FixMatch, but without
the use of weak and strong augmentation. On other WILDS 2.0 datasets, we used Noisy Student [19]
due to its superior performance.

Highlight causal feature c. We use two techniques to highlight the causal feature c, such that
Assumption 1 is better fulfilled: 1) On large scale datasets VISDA-2017 and IWILDCAM, we
deployed UMAP [11] to reduce the dimension of T features to 50 before clustering them. UMAP
is empirically validated to faithfully capture the local data structure (e.g., high k-NN classification
accuracy) as well as the global structure (e.g., more meaningful global relationships between different
classes) in a low-dimensional space. Such structural information is however elusive in the original
high-dimensional space due to the curse of dimensionality. 2) On image datasets VISDA-2017,
IWILDCAM, CAMELYON and FMOW, we deploy EqInv [18] to further pursue the causal feature.

Other Implementation Details. For experiments on the classic UDA datasets, we modified the
open-source code base of CST [10] (https://github.com/Liuhong99/CST). For experiments
on WILDS 2.0 datasets, we implemented ICON on the official code base (https://github.com/
p-lambda/wilds). On the classic UDA datasets, we followed the hyperparameter settings of CST
except for the self-training weight, which we did an ablation in Figure 6. On WILDS 2.0 bench-
mark, we followed the released hyperparameter settings in their original experiments (https://
worksheets.codalab.org/worksheets/0x52cea64d1d3f4fa89de326b4e31aa50a). In prac-
tice, we removed the BCE(S, f) from line 1 of Eq. (2), as CE(S, f) alone is enough to achieve
consistency w.r.t. labels in S. We also selected sample pairs with confident binary label to compute
BCE(T, f) in line 1. Please refer to the attached code and the README.md for additional details.
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IWILDCAM2020-WILDS FMOW-WILDS
(Unlabeled extra, macro F1) (Unlabeled target, worst-region acc)

In-distribution Out-of-distribution In-distribution Out-of-distribution
ERM (-data aug) 46.7 (0.6) 30.6 (1.1) 59.3 (0.7) 33.7 (1.5)
ERM 47.0 (1.4) 32.2 (1.2) 60.6 (0.6) 34.8 (1.5)
CORAL 40.5 (1.4) 27.9 (0.4) 59.3 (0.7) 33.7 (1.5)
DANN 48.5 (2.8) 31.9 (1.4) 57.9 (0.8) 34.6 (1.7)
Pseudo-Label 47.3 (0.4) 30.3 (0.4) 60.9 (0.5) 33.7 (0.2)
FixMatch 46.3 (0.5) 31.0 (1.3) 58.6 (2.4) 32.1 (2.0)
Noisy Student 47.5 (0.9) 32.1 (0.7) 61.3 (0.4) 37.8 (0.6)
SwAV 47.3 (1.4) 29.0 (2.0) 61.8 (1.0) 36.3 (1.0)
ERM (fully-labeled) 54.6 (1.5) 44.0 (2.3) 65.4 (0.4) 58.7 (1.4)
ICON (Ours) 50.6 (1.3) 34.5 (1.4) 62.2 (0.4) 39.9 (1.1)

CAMELYON17-WILDS POVERTYMAP-WILDS
(Unlabeled target, avg acc) (Unlabeled target, worst U/R corr)

In-distribution Out-of-distribution In-distribution Out-of-distribution
ERM (-data aug) 85.8 (1.9) 70.8 (7.2) 0.65 (0.03) 0.48 (0.04)
ERM 90.6 (1.2) 82.0 (7.4) 0.66 (0.04) 0.48 (0.05)
CORAL 90.4 (0.9) 77.9 (6.6) 0.54 (0.10) 0.36 (0.08)
DANN 86.9 (2.2) 68.4 (9.2) 0.50 (0.07) 0.33 (0.10)
Pseudo-Label 91.3 (1.3) 67.7 (8.2) - -
FixMatch 91.3 (1.1) 71.0 (4.9) 0.54 (0.11) 0.30 (0.11)
Noisy Student 93.2 (0.5) 86.7 (1.7) 0.61 (0.07) 0.42 (0.11)
SwAV 92.3 (0.4) 91.4 (2.0) 0.60 (0.13) 0.45 (0.05)
ICON (Ours) 95.6 (0.2) 93.8 (0.3) 0.65 (0.05) 0.49 (0.04)

GLOBALWHEAT-WILDS OGB-MOLPCBA
(Unlabeled target, avg domain acc) (Unlabeled target, average AP)
In-distribution Out-of-distribution In-distribution Out-of-distribution

ERM 77.8 (0.2) 51.0 (0.7) - 28.3 (0.1)
CORAL - - - 26.6 (0.2)
DANN - - - 20.4 (0.8)
Pseudo-Label 73.3 (0.9) 42.9 (2.3) - 19.7 (0.1)
Noisy Student 78.1 (0.3) 46.8 (1.2) - 27.5 (0.1)
ICON (Ours) 78.6 (0.0) 52.3 (0.2) - 28.3 (0.0)

CIVILCOMMENTS-WILDS AMAZON-WILDS
(Unlabeled extra, worst-group acc) (Unlabeled target, 10th percentile acc)
In-distribution Out-of-distribution In-distribution Out-of-distribution

ERM 89.8 (0.8) 66.6 (1.6) 72.0 (0.1) 54.2 (0.8)
CORAL - - 71.7 (0.1) 53.3 (0.0)
DANN - - 71.7 (0.1) 53.3 (0.0)
Pseudo-Label 90.3 (0.5) 66.9 (2.6) 71.6 (0.1) 52.3 (1.1)
Masked LM 89.4 (1.2) 65.7 (2.3) 71.9 (0.4) 53.9 (0.7)
ERM (fully-labelled) 89.9 (0.1) 69.4 (0.6) 73.6 (0.1) 56.4 (0.8)
ICON (Ours) 89.7 (0.1) 68.8 (1.3) 71.9 (0.1) 54.7 (0.0)

Table A2: Supplementary to Table 1. The in-distribution (ID) and out-of-distribution (OOD) per-
formance of each method on each applicable dataset. The standard deviations of each method are
reported in the brackets. We bold the highest non-fully-labeled OOD results.

E Additional Results

WILDS 2.0. In Table A2, we included the standard deviation on WILDS 2.0 benchmark, as well as
additional results that are not included in the main paper due to space constraint. In particular, on
datasets with data augmentations, we included results of empirical risk minimization (i.e., train in S
with cross-entropy loss) with/without data augmentations. We also included the results of an oracle
(ERM fully-labeled) on IWILDCAM and FMOW (-wilds suffix excluded for convenience as in the
main paper). On POVERTYMAP, we were not able to reproduce the results of ERM (with or without
data augmentations) in the original paper, so we included the results that we obtained using the same
code, command and environment.
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