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Abstract

We present an efficient algorithm for regularized optimal transport. In contrast to
previous methods, we use the Douglas-Rachford splitting technique to develop
an efficient solver that can handle a broad class of regularizers. The algorithm
has strong global convergence guarantees, low per-iteration cost, and can exploit
GPU parallelization, making it considerably faster than the state-of-the-art for
many problems. We illustrate its competitiveness in several applications, including
domain adaptation and learning of generative models.

1 Introduction

Optimal transport (OT) is an increasingly important tool for many ML problems. It has proven
successful in a wide range of applications, including domain adaptation [8, 19], learning generative
models [2, 17], smooth ranking and sorting schemes [12], and long-tailed recognition [29]. The
versatility of OT stems from the fact that it provides a flexible framework for comparing probability
distributions that incorporates the geometric structure of the underlying sample space [30]. Early on,
practitioners were directed to LP solvers with poor scalability to solve OT problems, but this changed
dramatically with the introduction of entropic regularization and the Sinkhorn algorithm for OT.
Sinkhorn’s simple parallelizable operations resolved a computational bottleneck of OT and enabled
the solution of large-scale problems at “lightspeed” [11]. Despite the computational advantages
of entropic regularization, many applications depend on sparse or structured transportation plans,
and the bias that entropic regularization introduces can significantly impact the performance of the
downstream task being solved. In such settings, other structure-promoting regularizers are typically
preferred (see e.g. [10, 25, 19]). However, to the best of our knowledge, no framework exists that
handles general regularizers for OT in a unifying way with a numerical efficiency that is comparable
to Sinkhorn. To this end, we study OT for a broad class of regularizers and develop an algorithm
with similar computational performance as Sinkhorn. Further, we benchmark our method against the
state-of-the-art, showing that our algorithm achieves up to 100x speed-up for several applications.

For discrete probability distributions, solving regularized OT problems amounts to finding a solution
to the optimization problem

minimize
X∈Rm×n

+

⟨C,X⟩+ h(X)

subject to X1n = p, X⊤1m = q.
(1)

Here p and q are non-negative vectors that sum to 1, C is a non-negative cost matrix, and the
regularizer h is a function that promotes structured solutions. To solve (1) fast, it is important that
the large number of decision variables and the non-negativity constraint on the transportation plan
are handled in a memory-efficient way. It is also crucial to manage the non-smoothness induced
by the non-negativity constraints without altering the complexity of the algorithm. It is common
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practice to solve the OT problem by considering its dual since many regularization terms give rise
to dual problems with structure that can be exploited [5]. Most notably, entropic regularization, i.e.
h(X) = ϵ

∑
ij Xij logXij , where ϵ > 0, enables deriving a simple alternating dual ascent scheme,

which coincides with the well-known Sinkhorn-Knopp algorithm for doubly stochastic matrices [39].
An advantage of this scheme is that it is easy to parallelize and has a low per-iteration cost [11].
However, decreasing the regularization parameter ϵ will slow down the convergence of the algorithm
and ultimately render the algorithm numerically unstable, which is particularly noticeable when
low-precision arithmetic is used [27]. Conversely, increasing ϵ makes the transportation plan blurrier
- which can be problematic in applications when sparse solutions are desired [5].

For more general regularizers, it is often difficult to develop fast algorithms via the dual problem.
However, if the regularizer is strongly convex, the dual (or semi-dual) will be smooth, and standard
gradient-based methods can be used. This is computationally tractable when the gradients of the
dual can be computed efficiently [5]. Besides potentially expensive gradient computations, just as for
Sinkhorn, lower regularization parameters will slow down the algorithm. Furthermore, regularizers
that are not strongly convex cannot be handled in this framework. Therefore, we propose a different
technique to solve (1) for a broad class of regularizers, including many non-smooth and non-strongly
convex functions. Using the Douglas-Rachford splitting technique, we derive an algorithm with
strong theoretical guarantees, that solves a range of practical problems rapidly and accurately. In
particular, it efficiently handles regularizers that promote sparse transportation plans, in contrast to
entropic regularization.

1.1 Contributions

We make the following contributions:

• We adapt the Douglas-Rachford splitting technique to regularized optimal transport, extend-
ing the recent DROT algorithm proposed in [27].

• Focusing on a broad class of regularizers which includes quadratic regularization and group
lasso as special cases, we demonstrate global convergence guarantees and an accelerated
local linear convergence rate. This extends the available theoretical results for related OT
solvers and captures the behavior of the iterates observed in practice.

• We develop an efficient GPU implementation that produces high-quality optimal transport
plans faster than the conventional Sinkhorn algorithm. We then show how the proposed
solver can be used for domain adaption and to produce solutions of better quality up to 100
times faster than the state-of-the-art when implemented on GPU.

1.2 Related Work

The Sinkhorn algorithm is arguably one of the most popular OT solvers, and it can often find
approximate solutions fast, even for large-scale OT problems. Many extensions and improvements
have been proposed, including variations with improved numerical stability [36] and memory-efficient
versions based on kernel operations [15]. However, to our best knowledge, no framework exists for
general regularizers that enjoy comparable computational properties. As an example, a standard
approach for group-lasso regularization is to linearize the regularization term and use Sinkhorn
iteratively [9]. Although this approach is fairly generic, it requires that the transportation plan
is recovered in every iteration, adding significant computational overhead. For strongly convex
regularizers, such as quadratically regularized OT, several dual and semi-dual methods have been
proposed, e.g. [5, 26], with stochastic extensions [37] and non-convex versions to deal with cardinality
constraints [25]. However, these methods are significantly harder to parallelize, rendering them
slower than Sinkhorn for larger problems [30]. Moreover, just as for Sinkhorn, both convergence
rates and numerical stability properties deteriorate significantly with lower regularization parameters.

A promising research direction that has recently attracted interest in the community is to consider
splitting methods as an alternative to Sinkhorn for OT problems. For instance, an accelerated primal-
dual method for OT and Barycenter problems was proposed in [7], proximal splitting for a particular
OT discretization was explored in [28], and an algorithm for unregularized OT based on Douglas-
Rachford splitting was developed in [27]. The convergence of splitting methods is well-studied even
for general convex problems [3]. For Douglas-Rachford splitting, tight global linear convergence
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rates can be derived under additional smoothness and strong convexity assumptions [18]. Global
linear rates have also been established for certain classes of non-smooth and non-strongly convex
problems [41, 1]. Moreover, Douglas-Rachford splitting can benefit from the inherent sparsity of the
problem at hand. For certain classes of problems, these algorithms can identify the correct sparsity
pattern of the solution in finitely many iterations, after which a stronger local convergence rate starts
to dominate [23, 31]. This paper contributes to this line of research, by introducing a splitting method
for regularized OT with strong theoretical guarantees and unprecedented computational performance.

Notation

For any X,Y ∈ Rm×n, we let ⟨X,Y ⟩ := tr(X⊤Y ) and ∥X∥F :=
√

⟨X,X⟩. Rm×n
+ and Rm×n

−
denote the set of m × n matrices with non-negative entries and non-positive entries respectively.
We let ιS denote the indicator function over a closed convex set S, i.e ιS(X) = 0 if X ∈ S and
ιS(X) = ∞ if X /∈ S, and the relative interior of a set S is denoted relintS. The projection
onto Rm×n

+ is denoted [·]+, which sets all negative entries of the inputted matrix to zero. The
subdifferential of an extended-real valued function h is denoted ∂h(X), and its proximal operator is
defined proxρh (x) = argminz h(z) +

1
2ρ ∥z − x∥2, where ρ > 0

2 Regularized Optimal Transport

We consider regularized OT problems on the form (1) where the function h is sparsity promoting in
the sense that its value does not increase if an element of X is set to zero.

Definition 2.1 (Sparsity promoting regularizers). h : Rm×n → R ∪ {+∞} is said to be sparsity
promoting if, for any X ∈ Rm×n, h(X) ≥ h(Xs) for every Xs ∈ Rm×n with (Xs)ij ∈ {0, Xij}.

Notice that this function class does not necessarily induce sparsity. For instance h = 0, or h = ∥ · ∥2F
meet the conditions of Definition 2.1. Besides these two examples, the class of sparsity promoting
functions include, but are not limited to, the following functions.

• h(X) =
∑

g∈G ∥Xg∥F (group lasso OT)

• h(X) =
∑

ij Xijarcsinh(Xij/β)− (X2
ij + β2)1/2 (hypentropic regularization)

• h(X) =
∑

ij wij |Xij |, where wij ≥ 0 (weighted ℓ1-regularization)

• h(X) =
∑

(ij)∈S ιXij=0(X) (constrained OT)

Conic combinations of sparsity promoting functions are also sparsity promoting. Moreover, many
regularized OT problems, such as Gini-regularized OT [32] and regularizers on the form ∥X −A∥2F ,
can be converted to only involve sparsity promoting regularizers. Note that the negative Shannon
entropy

∑
Xij logXij is not sparsity promoting.

In this paper, we will develop a scalable algorithm for solving OT problems with sparsity-promoting
regularizers. Besides strong theoretical guarantees, the algorithm is numerically stable and can be
implemented efficiently on a GPU. Our approach builds on the recently proposed DROT algorithm
for unregularized OT [27]. We extend the DROT algorithm to regularized OT problems, improve the
theoretical convergence guarantees, and develop an extended GPU kernel. The resulting algorithm
solves regularized OT problems faster, with higher precision, and in a more generic fashion than the
state-of-the-art. To explain the algorithm, we review the splitting method for OT developed in [27].

2.1 Douglas-Rachford splitting for OT

Douglas-Rachford splitting is a technique for solving optimization problems on the form

minimize
x∈Rn

f(x) + g(x) (2)

using the fixed point update yk+1 = T (yk), where

T (y) = y + proxρg
(
2proxρf (y)− y

)
− proxρf (y) (3)
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and ρ > 0 is a stepsize parameter. If y⋆ is a fixed point of T then x⋆ = proxρf (y
⋆) is a solution

to (2). Often a third iterate, zk, is introduced, and the Douglas-Rachford iterations are expressed as

xk+1 = proxρf (yk) , zk+1 = proxρg (2xk+1 − yk) yk+1 = yk + zk+1 − xk+1. (4)

As long as f and g in (2) are closed and convex (possibly extended-real valued), and an optimal
solution exists, the DR-splitting method converges to a solution (see, e.g. Theorem 25.6 in [3]).
Under additional assumptions on f and g, the method has even stronger convergence guarantees [18].
For a given problem that can be formulated on the form (2), there are typically many ways to partition
the problem between f and g. This must be done with care: a poor split can result in an algorithm
with a higher per-iteration cost than necessary or one which requires more iterations to converge
than otherwise needed. It is often difficult to achieve both simultaneously, which poses a challenging
trade-off between the iterate complexity and the per-iteration cost of the resulting algorithm.

To facilitate the derivation of the algorithm, we let X = {X ∈ Rm×n : X1n = p, X⊤1m = q} and
introduce the indicator functions ιRm×n

+
and ιX , that correspond to the constraints of (1). Recognizing

that the projection onto X is tractable (by invoking recently derived formulas for matrix projections
[4]) the authors of [27] proposed the splitting

f(X) = ⟨C,X⟩+ ιRm×n
+

(X) and g(X) = ιX (X)

and demonstrated that the update (3) can be simplified to

Xk+1 = [Yk − ρC]+, Yk+1 = Xk+1 + ϕk+11
⊤
n + 1mφ⊤

k+1 (5)

where ϕk and φk are vectors given via the iterative scheme:

rk+1 = Xk+11n − p, sk+1 = X⊤
k+11m − q, ηk+1 = f⊤rk+1/(m+ n),

θk+1 = θk − ηk+1, ak+1 = ak − rk+1, bk+1 = bk − sk+1,

ϕk+1 = (ak − 2rk+1 + (2ηk+1 − θk)1m) /n,

φk+1 = (bk − 2sk+1 + (2ηk+1 − θk)1n) /m. (6)

The most expensive operations in (6) are the matrix-vector products in the r and s updates. Nonethe-
less, these operations can efficiently be parallelized on a GPU. Further, notice that Yk can be
eliminated by substituting it in the X-update of (5), giving

Xk+1 = [Xk + ϕk1
⊤
n + 1mφ⊤

k − ρC]+.

Hence, the splitting scheme only needs to update the transportation plan Xk and the ancillary vectors
and scalars in (6).

3 DR-splitting for regularized OT

When extending the DR-splitting scheme to the regularized setting, it is crucial to incorporate h in
one of the updates of (4) in a way that makes the resulting algorithm efficient. Specifically, if we let

f(X) = ⟨C,X⟩+ ιRm×n
+

(X) + h(X), and g(X) = ιX (X), (7)

the first update of (4) reads:

Xk+1 = proxρf (Yk) = proxρh+ι
Rm×n
+

(Yk − ρC) .

This update is efficient given that proxρh+ι
Rm×n
+

(·) is easy to compute. This is indeed the case when

h is a sparsity promoting. We present the result in Lemma 3.1.
Lemma 3.1. Let f(X) = ⟨C,X⟩+ ιRm×n

+
(X) + h(X) where h(X) is sparsity promoting, closed,

convex and proper when X ∈ Rm×n
+ . Then proxρf (X) = proxρh ([X − ρC]+).

Lemma 3.1 enables us to integrate the regularizer into the algorithm with only a minor update. Using
the split of (7), the updated Douglas-Rachford algorithm, which we will refer to as RDROT, follows:

Xk+1 = proxρh ([Yk − ρC]+) , Yk+1 = Xk+1 + ϕk+11
⊤
n + 1mφ⊤

k+1. (8)

4



Under the assumption that h is closed, convex, and proper over the feasible set of (1), Theorem 25.6
in [3] guarantees that RDROT converges to a solution of (1). Before we derive even stronger
convergence properties of the algorithm, we describe a few specific instances in more detail.

Quadratic Regularization. Letting h(X) = α
2 ∥X∥2F yields

Xk+1 = (1 + ρα)−1[Yk − ρC]+ (9)

An attractive feature of quadratic regularization is that it shares similar limiting properties as entropic
regularization when used in OT-divergences [14]. In contrast to entropically regularized OT, letting
α → 0 does not lead to numerical instability in our method. Furthermore, the quadratic term makes
the objective of (1) strongly convex which renders its optimal solution unique. This can be helpful
when OT is used to define a loss function for e.g. training generative models [17] or adjusting
for long-tailed label distributions [29], since it preserves some sparsity and renders the OT cost
differentiable (see Section 3.3 for details).

Group Lasso Regularization. With h(X) = λ
∑

g∈G ∥Xg∥F , where G is a collection of disjoint
index sets, the RDROT update becomes

X̄k+1 = [Yk − ρC]+, Xk+1,g =

[
1− λ

∥X̄k+1,g∥F

]
+

X̄k+1,g, g ∈ G. (10)

This regularizer has been used extensively for OT-based domain adaptation [10]. The rationale is
that each unlabeled data point in the test (target) domain should only be coupled to data points of the
training (source) domain that share the same label. This can be accomplished by organizing the data
so that the rows of X correspond to data points in the training domain and the columns to points in
the test domain, and then using a sparsity-inducing group-lasso regularizer in (1). In this setting, G is
a collection of sets, each specifying which columns correspond to a particular label. Consequentially,
this regularizer will promote solutions that map each data point in the test domain to a single label.

3.1 Rate of convergence

It is well-known that DR-splitting finds an ϵ-accurate solution in O(1/ϵ) iterations for general convex
problems [21]. This is a significant improvement over Sinkhorn’s iteration complexity of O(1/ϵ2)
[24], but the Sinkhorn iterations are very cheap to execute. A key contribution of [27] was the
development of a GPU kernel that executes the DR updates so quickly that the overall method is faster
than Sinkhorn for many problem instances. They also demonstrated a global linear convergence by
exploiting the geometrical properties of LPs, but the convergence factors are very difficult to quantify
or use for step-size tuning. As illustrated in Figure 1, and discussed in more detail below, neither
the global linear rate nor the 1/k-rate are globally tight. Instead, the stopping criterion decays as
O(1/k) during the initial steps of the RDROT algorithm, but then begins to converge at a fast linear
rate. Hence, existing convergence analyses that neglect this local acceleration are unsatisfactory.

Figure 1: An illustration of the convergence behavior of the algorithm for a quadratically regularized
problem. The stopping criterion and the number of positive entries were computed in every iteration.
Notice that the iteration number at which the sparsity pattern stabilizes is aligned with when the linear
convergence starts. In this example, the stepsize is chosen to make this effect more evident.

In this section, we will develop a convergence analysis for DR splitting on regularized OT problems
that explains this observed behavior. Based on previous work on local convergence properties of
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DR-splitting [23], we establish that our algorithm (8) identifies the true sparsity pattern of the solution
in finitely many iterations. When the sparsity pattern is identified, a fast linear rate typically starts to
dominate over the sublinear rate. To derive these guarantees, we need one additional assumption on
the optimal solution of (1).
Assumption 1. Let Y ⋆ be a fixed point of (3) such that Yk → Y ⋆, and let X⋆ = proxρf (Y

⋆) =
proxρh ([Y

⋆ − ρC]+). We then assume that:

1

ρ

(
Y ∗ −X∗

)
∈ relint ∂f(X⋆). (11)

Assumption 1 can be seen as a stricter version of the traditional optimality condition. It is a common
assumption in analyses of active constraint identification that can be traced back to [6]. We consider
this assumption to be fairly weak since it holds for most relevant OT problems, except for some very
specific cost matrices. A more elaborate discussion is included in the supplementary material.

Under the regularity conditions of (11), we derive the following two convergence results.
Theorem 1. Let h(X) be sparsity promoting, convex, closed, and twice continuously differentiable
for X > 0. If Assumption 1 holds, then there is a K ≥ 1 such that for all k ≥ K, Xk, ij = 0 if and
only if X⋆

ij = 0.

For our problem, this result implies that there is a K after which the sparsity pattern does not change.
To prove this, we first show that the sparsity-promoting and smoothness assumptions imply that f
and g are partly smooth with respect to two manifolds and then invoke results presented in [23].
Moreover, Theorem 1 allows us to derive the following local convergence rate guarantees:
Theorem 2. Assume that the conditions stated in Theorem 1 hold. If h is locally polyhedral, then
RDROT enjoys a local linear rate: When k ≥ K, then

∥Xk+1 −X⋆∥F ≤ rk−K∥YK − Y ⋆∥F , r ∈ (0, 1).

Moreover, the optimal rate is independent of the stepsize ρ.

The regularizer h is locally polyhedral, for instance, in the unregularized setting, and when weighted
ℓ1 regularization is used (i.e. h(X) =

∑
ij wij |Xij |, where wij ≥ 0). Therefore, one can expect

a sublinear rate until the correct sparsity pattern of the transportation plan is identified. From that
point onward, a fast linear rate will dominate. The local rate holds for many other regularizers
beyond locally polyhedral ones, which has also been observed in experiments (see, e.g., [23] and
[31]). However, when the local polyhedrality assumption is relaxed, one must account for the Hessian
information of the regularizer, which makes it difficult to quantify a rate using this proof technique.

Stepsize selection The stepsize implicitly determines how the primal residual descent is balanced
against the descent in the duality gap. When the cost has been normalized so that ∥C∥∞ = 1, a
stepsize that performs well regardless of h is ρ = 2(m+ n)−1. This stepsize was proposed for DR-
splitting on the unregularized problem in [27]. We use this stepsize in all our numerical experiments
and observe that our method is consistently competitive without any additional tuning.

Initialization A reasonable initialization of the algorithm is to let X0 = pq⊤, and ϕ0 = 0m,
φ0 = 0n. However, when using the stepsize specified above, this will result in Xk = 0m×n for
1 ≤ k ≤ N , where N = O(max(m,n)). By initializing ϕ0 = (3(m+ n))−1(1 +m/(m+ n))1m,
and φ0 = (3(m + n))−1(1 + n/(m + n))1n, one skips these first N iterations, resulting in a
considerable speed-up the algorithm, especially for larger problems. The derivation is added to the
supplementary material. There is potential for further improvements (see e.g. [40]), since ρ−1ϕk,
ρ−1φk are related to dual potentials. But for simplicity, we use this strategy throughout the paper.

Stopping criteria One drawback of the Sinkhorn algorithm is that its theoretically justified subpoti-
mality bounds are costly to compute from the generated iterates. This is usually addressed by only
computing the primal residuals ∥Xk1m − p∥, and ∥X⊤

k 1n − q∥ every M iterations and terminate
when both residuals are less than a chosen tolerance. In contrast, our algorithm computes the primal
residuals in every iteration (see rk and sk in (6)), so evaluating the stopping criterion does not add
any extra computations. Moreover, the iterates ϕk and φk will, in the limit, be proportional to the
optimal dual variables, and can hence be used to estimate the duality residual and duality gap in every
iteration. For more details, we refer to the supplementary material.
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3.2 GPU implementation

Similar to the approach developed in [27], the RDROT algorithm can be effectively parallelized on a
GPU, as long as the regularizer is sparsity promoting and its prox-mapping is easy to evaluate. We
have developed GPU kernels for RDROT with quadratic and group-lasso regularization, respectively1.
Below, we provide an overview of how the DROT-kernel is adapted for the regularized case. More
details of the implementation are included in the supplementary material.

For the GPU implementation, the main computation time is spent on updating the X matrix as
described in (8). Compared with DROT [27], the RDROT kernel is also required to evaluate the
prox-mapping. Specifically, for the given regularizers, the following additional operations are needed:

• Quadratic regularization: Each element of [Yk−ρC]+ needs to be rescaled with a constant
to update Xk (see (9)). This only requires a minor change and results in practically the same
per-iteration-cost as for the unregularized case.

• Group-lasso regularization: The norm of each group, i.e X̄k+1,g , g ∈ G is required to the
determine a group-specific scaling factor (see (10)). To this end, the following additional
steps are required: (1) a reduction for gathering the square of the elements and computing
the scale for the group; and (2) a broadcast to apply the scale to X̄k+1,g . For small problem
sizes, the reduction and the broadcast can be done within a thread block via its shared
memory. For large problem sizes, when the elements in one group can not fit in a single
thread block, the results of the reduction are stored in global memory, and an additional
kernel function is introduced to apply the scale for the group. This overhead increases the
per-iteration cost a little, but we show in our experiments that it is still significantly faster
compared to other methods.

The remaining parts of the algorithm are for updating vectors, which have much smaller time
complexity than the X matrix updates. These are handled with an ancillary kernel.

3.3 Backpropagation via Pytorch and Tensorflow wrappers

In many applications, e.g. [17, 35, 29], it is useful to use the solution of (1) to construct a loss
function. Most notably, the optimal value of (1) is directly related to the Wasserstein distance between
p and q, which is a natural measure of the proximity between distributions with many advantageous
properties (see [30] for an extensive treatment). When training generative models, for example, the
objective is to transform a simple distribution into one that resembles the data distribution. It is
therefore natural to use the Wasserstein distance to construct loss functions, see e.g [2]. But in order
to backpropagate through such loss functions, one must differentiate the optimal value of (1) with
respect to the cost matrix C (which is parameterized by both a data batch and a generated batch of
samples). Using Fenchel duality, we can show that the optimal solution X⋆ is a gradient (or Clarke
subgradient) of the loss, regardless of the regularizer. By applying a similar argument to the dual
problem, one can show that ρ−1(ϕ⋆;φ⋆) is a reasonable gradient estimate of the OT cost with respect
to the marginals (p; q). Hence, one can use RDROT for both the forward and backward pass and
do not need to lean on memory-expensive unrolling schemes or computationally expensive implicit
differentiation techniques. We include further details on the derivation in the supplementary material.
To facilitate using RDROT for DL, we wrapped our GPU OT solvers as PyTorch and TensorFlow
extensions that feature fast automatic differentiation. The extensions can easily be integrated with
networks that parameterize cost matrices or marginals. In a forward pass, our extension solves the
regularized OT problem using the cost matrix and marginals given at the current iteration and stores
the approximate solution X⋆

k and ρ−1(ϕ⋆;φ⋆) for the backward pass. The aforementioned technique
is subsequently used in the backward pass to efficiently obtain an approximate gradient, which is
used to rescale the gradients of the weights of the remaining network.

4 Numerical experiments

All experiments mentioned below are performed using a single NVIDIA Tesla V100 GPU.

1The implementation is publicly available at GitHub: https://github.com/WangZesen/
Regularized-DROT
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GPU performance of RDROT with quadratic regularization

To illustrate the numerical advantages of the algorithm, we compared the GPU implementation of
RDROT for quadratically regularized OT (which we will refer to as QDROT) with a dual ascent
method (L-BFGS), proposed in [5], which we implemented in PyTorch with all tensors loaded on
the GPU. Although there are several other solvers for quadratic OT, such as the semi-dual method
proposed in [5] and the semi-smooth Newton method from [26], we have omitted them from our
experiments since their associated gradient/search direction computations scale poorly with data
size and are difficult to parallelize. In our benchmark, we simulated 50 data sets of size 500× 500
and 5000× 5000, respectively. We generated cost matrices with Cij =

1
2∥xi − xj∥22, where xi, xj

are simulated 2D Gaussian variables with random parameters specific for each data set. We used
the quadratic regularization term ((m+ n)α/2)∥X∥2F with α ranging between 0.0005 to 0.2. For
QDROT, we included α = 0 for reference. We ran the algorithms for each dataset and regularization
parameter until they reached an accuracy level of 0.0001. For commpleteness, we also benchmark a
PyTorch implementation of QDROT. The results are displayed in Figure 2, in which it is clear that
our method is substantially faster than the L-BFGS method. Furthermore, when the GPU kernel is
used, an even more significant speedup is achieved compared to the L-BFGS method. Further details
and additional experiments with other dataset sizes are included in the supplementary material.

(a) m = 500, n = 500 (b) m = 5000, n = 5000

Figure 2: Comparison between the RDROT (QDROT) using the GPU kernel, a PyTorch version, and
an L-BFGS method applied to the dual for different quadratic regularization parameters run on GPU.
50 datasets of two different sizes were simulated.

Group Lasso and Domain Adaptation

OT is the backbone of many domain adaption techniques since it provides a natural framework to
estimate correspondences between a source domain and a target domain. These correspondences can
subsequently be used to align the respective domains to improve the test accuracy. Specifically, for
a given source data set {(xi

s, y
i)}mi=1 and a target set {xj

t}nj=1, where {yi}mi=1 are data labels, we
define the cost matrix elements Cij = d(xi

s,x
j
t ) using a positive definite function d. By computing a

transportation plan X associated with (1) and cost matrix C, one can adapt each data point in the
source set into the target domain via xi

s,a = 1
pi

∑m
j=1 Xijx

j
t . It has been shown that group-lasso

regularization can improve the adaptation [10] (cf. the discussion in §3). To handle the regularizer,
it is customary to linearize it and iteratively solve updated OT problems with Sinkhorn [9, 10].
The current implementation of group-lasso OT in the Python OT package POT uses this approach
[16]. Besides the computational cost of iteratively reconstructing transportation plans, entropic
regularization tends to shrink the support of the adapted training data and hence underestimate the
true spread in the target domain. This is thoroughly discussed in [15] and illustrated in Figure 3 where
we adapt data sets with different regularizers. Of course, the shrinkage can partially be addressed by
decreasing the regularization parameter, but this tends to slow down that algorithm and may even
lead to numerical instability. To shed some light on this trade-off, we simulated 50 datasets with
two features, 1500 training samples, and 1000 test samples. The target domain was simulated via a
random affine transformation of the source domain. Each set had 2 unique labels that were uniformly
distributed among the instances. The labels in the test set were only used for validation. The cost
Cij =

1
2∥x

i
s − xj

t∥2 was used and normalized so that ∥C∥∞ = 1. To compare the performance of

8



Figure 3: A toy example illustrating the effect strongly convex regularizations have on the support
of the resulting adapted domains. Pink and purple points mark the labeled training set and the gray
points the test domain. Notice how the Sinkhorn-based method, as well as the Quadratic Regularized
method transfers the source domain samples towards the center of the target domain, while our
approach transfers the samples in a way that matches the true variation of the test data

the algorithms, we computed the time taken to reach a tolerance of 10−4 and evaluted the Wasserstein
distance between the adapted samples of each label and the corresponding samples of the test set.
This means that the better the alignment, the lower the aggregated distance. For the method using
entropic regularization, we varied the regularization parameters 0.001 to 10, and the group lasso
regularization was set to 0.001. The results are presented in Table 1. Indeed, increasing the entropic
regularization parameter to speed up the conditional gradient methods will worsen the alignment
between the source domain and the target domain, just as illustrated in Figure 3. We also note that
our method consistently outperforms the alternative methods, both in terms of adaptation quality
and in terms of time to reach convergence. Additional experiments with other problem sizes and
regularization are consistent with Table 1, see the supplementary. In addition to the experiments

Table 1: Performance benchmark of RDROT for Group-Lasso regularization (GLDROT) against the
conditional-gradient based Sinkhorn algorithm. Median and 10th and 90th percentile statistics are
included. Our method is competitive in terms of both speed and adaption quality.

Reg. Runtime (s) ↓ Agg. W2 dist. ↓
Method Ent GL Median q10 q90 Median q10 q90
GLSK [10] 1e-3 1e-3 3.77 3.68 8.90 0.311 0.0657 6.48
GLSK [10] 1e-1 1e-3 3.73 3.71 3.77 8.24 3.47 31.6
GLSK [10] 1e+2 1e-3 1.86 1.86 1.88 52.8 10.9 311
GLDROT (ours) - 1e-3 0.0619 0.0475 0.0771 0.0576 0.0262 0.182
GLDROT (ours) - 5e-3 0.0384 0.0306 0.0474 0.0879 0.0358 0.274

above, we compare the per-iteration costs for several OT solvers in the supplementary material. These
strengthen our claim further that our algorithm achieves "lightspeed" even for large problem sizes.

Training of generative models

As an illustration of the efficiency of the GPU version of the algorithm, we use our PyTorch wrapper
to implement the Minibatch Energy Distance [35], a loss function for training generative models via
OT. The network consists of a generator, and a network that learns a cost function, and the OT-based
Minibatch Energy distance to quantify the similarity between data batches and generated artificial
samples. We performed experiments with image generation on the MNIST and CIFAR10 datasets,
with some of the generated samples shown in Figure 4. The details of the experiments are included in
the supplementary material. The resulting generator gives sharp images, and the training time was
better or comparable with alternative frameworks, despite the low amount of regularization used.

5 Conclusions

The ability to solve large regularized optimal transport problems quickly has the potential to improve
the performance of a wide range of applications, including domain adaption, learning of generative
models, and more. In this paper, we have shown that the Douglas-Rachford splitting technique can
handle a broad class of regularizers in an integrated and computationally efficient manner. Using a
carefully chosen problem split, we derived an iterative algorithm that converges rapidly and reliably,

9



Figure 4: Generated samples by GANs trained on MNIST and CIFAR10 datasets with the Minibatch
Energy Distance. The original sizes of samples are (28,28) and (32,32), respectively.

and whose operations are readily parallelizable on GPUs. The performance of our algorithm is
supported by both theoretical arguments and extensive empirical evaluations. In particular, the
experiments demonstrate that the resulting algorithms can be up to two orders of magnitude faster
than the current state-of-the-art. We believe that this line of research has the potential to make
regularized OT numerically tractable for a range of tasks beyond the ones discussed in this paper.
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A Theoretical results

A.1 Proof of Lemma 3.1

To prove Lemma 3.1, the following result is helpful:
Lemma A.1. Given that h is sparsity promoting, closed, convex, and ρ > 0, then Xij = 0 implies
that (proxρh (X))ij = 0. Moreover, if Xij > 0, then (proxρh (X))ij ≥ 0.

Proof. Let Y = proxρh (X). By the definition of the proximal operator, every Z ∈ Rm×n satisfies

h(Y ) +
1

2ρ
∥Y −X∥2F ≤ h(Z) +

1

2ρ
∥Z −X∥2F

or

h(Y ) +
1

2ρ

(
∥Y −X∥2F − ∥Z −X∥2F

)
≤ h(Z).

Moreover, since h is sparsity promoting h(Z) ≤ h(Y ), and it holds that

1

2ρ

(
∥Y −X∥2F − ∥Z −X∥2F

)
≤ 0. (12)

Let Z be equal to Y in all entries but the (i, j)th, which is set to zero. If Xij = 0, then

1

2ρ

(
∥Y −X∥2F − ∥Z −X∥2F

)
=

1

2ρ
Y 2
ij

and invoking (12) gives that Yij = 0. If Xij > 0, on the other hand, then

1

2ρ

(
∥Y −X∥2F − ∥Z −X∥2F

)
=

1

2ρ

(
(Yij −Xij)

2 −X2
ij

)
,

and (12) gives
(Yij −Xij)

2 ≤ X2
ij

which implies that Yij ≥ 0. The proof is complete.

Lemma A.1 and Theorem 1 in [42] allows to prove the composition lemma quite easily. We end this
section with the proof.

Proof. (Lemma 3.1) For p(X) = ιRm×n
+

(X), it holds that

proxρp (X) = [X]+

and

∂p(X) = NRm×n
+

(X) ⊇ {0}

for all X ≥ 0, where NRm×n
+

(X) = {Y ∈ Rm×n : Yij = 0 if Xij > 0, Yij ≤ 0 if Xij = 0}.

By Lemma A.1, if Xij = 0, then (proxρh (X))ij = 0, and hence (∂p(X))ij = (∂p(proxρh (X)))ij .
Further, for positive entries Xij > 0, (∂p(X))ij = {0}, which implies that (∂p(proxρh (X)))ij ⊇
(∂p(X))ij . Altogether, this means that

∂p(proxρh (X)) ⊇ ∂p(X).

Theorem 1 in [42] then gives

proxρp+ρh (X) = proxρh
(
proxρp (X)

)
= proxρh ([X]+)

and

proxρf (X) = proxρ⟨C,·⟩+ρp+ρh (X)

= proxρp+ρh (X − ρC)

= proxρh ([X − ρC]+) .

14



A.2 On the non-degeneracy condition of Asssumption 1

Assumption 1 is violated if Y ∗ is a fixed point to equation (3) and X⋆ = proxρf (Y
⋆), but the

regularity condition not fulfilled. That is, if

1

ρ

(
Y ∗ −X∗

)
∈ ∂f(X⋆), while

1

ρ

(
Y ∗ −X∗

)
/∈ relint ∂f(X⋆).

We can write these conditions more conveniently as

1

ρ

(
Y ∗ −X∗

)
∈ ∂f(X⋆) \ relint ∂f(X⋆). (13)

Let us now explore to what degree Assumption 1 can be seen as restrictive when it is invoked in
Theorem 1. To this end, we also assume that h is twice continuously differentiable for X > 0.

Recall that f = ⟨C,X⟩ + ιRm×n
+

+ h(X) and note that the inclusion (13) cannot be satisfied if
X∗ > 0, since ∂f(X⋆) is a singleton. We therefore focus on the case when ∂f is set-valued, i.e.
when X∗

ij = 0 for some (i, j). Since h(X) is differentiable for X > 0, we only need to consider
the zero entries. If X∗

ij = 0, ∂ιRm×n
+

= NRm×n
+

implies that (∂ιRm×n
+

\ relint ∂ιRm×n
+

)ij = 0 and
thus that ∂ιRm×n

+
\ relint ∂ιRm×n

+
= 0. Consequentially, ∂f(X⋆) \ relint ∂f(X⋆) = C + ∂h(X∗) \

relint ∂h(X∗), and

1

ρ

(
Y ∗ −X∗

)
= C + g, where g ∈ ∂h(X∗) \ relint ∂h(X∗).

By the convergence of the algorithm, equation (5) in the main document implies that there exist two
vectors ϕ⋆ and φ⋆ such that Y ⋆ −X⋆ = ϕ⋆1⊤

n + 1mφ⋆⊤. This gives that the cost is on the form

C = ρ−1(ϕ⋆1⊤
n + 1mφ⋆⊤)− g.

In other words, it is only cost matrices with a specific (and rather particular) structure that violate
Assumption 1. For instance, if h is smooth, e.g. h = λ∥ · ∥2F , Assumption 1 is only violated when the
cost can be written as a sum of two given rank-1 matrices. This is rarely met in real applications.

A.3 Proof of Theorem 1 and 2

To prove the theorem we need the notion of partial smoothness:

Definition A.1 (Partial Smoothness). A lower semi-continuous function f : Rn → R is said to be
partly smooth at x⋆ ∈ Rn with respect to the C2-manifold M ⊂ Rn if:

(i) The restriction of f to M: f |M is C2 around x⋆,

(ii) TM(x⋆) = (par ∂f(x⋆))⊥, where (par ∂f(x⋆))⊥ denotes the orthogonal complement of the
smallest subspace parallel to ∂f(x⋆),

(iii) ∂f(x) is continuous at x⋆ relative to M.

Let X⋆ be a solution to the OT problem that fulfills Xk → X⋆, and let

M1 = {X ∈ Rm×n
+ : Xij = 0, if X⋆

ij = 0, Xij > 0 if X⋆
ij > 0}, M2 = X . (14)

Recall that f(X) = ⟨C,X⟩ + ιRm×n
+

(X) + h(X), and g(X) = ιX (X). Since h is assumed to be

twice continuously differentiable over Rm×n
++ , by the conditions in the theorem, f is partly smooth

with respect to M1. Further, since g is constant over M2, it is also partly smooth over M2. The
optimality conditions of the regularized OT problem are

0 ∈ ∂f(X⋆)− 1

ρ

(
Y ∗ −X∗

)
0 ∈ ∂g(X⋆) +

1

ρ

(
Y ∗ −X∗

)
.

(15)
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Moreover, since ∂g = NX , and X is an affine subspace, ∂g = relint ∂g. Therefore, Assumption 1
extends to the following the non-degeneracy condition:

0 ∈ relint ∂f(X⋆)− 1

ρ

(
Y ∗ −X∗

)
0 ∈ relint ∂g(X⋆) +

1

ρ

(
Y ∗ −X∗

)
.

(16)

With the partial smoothness and the non-degeneracy condition established, we have all the building
blocks needed for proving Theorem 1 and 2.

Proof. (Theorem 1 and 2) By invoking the first order optimality condition associated with the first
update in the DR-splitting scheme in (4), we get:

Xk+1 = proxρf (Yk) =⇒ 0 ∈ 1

ρ

(
Xk+1 − Yk

)
+ ∂f(Xk+1)

or

1

ρ

(
Yk −Xk+1

)
∈ ∂f(Xk+1). (17)

Similarly, the second update in (4) is associated with the inclusion:

Zk+1 = proxρg (2Xk+1 − Yk) =⇒ 0 ∈ 1

ρ

(
Zk+1 − 2Xk+1 + Yk

)
+ ∂g(Zk+1)

or equivalently

1

ρ

(
Yk −Xk+1

)
− 1

ρ

(
Yk+1 − Yk

)
∈ g(Zk+1). (18)

where we used the third equation of the DR-update, i.e Yk+1 − Yk = Zk+1 − Xk+1. Notice
how (17) and (18) relate closely to the optimality conditions (15). Now consider the function
F (X,Z) = f(X) + g(Z)− ρ−1 ⟨X − Z, Y ∗ −X∗⟩. Since Xk+1 ∈ Rm×n

+ and Zk+1 ∈ X for all
k ≥ 1, it holds that F (Xk+1, Zk+1) = ⟨C,Xk+1⟩ + h(Xk+1) − ρ−1 ⟨Xk+1 − Zk+1, Y

∗ −X∗⟩.
Since f + g are convex, closed, and attains a minimizer, Theorem 25.6 in [3] can be used to establish
that Yk → Y ⋆, when k → ∞, where Y ⋆ is a fixed point of the DR-update. In particular,

∥Yk+1 − Yk∥ = ∥(Yk+1 − Y ⋆)− (Yk − Y ⋆)∥ ≤ ∥Yk+1 − Y ⋆∥+ ∥Yk − Y ⋆∥ → 0,

which can be used to deduce that the third term of F tends to zero as k → ∞:

| ⟨Xk+1 − Zk+1, Y
∗ −X∗⟩ | ≤ ∥Zk+1 −Xk+1∥∥Y ∗ −X∗∥ = ∥Yk+1 − Yk∥∥Y ∗ −X∗∥ → 0.

Consequentially,

F (Xk+1, Zk+1) → ⟨C,X⋆⟩+ h(X⋆) = f(X⋆) + g(X⋆). (19)

As h is assumed to be convex, proper, and lower semicontinuous, we have that h is subdifferentially
continuous in its domain (including at X⋆) [33]. This gives

dist

{
0, ∂XF (Xk+1, Zk+1)

}
= dist

{
0, ∂f(Xk+1)−

1

ρ

(
Y ∗ −X∗

)}
≤ ρ−1∥(Yk − Y ∗)− (Xk+1 −X∗)∥
≤ ρ−1∥Yk − Y ∗∥+ ρ−1∥Xk+1 −X∗∥
≤ 2ρ−1∥Yk − Y ∗∥
→ 0.

Here, the first inequality follows from that dist{x, S} = inf{∥x − y∥ : y ∈ S} ≤ ∥x − y∥, for
all y ∈ S. The second is the Cauchy Schwarz inequality, and the third inequality follows from the
non-expansiveness of proximal operators:

∥Xk+1 −X∗∥ = ∥proxρf (Yk)− proxρf (Y
∗) ∥ ≤ ∥Yk − Y ∗∥.
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Similarly,

dist

{
0, ∂ZF (Xk+1, Zk+1)

}
= dist

{
0, ∂g(Xk+1) +

1

ρ

(
Y ∗ −X∗

)}
≤ ρ−1∥(Xk+1 −X∗)− (Yk − Y ∗)− (Yk+1 − Yk)∥
≤ 2ρ−1∥Yk − Y ∗∥+ ρ−1∥Yk+1 − Yk∥
→ 0.

Hence, dist
{
0, ∂F (Xk+1, Zk+1)

}
→ 0. This together with (16) and (19), and the fact that f is

partially smooth at X⋆ with respect to M1, we apply Theorem 5.3 in [20] which proves the theorem.
To prove Theorem 2, one can directly invoke Theorem 5.6 in [23].

B Initialization

When using the initialization X0 = pq⊤, ϕ0 = 0m, and φ0 = 0n, and the default stepsize, the
updates in (6) gives that

Xk = 0m×n

ϕk = (k + 1)n−1(p+ (m+ n)−1)

φk = (k + 1)m−1(q + (m+ n)−1)

when k = 1, 2, . . . N , where

N = min
ij

⌈Cijmn(m+ n)−1(mpi + nqj + 1)−1 − 1⌉ = O(max(m,n)).

When the cost is normalized, we can use the rough approximation, Cij ∼ 1, pi ∼ m−1, and qj ∼ n−1,
to get the simple initialization strategy: X0 = 0m×n, ϕ0 = (3(m+ n))−1(1 +m/(m+ n))1m, and
φ0 = (3(m+ n))−1(1 + n/(m+ n))1n, that skips these first N iterations.

C Derivation of Dual and Stopping criterion

A simple calculation reveals that g(X) = ιX (X) has the Fenchel conjugate

g∗(U) =

{
⟨U, pq⊤⟩, if U = µ1⊤

n + 1mν⊤

∞, otherwise.

Hence, any feasible dual variable is on the form U = µ1⊤
n + 1mν⊤, for which g∗(U) = p⊤µ+ q⊤ν.

Further, the conjugate of f(X) = ⟨C,X⟩+ ιRm×n
+

(X) + h(X) can be expressed as

f∗(U) = sup
X

⟨U,X⟩ − f(X)

= sup
X≥0

⟨U − C,X⟩ − h(X)

≤ sup
X≥0

⟨[U − C]+, X⟩ − h(X)

≤ sup
X

⟨[U − C]+, X⟩ − h(X)

= h∗([U − C]+).

Moreover, since h is sparsity promoting,

h∗([U − C]+) = sup
X

⟨[U − C]+, X⟩ − h(X)

≤ sup
X

⟨[U − C]+, [X]+⟩ − h([X]+)

= sup
X≥0

⟨[U − C]+, X⟩ − h(X)

= f∗(U),
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meaning that f∗(U) = h∗([U − C]+). This gives the dual problem

maximize
U=µ1⊤

n +1mν⊤
−f∗(−U)− g∗(U) = −p⊤µ− q⊤ν − h∗([−µ1⊤

n − 1mν⊤ − C]+). (20)

To relate the iterates to the optimality condition, we define Xk+1 = proxρf (Yk), Zk+1 =
proxρg (2Xk+1 − Yk), and Uk := (Yk−1 −Xk)/ρ and observe that

ρ−1(Zk+1 −Xk+1) = ρ−1(Xk+1 − Yk − ϕk1n − 1mφ⊤
k ) = −Uk+1 − (ρ−1ϕk)1n − 1m(ρ−1φk)

⊤.

By theorem 25.6 in [3], Zk+1 −Xk+1 → 0, and Uk+1 → U⋆ where U⋆ is a solution to (20). Hence
(ρ−1ϕk)1n + 1m(ρ−1φk)

⊤ → U∗, meaning that ρ−1ϕk and ρ−1φk will correspond to µ and ν in
(20) respectively. Using that rk and sk in (6) are directly related to the primal residual, we can derive
the following stopping criteria:

rprimal :=max(∥Xk1n − p∥, ∥X⊤
k 1m − q∥) = max(∥rk∥, ∥sk∥),

gap := ⟨C,Xk⟩+ h(Xk)− ρ−1(p⊤ϕk + q⊤φk) + h∗(ρ−1([ϕk1
⊤
n + 1mφ⊤

k − ρC]+)

= ⟨C,Xk⟩ − ρ−1(p⊤ϕk + q⊤φk) + ∆h(Xk, ϕk, φk),

where ∆h denotes the duality gap deviation compared to the unregularized problem. Further, notice
that by letting X̄k+1 = [Xk + ϕk1

⊤
n + 1mφ⊤

k − ρC]+, we can express [ϕk1
⊤
n + 1mφ⊤

k − ρC]+ =
[X̄k+1 −Xk]+, which facilitates evaluating the duality gap. Notice that h∗ may not be finite. In such
settings, the dual is maximized over its effective domain, resulting in the addition of dual constraints.
To account for these, one must include a dual residual that measures the constraint violation. We
include some examples of stopping criteria in the following table.

Table 2: Termination criteria for a selection of regularizers. Here we let ∥ · ∥ denote an arbitrary norm
that is sparsity promoting.

h ∆ rdual

0 0 ∥Xk+1 −Xk]+∥F
∥X∥2F ∥[(1 + ρ)Xk+1 −Xk]+∥2F 0
∥X∥ 0 ∥proxh

(
[X̄k+1 −Xk]+

)
∥F

D Backpropagation through regularized OT-costs

We let hc = h+ ιRm×n
+

+ ιX , and define the OT-cost as follows: OTh(C) = infX ⟨C,X⟩+ hc(X).
Note that OT cost is equal to the optimal value of the OT problem (1), i.e. if X⋆ is a solution to (1),
then OTh(C) = ⟨C,X⋆⟩+ hc(X

⋆). The OT cost is also closely related to the Fenchel conjugate of
hc, as OTh(C) = −h̄∗(−C), and hence h̄∗(−C) + h̄(X⋆) = ⟨−C,X⋆⟩. Invoking subdifferential
properties of the Fenchel conjugate gives that X⋆ ∈ ∂h̄⋆(−C). Further

∂C(−OTh(C)) = ∂Ch
∗
c(−C) ∋ −X⋆.

In particular, whenever the solution is unique, such as when h is strongly convex, then ∇COTh(C) =
X⋆. Therefore, using the transportation plan estimated via RDROT is a reasonable gradient estimate
of the OT cost.

E GPU Implementation

E.1 GPU Architecture Basics

Before introducing the detailed design of the GPU kernels, we recall some basic properties of modern
GPU architectures. Since the kernel design is based on CUDA, which is compatible with NVIDIA
GPUs, we focus on the architecture of NVIDIA GPUs. Nevertheless, many programming concepts,
hardware architecture decisions, and performance bottlenecks are shared with other GPU designs.
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E.1.1 Thread Organization

The fundamental unit of computation in NVIDIA GPUs is the Streaming Multiprocessor (SM). It is
responsible for executing the parallel computations and managing the resources on the GPU. Each
SM consists of multiple CUDA cores, a shared memory, registers, and other components that enable
efficient parallel processing. However, the concepts introduced below also apply to other modern
GPU architecture that supports the SIMT execution model (like the AMD and Intel GPUs).

The parallel computations are organized in threads, grouped according to the following hierarchy:

1. The thread is the basic unit of code. All threads execute the same code, but they are endowed
with an ID that can be used to parameterize memory access and control decisions.

2. A block is a group of threads that execute together on an SM in the GPU. Threads within a
block can cooperate and communicate using shared memory.

3. The grid refers to the entire set of blocks that will be executed on the GPU. It represents the
overall organization of parallel computation.

The smallest unit of thread execution on an NVIDIA GPU is the warp. It consists of 32 threads that
are scheduled and executed together on a single SM. All threads within a warp execute the same
instruction at the same time (but on different data, parameterized by the thread and block IDs). The
reduction within the warp is highly optimized and efficient.

E.1.2 Memory Hierarchy

NVIDIA GPUs, such as the NVIDIA Tesla V100, have more than eight types of memory including
global memory, shared memory, registers, texture memory, constant memory, etc. We only focus on
the first three memory types, since they are the most relevant to the kernel design in the next section.

1. On NVIDIA GPUs, the global memory refers to the main memory available on the GPU.
It is a high-speed memory space used for storing data and instructions that are accessible
by all the CUDA cores in the GPU. The global memory is the entry for exchanging data
with the system RAM (random access memory). The global memory lies in the highest
level of the memory hierarchy and has the largest capacity and the slowest access speed.
NVIDIA Tesla V100 has 32GB of global memory. An important feature of global memory
is coalesced memory access, which will be discussed below and used in Section E.2.1.

2. The shared memory is a low-latency memory space, physically located on the GPU chip.
The shared memory is used for data sharing within a block, reducing memory access times
significantly compared with using the global memory. The access speed of the shared
memory is roughly 100x faster than the uncached global memory. Other characteristics are
that it is allocated for and shared between threads in the same block, and that its capacity is
limited compared with the global memory. For example, NVIDIA Tesla V100 with compute
capability 7.0, has 96KB of shared memory per SM and 80 SMs in total.

3. The register memory of NVIDIA GPUs is the fastest memory with the lowest latency.
Registers are private to each thread and are not shared among other threads or blocks. They
are used for temporary data storage and computation in a single thread. The access speed for
registers is faster than the shared memory, but not by orders of magnitude. Register memory
also has limited capacity. NVIDIA Tesla V100 has a limit of 64K 32-bit registers per SM.

E.1.3 Coalesced Memory Access

An important feature of global memory management is coalesced memory access. It is a memory
access pattern that maximizes memory bandwidth and improves memory performance in parallel
computing, particularly on GPUs. It refers to the way threads in a warp access memory in a contiguous
and aligned manner, minimizing memory transactions and maximizing data transfer efficiency.

Depending on the architecture of the GPUs, the device can load or write the global memory via a
32-byte, 64-byte, or 128-byte transaction that is aligned with their sizes, respectively. If the threads
in a warp access a continuous and aligned memory block with the size of 128-byte (this could be 32
4-byte single-precision floats, for example), it only costs one transaction. If the continuous memory
block is misaligned with the 128-byte pattern, it costs two transactions. If the memory accessed
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is strided, which means no two elements are in the same 128-byte memory block, it will cost 32
transactions, even though it accesses the same amount of memory as in the coalesced case.

E.2 GPU Kernel Design

Our GPU kernels are the enhanced and optimized versions of the code for unregularized OT that
accompanies the paper [27], available on Github2. In the following subsections, we describe our
improvements of the basic kernel, and detail the extensions that we have made to implement quadratic
and group-lasso regularization. We will also present run-time measurements to demonstrate that our
kernels execute even faster than the "light-speed" per-iteration times of Sinkhorn.

E.2.1 General Optimization

Similar to the kernel described in [27], the main kernel is designed in the way that each thread block
contains 64 threads and is responsible for updating a sub-matrix with size (64, 64) in X . However,
for small problem sizes where the required number of blocks may be smaller than the number of
SMs, this design may cause low utilization of the GPU since not all of the SMs are used. To improve
the utilization for small problem sizes, we adapt the number of columns assigned to each block to the
problem size, reducing the per-block work load and increasing the SM utilization.

Careful management of the global memory access is critical to the performance of CUDA applications.
In the kernel from [27], uncoalesced memory access happens when the number of rows is not a
multiple of 32. For example, when the number of rows is 127 and the block tries to update the second
column of X , the threads in the block will access 64 floats. However, the continuous block is not
aligned with the 128-byte block structure, because the first element of the second column is in the
same block as the last 31 elements in the first column. In this case, accessing 64 single-precision floats
will require three 128-byte transactions while it could be two 128-byte transactions in an optimal
solution. This can lead to strange situations where decreasing the problem size by one increases
the per-iteration runtime significantly (6-20%). To alleviate the problem and to make full use of the
coalesced memory access, we updated the kernel from [27] to handle shifted columns that match the
128-byte memory blocks. An illustration of the update is in Figure 5 where the old working area of a
block from [27] is marked with “Planned Block Work Area” and the updated working area of a block
is marked with “Actual Block Work Area”. The comparison of the per-iteration runtime before and
after the optimization in Table 3 shows that the update solves the problem of uncoalesced memory
access, and that the implementation performs more predictably on various problem sizes.

Table 3: Comparison of the per-iteration runtime before and after the update for coalesced memory
access. Note that the focus here is on the relative change in the per-iteration runtime after decreasing
the problem size by one. The improvement in the per-iteration runtime under the same problem size
is caused by other optimization techniques.

Problem Size Runtime Before Update Runtime After Update
4096× 4096 0.3577 0.3453
4095× 4095 0.3812 (+6.58%) 0.3417 (-1.04%)
8192× 8192 1.281 1.152
8191× 8191 1.548 (+20.80%) 1.153 (+0.10%)

10240× 10240 1.916 1.808
10239× 10239 2.189 (+14.24%) 1.781 (-1.52%)

E.2.2 Quadratically Regularized DROT

Similar to the implementation in [27], the matrices X and C are stored in the global memory in
column-major order. For the problem sizes that we target, the global memory is the only one that can
fit the matrices. In addition, the performance penalty of storing them in a slower memory is limited
since each element only needs to be loaded once for every update. As the update of X is done column
by column, the auxillary variables ϕ and φ can be shared and reused among the threads in a block.
To speedup the memory access, we load the required elements of ϕ and φ into shared memory at the
beginning of the main kernel.

2The implementation is open-source and available at https://github.com/vienmai/drot
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Figure 5 illustrates how the update of one sub-column is done in a thread block of the quadratically
regularized DROT kernel. More specifically, an update is comprised of the following steps

(1) Load the corresponding elements of ϕ and φ from the shared memory.
(2) Load the corresponding elements of X and C from the global memory. Compute [Yij − ρCij ]+

and Cij ·Xij . For the quadratically regularized case, we can directly update Xij with Yij after
multiplying it with the scale 1/(1 + ρα).

(3) Perform in-warp reduction to compute the column sum and the objective value in the block.
(4) Use atomic operations to accumulate the results to the corresponding row and column sums.
(5) This step is only used by the group-lasso kernel, introduced in Section E.2.3.

Similar to the implementation by [27], the iterations are divided into even iterations and odd iterations.

1. For the even iterations, the kernel updates Xk+1 as

Xk+1 = proxρh
(
[Xk + ϕk+11

⊤
n + 1mφ⊤

k+1 − ρC]+
)
− ρC

2. For the odd iterations, it updates Xk+1 as

Xk+1 = proxρh
(
[Xk+1 + ϕk+11

⊤
n + 1mφ⊤

k+1]+
)

In this way, the kernel only needs to access the matrix C once every second iteration.

Except for the general optimizations introduced in Section E.2.1, the only difference from the basic
kernel is step (2) which additionally multiplies the result with a scalar. This minor change introduces
negligible changes in the per-iteration runtime.

E.2.3 Group-lasso Regularized DROT

The kernel for group-lasso regularized DROT is slightly more involved, but also follows the five-step
procedure illustrated in Figure 5. More specifically, it performs the following steps:

(1) Load the corresponding elements of ϕ and φ from the shared memory.
(2) Load the corresponding elements of X and C from the global memory. Compute [Yij − ρCij ]+

and Cij ·Xij . Compared with the quadratically regularized DROT, the kernel cannot update Xij

until the scale of the group is ready in step (5).
(3) Perform in-warp reduction. For the group-lasso regularized case, we also reduce the sum of

[Yij − ρCij ]
2
+ to compute the norm of the group.

(4) Accumulate the results to the corresponding sum of the row, the sum of the column, and the sum
of the squared elements within the group using atomic operations.

(5) Compute the scale for the group and apply it to the computed [Yij − ρCij ]+ so as to update Xij .
(For large problem sizes, where a thread block can only access part of the group, the process of
reduction and broadcast is done in an additional kernel function).

Compared with the quadratically regularized case, the group-lasso regularized DROT requires an
additional round for reduction and broadcast within the group. Moreover, for large problem sizes,
when the intermediate results for the group do not fit in the shared memory, it is inevitable to access
the matrix C in every iteration. Both factors lead to an increase in the per-iteration runtime of the
Group-lasso regularized DROT, which ends up being roughly twice as long as that of the quadratically
regularized DROT. However, as we will show in the next section, its per-iteration runtime is still
comparable with the Sinkhorn-Knopp algorithm.

E.2.4 Per-iteration Runtime

The comparison of the per-iteration runtime among all methods is given in Figure 6. For QDROT and
the Sinkhorn-Knopp algorithm, 12 random samples are generated with problem sizes from 100 to
10000. For GLDROT, 12 random samples are generated with problem sizes from 100 to 10000 and
with 2 and 4 classes, respectively. Note that the Sinkhorn-based implementation of group-lasso OT in
POT [16] does not return the number of iterations, nor reports the per-iteration run-time. This makes
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Figure 5: GPU Kernel Design

it impossible to estimate the corresponding run-time numbers for the Sinkhorn-based group-lasso
OT [11]. We have therefore excluded this algorithm here, but expect it to have larger (and possibly
significantly larger) per-iteration runtime than the Sinkhorn-Knopp algorithm [11].

To make a fair comparison between the Sinkhorn-Knopp algorithm and ours, we cover four variants
of the Sinkhorn-Knopp algorithm in the comparison. The implementation of Sinkhorn-Knopp in POT
[16] computes the primal residual once every 10 iterations, since this operation is relatively costly
compared with the iteration itself. Moreover, to increase the numerical stability of the algorithm and
to improve the quality of the results with smaller weights of the entropic regularizer, the Sinkhorn-
Knopp algorithm is improved by moving the computation to log scale. The decision to compute the
primal residual or not, and to perform the computations in linear or logarithmic scale leads to the four
distinct versions of the Sinkhorn-Knopp algorithm that we evaluate. Since our methods work directly
on X we let them compute the objective value and the primal residual in every iteration.

The results show that our QDROT implementation has roughly the same per-iteration runtime as the
standard Sinkhorn-Knopp algorithm. The per-iteration runtime of the Sinkhorn-Knopp algorithm in
log scale is roughly 4.3-9.4x longer than QDROT and is roughly 2.5-4.5x longer than GLDROT.

F Additional Experiments

This section describes additional experiments with RDROT using quadratic and group-lasso regu-
larization on more datasets of various sizes and using different hyperparameters. The results are
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Figure 6: Comparison of the per-iteration cost for OT solvers. We compare the Sinkhorn-Knopp
Algorithm [11], and a log domain variant (with and without stopping criterion computations every
10th iteration), against QDROT (ours): Quadratically regularized DROT, and GLDROT (ours):
Group-lasso regularized DROT.

consistent with the experiments that could be included in the main document and demonstrate
significant advantages of our method compared to the state-of-the-art.

Quadratic regularization In the main manuscript, we compared our solver with an L-BFGS
method applied to the dual problem. Two problem sizes were considered: m = 1000, n = 1000, and
m = 2000, n = 3000. In Figure 2, we rerun the benchmark on 4 additional problem sizes. Notice
that all results are consistent with those presented in the paper, showing that our results generalize to
more settings beyond the ones presented in the paper.

(a) m = 100, n = 100 (b) m = 1000, n = 1000

(c) m = 2000, n = 3000 (d) m = 10000, n = 10000

Figure 7: Additional experiments of the RDROT (QDROT) and the dual L-BFGS method comparison
for different quadratic regularization parameters and problem sizes. 50 datasets of an additional 4
problem sizes were simulated.
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Group Lasso regularization To establish the computational advantages of RDROT applied to the
Group-Lasso problem, we benchmarked it against Sinkhorn-based solver on simulated datasets of
size m = 1000, n = 1500, for a selection of hyperparameters. It Table 4,5,6, we rerun the benchmark
on more problem sizes and hyperparameters, to test if the results generalize. Indeed, GLDROT
consistently outperforms the state-of-the-art in all considered problems.

Table 4: GL experiments with n = 500 and m = 500
Reg. Runtime (s) ↓ Agg. W2 dist. ↓

Method Ent GL Median q10 q90 Median q10 q90
GLSK 1e-3 1e-6 1.26 1.24 2.98 0.35 0.084 4.96

1e-3 5e-4 1.23 1.22 2.93 0.351 0.0841 4.96
1e-3 5e-2 1.35 1.23 3.57 0.377 0.092 4.96
1e-2 1e-6 1.21 1.09 2.63 1.22 0.668 5.48
1e-2 5e-4 1.18 1.07 2.61 1.22 0.668 5.48
1e-2 5e-2 1.2 1.08 2.63 1.22 0.668 5.57
1e-1 1e-6 1.04 1.04 1.06 7.83 3.27 30.6
1e-1 5e-4 1.05 1.05 1.07 7.83 3.27 30.6
1e-1 5e-2 1.05 1.04 1.06 7.83 3.27 30.6
1. 1e-6 1.03 0.517 1.04 45.3 9.74 212
1. 5e-4 1.02 0.512 1.03 45.3 9.74 212
1. 5e-2 1.03 0.514 1.03 45.3 9.74 212

GLDROT 1e-6 0.0924 0.0519 0.16 0.0618 0.028 0.309
5e-4 0.0553 0.0354 0.106 0.0801 0.0357 0.319
5e-2 0.0127 0.00889 0.0351 0.672 0.321 2.87

Table 5: m = 1000, n = 1000
Reg. Runtime (s) ↓ Agg. W2 dist. ↓

Method Ent GL Median q10 q90 Median q10 q90
GLSK 1e-3 1e-6 4.97 4.91 9.27 1.66 0.405 11

1e-3 5e-4 4.9 4.82 9.19 1.66 0.405 11
1e-3 5e-2 5.52 4.91 15.9 1.64 0.389 11
1e-2 1e-6 4.9 4.79 5.53 3.06 0.926 8.97
1e-2 5e-4 4.79 4.66 5.5 3.06 0.926 8.97
1e-2 5e-2 4.88 4.73 5.55 3.15 0.926 9.03
1e-1 1e-6 4.71 4.68 4.73 20.6 8.97 74.3
1e-1 5e-4 4.74 4.7 4.78 20.6 8.97 74.3
1e-1 5e-2 4.76 4.73 4.82 20.6 8.97 74.3
1. 1e-6 4.61 4.57 4.64 130 37.5 403
1. 5e-4 4.62 4.6 4.67 130 37.5 403
1. 5e-2 4.74 4.71 4.77 130 37.5 403

GLDROT 1e-6 0.109 0.0735 0.146 0.0999 0.0424 0.304
5e-4 0.0598 0.045 0.0763 0.138 0.0632 0.44
5e-2 0.0281 0.0232 0.0374 3.16 1.14 9.01

24



Table 6: m = 1000, n = 1500
Reg. Runtime (s) ↓ Agg. W2 dist. ↓

Method Ent GL Median q10 q90 Median q10 q90
GLSK 1e-3 1e-6 3.82 3.75 9.03 0.311 0.0657 6.48

1e-3 5e-4 3.8 3.75 9 0.311 0.0657 6.48
1e-3 5e-2 3.8 3.77 10.6 0.345 0.0665 6.48
1e-2 1e-6 3.78 3.73 6.8 1.21 0.69 5.47
1e-2 5e-4 3.8 3.76 6.82 1.21 0.69 5.47
1e-2 5e-2 3.82 3.79 6.88 1.21 0.69 5.47
1e-1 1e-6 3.7 3.67 3.72 8.24 3.47 31.6
1e-1 5e-4 3.75 3.73 3.78 8.24 3.47 31.6
1e-1 5e-2 3.77 3.73 3.81 8.24 3.47 31.6
1. 1e-6 3.73 1.86 3.77 45.5 9.92 218
1. 5e-4 3.69 1.85 3.73 45.5 9.92 218
1. 5e-2 3.75 1.88 3.78 45.5 9.92 218

GLDROT 1e-6 0.113 0.0758 0.147 0.0475 0.0215 0.137
5e-4 0.0745 0.0549 0.0951 0.0529 0.0245 0.163
5e-2 0.0232 0.0178 0.0288 0.331 0.154 1.38

G Model specification of the generative Adversarial Model

We adopted similar network structures and used the same loss function as in [35] and performed
several experiments with image generation based on the MNIST and CIFAR10 datasets.

To define the loss, we need the following sample-based OT-cost.

Wc,h(X,Y) = OTh(CX,Y)

:= inf
M∈Rm×n

+

{
⟨CX,Y,M⟩+ h(M) : M1n = m−11m, M⊤1m = n−11n

}
.

Here m and n are the batch sizes corresponding to X and Y, and CX,Y is a matrix with pairwise
distances between the samples of X and Y. The mini-batch energy distance [35] is then given by

Lh = Wc,h(X,Y) +Wc,h(X
′,Y) +Wc,h(X,Y′) +Wc,h(X

′,Y′)

− 2Wc,h(X,X′)− 2Wc,h(Y,Y′).

Here, X, X′ are two independent mini-batches from real data, while Y, Y′ are two independent
mini-batches generated from the generator.

In the experiments, we used the cosine similarity to parameterize the cost, and we replaced the OT
solver used in [35] - the Sinkhorn-Knopp algorithm, by the PyTorch wrapper for our OT solver with
the quadratic regularizer.

The model structures are adapted from the ones in [35]. Weight normalization is used to construct
the parameters of the models [34], and the activation functions are gated linear units [13] and
concatenated ReLUs [38]. We train the model with the Adam optimizier [22] using an initial learning
rate of 3× 10−4, with β1 = 0.5 and β2 = 0.999. The batch size is 1024 for the MNIST experiment
and 2048 for the CIFAR10 experiment. We update the generator three times for every discriminator
update. As for the parameters of our OT solver, we use ϵ = 10−4 as the stopping criterion and
λ = 10−3 as the weight of the quadratic regularizer. The results for MNIST and CIFAR10 are
detailed below.

Different combinations of hyperparameters, model structures and schedules for the weight of the
regularizers and the stopping criterion (the OT solver can allowed to produce low-accuracy solutions
at the beginning of the training, for example) may potentially improve the results of the generated
samples, but since GANs are not the focus of this paper, we leave such refinements as future work.
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G.1 MNIST Architecture and Results

Operation Activation Kernel Size Stride Padding Output Shape
Sample z [4]

Linear GLU [128 · 7 · 7]
Reshape [128, 7, 7]

Upsample ×2 [128, 14, 14]
2D Convolution GLU [5, 5] 1 same [128, 14, 14]
Upsample ×2 [128, 28, 28]

2D Convolution GLU [5, 5] 1 same [64, 28, 28]
2D Convolution tanh [5, 5] 1 same [1, 28, 28]

Table 7: Generator Architecture for MNIST

Opertion Activation Kernel Size Stride Padding Output Shape
2D Convolution CReLU [5, 5] 1 same [128, 28, 28]
2D Convolution CReLU [5, 5] 1 same [128, 28, 28]
2D Convolution CReLU [5, 5] 2 2 [256, 14, 14]
2D Convolution CReLU [5, 5] 2 2 [256, 7, 7]

Flatten [256 · 7 · 7]
L2 Normalization [256 · 7 · 7]

Table 8: Discriminator Architecture for MNIST

Figure 8: Generated samples at 100th epoch for MNIST (Original
size for each sample is 28x28 px)

The generated samples in Figure 8 are clear and shape, and no mode collapse can be observed (digits
from 0 to 9 with various variants can be found in the figure). Compared with the results in [17]
(Figure 3), our results show higher quality.
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G.2 CIFAR10 Architecture and Results

Opertion Activation Kernel Size Stride Padding Output Shape
Sample z [100]

Linear GLU [1024 · 4 · 4]
Reshape [1024, 4, 4]

Upsample ×2 [1024, 8, 8]
2D Convolution GLU [5, 5] 1 same [512, 8, 8]
Upsample ×2 [512, 16, 16]

2D Convolution GLU [5, 5] 1 same [256, 16, 16]
Upsample ×2 [256, 32, 32]

2D Convolution GLU [5, 5] 1 same [128, 32, 32]
2D Convolution tanh [5, 5] 1 same [3, 32, 32]

Table 9: Generator Architecture for CIFAR10

Opertion Activation Kernel Size Stride Padding Output Shape
2D Convolution CReLU [5, 5] 1 same [256, 32, 32]
2D Convolution CReLU [5, 5] 2 2 [512, 16, 16]
2D Convolution CReLU [5, 5] 2 2 [1024, 8, 8]
2D Convolution CReLU [5, 5] 2 2 [2048, 4, 4]

Flatten [2048 · 4 · 4]
L2 Normalization [2048 · 4 · 4]

Table 10: Discriminator Architecture for CIFAR10

Figure 9: Generated samples at 1900th epoch for CIFAR10 (Orig-
inal size for each sample is 32x32 px)

In Figure 9, most samples are recognizable, and the samples cover the 10 categories of the CIFAR10
dataset with enough diversity. Our generated samples have similar quality as the ones reported in [35]
(Figure 4) which uses the Sinkhorn-Knopp algorithm as the OT solver in the mini-batch energy loss.
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