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Abstract

The increasing use of neural networks in various applications has lead to increasing
apprehensions, underscoring the necessity to understand their operations beyond
mere final predictions. As a solution to enhance model transparency, Concept
Bottleneck Models (CBMs) have gained popularity since their introduction. CBMs
essentially limit the latent space of a model to human-understandable high-level
concepts. While beneficial, CBMs have been reported to often learn irrelevant con-
cept representations that consecutively damage model performance. To overcome
the performance trade-off, we propose cooperative-Concept Bottleneck Model
(coop-CBM). The concept representation of our model is particularly meaningful
when fine-grained concept labels are absent. Furthermore, we introduce the concept
orthogonal loss (COL) to encourage the separation between the concept represen-
tations and to reduce the intra-concept distance. This paper presents extensive
experiments on real-world datasets for image classification tasks, namely CUB,
AwA2, CelebA and TIL. We also study the performance of coop-CBM models
under various distributional shift settings. We show that our proposed method
achieves higher accuracy in all distributional shift settings even compared to the
black-box models with the highest concept accuracy.

1 Introduction

The recent advances in deep learning have impacted various domains such as computer vision [21],
natural language processing [53], and speech recognition [6]. Recently, the deployment of large
models [8, 51] has led to various concerns regarding privacy and safety since machine learning
models are often considered black boxes. With the increasing use of such deep learning models in
daily human life and their wide deployment, it is essential to understand model behaviors beyond
final prediction. Since neural networks are considered opaque decision-makers, inaccurate decisions
by models in applications such as medicine [18] or autonomous driving [59] lead to catastrophe for
humans. To understand the inner workings of such black-box neural networks, the field of XAI [32]
has emerged in recent times. Concept Bottleneck Models (CBMs) [27] are a family of neural networks
that enable human interpretable explanations.

Concept-based models introduce a bottleneck layer before the final prediction. This bottleneck layer
consists of human-interpretable concept predictions. For example, in the context of images of animals,
these concepts could be “mane” in the case of a lion or “black and white stripes” in the case of a zebra.
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Concept bottleneck modelss (CBMs) map input images to interpretable concepts, which in turn are
used to predict the label. The intermediary concept prediction allows a human supervisor to interpret
and understand the concepts influencing the label prediction. In addition to explainability, CBMs
offers an interesting paradigm that allows humans to interact with explanations. During inference,
a supervisor can query for explanations for a corresponding label, and if it observes an incorrect
concept-based explanation then the supervisor can provide feedback.

While CBMs present benefits with models’ explainability, Mahinpei et al. [33] have shown that
concept representations of CBM may result in information leakage that deteriorates predictive
performance. It is also noted that CBM may not lead to semantically explainable concepts [34]. Such
bottlenecks may result in ineffective predictions that could prevent the use of CBMs in the wild.

Along with model transparency, another challenge that modern neural networks face is robustness
to distributional shifts [32]. Deep learning models fail to generalize in real-world applications
where datasets are non-iid [17]. The absence of a comprehensive study examining the behavior of
CBMs under distributional shifts is a significant limitation, potentially impeding their application in
real-world scenarios.

In this work, we propose cooperative-CBM (coop-CBM) model aimed at addressing the performance
gap between CBMs and standard black-box models. Coop-CBM uses an auxiliary loss that facilitates
the learning of a rich and expressive concept representation for downstream task. To obtain orthogonal
and disentangled concept representation, we also propose concept orthogonal loss (COL). COL can
be applied during training for any concept-based model to improve their concept accuracy. Our main
contributions are as follows:

• We proposed a multi-task learning paradigm for Concept Bottleneck Models to introduce in-
ductive bias in concept learning. Our proposed model coop-CBM improves the downstream
task accuracy over black box standard models.

• Using the concept orthogonal loss, we introduce orthogonality among concepts in the
training of CBMs.

• We perform an extensive evaluation of the generalisation capabilities of CBMs on three
different distribution shifts.

• We looked at using human uncertainty as a metric for interventions in CBMs during test-time.

2 Related Works

Concept-based Models Early concept-based models that involved the prediction of concepts prior
to the classifier were widely used in few-shot learning settings [9, 62]. Other works propose to predict
human-specified concepts with statistical modeling [28, 29]. Unsupervised concept learning methods
use a concept encoder to extract the concepts and relevance network for final predictions [4, 43].
Although these methods are useful in the absence of pre-defined concepts, they do not enable
effective interventions. Concept whitening [11] was introduced as a method to plug an intermediate
layer in place of the batch normalization layer of a Convolutional Neural Network (CNN) to assist
the model in concept extraction. CBM [27] extends the idea by decomposing the task into two
stages: concept prediction through a neural network from inputs, and then target prediction from the
concepts. Many works have proposed models built on CBMs to either improve the downstream task
accuracy [44, 60, 26] or mitigate the concept leakage [33, 20]. There has been a line of work extending
CBMs to real-world applications such as medical imaging [58, 13], autonomous driving [44] and
reinforcement learning [14] CBMs require annotated concepts which poses a challenge for their
applications to large-scale image datasets. Yuksekgonul et al. [58] propose using concept activation
vectors [25] and Oikarinen et al. [38] used multimodal models such as CLIP [40] to annotate concepts
for CBMs. Although these either require concept bank or suffer from pretrained model’s biases [58].

Alternative losses The training of CBM and its variants typically involves the use of Cross Entropy
(CE) loss. Several variants of the CE loss have been explored in the past to improve the discriminative
power of learned feature representations of data [19, 46, 56, 39]. Ranasinghe et al. [41], Vorontsov
et al. [54] introduce the use of orthogonality in feature space to encourage inter-class separation and
intra-class clustering. Our work builds upon [41] by introducing orthogonality constraints in the
concept feature space.

2



3 Method

3.1 Background

Consider a standard supervised learning setting for a classification task, where models are trained
on a dataset D = {xi, yi}Ni=1 with N data samples. Standard models aim to predict the true
distribution pM(y|x) from an input x. Although such a setting has been proven effective on vision
benchmarks, users are unaware of the detailed inner workings of the model. Therefore, CBMs
introduces intermediate prediction of human-understandable concepts before the model prediction.

In the supervised concept-based model setting, the dataset uses additional labeled concept vectors
ci ∈ {0, 1}a where each element indicates the presence of one of a high-level concepts. This allows
supervised concept learning in addition to target learning. Following a simplistic causal graph for
data generation, y → c→ x, CBMs consist of two models. The first model fX→C maps the input
image x to concepts c, while the second model gC→Y maps the concepts c to the label y.

CBMs can be categorized by their method of training gC→Y from the obtained concept representations
f(c|x). This could be done in the following manner: jointly, where both fX→C and gC→Y are
trained simultaneously end-to-end, sequentially, where fX→C is trained first, after which gC→Y is
trained using pf (c|x) representations, and finally independently, where fX→C and gC→Y are trained
individually and then combined.

Interventions Interventions are a core motivator of CBMs. The bottleneck model allows for
interventions by editing the concept predictions. Since CBMs consider correcting the predicted
concepts through interventions during test-time, the corrected concepts are not back-propagated
through fX→C and gC→Y . During test-time intervention the predicted concepts can be modified by
a supervisor to their ground truth values, leading to “adjusted” concepts prediction. We represent the
predicted concepts as ĉ = pf (c|x) and the modified concepts as c̄. We consider test-time interventions
as an important aspect of explainable models in safety-critical applications. We hypothesize that
model-supervisor interaction must lead to the development of a symbiotic relationship between the
model and the expert. Here, the expert learns about the potential causation between a concept and
its corresponding label, and the model learns true concept values from the expert. We attempt to
shine a light on these test-time interventions by simulating realistic scenarios by introducing human
uncertainty.

3.2 Coop-CBM

Figure 1: Coop-CBM model that consists of an encoder,
concept learner f , auxiliary label learner h, and task label
learning g. The encoder transforms input data into a feature
representation, which is used by f to predict high-level con-
cepts and h to predict a supplemental auxiliary label, and
finally g predicts the final task label conditioned on the con-
cepts only.

While CBMs provide concept expla-
nations behind a prediction, it has
been observed that this can come at
the expense of lower model accuracy
compared to black-box standard mod-
els [33]. In this work, we propose
a concept-based architecture, coop-
CBM to improve the performance of
CBMs on downstream classification
tasks.

Motivation The different training
paradigms in CBMs introduced by
Koh et al. [27] give rise to differ-
ences in their concept representations,
pf (c|x). Koh et al. [27] reports that
joint CBMs have the highest task accu-
racy among the different CBM train-
ing procedures albeit still lower than standard models. Intuitively, this suggests that joint CBMs,
which train both concept predictor and task predictor simultaneously, are able to encode the informa-
tion about the task label y into concept labels c better than sequential and independent CBMs. In
the case of joint CBMs, backpropagation of task loss through the concept predictor aids the overall
model in giving more accurate predictions. In this work, we aim to leverage such “soft” information
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about the task to improve accuracy. Coop-CBM aims to leverage soft label information in concept
predictors to better align the concept predictions to the corresponding label.

Model Coop-CBM introduces a multi-task setting before the final prediction. Along with predicting
the concepts c, we introduce the prediction of task labels in the concept predictor. This allows the
model to learn relevant signals and inductive biases of downstream tasks in the concept learning phase.
In essence, we now have model fX→C that predicts concepts c from input x and new model hX→Y

that predicts label y from input x. This enables the model to learn relevant knowledge about the task
that could be absent in the bottleneck concepts c. Although this setting makes the model interpretable,
since corresponding concepts to a label can be obtained, one loses the causal x→ c→ y property.
Additionally, it does not allow test-time interventions, which is a key application of concept-based
models that facilitates human-model interactions. Therefore, to maintain the original properties of
CBM, coop-CBM uses a label predictor g which takes the predicted concepts c from fX→C as input
and gives the final label y as output. Hence to avoid confusion, we call the label prediction from h
immediate label, y′, and the final task label, y. It must be noted that f and h share all but the last
linear layer. Therefore the concept predictor f and g parameters θ, ϕ are trained in the following
manner:

θ̂ = E
D
[argmax

θ
[log p(c, y′|x; θ)]] = E

D
[argmax

θ
[log pf (c|x; θ) + log ph(y

′|x; θ)]] (1)

ϕ̂ = E
D
[argmax

ϕ
[log p(y|c;ϕ)]] (2)

Therefore coop-CBM is trained using a linear combination of three different CE losses: LC as concept
loss, LY′ as immediate label loss and LY as task prediction loss.

argmin[LC(f(x), c) + Ly′(h(x), y) + Ly(g(f(x), y)] (3)

In summary, we argue that the introduction of an immediate label introduces the concept predictor
to learn meaningful information about the task while still being interpretable. The hX→Y ′ model
intuitively acts as a regularizer for meaningful concept prediction.

Mutual information perspective We hypothesize that by using coop-CBM, the concept predictor
acquires better knowledge about y. In particular, this can be beneficial when fine-grained concept
annotations are not available. We, therefore, suspect that the mutual information (MI) between the
input image, concept representations, and the label becomes richer and more expressive as compared
to CBM [27]. One way to quantify this is by visualising the MI planes throughout the training, similar
to Zarlenga et al. [60].

3.3 Concept Orthogonal Loss

Following the current CBM literature, we use cross-entropy loss to train each of the models, fX→C ,
hX→Y ′ and gC→Y in coop-CBM. In model f , each concept is learned via independent and separate
classifiers. Given their binary representation, it is intuitive to improve the embedding space of
concepts by increasing separability. To do so, we introduce the concept orthogonal loss (COL). By
incorporating COL into the training process, we aim to enhance the overall separability of the concept
embeddings, leading to improved performance and interpretability of the coop-CBM model.

Motivation Due to the variations in training strategies employed in different CBM models, the
resulting concept representations can exhibit varying levels of accuracy. The concept accuracy refers
to how effectively the learned concept representations align with the ground truth or human-defined
concepts. Coop-CBM was concerned with the predictive performance of the task, but here we focus
on the concept label accuracy. Higher concept label accuracy signifies improved interpretability.
As observed by Koh et al. [27], the concept accuracy of joint CBMs models is lower than other
variants because the concepts learned are not completely independent of each other, also called
leakage by [33]. Hence, increasing the inter-concept distance and intra-concept clustering throughout
the concept vector for the entire dataset can allow the model to learn beyond co-dependent concept
representations.
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COL In addition to CE loss for learning concepts, we introduce novel concept orthogonal loss
by conditioning orthogonality constraints on concept feature space. The disadvantage of CE loss is
that it does not set a specific distance or separation between different concept representations in the
feature space. Consider the CE loss for each concept prediction:

LCE(c, ĉ) =

cN∑
ci

−cilog(ĉi)− (1− ci)log(1− ĉi) (4)

Using this traditional CE loss for each concept, in Equation 4 we are essentially minimizing the
difference between the predicted probability distribution and the true probability distribution of the
binary concepts. The model, fci attempts to learn probability distribution for when a concept is active
or inactive respectively. CE does not explicitly enforce separation between concepts.

With concept orthogonal loss (COL), we enforce the separation in the latent representation of the
concepts. Our aim with COL is to group similar features together while ensuring that features
belonging to different concept classes do not overlap with each other. COL LCOL enforces inter-
concept orthogonality and intra-concept clustering. We define inter-concept separation and intra-
concept similarity as d1 and d2 respectively. We enforce orthogonality constrain via cosine similarity.
We define the LCOL loss in the shared last layer, q of coop-CBM before concept and auxiliary label
predictions. We enforce COL constraints within each batch, B.

d1 =
∑

i,j∈B,
cai =caj
a∈A

qTi qj
||qi|| ||qj ||

; d2 =
∑

i,j∈B,
cai ̸=caj
a∈A

qTi qj
||qi|| ||qj ||

(5)

where ||.|| denotes the Frobenius norm.

Using the cosine distances, d1 and d2, we simultaneously aim to increase the distance between
different latent concept representations and decrease the distance between representations from the
same concept. We can introduce a hyperparameter, λ to accordingly give weightage to either d1 or d2.
The similarity loss d1 between the feature representation of two samples corresponding to the same
concept aims to push the d1 towards 1 which means that the feature representations of same concept
should be as similar as possible. As for the dissimilarity loss, the goal is to push the loss towards 0,
which enforces that the feature representations of different class samples should be as dissimilar as
possible. Therefore we consider the absolute value of d2.

LCOL = (1− d1) + λ|d2| (6)

It is important to note that CE loss is applied to each concept binary classification task, which
measures the difference between the predicted class probabilities and the true labels. The introduction
of COL encourages the network to learn features that are both discriminative and non-redundant
among concepts at an intermediary network level. By combining the COL and CE losses, the network
is trained to learn discriminative that separate each concept and useful features for classifying when a
concept is active. A benefit of COL is it can be universally any concept-based model to encourage
orthogonality between different concepts.

In this section, we introduce two auxiliary losses, one to improve the task accuracy using multi-task
setting and the other to improve concept representation in latent space, leading to improved concept
accuracy. The final loss is a linear combination (α, β, γ are hyperparameters for weighting in Equation
7) of concept and task losses along with immediate and concept orthogonal losses.

argmin[αLC(f(x), c) + βLy′(h(x), y) + Ly(g(c), y) + γLCOL(q)] (7)

3.4 Interventions

Koh et al. [27] demonstrated the potential of CBMs for facilitating human-model interaction and
improving task performance during inference. But it can be time-consuming and costly to have
domain experts go over each concept, hence some of the recent and concurrent works proposed to
use uncertainty as a metric to select interventions.

We propose a lightweight approach that strategizes the supervisor-model interaction. Our method is
intuitive and considers three aspects of intervention:
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1. Uncertainty of concept prediction - CUS represents the confidence of the model to predict
latent concepts, fX→C .

2. Supervisor confidence for concept correction - SCS represents the reliance on the supervisor
to intervene and subsequently correct the concepts accurately.

3. Importance of concept for label prediction - CWS denotes the significance of each concept
for the subsequent downstream task.

Chauhan et al. [10] propose to optimize interventions over a small validation set using CUS. In
comparison, we consider access to the validation set unrealistic. Shin et al. [49], Sheth et al. [48]
evaluated interventions more comprehensively and studies the behavior of CBMs during inference
by selecting CUS and CWS metrics. We additionally take into account a supervisor’s confidence
in domain knowledge, SCS and their expertise in correcting the concepts. Concurrent work [12]
also looked at human uncertainty for CBMs in depth. Unlike previous works that evaluate test-time
interventions on the test splits of respective datasets, we also analyze test-time interventions in OOD
setting in the Appendix E.

4 Experiments

Model type CUB AwA2 TIL

Standard [No concepts] 82.3
±0.2

96.2
±0.1

51.1
±0.9

Independent CBM [27] 76.0
±0.4

94.9
±0.3

47.4
±1.0

Sequential CBM [27] 76.3
±0.2

94.6
±0.2

47.9
±0.9

Joint CBM [27] 80.1
±0.1

95.4
±0.1

49.6
±0.7

CEM [60] 82.5
±0.2

96.2
±0.1

51.3
±1.3

CBM-AR [20] 81.6
±0.4

95.9
±0.0

49.5
±1.0

Coop-CBM (ours) 83.6
±0.3

96.6
±0.1

53.4
±0.8

+ COL 84.1
±0.2

97.0
±0.1

54.2
±0.9

Table 1: Model accuracy on CUB, AwA2 and TIL
datasets

For our evaluation we consider several im-
age classification benchmark datasets. Our
work performs an in-depth empirical anal-
ysis of the effectiveness of concept-based
models in the presence of different distribu-
tional shifts simulating real-world scenarios
where data is diverse.

Baselines We consider the models pro-
posed by Koh et al. [27] as our baseline.
Additionally, we compare our performance
with recent concept-based models that are
built on CBM [60, 20]. Due to biases intro-
duced during automatic concept acquisition
as mentioned by the authors of Yuksekgonul
et al. [58], we consider it to be an unfair
baseline to compare generalization proper-
ties. They also vary in the number of con-
cepts considered which can also damage the
performance and are limited by either the
presence of concept bank or application (CLIP will fail to generate concepts for TIL dataset), making
an unfair comparison.

Datasets We use Caltech-UCSD Birds-200-2011 (CUB) [55] dataset for the task of bird identifica-
tion. Every dataset image contains 312 binary (eg: beak color, wing color) concepts. We additionally
use Animals with Attributes 2 (AwA2) [57] dataset for the task of animal classification. The dataset
contains 85 binary concepts. We use all of the subsets of the Tumor-Infiltrating Lymphocytes (TIL)
[42] dataset for cancer cell classification.

5 Results and Analysis

The primary metric used for the downstream classification task is accuracy. We use the same metric
to evaluate the effectiveness of the intervention. We first evaluate the different model performances
on the test data split of respective datasets and report the task accuracy gC→Y for coop-CBM model
variants.

Coop-CBM improves task accuracy The evaluation of the performance of a model is based on
the final prediction accuracy. In Table 1, we compare the performance of coop-CBM against other
baseline models. We first observe that CBMs experienced a significant drop in performance compared
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to the standard model that did not use concepts. Our proposed model, coop-CBM with immediate
label prediction achieves state of art accuracy and statistically significant results on every dataset.
We have observed a significant improvement in the performance of the CUB (+1.8% increase from
the standard model) and TIL(+3.1% increase from the standard model) datasets. This finding is
important as it suggests that machine learning models can be designed to overcome the high accuracy
vs interpretability tradeoff. Our performance can be further boosted by introducing orthogonality
among different concepts. It must be noted that CUB is a fairly densely annotated dataset, which
might not always be realistic, hence we also benchmark our model by training on a fraction of concept
sets. We also observe a similar trend in results in concept-scarce settings (see Appendix D.2). This
suggests that our method is robust to concept selection, which can be beneficial in scenarios where
the number of available concepts is limited or expensive to obtain.

Model type w/o COL w COL

Independent CBM [27] 96.6
±0.0

97.2
±0.1

Sequential CBM [27] 96.6
±0.0

97.2
±0.1

Joint CBM [27] 93.2
±0.1

96.4
±0.2

CEM [60] 94.8
±0.2

97.0
±0.1

CBM-AR [20] 94.2
±0.1

96.8
±0.1

Coop-CBM (ours) 93.9
±0.2

97.3
±0.2

Table 2: Concept prediction accuracy for each model
before and after adding COL for CUB dataset

COL improves concept accuracy Previ-
ously in Table 1, we observed that adding
concept orthogonal loss to coop-CBM im-
proved its downstream accuracy, in Table
2, we study the impact of adding COL to
baseline concept models. Our experiments
show that adding COL improves the con-
cept accuracy by a significant margin, espe-
cially in joint CBM, CEM, and CBM-AR
settings. A known pitfall of CBMs is, con-
cept leakage [33] could be potentially pre-
vented by increasing the separation between
their concept representations. By maximiz-
ing the inner product between the concept
embeddings of different concepts, we can
ensure that each concept is represented in a
separate and distinct direction in the embed-
ding space. This helps in preventing the models from relying on irrelevant concepts. Further to
intuitively understand the differences in the concept representation of our model, we compute the
histogram for the predicted concept logits. From Figure 3 we see that Coop-CBM+COL minimizes
the concept loss better (with help from the auxiliary loss which aids representation learning), which
results in clearer separation of logits.

Model CUB TIL

Std Exp1 Exp2 Std Exp1 Exp2

Coop-CBM 83.6
±0.3

82.1
±0.2

83.0
±0.5

53.4
±0.8

52.6
±0.9

52.8
±1.1

+COL 84.1
±0.2

83.2
±0.2

84.0
±0.6

54.2
±0.9

53.5
±0.9

54.1
±0.8

Table 3: Testing for information leakage in our proposed model.
Std - standard conditions when joint probabilities are learned to
predict the final task, no clipping. Exp1 - During training, we
clipped the predicted concept values to "hard" labels. Exp2 -
During the evaluation, we clipped the predicted concept values to
"hard" labels.

Clipping concept values to
avoid concept leakage Further,
we employ clipping of concept
prediction proposed by Mahin-
pei et al. [33] to further mitigate
information leakage in 3 throught
two experiments. For the first ex-
periment, we trained the model
by clipping the predicted con-
cept values to “hard” labels. Sec-
ond, we trained the model as we
have described earlier in the pa-
per (using soft labels) and eval-
uated the test set by clipping to
“hard” labels. From the above ex-
periments, we conclude that the
model is able to learn a good representation of the concepts without necessarily leaking information.

Accounting for Human uncertainty for interventions As discussed earlier, higher concept
accuracy also improves the test-time interventions as seen in Figure 2. While other works used
concept weights and uncertainty as metrics to select the interventions, our work introduces a more
realistic setting by introducing human uncertainty additionally. The previous works do not account for
human error or certainty. Albeit human uncertainty is difficult to quantify since it is often subjective,
we use the concept visibility data in the CUB dataset to quantify the confidence score, SCS. The
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Figure 2: L→R:1) Accuracy vs intervention graph using joint CBM while including supervisor
uncertainty. 2)Accuracy vs intervention graph in presence of incorrect interventions by the supervisor
using joint CBM. 3) Comparing different model’s random interventions on the TIL dataset. 4)
Comparing different model’s random interventions on the CUB dataset.

annotators rank visibility from 1− 4, 1 being ’not visible’ and 4 being ’definitely visible’. Figure 2
presents an accuracy curve with an increasing number of interventions on the vanilla CBM model
during test-time for proper and fair comparison to [49]. It suggests that considering SCS leads to the
most meaningful interventions. On intervention comparison between different concept-based models,
we observe that coop-CBM leads to significant interventions that improve downstream performance,
especially in TIL dataset where both image descriptive and non-descriptive concepts are present.

In summary, the coop-CBM model and the addition of the concept orthogonal loss help to improve
both task and concept accuracy without sacrificing interpretability, which was a common tradeoff in
previous methods. This result demonstrates the potential for concept-based models to be more effec-
tive in human-AI interactions, especially in domains where expert intervention and interpretability
are critical such as healthcare.

5.1 Performance under distribution shifts

5.1.1 Background spurious correlations

Model CUB CelebA

In Out In Out

Standard 86.9
±0.3

27.7
±2.8

96.5
±0.5

76.3
±1.8

Independent CBM [27] 81.1
±0.5

30.9
±2.3

93.8
±0.6

76.2
±1.9

Sequential CBM [27] 81.2
±0.5

30.8
±2.2

93.8
±0.6

76.1
±1.9

Joint CBM [27] 83.6
±0.4

32.9
±3.2

94.7
±0.5

80.1
±1.7

CEM [60] 84.0
±0.4

34.0
±2.9

95.2
±0.4

81.0
±1.7

CBM-AR [20] 82.6
±0.6

33.6
±2.5

95.9
±0.5

79.7
±2.0

Coop-CBM(ours) 84.9
±0.3

35.4
±2.5

95.4
±0.6

81.3
±1.9

+ COL 85.8
±0.4

36.2
±2.7

95.9
±0.7

82.0
±2.7

Table 4: Accuracy of different models under distributional
shift - background spurious correlation.

Shortcut-based biases [17] exist in many
datasets, where deep learning can easily
learn spurious features. In the presence
of shortcuts, the model can learn to use
spurious features to approximate the true
distribution of the labels, as opposed to
learning core features. It can be of partic-
ular interest to evaluate the performance
of concept-based models in the presence
of shortcuts. Furthermore, using explain-
able concepts to facilitate human-model
interaction could help reduce the impact
of these biases.

The shortcut we consider here is a spuri-
ous correlation to the background color
in CUB dataset. Loosely following the
experimental setup of [5], we correlate
the background of a species of bird to
its corresponding label. For the dataset,
we segment the bird images and add a
colored background to all of the images.
Each class here is correlated to a randomly generated color background with a probability of 80% for
the train set. The in-domain test set contains images with similar color background probability as the
train set while the correlation in the out-domain test set is reduced to 30%. We also consider the hair
color-based shortcut induced in Large-scale CelebFaces Attributes (CelebA) dataset where we focus
on gender classification between males and females. We aggregate and then construct a modified
version of CelebA that learns the shortcut of blonde hair color with women similar to [3].
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In Table 4 we report the in-domain and out-domain accuracies of our baseline models and proposed
coop-CBM for CUB and CelebA datasets. Our results show the robustness of coop-CBM and COL
to background spurious correlations achieving state-of-art results among the concept-based models.
We observe an interesting trend for the CUB dataset. The concept-based models may have lower
accuracy standard model in the in-domain setting but in the out-domain setting, all of the baseline
models including ours have higher accuracy than the standard model. While we do not observe a
similar definitive trend in CelebA dataset, it is evident that most of the models, CEM, joint CBM
and coop-CBM are superior when the test data contains more images of men with blonde hair. This
experiment suggests that the concept-based models are able to generalize better to unseen data outside
the training distribution, which can be attributed to their ability to learn more invariant features
through the explicit conditioning and learning of concepts. This is a promising result as it indicates
that concept-based models, particularly coop-CBM may be more robust to extreme distribution shifts.

In Appendix E, we evaluate the influence of interventions in out-domain settings for the biased CUB
dataset. Realistically, the user may fine-tune the model to distributional shift after deployment to
improve the predictive performance, but in the circumstances where the labeled shifted dataset is
absent, we suspect that interventions could greatly help if they are cheaper to obtain. In such cases,
we especially argue that SCS score benefits the intervention selection.

5.1.2 Image corruptions

Distributional shift can occur due to various factors such as changes in the data collection process,
changes in the environmental conditions under which the data is collected, or even changes in the
underlying population that the data represents. The Corruptions dataset [22, 35] is a collection of
image corruptions designed to evaluate the robustness of computer vision models. Some of the
corruptions are realistic OOD settings such as snow, while others could be less likely in nature such
as impulse noise. We introduce 7 such corruptions (Gaussian Noise, Blur, Zoom Blur, Snow, Fog,
Brightness and Contrast) onto CUB, AwA2 and TIL datasets. We report detailed results on CUB and
average accuracy for AwA and TIL datasets in Table 5.

Model CUB AwA2 TIL1 2 3 4 5 6 7 Avg

Standard 65.2
±0.3

62.0
±0.7

56.7
±0.5

60.1
±0.2

74.1
±0.8

72.0
±0.6

53.4
±0.4

63.3 79.3 38.4

Independent CBM [27] 61.4
±0.6

62.1
±0.4

57.1
±0.8

59.7
±0.3

73.6
±0.7

69.8
±0.5

52.9
±0.2

62.3 78.4 36.6

Sequential CBM[27] 60.3
±0.5

61.9
±0.2

56.5
±0.6

58.5
±0.4

72.7
±0.8

71.2
±0.3

52.0
±0.7

61.8 78.2 36.3

Joint CBM[27] 63.1
±0.4

64.5
±0.8

57.4
±0.3

60.6
±0.7

73.8
±0.5

72.3
±0.2

51.8
±0.6

63.4 79.1 37.1

CEM [60] 66.1
±0.7

61.4
±0.5

57.3
±0.2

61.0
±0.6

74.2
±0.4

71.6
±0.8

53.4
±0.3

63.6 79.7 38.5

CBM-AR [20] 64.8
±0.6

61.7
±0.4

57.2
±0.8

59.4
±0.3

73.3
±0.7

70.4
±0.5

52.9
±0.2

62.8 79.6 36.8

Coop-CBM (ours) 67.2
±0.5

63.5
±0.2

59.0
±0.6

60.9
±0.4

75.4
±0.8

73.2
±0.3

53.3
±0.7

64.6 80.9 40.6

+ COL 67.8
±0.4

63.9
±0.8

58.7
±0.3

61.5
±0.7

75.8
±0.5

73.4
±0.2

53.3
±0.6

64.9 81.5 40.9

Table 5: Comparison of concept-based models on image corruptions on CUB, AwA2 and TIL datasets.

Based on our evaluation of distributional shifts in Table 5, we found that incorporating an auxiliary
loss in the form of a multi-task setting can help CBMs achieve competitive downstream accuracy
overall. We notice that the standard black box models although do perform better in the presence of
“contrast” corruption in CUB dataset. Although coop-CBM outperforms other explanation models. In
general, it is interesting to note that coop-CBM has better generalization performance in the presence
of spurious correlations than in the presence of corruption. This may be because spurious correlations
are introduced as a shortcut within the training data, and concept-based models are designed to learn
invariant features that are robust to such shortcuts. Regardless, coop-CBM’s superior generalization
property across different corruptions suggests that the model is able to effectively filter out irrelevant
information/noise in the data.

5.1.3 Noise concept correlation
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Model type CUB AwA2

Independent CBM [27] 69.7
±0.6

80.1
±0.4

Sequential CBM [27] 69.6
±0.5

80.3
±0.2

Joint CBM [27] 71.0
±0.4

81.3
±0.4

CEM [60] 71.2
±0.6

81.9
±0.3

CBM-AR [20] 71.1
±0.4

81.5
±0.3

Coop-CBM (ours) 71.9
±0.6

82.5
±0.2

+ COL 72.7
±0.4

83.2
±0.2

Table 6: Accuracy of different models under
distributional shift-noise concept correlation

In Section 5.1.1 and Section 5.1.2, we conducted
experiments concerned with distribution shifts in
image space, in this section, we introduce the eval-
uation of CBMs by simulating distribution shifts
in the concept space. To investigate the potential
risks of spurious correlations in concept models,
we introduced Gaussian noise to the binary con-
cepts. By altering the standard deviation (σ) of
the Gaussian noise, we effectively correlated the
shortcut (here noise level) with the image through
the concept. To simulate a more realistic setting,
instead of adding distinct noise σ for each class
species, we aggregate random groups of species
and add same σ to them. In our experiment for the
CUB dataset, we add 10 different levels of noise
(simulated by σ) to groups of 20 species labels
(200 total classes). For AwA2, we create groups of 10 classes. This approach allowed us to simulate
the possibility of introducing unintended correlations between the concepts and the images. By study-
ing the effects of these correlations on the performance of the concept models, we gain insights into
the robustness and reliability of the models in handling contaminated concepts. We observe that by
introducing a separation between different concepts through COL, our model performs significantly
better than the rest of the baselines.

6 Future work and Limitations

In this work, we introduced coop-CBM, a novel concept-driven method to balance AI model in-
terpretability and accuracy. We utilized the Concept Orthogonal Loss (COL) to improve concept
learning and applied coop-CBM to various datasets, achieving better generalization, robustness to
spurious correlations, and improved accuracy-interpretability trade-offs.

However, our approach has limitations. It relies on labeled concept vectors, which can be challenging
in domains with limited annotations and face biases in concept annotation methods. A potential
future work could be to extend it to methods that do not assume concept label [58, 38]. Further, we
used accuracy as a metric to evaluate concept leakage, in the future, it would be interesting to explore
other metrics beyond the accuracy of concept prediction. A future extension of COL could be to
evaluate which concepts should be explicitly orthogonalized. We recognize that our model has a few
hyperparameters to be optimized. Furthermore, our model assumes that learned concepts align closely
with human notions, but this alignment isn’t always perfect, affecting comprehensibility. Future
research could improve the accuracy of concept-based models by providing meaningful explanations
and incorporating additional evaluation metrics. Another potential direction could be to assess the
mutual information and therefore establish theoretical grounding to describe the superior performance
of coop-CBM.

7 Discussion and Conclusion

In this work we proposed two significant contributions to the paradigm of concept-based models.
First, we introduced a multi-task model that predicts an intermediary task label along with concept
prediction. This is particularly helpful when dense and relevant concept annotation is absent, such as
in TIL dataset. Second, we introduced orthogonality constrain in the concept representation space
during training via concept orthogonal loss. This loss increases inter-concept separation and decreases
intra-concept distance. For both of our proposed methods, we perform extensive experiments on
diverse datasets and different distributional shifts. We observe that the bottleneck layer before the
final prediction enables concept-based models to exhibit robustness to spurious correlations in the
background. Coop-CBM along with COL achieves state-of-art performance for both task accuracy
and concept accuracy. Our work indicates that coop-CBM and COL have a strong ability to adapt
and generalize well across diverse datasets and real-world scenarios.
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A More Related Works

Exlainability Post-hoc explanations aim to provide insight into why a particular prediction or
decision was made by the model. These may be in the form of heatmaps, rule sets, or feature
importance scores. Global explanations [24] aim to learn the overall generic features in order to
explain black-box models by the use of explanators. These explanators are often simple Machine
Learning (ML) models. Local explanation methods [1] exhibit explainability by exploring the intrinsic
workings of the neural network. This can be executed by propagating layer-wise feature relevance
[7]. Selvaraju et al. [47] propose a gradient-based saliency mapping technique that perturbs inputs
by injecting noise. Deconstructing the nonlinear model to simpler sub-functions [36] was another
proposed method to interpret model’s predictions. Nohara et al. [37] propose a difference-to-reference
approach to feature importance estimation. Popularly, saliency heatmaps for feature importance
visualization have been used [2]. Post hoc explanations although do not address the fundamental
issue of model transparency, as they are generated externally to the model and may not reflect the
true reasoning of the model’s internal mechanisms which can be addressed by concept-based models
like ours.

Orthogonality Orthogonality in neural networks has been extensively studied in the literature,
with various approaches proposed to enhance model performance and interpretability. X and Y have
explored orthogonal regularization techniques, which impose orthogonality constraints on weight
matrices or feature representations during training. These methods have been shown to improve
generalization and reduce overfitting. Saxe et al. [45] have introduced orthogonal initialization meth-
ods, which initialize weight matrices using orthogonal transformations. This initialization strategy
has been found to aid training convergence and stabilize the learning dynamics of deep networks.
Trockman and Kolter [52] have proposed techniques to enforce orthogonality constraints specifically
in convolutional filters of convolutional neural networks (CNNs). By imposing orthogonality on the
filters, these methods enhance the representational power and robustness of CNNs. In our work, we
introduce orthogonality to concept feature space.

B Experiments

The details regarding datasets and hyperparameters are mentioned below. Our codebase is available
at https://github.com/ivaxi0s/coop-cbm and is built upon from open source repos [27, 41].

B.1 Dataset Details

CUB The CUB-200-2011 dataset is a collection of 11788 images that are used for fine-grained
visual categorization. There are 312 concept attributes that are binarised following the Koh et al. [27]
work. While most existing studies use a subset of these concepts, we have chosen to use the entire
concept bank in our models and baselines, addressing the fairness issue of subgrouping concepts as
highlighted by [49]. The primary task is to classify 200 different species of birds. We also utilize the
meta-data of this dataset to obtain human uncertainty.

TIL [42] dataset contains Tumor-Infiltrating Lymphocytes Maps from TCGA HE Whole Slide
Pathology Images. The dataset contains tumor maps from the most common cancer tumor types. We
use all 13 subsets of the TCGA dataset, therefore constituting 13 cancer types. Although the popular
task for such a dataset is necrosis classification, we modify the task to be a classification for different
(here 13) tumor types. The advantage of medical images is that their meta-data is readily available
from diagnosis. The metadata includes information such as the origin of the tumor, age, gender, and
size of tumor cells, which are converted to concepts. We follow [48] for the dataset pre-processing.
We wnd up with 185 binary concepts following the pre-processing.

AwA2 Animals with Attributes dataset contains over 37,000 images of 50 different animal species,
each labeled with 85 distinctive attributes. These attributes can include various characteristics such as
color, shape, or behavior, providing a rich source of information for concept bank.
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B.2 Experimental setup

For CUB[55] dataset, we trained using 128 batch size with SGD optimizer with 0.9 momentum and
learning rate of 10−2. The feature extractor was InceptionV3[50] as a concept encoder model.

For AwA2[57] dataset, we trained using 128 batch size with Adam optimizer with 0.9 momentum
and learning rate of 5× 10−3. The feature extractor was VIT[15] as a concept encoder model.

For the medical dataset, we create the task of classification divided on the basis of cancer types
for TIL dataset[42]. We generate a concept attributes from the meta-data. We use a traditional
70%-10%-20% random split for training, validation, and testing datasets. Additionally, we trained
using 64 batch size with SGD optimizer with 0.9 momentum and learning rate of 10−2. The feature
extractor was InceptionV3[50] as a concept encoder model.

For m-CelebA[31] dataset, we train using 64 batch size with Adam optimizer with 0.9 momentum
and learning rate of 5×10−3 for 500 epochs. The feature extractor was InceptionV3[50] as a concept
encoder model.

Across all of the models for tasks, we use weight decay of factor of 5× 10−5 and scale the learning
rate by a factor of 0.1 if no improvement has been seen in validation loss for the last 15 epochs during
training. We also train using an early stopping mechanism i.e. if the validation loss does not improve
for 200 epochs, we stop training.

In this paper, we introduced two auxiliary losses, one to improve the task accuracy using multi-task
settings and the other to improve concept representation in latent space, leading to improved concept
accuracy. The final loss is a linear combination (α, β, γ are hyperparameters for weighting in Equation
7) of concept and task losses along with immediate and concept orthogonal losses.

argmin[αLC(f(x), c) + βLy′(h(x), y) + Ly(g(c), y) + γLCOL(q)] (8)

For the hyper-parameters of Equations 7, we use α and β values to 0.01 for all of the experiments.

Model Task Concept

α = β = γ = 0.01 84.1 97.3
α = β = γ = 1.0 83.0 96.8
α = β = 0.1, γ = 0.01 83.4 97.4
α = β = 0.01, γ = 0.1 83.2 97.4
α = β = 0.1, γ = 0.1 83.4 97.5
α = 0.1, β = γ = 0.01 84.0 97.3
α = 0.01, β = 0.1, γ = 0.01 84.2 97.0

Table 7: Different weightage - coop-cbm with COL on CUB dataset

CEM hyperparameters We would like to point out that we used the same concept α weightage
hyperparameter for each of the model. In literature, for all [27, 60, 20] of the methods used the same
concept weightage and we follow the same convention. Looking at our selected hyperparameter,
the most divergent value is for CEM [60]. The original CEM paper selected the α = 5. Since we
could not find an ablation study around this hyperparameter in the original paper, we continued to use
the same value as rest of the models. We acknowledge that our results might be skewed due to this
reason.

B.3 Resources used

Our codebase was built upon the open codebase of [27]. We trained on Linux-based clusters mainly
on V100 GPUs and partially on A100 GPU. The following table includes compute timing for each
epoch for every baseline.
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Model type CUB TIL AwA2

Standard 57s 33s 272s
CBM 68s 39s 286s
CEM 78s 46s 297s
CBM-AR 87s 50s 313s

Coop-CBM (ours) 61s 41s 289s

Table 8: Compute timings of baseline models on different datasets on a V100 GPU.

C Further experiments on COL

C.1 Disentanglement

Disentangled features allow for a more intuitive understanding of the underlying factors that influence
the concepts. Several research efforts have explored the benefits and applications of disentangled
representations [23]. One of the notable characteristics of Concept Orthogonal Loss (COL) is its
ability to induce disentanglement in the concept space. By incorporating COL into the training
process, the model learns to separate and represent concepts in a more distinct and independent
manner. This disentanglement is achieved by enforcing an orthogonal relationship among different
concept representations. To evaluate disentanglement, we use the Oracle Impurity Score as proposed
by Zarlenga et al. [61]. The metric essentially aims to detect for impurities in soft representations
of concepts. We use this metric to compare against Joint-CBM. The OIS score for Joint-CBM on
the CUB dataset was 0.19 while on coop-CBM with COL 0.14 which shows better disentanglement
in concept learning for coop-CBM + COL model showing the benefit of using COL on top of any
model ad-hoc.

COL encourages the model to assign orthogonal directions to different concepts, thereby reducing
the overlap and correlation between them. As a result, each concept becomes more independent
and captures a specific aspect or attribute of the input data. This disentanglement in the concept
space enables better interpretability and facilitates a clearer understanding of how different concepts
contribute to the model’s decision-making process.

Through disentanglement, COL enhances the separability and discriminative power of the learned
concept representations. It allows the model to focus on relevant and informative aspects of the data
while minimizing the influence of irrelevant or redundant features. This disentanglement not only
improves the interpretability of the model but also contributes to its overall performance by reducing
concept interference and enhancing the model’s ability to generalize to new and unseen data.

By promoting disentanglement in the concept space, COL provides a valuable tool for understanding
and analyzing the inner workings of concept-based models. It opens up opportunities for further
research and exploration into how disentangled concept representations can be leveraged for various
tasks, including transfer learning, domain adaptation, and model debugging.

C.2 When is concept orthogonality relevant

One obvious question and could be an interesting future work could be to devise what explicit concepts
must be orthogonal. Our work assumes that every concept must be orthogonal but potentially there
could be an application where it could be beneficial to include partial orthogonality. Devising an
optimal point for when to use COL could be great future work building on our work. We attempt to
provide justification using empirical analysis and some intuition in this section.

Duplicating concepts We consider a scenario where input concepts are intentionally duplicated to
create a high degree of concept correlation. In our experiment from Table 9, we duplicated 10%,
25%, 50% and 100% of concepts and added them to the original concept bank. This is a worst-case
representation of “similar concepts”. From the table, we see that the duplication of concepts does
not impact the concept or the task accuracy. Additionally, this experiment contributes to the broader
understanding of how COL performs in various scenarios. We observe that the performance is not
significantly impacted for concept duplication if we add COL.
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10% 25% 50% 100%

Task accuracy CUB 83.9
±0.4

83.7
±0.7

83.2
±0.5

83.4
±0.2

Task accuracy TIL 54.0
±0.7

54.1
±1.1

53.8
±1.2

53.8
±0.1.1

Table 9: Evaluating the robustness of COL loss in the presence of concept correlation. We randomly
duplicate a percentage of the concept bank and evaluated our model Coop-CBM+COL on the CUB
and TIL datasets.

Histogram of concept logits for joint-CBM and coop-CBM To gain further insight into the effect
of COL, we computed histograms of the activations of the penultimate layer (to which the loss is
applied) and saw that the histogram of CBM+COL is very sparse (with a large peak at 0 and a much
smaller one at 1) in contrast to the vanilla CBM.

Figure 3: Concept logits histogram comparison on TIL dataset

Intuition The dissimilarity loss d2 encourages independent concept prediction. This is particularly
important to reduce leakage in CBMs and improve the robustness of concept explanations. For the
connection between entanglement of concept predictions and leakage, we refer the reader to the
introduction section of Havasi et al. [20]. Motivated by this insight, we introduce d2, to encourage
disentanglement of the penultimate layer of features for concept prediction. We agree that this
may result in an overcomplete representation, induced by the opposing forces of d1 and d2 for
samples with partially overlapping concepts, and multiple feature groups may contribute to the
same concept. However, it might be difficult to achieve disentanglement otherwise, and as our
experiments show, COL improves the concept representation and accuracy, including in the out-of-
domain settings. To gain further insight into the effect of COL, we computed histograms of the
activations of the penultimate layer (Figure 3) and see that the histogram of CBM+COL is very
sparse (with a large peak at 0 and a much smaller one at 1) in contrast to the vanilla CBM. This
suggests that COL may encourage learning of an overcomplete sparse feature space, the elements of
which encode various combinations of concepts, and the last layer of f learns to introduce invariance
in the prediction of each concept ci with respect to specific combinations with other concepts cj
by linear combination. Additionally, it must be noted that this regularization is only applied to the
penultimate layer before concept prediction which means low-level features are still free to share
weights. Essentially, we believe COL encourages learning a sparse over-complete dictionary of
features with concepts still partially entangled in different combinations. The concept prediction
layer in f then learns a linear combination of these specialized features to introduce invariance
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with respect to the specific combinations. In fact, when studying histograms of activations of the
penultimate layer, we observe that activations with COL are indeed very sparse in contrast to CBMs
without COL. Given a sparse dictionary of combinations of concepts as induced by COL, the task of
disentanglement of concept prediction would ideally reduce to a linear combination of dictionary
elements. This is the intuition behind sparse coding (see [30]). In our case, the sparsity is induced
indirectly as a result of the orthogonality-based loss formulation. Our experiments show that this
approach significantly facilitates the overall optimization of CBMs, improving concept accuracy and
downstream performance.

C.3 Effect of lambda on COL

We experimented with different loss weights for λ in our experiments and the model+COL seemed to
be fairly robust with different values of λ. We have put those results in Table 5 of the rebuttal PDF on
CUB and TIL datasets. While a fine-tuned value of λ might show good performance, we observe that
regardless, the model is still able to beat the performances of other baselines. We observed that 0.05
set as a good tradeoff between performance and uncertainty across datasets.

Dataset λ=0.05 λ=0.1 λ=0.5 λ=1.0 λ=10.0

CUB 84.1
±0.2

84.1
±0.4

83.8
±0.3

84.0
±0.5

83.6
±0.3

TIL 54.2
±0.9

54.0
±0.8

54.3
±0.6

53.6
±0.8

54.1
±1.0

Table 10: Effect of λ on the coop-CBM+COL model. We observe that the orthogonal loss is fairly
robust to hyperparameter selection.

D Further experiments

D.1 Comparison against models with automated concept acquisition

[38] and [58] used a pre-trained model - CLIP which was trained on a massive corpus of data to obtain
concepts. This can potentially introduce inherent biases from pretraining into the concepts. This was
also brought up in the Limitations and Conclusion section of [58]. Furthermore, the dissimilarity in
the concepts employed in these works adds complexity to establish a fair and meaningful comparison.
Moreover, we wish to emphasize that neither of these works directly compare with CBM variants in
their main paper, except for [58] which appears in Appendix C. Also it is not possible to compare
with realistic medical datasets as CLIP fails to generate meaningful concepts. Regardless, we have
compared both the methods with our method on CUB+OOD datasets and our model outperforms the
accuracy of [38] and [58], which is lower than the standard model. We believe it will be interesting
future to include our model methodology and COL in the respective models.

Model type CUB OOD-CUB corr-CUB

Standard 82.3 27.7 63.3
PCBM 78.4 33.4 62.7
PCBM-h 80.9 32.1 62.9
LF-CBM 81.0 33.8 63.9

Coop-CBM 83.6 35.4 64.6
+ COL 84.1 36.2 64.9

Table 11: Comparison of Posthoc CBM and Label-Free CBM with our proposed methodology.
OOD-CBM refers to Exp 5.1 relating to spurious correlation generalization. Coor-CBM refers to Exp
5.2 relating to image corruption. Unfortunately, Exp 5.3 could not be conducted due to the different
concept bank.
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D.2 Coop-CBM and COL in the presence of sparse concept labels

Concept labeling could be a labor-intensive task and hence it is important to understand the most
optimal point of operation. We randomly select a subset of concepts and train baselines on the subset.
Due to concept and task prediction at the same level, we observe coop-CBM provides inductive bias
for the downstream task.

Model 10% 25% 50% 100%

Standard 82.3
±0.4

82.3
±0.5

82.3
±0.3

82.3
±0.2

Independent CBM [27] 33.6
±0.5

62.0
±0.3

74.7
±0.1

76.0
±0.2

Sequential CBM[27] 45.5
±0.3

62.0
±0.4

74.3
±0.2

76.3
±0.2

Joint CBM[27] 75.2
±0.4

78.5
±0.5

79.6
±0.3

80.1
±0.1

CEM [60] 76.1
±0.5

79.3
±0.2

79.5
±0.1

82.5
±0.2

CBM-AR [20] 73.4
±0.4

77.8
±0.4

79.7
±0.3

81.6
±0.4

Coop-CBM (ours) 81.4
±0.3

82.9
±0.5

83.7
±0.4

83.6
±0.3

+ COL 82.4
±0.4

83.2
±0.3

83.9
±0.5

84.1
±0.2

Table 12: Task accuracy CUB with sparse concept annotations (% - fraction of concepts)

Model 10% 25% 50% 100%

Independent CBM [27] 94.2
±0.2

95.3
±0.1

96.7
±0.3

96.6
±0.0

Sequential CBM[27] 94.2
±0.1

95.3
±0.3

96.7
±0.2

96.6
±0.1

Joint CBM[27] 90.7
±0.3

92.0
±0.2

93.5
±0.1

93.2
±0.1

CEM [60] 93.6
±0.2

93.9
±0.1

94.1
±0.3

94.8
±0.2

CBM-AR [20] 93.1
±0.1

93.7
±0.3

94.0
±0.2

94.2
±0.1

Coop-CBM (ours) 92.5
±0.3

92.9
±0.2

93.6
±0.1

93.9
±0.2

+ COL 96.6
±0.2

96.8
±0.1

97.1
±0.3

97.3
±0.2

Table 13: Concept accuracy CUB with sparse concept annotations (% - fraction of concepts)

Model 10% 25% 50% 100%

Standard 51.1
±1.2

51.1
±0.9

51.1
±0.7

51.1
±0.9

Independent CBM [27] 15.4
±1.3

25.6
±0.8

43.2
±1.1

47.4
±1.0

Sequential CBM[27] 19.8
±0.7

27.9
±1.4

43.9
±1.0

47.9
±0.9

Joint CBM[27] 43.5
±1.5

44.9
±0.6

46.1
±1.2

47.6
±0.7

CEM [60] 46.1
±0.9

47.9
±1.3

49.2
±0.7

51.3
±1.3

CBM-AR [20] 46.1
±1.1

48.8
±0.8

49.2
±1.5

49.5
±1.0

Coop-CBM (ours) 50.3
±1.4

51.7
±0.7

52.8
±1.2

53.4
±0.8

+ COL 51.0
±1.0

52.2
±1.5

53.5
±0.6

54.2
±0.9

Table 14: Task accuracy TIL with sparse concept annotations (% - fraction of concepts)
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Model 10% 25% 50% 100%

Independent CBM [27] 92.3
±0.5

94.5
±0.3

95.7
±0.7

96.4
±0.2

Sequential CBM[27] 92.3
±0.6

94.5
±0.4

95.7
±0.8

96.4
±0.3

Joint CBM[27] 91.7
±0.7

92.3
±0.5

93.2
±0.2

93.9
±0.6

CEM [60] 93.2
±0.8

93.8
±0.6

94.2
±0.3

94.4
±0.7

CBM-AR [20] 93.6
±0.2

93.8
±0.8

94.2
±0.5

94.2
±0.6

Coop-CBM (ours) 93.2
±0.3

93.8
±0.7

93.9
±0.4

94.2
±0.8

+ COL 96.4
±0.4

96.6
±0.2

97.0
±0.6

97.1
±0.5

Table 15: Concept accuracy TIL with sparse concept annotations (% - fraction of concepts)

Model 10% 25% 50% 100%

Standard 96.2
±0.2

96.2
±0.1

96.2
±0.6

96.2
±0.1

Independent CBM [27] 42.4
±0.4

67.6
±0.2

89.4
±0.1

94.9
±0.3

Sequential CBM[27] 52.6
±0.3

71.5
±0.6

91.7
±0.2

94.6
±0.2

Joint CBM[27] 89.2
±0.1

91.8
±0.4

94.0
±0.3

95.4
±0.1

CEM [60] 89.9
±0.6

93.1
±0.3

95.5
±0.1

96.2
±0.1

CBM-AR [20] 91.0
±0.2

92.6
±0.1

93.8
±0.4

95.9
±0.0

Coop-CBM (ours) 92.6
±0.3

94.2
±0.1

96.1
±0.2

96.6
±0.1

+ COL 92.9
±0.1

95.4
±0.1

96.5
±0.3

97.0
±0.6

Table 16: Task accuracy AwA2 with sparse concept annotations (% - fraction of concepts)

Model 10% 25% 50% 100%

Independent CBM [27] 94.7
±0.2

95.8
±0.1

97.3
±0.4

97.7
±0.3

Sequential CBM[27] 94.7
±0.3

95.8
±0.2

97.3
±0.1

97.7
±0.4

Joint CBM[27] 93.1
±0.4

94.2
±0.3

94.8
±0.2

95.2
±0.1

CEM [60] 92.6
±0.1

93.2
±0.4

94.8
±0.3

95.6
±0.2

CBM-AR [20] 93.5
±0.2

93.7
±0.1

95.0
±0.4

95.4
±0.3

Coop-CBM (ours) 93.5
±0.3

94.6
±0.2

95.2
±0.1

95.7
±0.4

+ COL 96.6
±0.4

96.8
±0.3

97.1
±0.2

98.4
±0.1

Table 17: Concept accuracy AwA2 with sparse concept annotations (% - fraction of concepts)
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D.3 Detailed results with image corruptions

Model TIL
1 2 3 4 5 6 7 Avg

Standard 35.5
±1.2

34.7
±1.7

39.3
±1.4

35.7
±1.1

41.6
±1.6

39.9
±1.3

43.9
±1.0

38.4

Independent CBM [27] 32.8
±1.5

31.9
±1.0

39.5
±1.7

34.3
±1.2

40.8
±1.1

32.9
±1.6

43
±1.3

36.6

Sequential CBM[27] 33.0
±1.3

31.6
±1.4

39.9
±1.1

34.6
±1.6

40.2
±1.5

32.4
±1.0

42.9
±1.7

36.3

Joint CBM[27] 33.3
±1.4

32.3
±1.3

41.6
±1.2

38.2
±1.7

41.2
±1.0

33.3
±1.5

39.8
±1.1

37.1

CEM [60] 35.2
±1.1

34.8
±1.6

40.0
±1.5

37.3
±1.0

42.1
±1.7

33.6
±1.2

46.5
±1.3

38.5

CBM-AR [20] 35.4
±1.7

35.1
±1.2

39.7
±1.3

38.4
±1.4

41.6
±1.1

42.8
±1.6

25.6
±1.5

36.8

Coop-CBM (ours) 36.7
±1.0

36.2
±1.7

41.4
±1.2

37.6
±1.3

43.3
±1.4

39.9
±1.1

49.1
±1.6

40.6

+ COL 37.2
±1.6

36.5
±1.5

41.5
±1.0

38.3
±1.7

43.0
±1.2

44.4
±0.9

45.4
±1.0

40.9

Table 18: Comparison of concept-based models on image corruptions on TIL datasets

E Further about interventions

Concept Uncertainty Score

A significant part of the intervention selector constitutes Concept Uncertainty Score (CUS) which
denotes the model uncertainty for the prediction of concepts. We calculate epistemic uncertainty
that arises due to model parameters and lack of training samples. Realistically, labeled medical data
is often scarce, encouraging the application of epistemic uncertainty quantification of the predicted
concepts. We use Monte-Carlo dropout [16] to model epistemic uncertainty, with a random dropout
rate of 0.2. We apply the dropout before the prediction of concepts. For an image xi predicting
concepts ci...cK where K is the total number of concepts, we evaluate T softmax probabilities
{pt}Tt=1 for each concept prediction. We measure the uncertainty for each concept which we refer to
asH(·). We compute the entropy-based uncertainty for each concept as the measure of the expectation
of the information inherited in the possible outcomes of a random variable. Using the uncertainty
metric, we calculate the overall uncertainty concept vectorH.

H(·) = − 1

N

N∑
i=1

(
1

T

T∑
t=1

pg(c|xi) log
1

T

T∑
t=1

pg(c|xi)

)
(9)

Concept Weightage Score

The second part of the intervention selector score is signified by Concept Weightage Score (CWS),
which accounts for the importance of a concept in the final downstream prediction task. Using CWS,
the intervention selector is able to prioritize the concept for intervention that is deemed to change the
final prediction significantly. We define the weightage score as β. The f(y|c) is a linear one-layer
Multi-Layer Perceptron (MLP) which helps in defining β.

βi = ci

N∑
j=1

|wij | (10)

Supervisor Confidence Score

Finally, in the intervention selector, we consider the reliability of the annotator via Supervisor
Confidence Score (SCS). For example, while a histopathologist can identify diseases across human
tissues and organs, they often have more specialized and nuanced areas of focus. It is therefore
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beneficial for the model to request additional information from histopathologists from their expert
knowledge. This in practice prevents ambiguous or inaccurate concept correction. The SCS is a
variable across each annotator and is represented by γ.

Finally, bringing the three desiderata of concept selection for intervention, the final intervention
selector score is a linear combination of all of the scores.

AISelect = k1 ∗

(
1

N

N∑
i=1

(
1

T

T∑
t=1

pg(c|xi) log
1

T

T∑
t=1

pg(c|xi)

))
+ k2 ∗

K∑
i=1

ci

N∑
j=1

|wij |+ k3 ∗ γ

(11)
where k1, k2, k3 are hyperparameters for importance weightage on each of the scores.

Intervention allows the model to query the most significant concepts. In our case, it is hypothesized
that the most uncertain concepts will build a symbiotic relationship between the human and the model.
The supervisor decides the threshold Ith to correct the concept prediction. Realistically, in medical
scenarios, due to the professional’s limited availability, we would like to optimize the number of
concepts to intervene. Setting a lower threshold is a trade-off decided by the user. In contrast to
other works that perform group interventions [27] by intervening on a group of similar concepts,
we perform single interventions. Group interventions require clustering of concepts on the basis of
their similarity2, which is not realistic as such information is not always available. Therefore, single
interventions are performed to minimize the dependence on human priors.

Algorithm 1 Intervention selector Pseudocode
X ← input image
c1...cn ← n intermediary concepts
Y ← label
g ← Image to concept prediction model
f ← Concept to label prediction model
c1...cn = g(X)
for i = 1, 2, . . . , n do
Hi = CUS(ci)
βi = CWS(ci)
γi = SCS(ci)
ĉi = k1 ∗ Hi + k2 ∗ βi + k3 ∗ γi

end for
ĉ1...ĉthr...ĉn ← threshold
c̄1...c̄thr ← intervene on threshold valued
Y ′ = f(c̄1...c̄n)

F Example of OOD data

Figure 6: L: example from trainset, M: example from in-domain testset, R: example from out-domain
testset from spurious background correlation CUB synthetic dataset, class - Black Footed Albatross

2This similarity metric is pre-defined by humans
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Figure 4: Interventions on Joint CBM in the presence of image corruptions on CUB dataset

Figure 5: Interventions on Joint CBM in the presence of image corruptions on CUB dataset

G Limitations and Future Work

In this work, we proposed a novel concept-based approach, coop-CBM, to enhance the interpretability
and accuracy trade-off in AI models. We introduced the Concept Orthogonal Loss (COL) to improve
concept learning and employed Coop-CBM on various datasets and evaluation scenarios. Our results
demonstrated superior generalization, robustness to spurious correlations, and advancements in the
accuracy-interpretability trade-off.

While our proposed approach has shown promising results and made significant contributions, it
is important to recognize certain limitations. Firstly, the reliance on labeled concept vectors poses
challenges in domains where concept annotations are limited or costly to acquire. Furthermore,
current concept annotation methods suffer from biases and a lack of domain knowledge, indicating
the need for further improvements in this area. Our work does not address unsupervised concept
acquisition methods, but instead focuses on a model architecture that can be applied regardless of the
concept acquisition approach.

While our concept-based approach offers interpretability, it assumes that the learned concepts align
closely with human-understandable notions. However, there is a possibility that the learned concepts
may not always perfectly align with the intended interpretations, which can pose challenges in terms
of comprehensibility and explainability. Future research could delve deeper into understanding
explanations and their alignment with human understanding, thereby exploring ways to improve the
fidelity of concept-based models in providing accurate and meaningful explanations. Future research
could aim to incorporate additional evaluation metrics that assess the transparency, fairness, and
robustness aspects of concept-based models.
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Overall, while our approach shows promising results and addresses important concerns in the field of
explainable AI, it is important to be aware of these limitations and continue advancing research to
overcome them and further enhance the applicability and reliability of concept-based models.
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