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Abstract

Contextual decision-making problems have witnessed extensive applications in
various fields such as online content recommendation, personalized healthcare, and
autonomous vehicles, where a core practical challenge is to select a suitable surro-
gate model for capturing unknown complicated reward functions. It is often the
case that both high approximation accuracy and explicit uncertainty quantification
are desired. In this work, we propose a neural network-accompanied Gaussian
process (NN-AGP) model, which leverages neural networks to approximate the
unknown and potentially complicated reward function regarding the contextual
variable, and maintains a Gaussian process metamodel with respect to the decision
variable. Our model is shown to outperform existing approaches by offering better
approximation accuracy thanks to the use of neural networks and possessing ex-
plicit uncertainty quantification from the Gaussian process. We also analyze the
maximum information gain of the NN-AGP model and prove regret bounds for the
corresponding algorithms. Moreover, we conduct experiments on both synthetic
and practical problems, illustrating the effectiveness of our approach.

1 Introduction

Various applications, including online content recommendation [1], healthcare [37, 15, 36], and
autonomous vehicles [7], demand the sequential selection of a decision variable, conditional on
the observed contextual variable representing the state of the environment in each round. These
applications can generally be framed as contextual bandit problems [5, 59, 63, 2], especially when
the reward function associated with each pair of decision and contextual variables is unknown. When
both the decision and contextual variables are drawn from continuous sets, a significant challenge
is selecting an appropriate surrogate model to approximate the reward function, considering both
approximation accuracy and uncertainty quantification. A common approach to alleviate this issue
is to employ a Gaussian process (GP) to model the reward function [61, 46], yielding the GP
bandit method [80, 81]. Indeed, GP has proven to be an effective surrogate model to address the
exploration-exploitation trade-off in estimating the unknown function while optimizing over it; see
[88, 75, 90, 43, 51]. On the other hand, most of the existing GP bandit literature does not take the
exogenous contextual variable into consideration, despite its critical role in capturing effects beyond
the decision variable that influence the reward – effects that are integral to many of the applications
previously mentioned [50, 62]. When the contextual variable is included in GP bandit problems,
previous work largely adopts a GP to jointly model the reward function with both contextual and
decision variables, employing a composite kernel that is either the sum or product of two separate
kernels; see [57, 9].

While GP-based bandit methods have proven effective in various applications [3, 8, 92, 93, 86, 6],
they may fall short in scenarios where the reward function exhibits intricate dependence on complex
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contextual variables, for example, time-varying rewards [13, 31] and graph-structured contextual
variables [71]. Specifically, it is a challenge to pre-define an appropriate composite kernel function
for the joint GP, which is critical for the performance of the corresponding bandit algorithms, as
documented by [21, 82]. Neural networks (NN), on the other hand, have been utilized elsewhere as
surrogate models for the reward function in bandit problems [16, 54, 55], thanks to their flexibility
and strong approximation power. However, they bring their own set of challenges. The “black-box"
nature of the neural network hinders explicit uncertainty quantification and complicates theoretical
analysis of the associated algorithms. In particular, the acquisition functions guiding point selection in
these algorithms necessitate an approximation of uncertainty [99, 54]. Although this approximation
tends to be accurate when the NN’s width is large, this can also lead to overparameterization.

Contribution. This paper proposes a neural network-accompanied Gaussian process (NN-AGP)
model for solving contextual bandit problems, especially when the reward functions have intricate
dependence on complex contextual variables. The proposed model is an inner product of a neural
network and a multi-output GP, where the neural network captures the dependence of the reward
function on the contextual variables, and the GP is employed to model the mapping from the
decision variable to the reward. Our model generates a joint GP with both contextual and decision
variables, which outperforms the existing GP-based bandit methods by specifying the data-driven
kernel function through the lens of neural networks, thereby leading to an accurate approximation
for the reward function. Moreover, compared with entirely relying on NN’s, our model stands out
due to the explicit GP expression with respect to the decision variable. This feature enables bandit
algorithms with NN-AGP to be implemented efficiently with existing GP-based acquisition functions
and provides a theoretical guarantee of the regret bounds. Our main contributions can be summarized
as follows:

1. We propose an NN-AGP model and its upper confidence bound (UCB) algorithm for
contextual bandit problems, referred to as NN-AGP-UCB. Our algorithm offers a data-
driven procedure to specify the kernel functions of the joint GP, thereby achieving superior
accuracy and model flexibility. We also prove the upper bound for both the maximum
information gain of the NN-AGP model and the regret of the NN-AGP-UCB algorithm.

2. We conduct the experiments to evaluate our approach for complex reward functions, in-
cluding those with time-varying dependence on sequenced and graph-structured contextual
variables. Experimental results demonstrate the superiority of our approach over existing
approaches that entirely rely on either GP or NN.

1.1 Related work

Since the seminal work by [80], the Gaussian process (GP) bandit problem has been extensively
studied, where the bandit feedback is modeled as a GP regarding the decision variable (arms to be
pulled). Some recent work includes [35, 32, 13, 12, 11, 18, 65]. In addition, GP bandits are also
related to Bayesian optimization (BO) problems [38, 19, 94, 39, 34, 28, 85, 52, 23], where both
problems consider optimizing black-box functions and therefore require surrogate models (GP in
particular). When the number of decision variables is finite, the black-box optimization problem is
also known as Ranking & Selection (R&S) [44, 73, 70, 4, 87], where GP models are widely employed
as well; see [20, 58, 79, 64]. Our NN-AGP model can also be employed in (contextual) BO or R&S,
but the discussion is beyond the scope of this work.

In this work, we specifically take the exogenous contextual variables into consideration. Previous
work employs multiplicative and additive kernels to incorporate continuous context spaces into the
scalar GP; see [57]. Other work considers safe contextual Bayesian optimization, employing a similar
strategy to construct composite kernels; see [41, 9]. Another line of research explores distributionally
robust BO [56, 83, 53], where the contextual variable distribution is selected from an ambiguity set.
The methodology of representing the objective function using a joint GP has also been widely used in
contextual policy search; see [72, 21, 40].

The connection between GP and NN has been explored in [60, 68], documenting that NN’s with
infinite width approach a GP model when the weight parameters are assigned with Gaussian priors.
In addition, deep GP’s have been proposed to enhance the model flexibility of neural networks
where variational inference is employed; see [27, 26, 91]. GP models in which the parameters are
represented by neural networks are studied in [98, 97].
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2 Main procedure

We consider a problem of sequentially selecting a system’s input variable (decision variable) for T
(not necessarily known a priori) rounds. In each round, we receive a contextual variable θt ∈ Θ ⊂ Rd′

from a set Θ, and select a decision variable xt ∈ X ⊂ Rd from a set X of decisions. We then receive
an observation

yt = f(xt;θt) + ϵt,

where f(x;θ) is the reward (objective) function and ϵt
i.i.d.∼ N (0, σ2

ϵ ) denotes the noise that is
independent of both the contextual variables and decision variables. We consider the scenarios when
both Θ and X are continuous and θt’s are fully exogenous. That is, the selection of the decision
variable in each round does not influence the future contextual variables. Although we focus on
unconstrained problems in this work, our proposed model can be employed to approximate the
constraints in optimization problems as well; see [9]. We also note that, for the description and
discussion of our approach, the contextual variable is represented by a vector. However, we show
through experiments in Section 4 that our approach is applicable to contextual variables with other
structures.

Since f(x,θ) is unknown, we will not generally be able to choose the optimal action, and will thus
incur regret rt = supx′∈X f (x

′,θt) − f (xt,θt) , indicating the difference between the optimal
reward and the reward we actually receive in each round. After T rounds, the cumulative regret is
RT =

∑T
t=1 rt. Our goal is to develop an algorithm that achieves sub-linear contextual regret, i.e.,

RT /T → 0 for T → ∞, which requires a statistical model of the reward function with respect to
both context variables and decision variables.

We specifically consider a reward function in the form

f(x;θ) = g(θ)⊤p(x), (1)

where g(θ) and p(x) are both m-dimensional vector-valued (unknown) functions, and m ∈ N is
a user-selected quantity to indicate the complexity of the function. There are two main reasons
for considering this reward function. First, this formulation is a generalization of linear contextual
bandits, where the reward function is the inner product of the contextual variables and the unknown
parameters. Here, we assume that the inner product is taken with two vector-valued functions with
respect to decision variables and the contextual variable, which is similar in spirit to [24, 96, 42, 100].
Second, this reward function is consistent with the tensor-product approximation of a general function;
see [29, 30, 47]. Therefore, further analysis on model mis-specification of the reward function can be
supported by existing results of tensor-product approximation.

In this work, we specifically assume that g(θ) is a vector-valued deterministic mapping from Rd′

to Rm, represented by a neural network with a given structure and some weight parameter W. In
addition, p(x) is a multi-output Gaussian process (MGP) defined on X ⊂ Rd. The MGP model is a
generalization of the scalar-valued GP, where the output p(x) at each x is an m-dimensional vector.
The MGP model captures not only the dependence between two outputs but also the dependence
between different entries of each output. Thus, the covariance of an MGP p(x) is represented by a
matrix-valued covariance function, denoted by K (x,x′), and the vector of parameters involved in
the MGP is denoted by Φ. We postpone the detailed description of the NN-AGP model to Section 3.1
and conclude our brief introduction of NN-AGP with an associated proposition, which follows easily
from the fact that the normal distribution is preserved under linear transformations.

Proposition 1. The reward function f(x;θ) is a scalar-valued mean-zero Gaussian process with
respect to x and θ. The kernel function of this Gaussian process is

K̃ ((x,θ) , (x′,θ′)) = g(θ)⊤K (x,x′) g(θ′),

where K (x,x′) is the covariance of the MGP.

Next, we provide a bandit algorithm with the NN-AGP model, during which the surrogate
model is sequentially learned from data. We name the algorithm neural network-accompanied
Gaussian process upper confidence bound (NN-AGP-UCB). Suppose we are now in round t
and observe the contextual variable θt. In addition, we also have the historic data Dt−1 =
{(θ1,x1, y1) , (θ2,x2, y2) , . . . , (θt−1,xt−1, yt−1)} in hand. Denote by yt−1 = (y1, y2, . . . , yt−1)
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the vector of observations. The selection of the next decision variable xt depends on the posterior
distribution of the reward function, which isf(x;θt) | Dt−1 ∼ N

(
µt−1 (x;θt) , σ

2
t−1 (x;θt)

)
. Here

µt−1 (x;θt) =K̃⊤
(x;θt)

[
K̃Dt−1

+ σ2
ϵ It−1

]−1

yt−1,

σ2
t−1 (x;θt) =g(θt)

⊤K (x,x) g(θt)− K̃⊤
(x;θt)

[
K̃Dt−1 + σ2

ϵ It−1

]−1

K̃(x;θt),

(2)

where K̃(x;θt) denotes the covariance vector between f (x;θt) and {f (xτ ;θτ )}t−1
τ=1. In addition, for

the (t− 1)× (t− 1)-dimensional covariance matrix for historical data K̃Dt−1
, the (i, j)-th entry is

g(θi)
⊤K (xi,xj) g(θj) as in Proposition 1. The required parameters in (2), including the weight

parameters W of the neural network g(θ), the parameters Φ involved in the MGP p(x) and the
variance σ2

ϵ of the noise ϵt, are all learned and updated with the observations through (5), which we
will discuss in Section 3.1.

In terms of the acquisition function (the function that decides the decision variable in the following it-
eration), we employ the contextual Gaussian process-upper confidence bound (CGP-UCB) introduced
in [57]. That is, we decide xt as

xt = argmax
x∈X

{
µt−1 (x;θt) + β

1/2
t σt−1 (x;θt)

}
, (3)

where µt−1 (x;θt) and σt−1 (x;θt) are the posterior mean and standard deviation of f (x;θt) as
calculated in (2). The optimization problem (3) can be solved efficiently by global search heuristics,
as suggested in [17]. In addition, βt is a user-selected hyper-parameter in each round, addressing the
exploration-exploitation trade-off; see discussions in Section 3.2. The procedure for NN-AGP-UCB
is summarized in Algorithm 1. We note that other commonly selected acquisition functions for
GP bandit problems or Bayesian optimization can be employed with NN-AGP as well, including
knowledge gradient [76, 89, 33] and Thompson sampling [25, 74]. We postpone the discussion of
these acquisition functions to the supplements.

Algorithm 1 NN-AGP-UCB
Input: Initial values of

(
W,Φ, σ2

ϵ

)
;

for t = 1, 2, . . . , T do
Observe the contextual variable θt;
Choose xt = argmaxx∈X

{
µt−1 (x;θt) + β

1/2
t σt−1 (x;θt)

}
;

Sample yt at (θt,xt);
Update

(
Ŵt, Φ̂t,

ˆσ2
ϵ;t

)
as in (5) ;

end for

3 Statistical properties

3.1 Specification of NN-AGP

We describe the NN-AGP model here, which is employed as the surrogate for the reward function.
Recall that the reward function with the pair of contextual and decision variables (θ,x) is f(x;θ) =
g(θ)⊤p(x), where g(θ) is a vector-valued neural network (with weight parameters W) from Rd′

to
Rm and p(x) is an m-dimensional output Gaussian process defined on X ⊂ Rd. To be more specific,
the m outputs p = (p1, . . . ,pm)

⊤ are assumed to follow a multi-output Gaussian process (MGP) as

p(x) ∼ MGP (0,K (x,x′)) .

Here, K (x,x′) denotes the covariance matrix of p(x) and p (x′), defined as K (x,x′)
.
= K11 (x,x

′) · · · K1m (x,x′)
...

. . .
...

Km1 (x,x
′) · · · Kmm (x,x′)

 which is positive and semi-definite. The (l, l′)-th entry

Kll′ (x,x
′) represents the covariance (similarity) between outputs pl(x) and pl′ (x

′). The NN-AGP
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model results in a scalar-valued Gaussian process with both the contextual and decision variables and
therefore facilitates explicit acquisition functions and theoretical analysis. This GP representation
arises from the linear structure between the MGP and the mapping g(θ).

To specify the covariance matrix, we adopt the collaborative multi-output Gaussian process model
[69] as a representative, which generalizes the commonly-used linear model of coregionalization
(LMC) and the intrinsic coregionalization model (ICM); see [67]. That is, the MGP is determined by
the linear transformation of multiple independent scalar-valued Gaussian processes as

pl(x) =

Q∑
q=1

al,quq(x) + vl(x). (4)

Here, pl(x) is the l-th element of p(x), Q is the number of involved GP’s, {uq(x)}Qq=1 and
{vl (x)}ml=1 are independent scalar-valued GP’s, and the al,q’s are coefficient parameters. In
this way, the correlation between different entries in the MGP p(x) is captured by {uq(x)}Qq=1

through the al,q’s. Morever, vl (x) represents specific independent features of pl(x) itself, for
l = 1, 2, . . . ,m. Suppose the kernel functions of the uq(x)’s and vl(x)’s are kq (x,x′)’s and
k̃l (x,x

′)’s and all these kernel functions are less than or equal to one, as is regularly assumed
[80, 81, 57]. Then the matrix-valued kernel function of p(x) is K (x,x′) =

∑Q
q=1 Aqkq (x,x

′) +

Diag
{
k̃1 (x,x

′) , . . . , k̃m (x,x′)
}
. Here, Aq denotes the semi-definite matrix in which the (l, l′)-th

entry is al,qal′,q . In some applications, the parameters involved in the kernel functions kq (x,x′) and
k̃l (x,x

′), and the coefficients al,q’s are not known in advance. We denote these unknown parameters
and coefficients in the MGP as Φ. In addition to the model (4), other types of MGP’s can be employed
in our methodology as well [14], while the selection of model (4) enables the theoretical analysis of
our approach.

In terms of the mapping g(θ), since we have no prior knowledge, we select the neural network
as the surrogate model, due to 1) its strong approximation power for intricate dependence on
complex variables; 2) its flexibility of adaptation to different application scenarios (e.g. time-series or
graph-structured contextual variables) and 3) the availability of fruitful methods and tools for the
training procedure. Given the data Dt = {(θ1,x1, y1) , (θ2,x2, y2) , . . . , (θt,xt, yt)} , the learning
of unknown parameters in the MGP and the weight parameters in the neural network (as well as the
noise variance) is through maximum likelihood estimation (MLE). That is(

Ŵt, Φ̂t,
ˆσ2
ϵ;t

)
= arg max

(W,Φ,σ2
ϵ )
Lt

(
W,Φ, σ2

ϵ

)
, (5)

where the (normalized) likelihood function is Lt = − ln
[∣∣∣K̃Dt + σ2

ϵ It

∣∣∣]− y⊤
t

[
K̃Dt + σ2

ϵ It

]−1

yt.

Here, yt = (y1, y2, . . . , yt) is the vector of observations and K̃Dt is the covariance matrix of the
data Dt. The parameters W and Φ are contained in this covariance matrix. That is, instead of
pre-defining a kernel function of the GP, the kernel function of NN-AGP is specified through learning
the neural network from the data, yielding better approximation accuracy. We include a discussion of
the consistency of training NN-AGP in the supplements.

3.2 Cumulative regret

Recall that the cumulative regret is defined as RT =
∑T

t=1 {supx′∈X f (x
′,θt)− f (xt,θt)}. Here

we provide an upper bound of RT with NN-AGP-UCB.

Theorem 1. Suppose δ ∈ (0, 1) and the following.

1. The decision variable x ∈ X ⊆ [0, r]d and X is convex and compact. The contextual
variable θ ∈ Θ ⊆ Rd′

and Θ is convex and compact; g(θ) is a known continuous mapping
of θ ∈ Θ; p(x) is sampled from a known MGP prior as in (4) and the variance of the noise
σ2
ϵ is known. That is, these parameters do not need learning and updating from data.
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2. For the components of the MGP, there exist constants {aq}Qq=1 , {bq}
Q
q=1 , {ãl}

m
l=1 ,

{
b̃l

}m

l=1
satisfying

P
{
sup
x∈X

∣∣∣∣∂uq(x)∂xj

∣∣∣∣ > Lq

}
⩽ aqe

−(Lq/bq)
2

;P
{
sup
x∈X

∣∣∣∣∂vl(x)∂xj

∣∣∣∣ > L̃l

}
⩽ ãle

−(L̃l/b̃l)
2

(6)

∀Lq, L̃l > 0 and ∀j = 1, 2, . . . , d, q = 1, 2, . . . , Q and l = 1, 2, . . . ,m.
3. We choose as a hyper-parameter in (3)

βt = 2 log
(
t22π2/(3δ)

)
+ 2d log

(
M̃t2dbr

√
log(4da/δ)

)
,

where d and r are the dimension and the upper bound of the decision
variable, a =

∑Q
q=1 aq +

∑m
l=1 ãl, b =

∑Q
q=1 bq +

∑m
l=1 b̃l, M̃ =

supθ∈Θ

{
{|
∑m

l=1 gl(θ)al,q|}
Q

q=1
, {|gl(θ)|}ml=1

}
, where gl denotes the l-th entry of g(θ).

Then the cumulative regret is bounded with high probability as

P

{
RT ⩽

√
8CTβT γT

log
(
1 + Cσ−2

ϵ

) + π2

6
, ∀T ⩾ 1

}
⩾ 1− δ.

Here C =
((∑Q

q=1

∑m
l=1 a

2
l,q

)
+ 1
)
supθ∈Θ ∥g(θ)∥22. In addition, γT is the maximum information

gain associated with the NN-AGP f(x;θ), defined by (7).

We postpone the discussion of the maximum information gain γT to Section 3.3, with some specific
kernels employed in the MGP component of the NN-AGP model. We note that GP’s with commonly-
selected kernel functions, including the Matérn kernel and the radial basis function kernel, satisfy
the condition (6) and further discussions can be found in Theorem 5 in [45]. A detailed proof of
Theorem 1 is contained in the supplements. Note that Theorem 1 assumes that g(θ) is exactly known
so does not consider the error of approximating g(θ) with the neural networks. In the supplements,
we include a detailed discussion of the algorithm that considers the neural network approximation
error, as well as the corresponding regret bounds.

At the end of this section, we compare our regret bound with existing work. Specifically, NN-AGP-
UCB has the same bound of Õ

(√
TγT

)
as CGP-UCB, but is superior when the contextual variable

dimension is high; see details in the supplements. In terms of the algorithms which entirely rely
on NN, we note that NeuralUCB [99], Neural TS [98], and Neural LinUCB [95] all consider the
scenarios when the decision variable x is selected from a finite set. In comparison, we consider that x
is selected from a continuous set. When performed on a finite feasible set X , our NN-AGP-UCB also
has a regret bound of Õ

(√
TγT

)
, where the maximum information gain γT further depends on the

kernel function of the GP component used in NN-AGP. When the kernel function has an exponential
eigendecay (see Definition 1), NN-AGP-UCB has a regret bound of Õ

(√
T
)

, matching the regret
bound of NeuralUCB, Neural TS and Neural LinUCB as well.

3.3 Maximum information gain

In this section, we discuss the information gain γT of the proposed NN-AGP model. The maximum
information gain is defined as

γT = sup
{(θt,xt)}T

t=1⊆Θ×X
I (yT ; fT ) , (7)

where fT is the reward function evaluated at {(θt,xt)}Tt=1; yT denotes the observations;
I (yT ; fT ) = H (yT ) − H (yT | fT ) is the mutual information between yT and fT ; H( · ) =
E[− log p( · )] is the entropy of a random element, where p is the probability density function.

For ease of notation, here we consider the scenario when Q = 1 and there is no {vl(x)} in the
MGP defined in (4), i.e., pl(x) = alu(x). We also impose more variability so that A = A1 is a
semi-definite positive matrix and not necessarily a rank-one matrix, analogous to [14]. We provide a
more general discussion of the maximum information gain of the NN-AGP in the supplements. We
first provide a proposition on the kernel function.
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Proposition 2. When Q = 1 and there is no {vl(x)} in the MGP, the kernel function of the NN-
AGP is a product of two kernel functions. That is K̃ ((x,θ), (x′,θ′)) = k̃(θ,θ′)k(x,x′), where
k̃(θ,θ′) = g(θ)⊤Ag(θ) is a finite rank kernel with respect to θ. Furthermore, suppose that both Θ
and X are compact, g(θ) is a continuous mapping and k (x,x′) is a semi-definite kernel function.
Then the kernel function K̃ ((x,θ), (x′,θ′)) possesses a Mercer decomposition:

K̃ ((x,θ), (x′,θ′)) =

∞∑
j=1

m∑
i=1

µiλjϕi (θ)ψj (x)ϕi (θ
′)ψj (x

′) .

Here, {(µi, ϕi)}mi=1 and {(λj , ψj)}mj=1 are the Mercer decompositions for k̃ (θ,θ′) and k (x,x′).

That is, k̃ (θ,θ′) =
∑m

i=1 µiϕi(θ)ϕi (θ
′) , k (x,x′) =

∑∞
j=1 λjψj (x)ψj (x

′) , where the eigenval-
ues are µ1 ⩾ µ2 ⩾ . . . ⩾ µm ⩾ 0 and λ1 ⩾ λ2 ⩾ . . . ⩾ 0.

With the Mercer decomposition of the NN-AGP kernel function, we provide the bound of the
maximum information gain. Specifically, we consider two scenarios for the employed kernel in the
MGP, analogous to [22, 84].
Definition 1. Consider the eigenvalues {λj}∞j=1 of the kernel function k (x,x′) in decreasing order.

• For some Cp > 0, αp > 1, k is said to have a (Cp, αp) polynomial eigendecay, if for all
j ∈ N, we have λj ⩽ Cpj

−αp . An example is the Matérn kernel.
• For some Ce,1, Ce,2, αe > 0, k is said to have a (Ce,1, Ce,2, αe) exponential eigendecay, if

for all j ∈ N, we have λj ⩽ Ce,1 exp (−Ce,2j
αe). An example is the radial basis function

kernel.
Theorem 2. Suppose that 1) K̃ ((x,θ), (x′,θ′)) satisfies the conditions in Proposition 2; 2) ∀x,x′ ∈
X , |k (x,x′)| ⩽ k̄ for some k̄ > 0 and 3) ∀j ∈ N,∀x ∈ X , |ψj(x)| ⩽ ψ, for some ψ > 0. If k (x,x′)
has a (Cp, αp) polynomial eigendecay, then

γT ⩽ m

( µ̄ϕ2ψ2CpT

σ2
ϵ

log−1

(
1 +

¯̃
kk̄T

mσ2
ϵ

)) 1
αp

+ 1

 log

(
1 +

¯̃
kk̄T

mσ2
ϵ

)
.

If k (x,x′) has a (Ce,1, Ce,2, αe) exponential eigendecay, then

γT ⩽ m

((
2

Ce,2
(log(T ) + Cαe

)

) 1
αe

+ 1

)
log

(
1 +

¯̃
kk̄T

mσ2
ϵ

)
,

where

Cαe =


log

(
Ce,1mµ̄ϕ

2ψ2

σ2
ϵCe,2

)
if αe = 1

log

(
2Ce,1mµ̄ϕ

2ψ2

σ2
ϵαeCe,2

)
+

(
1

αe
− 1

)(
log

(
2

Ce,2

(
1

αe
− 1

))
− 1

)
otherwise.

Here, µ̄ = 1
m

∑m
i=1 µi denotes the mean of the eigenvalues of the kernel function k̃ (θ,θ′); ¯̃

k =

supθ,θ′∈Θ

∣∣∣k̃ (θ,θ′)
∣∣∣ and ϕ = supθ∈Θ |ϕ(θ)|. Moreover, the maximum information gain of the

NN-AGP is O (mγx;T ), where γx;T is the maximum information of k (x,x′).

A more detailed discussion of the Mercer decomposition of NN-AGP is contained in the supplements,
as well as the proofs of Proposition 2 and Theorem 2. At the end of this section, we compare
our results on maximum information gain with [57]. For the composite kernel that is a product
of two kernels, the upper bound is (d+ d′) γx;T + (d+ d′) log T . Here, γx;T is the maximum
information gain of the kernel function with the decision variable, and d′ and d are the dimensions
of the contextual variable and the decision variable. That is, the information gain (as well as the
cumulative regret) increases as the dimension of the contextual variable increases. In comparison, the
maximum information in Theorem 2 does not depend on d′. Thus, the NN-AGP model has lower
cumulative regret than the classical strategy in [57] when the dimension of the contextual variable is
relatively high.
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4 Experiments

In this section, we conduct experiments to show the practicality of our neural network-accompanied
Gaussian process upper bound confidence (NN-AGP-UCB) approach. We apply different neural
networks to different problems, including the fully-connected neural network (FCN) [77] to a synthetic
reward function, the long short-term memory (LSTM) [48] neural network to a queuing problem
with time sequence contextual variables, and the graph convolutional neural network (GCN) [78] to
a pricing problem with diffusion networks. We add a noise ϵt

i.i.d.∼ N (0, 0.01) to the ground-truth
value of the reward in the first set of experiments. For the latter two sets of experiments, the reward is
generated by stochastic simulation (and therefore is “black-box” with contextual/decision variables)
and we postpone the description of the full dynamic to the supplements. We also provide additional
experiments in the supplements, including 1) sensitivity on the structure of reward functions; 2)
comparison with contextual variables possessing different dimensions; 3) regression tasks on complex
functions and 4) finite decision/contextual variables with real data.

The baseline approaches includes CGP-UCB [57], NeuralUCB [99] and NN-UCB [54]. The experi-
ment results provided are mean performances based on repeating the experiments 15 times. Standard
deviations (represented by a shadow associated with the mean-value line) are also included. In each
iteration, the exogenous contextual variable θt is randomly selected from Θ with equal probability. In
terms of the initialization, we randomly select decision variables independently of observed contextual
variables for each approach in the first 20 iterations to attain surrogates. The specific description of
the employed surrogate model in each approach is postponed to the supplements.

4.1 Synthetic reward function

In this section, we consider two synthetic reward functions

R1(x,θ) = −
√

|sin (∥x∥)θ3 exp (cos (∥x∥+ ∥θ∥))|;

R2(x,θ) = −
√

|sin(∥x∥)x3 exp(∥x∥+ cos(∥θ∥))|.

For NN-AGP-UCB, we consider m = 2, 3, 5 to study the effects of model selection on the algorithm
performance. For CGP-UCB, we consider both additive kernels and multiplicative kernels. Because
both NeuralUCB and NN-UCB are designed for contextual bandits with finite arms, we adapt them to
the problem we consider in Section 2 and postpone the details to the supplements. The experimental
results of the average regret RT /T are illustrated in Figure 1 and Figure 2, which provide the
following insights. 1. Comparison with baseline approaches. For both reward functions, NN-AGP-
UCB outperforms both the CGP-UCB and NN-based approaches. The advantage comes from 1)
strong approximation power regarding θ due to NN and 2) explicit inference regarding x due to GP.
2. Effects of the dimension m. Generally, when m increases, the model flexibility increases, and
the regret might be smaller, although this improvement might not be significant in some scenarios.
Furthermore, a relatively large m might result in overparameterization especially when there are not
enough iterations. A suggested selection of m is ⌈d/3 + d′/10⌉+ 3 considering both the algorithm
performance and training complexity of models. 3. Breaking the linear assumption. Recall that we
assume the reward function is of the form of R (x;θ) = g(θ)⊤p (x). However, the reward functions
here break this linear assumption and yet our NN-AGP-UCB is still applicable and outperforms the
baseline approaches. Moreover, additional experiments show that NN-AGP 1) is not sensitive on
the structure of the reward functions; 2) has a greater advantage with higher-dimensional contextual
variables and 3) achieves better approximation accuracy for complex functions, compared with a joint
GP with composite kernels; see the supplements for details. In addition, when the dimension of the
input increases, the uncertainty of the regret will increase as well; see Figures 1 & 2 for comparison.
We also include the recorded computational time of these bandit algorithms in the supplements.

4.2 Queuing problem with time sequence contextual variables

In this section, we show through experiments that the NN-AGP model is applicable to contextual GP
bandits when the objective function depends on the sequence of the contextual variables. That is, the
reward function at time t can be approximated by

ft (x;θ1,θ2, . . . ,θt) ≈ gt (θ1,θ2, . . . ,θt)
⊤ p(x).
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Figure 1: Average regret of using R1(x;θ)
with X = [−1, 1]2 and Θ = [−1, 1]3.

Figure 2: Average regret of using R2(x;θ)
with X = [−1, 1]5 and Θ = [−1, 1]15.

Here, gt (θ1,θ2, . . . ,θt) is modeled by an LSTM neural network. We consider a discrete-time
queuing problem. In each time epoch, a contextual variable is first revealed. For example, the
contextual variable might includes traffic and weather conditions that affect the arrival process of
the queuing system. The number of customers arriving at this epoch depends on the entire sequence
of the revealed contextual variables up to now. The agent decides the service rate of the server and
the service price for customers (decision variables). The reward function (might be negative) is the
expected net income (the income brought by serving customers minus the service cost and penalty
for losing customers). We let X = [0, 5]2 and sample θt from multivariate normal distributions. We
present the cumulative rewards in Figure 3 and Figure 4 of NN-AGP-UCB with LSTM. The baseline
CGP-UCB adopts both additive and multiplicative kernels with the current contextual variable. We
also apply kernel functions specifically designed for time series [10] to construct the composite
kernel. Experimental results indicate that 1) employing a specific time series kernel enhances the
performance of CGP-UCB and 2) NN-AGP-UCB with LSTM outperforms the classical CGP-UCB
approaches with different composite kernels.

Figure 3: Cumulative rewards for a queuing
problem with θt

i.i.d.∼ N (0, I3).
Figure 4: Cumulative rewards for a queuing
problem with θt

i.i.d.∼ N (0, I10).

4.3 Pricing with diffusion network

In this section, we show the NN-AGP model is applicable to contextual GP bandits with graph-
structured contextual variables. That is, the contextual variable is summarized by a network structure

θt = (Vt, Et) ,

where Vt denotes the set of nodes and Et denotes the set of directed/undirected edges of a network.
To approximate g(θ) with a graph-structured contextual variable, we apply the GCN model. We
consider a pricing problem with a diffusion network, where each node represents a user who decides
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to adopt a service or not and the edge between two nodes indicates whether the choices of these two
users influence each other. In each iteration, the network structure θt is first presented, and then the
agent decides the price of the service. The reward function is the expected income for the service
adoption from the users. The detailed description can be found in [66]. We let X = [0, 30] and θt
represents an undirected graph with 5 and 10 nodes where each edge exists with probability 1/2. We
present the cumulative rewards in Figure 5 and Figure 6 of NN-AGP-UCB with GCN. The baseline
CGP-UCB adopts both additive and multiplicative kernels and in terms of the contextual variable, we
consider 1) vectorizing the adjacency matrix that summarizes the network structure and 2) applying
kernel functions that are specifically designed for graphs [49]. Experimental results indicate that
NN-AGP-UCB with GCN outperforms the classical CGP-UCB approach adopting different kernels,
and the advantages become greater for networks with more nodes.

Figure 5: Cumulative rewards with a
5-node network diffusion problem.

Figure 6: Cumulative rewards with a
10-node network diffusion problem.

5 Conclusion & impact

We propose a neural network accompanied Gaussian process (NN-AGP) model to address contextual
GP bandit problems. The advantages of our approach include 1) flexibility of employing different
neural networks appropriate for applications with diverse structures of contextual information; 2) ap-
proximation accuracy for the reward function and better performance on cumulative rewards/regrets;
3) tractability of a GP representation regarding the decision variable, thus supporting explicit uncer-
tainty quantification and theoretical analysis. Our approach has potential application to healthcare,
where doctors need to develop therapy plans based on patient information to achieve optimal treat-
ment effects. When complex and sparse genetic information is employed, it necessitates the use of
neural networks. Another potential application is for Automated Guided Vehicles (AGVs) to enhance
workplace safety and reduce carbon emissions, where environmental information is provided to the
AGV, and the AGV takes actions accordingly.

In terms of limitations, since NN-AGP retains a GP structure, it suffers from computational complexity
with large data sets. To alleviate the computational burden, we consider sparse NN-AGP for future
work; see a discussion in the supplements. In addition, incorporating NN into bandit problems
generally requires sufficient data to approximate the unknown reward function, thereby bringing the
cold-start issue to NN-AGP. To address the challenge, we also include a discussion on employing
transfer learning technologies in the supplements. Other potential future work includes 1) adapting
NN-AGP to multi-objective/constrained optimization problems and 2) employing NN-AGP in a
federated contextual bandit problem with multiple decentralized users.
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