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Abstract

We provide the first finite-particle convergence rate for Stein variational gradient
descent (SVGD), a popular algorithm for approximating a probability distribution
with a collection of particles. Specifically, whenever the target distribution is sub-
Gaussian with a Lipschitz score, SVGD with n particles and an appropriate step
size sequence drives the kernel Stein discrepancy to zero at an order 1/

√
log log n

rate. We suspect that the dependence on n can be improved, and we hope that
our explicit, non-asymptotic proof strategy will serve as a template for future
refinements.

1 Introduction

Stein variational gradient descent [SVGD, 18] is an algorithm for approximating a target probability
distribution P on Rd with a collection of n particles. Given an initial particle approximation
µn
0 = 1

n

∑n
i=1 δxi with locations xi ∈ Rd, SVGD (Algorithm 1) iteratively evolves the particle

locations to provide a more faithful approximation of the target P by performing optimization in the
space of probability measures. SVGD has demonstrated encouraging results for a wide variety of
inferential tasks, including approximate inference [18, 28, 27], generative modeling [26, 13], and
reinforcement learning [11, 21].

Despite the popularity of SVGD, relatively little is known about its approximation quality. A first
analysis by Liu [17, Thm. 3.3] showed that continuous SVGD—that is, Algorithm 2 initialized with a
continuous distribution µ∞

0 in place of the discrete particle approximation µn
0—converges to P in

kernel Stein discrepancy [KSD, 4, 19, 9]. KSD convergence is also known to imply weak convergence
[9, 3, 12, 1] and Wasserstein convergence [14] under various conditions on the target P and the
SVGD kernel k. Follow-up work by Korba et al. [15], Salim et al. [22], Sun et al. [24] sharpened the
result of Liu with path-independent constants, weaker smoothness conditions, and explicit rates of
convergence. In addition, Duncan et al. [6] analyzed the continuous-time limit of continuous SVGD
to provide conditions for exponential convergence. However, each of these analyses applies only to
continuous SVGD and not to the finite-particle algorithm used in practice.

To bridge this gap, Liu [17, Thm. 3.2] showed that n-particle SVGD converges to continuous
SVGD in bounded-Lipschitz distance but only under boundedness assumptions violated by most
applications of SVGD. To provide a more broadly applicable proof of convergence, Gorham et al.
[10, Thm. 7] showed that n-particle SVGD converges to continuous SVGD in 1-Wasserstein distance
under assumptions commonly satisfied in SVGD applications. However, both convergence results are
asymptotic, providing neither explicit error bounds nor rates of convergence. Korba et al. [15, Prop. 7]
explicitly bounded the expected squared Wasserstein distance between n-particle and continuous
SVGD but only under the assumption of bounded∇ log p, an assumption that rules out all strongly
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Algorithm 1 n-particle Stein Variational Gradient Descent [18]: SVGD(µn
0 , r)

Input: Target P with density p, kernel k, step sizes (ϵs)s≥0, particle approximation µn
0 =

1
n

∑n
i=1 δxi , rounds r

for s = 0, · · · , r − 1 do
xi ← xi + ϵs

1
n

∑n
j=1 k(xj , xi)∇ log p(xj) +∇xk(xj , xi) for i = 1, . . . , n.

Output: Updated approximation µn
r = 1

n

∑n
i=1 δxi of the target P

Algorithm 2 Generic Stein Variational Gradient Descent [18]: SVGD(µ0, r)

Input: Target P with density p, kernel k, step sizes (ϵs)s≥0, approximating measure µ0, rounds r
for s = 0, · · · , r − 1 do

Let µs+1 be the distribution of Xs+ ϵs
∫
k(x,Xs)∇ log p(x)+∇xk(x,X

s)dµs(x) for Xs ∼ µs.
Output: Updated approximation µr of the target P

log concave or dissipative distributions and all distributions for which the KSD is currently known to
control weak convergence [9, 3, 12, 1]. In addition, Korba et al. [15] do not provide a unified bound
for the convergence of n-particle SVGD to P and ultimately conclude that “the convergence rate
for SVGD using [µn

0 ] remains an open problem.” The same open problem was underscored in the
later work of Salim et al. [22], who write “an important and difficult open problem in the analysis of
SVGD is to characterize its complexity with a finite number of particles.”

In this work, we derive the first unified convergence bound for finite-particle SVGD to its target.
To achieve this, we first bound the 1-Wasserstein discretization error between finite-particle and
continuous SVGD under assumptions commonly satisfied in SVGD applications and compatible with
KSD weak convergence control (see Theorem 1). We next bound KSD in terms of 1-Wasserstein
distance and SVGD moment growth to explicitly control KSD discretization error in Theorem 2.
Finally, Theorem 3 combines our results with the established KSD analysis of continuous SVGD to
arrive at an explicit KSD error bound for n-particle SVGD.

2 Notation and Assumptions

Throughout, we fix a nonnegative step size sequence (ϵs)s≥0, a target distribution P in the set
P1 of probability measures on Rd with integrable first moments, and a reproducing kernel k—a
symmetric positive definite function mapping Rd × Rd to R—with reproducing kernel Hilbert space
(RKHS)H and product RKHSHd ≜

⊗d
i=1H [2]. We will use the terms “kernel” and “reproducing

kernel” interchangeably. For all µ, ν ∈ P1, we let Γ(µ, ν) be the set of all couplings of µ and ν,
i.e., joint probability distributions γ over P1 × P1 with µ and ν as marginal distributions of the
first and second variable respectively. We further let µ ⊗ ν denote the independent coupling, the
distribution of (X,Z) when X and Z are drawn independently from µ and ν respectively. With
this notation in place we define the 1-Wasserstein distance between µ, ν ∈ P1 as W1(µ, ν) ≜
infγ∈Γ(µ,ν) E(X,Z)∼γ [∥Z −X∥2] and introduce the shorthand mµ,x⋆ ≜ Eµ[∥· − x⋆∥]2 for each
x⋆ ∈ Rd, mµ,P ≜ E(X,Z)∼µ⊗P [∥X − Z∥2], and Mµ,P ≜ E(X,Z)∼µ⊗P [∥X − Z∥

2
2]. We further

define the Kullback-Leibler (KL) divergence as KL(µ∥ν) ≜ Eµ[log(
dµ
dν )] when µ is absolutely

continuous with respect to ν (denoted by µ≪ ν) and as∞ otherwise.

Our analysis will make use of the following assumptions on the SVGD kernel and target distribution.
Assumption 1 (Lipschitz, mean-zero score function). The target distribution P ∈ P1 has a dif-
ferentiable density p with an L-Lipschitz score function sp ≜ ∇ log p, i.e., ∥sp(x)− sp(y)∥2 ≤
L∥x− y∥2 for all x, y ∈ Rd. Moreover, EP [sp] = 0 and sp(x⋆) = 0 for some x⋆ ∈ Rd.
Assumption 2 (Bounded kernel derivatives). The kernel k is twice differentiable and
supx,y∈Rd max(|k(x, y)|, ∥∇xk(x, y)∥2, ∥∇y∇xk(x, y)∥op,

∥∥∇2
xk(x, y)

∥∥
op
) ≤ κ21 for κ1 > 0.

Moreover, for all i, j ∈ {1, 2, . . . , d}, supx∈Rd ∇yi∇yj∇xi∇xjk(x, y)|y=x ≤ κ22 for κ2 > 0.
Assumption 3 (Decaying kernel derivatives). The kernel k is differentiable and admits a γ ∈ R such
that, for all x, y ∈ Rd satisfying ∥x− y∥2 ≥ 1,

∥∇xk(x, y)∥2 ≤ γ/∥x− y∥2.
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Assumptions 1, 2, and 3 are both commonly invoked and commonly satisfied in the literature.
For example, the Lipschitz score assumption is consistent with prior SVGD convergence analyses
[17, 15, 22] and, by Gorham and Mackey [8, Prop. 1], the score sp is mean-zero under the mild
integrability condition EX∼P [∥sp(X)∥2] <∞. The bounded and decaying derivative assumptions
have also been made in prior analyses [15, 9] and, as we detail in Appendix A, are satisfied by the
kernels most commonly used in SVGD, like the Gaussian and inverse multiquadric (IMQ) kernels.
Notably, in these cases, the bounds κ1 and κ2 are independent of the dimension d.

To leverage the continuous SVGD convergence rates of Salim et al. [22], we additionally assume that
the target P satisfies Talagrand’s T1 inequality [25, Def. 22.1]. Remarkably, Villani [25, Thm. 22.10]
showed that Assumption 4 is equivalent to P being a sub-Gaussian distribution. Hence, this mild
assumption holds for all strongly log concave P [23, Def. 2.9], all P satisfying the log Sobolev
inequality [25, Thm. 22.17], and all distantly dissipative P for which KSD is known to control weak
convergence [9, Def. 4].

Assumption 4 (Talagrand’s T1 inequality [25, Def. 22.1]). For P ∈ P1, there exists λ > 0 such that,
for all µ ∈ P1,

W1(µ, P ) ≤
√

2KL(µ∥P )/λ.

Finally we make use of the following notation specific to the SVGD algorithm.

Definition 1 (Stein operator). For any differentiable vector-valued function g : Rd → Rd, the
Langevin Stein operator [8] for P satisfying Assumption 1 is defined by

(TP g)(x) ≜ ⟨sp(x), g(x)⟩+∇ · g(x) for all x ∈ Rd.

Definition 2 (Vector-valued Stein operator). For any differentiable function h : Rd → R, the
vector-valued Langevin Stein operator [19] for P satisfying Assumption 1 is defined by

(APh)(x) ≜ sp(x)h(x) +∇h(x) for all x ∈ Rd.

Definition 3 (SVGD transport map and pushforward). The SVGD transport map [18] for a target P
satisfying Assumption 1, a kernel k satisfying Assumption 2, a step size ϵ ≥ 0, and an approximating
distribution µ ∈ P1 takes the form

Tµ,ϵ(x) ≜ x+ ϵEX∼µ[(AP k(·, x))(X)] for all x ∈ Rd.

Moreover, the SVGD pushforward Φϵ(µ) represents the distribution of Tµ,ϵ(X) when X ∼ µ.

Definition 4 (Kernel Stein discrepancy). The Langevin kernel Stein discrepancy [KSD, 4, 19, 9] for
P satisfying Assumption 1, k satisfying Assumption 2, and measures µ, ν ∈ P1 is given by

KSDP (µ, ν) ≜ sup∥g∥Hd≤1 Eµ[TP g]− Eν [TP g].

Notably, the KSD so-defined is symmetric in its two arguments and satisfies the triangle inequality.

Lemma 1 (KSD symmetry and triangle inequality). Under Definition 4, for all µ, ν, π ∈ P1,

KSDP (µ, ν) = KSDP (ν, µ) and KSDP (µ, ν) ≤ KSDP (µ, π) + KSDP (π, ν).

Proof. Fix any µ, ν, π ∈ P1. For symmetry, we note that g ∈ Hd ⇔ f = −g ∈ Hd, so

KSDP (µ, π) = sup
∥g∥Hd≤1

Eµ[TP g]− Eπ[TP g] = sup
∥f∥Hd≤1

Eπ[TP f ]− Eµ[TP f ] = KSDP (π, µ).

To establish the triangle inequality, we write

KSDP (µ, ν) = sup∥g∥Hd≤1 Eµ[TP g]− Eπ[TP g] + Eπ[TP g]− Eν [TP g]
≤ sup∥g∥Hd≤1(Eµ[TP g]− Eπ[TP g]) + sup∥h∥Hd≤1(Eπ[TPh]− Eν [TPh])
≤ KSDP (µ, π) + KSDP (π, ν).
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3 Wasserstein Discretization Error of SVGD

Our first main result concerns the discretization error of SVGD and shows that n-particle SVGD
remains close to its continuous SVGD limit whenever the step size sum br−1 =

∑r−1
s=0 ϵs is sufficiently

small.

Theorem 1 (Wasserstein discretization error of SVGD). Suppose Assumptions 1, 2, and 3 hold. For
any µn

0 , µ
∞
0 ∈ P1, the outputs µn

r = SVGD(µn
0 , r) and µ∞

r = SVGD(µ∞
0 , r) of Algorithm 2 satisfy

log

(
W1(µ

n
r , µ

∞
r )

W1(µn
0 , µ

∞
0 )

)
≤ br−1(A+B exp(Cbr−1))

for br−1 ≜
∑r−1

s=0 ϵs, A = (c1 + c2)(1 +mP,x⋆), B = c1mµn0 ,P
+ c2mµ∞

0 ,P , C = κ21(3L + 1),
c1 = max(κ21L, κ

2
1), and c2 = κ21(L+ 1) + Lmax(γ, κ21).

We highlight that Theorem 1 applies to any P1 initialization of SVGD: the initial particles supporting
µn
0 could, for example, be drawn i.i.d. from a convenient auxiliary distribution µ∞

0 or even generated
deterministically from some quadrature rule. To marry this result with the continuous SVGD
convergence bound of Section 5, we will ultimately require µ∞

0 to be a continuous distribution
with finite KL(µ∞

0 ∥P ). Hence, our primary desideratum for SVGD initialization is that µn
0 have

small Wasserstein distance to some µ∞
0 with KL(µ∞

0 ∥P ) < ∞. Then, by Theorem 1, the SVGD
discretization error W1(µ

n
r , µ

∞
r ) will remain small whenever the step size sum is not too large.

The proof of Theorem 1 in Section 6 relies on two lemmas. The first, due to Gorham et al. [10],
shows that the one-step SVGD pushforward map Φϵ (Definition 3) is pseudo-Lipschitz with respect
to the 1-Wasserstein distance2 whenever the score function ∇ log p and kernel k fulfill a commonly-
satisfied pseudo-Lipschitz condition. Here, for any g : Rd → Rd, we define the Lipschitz constant
Lip(g) ≜ supx,z∈Rd∥g(x)− g(z)∥2/∥x− z∥2.

Lemma 2 (Wasserstein pseudo-Lipschitzness of SVGD [10, Lem. 12]). For P satisfying Assump-
tion 1, suppose that the following pseudo-Lipschitz bounds hold

Lip(sp(x)k(x, ·) +∇xk(x, ·)) ≤ c1(1 + ∥x− x⋆∥2),
Lip(spk(·, z) +∇xk(·, z)) ≤ c2(1 + ∥z − x⋆∥2).

for some constants c1, c2 ∈ R and all x, z ∈ Rd. Then, for any µ, ν ∈ P1,

W1(Φϵ(µ),Φϵ(ν)) ≤W1(µ, ν)(1 + ϵcµ,ν),

where Φϵ is the one-step SVGD pushforward (Definition 3) and cµ,ν = c1(1+mµ,x⋆)+c2(1+mν,x⋆).

In Section 6, we will show that, under Assumptions 1, 2, and 3, the preconditions of Lemma 2 are
fulfilled with c1 and c2 exactly as in Theorem 1. The second lemma, proved in Section 7, controls the
growth of the first and second absolute moments under SVGD.

Lemma 3 (SVGD moment growth). Suppose Assumptions 1 and 2 hold, and let C = κ21(3L+ 1).
Then the SVGD output µr of Algorithm 2 with br−1 ≜

∑r−1
s=0 ϵs satisfies

mµr,x⋆ −mP,x⋆ ≤ mµr,P ≤ mµ0,P

∏r−1
s=0(1 + ϵsC) ≤ mµ0,P exp(Cbr−1),

Mµr,P ≤Mµ0,P

∏r−1
s=0(1 + ϵsC)

2 ≤Mµ0,P exp(2Cbr−1).

The key to the proof of Lemma 3 is that we show the norm of any SVGD update, i.e., ∥Tµ,ϵ(x)−x∥2,
is controlled by mµ,P , the first absolute moment of µ measured against P . This is mainly due to the
Lipschitzness of the score function sp and our assumptions on the boundedness of the kernel and
its derivatives. Then, we can use the result to control the growth of mµr,P across iterations since
mµr+1,P = E(X,Z)∼µr⊗P [∥Tµr,ϵr (X)− Z∥2]. The same strategy applies to the second absolute
moment Mµ,P . The proof of Theorem 1 then follows directly from Lemma 2 where we plug in the
first moment bound of Lemma 3.

2We say a map Φ : P1 → P1 is pseudo-Lipschitz with respect to 1-Wasserstein distance if, for a constant
CΦ ∈ R, some x⋆ ∈ Rd, and all µ, ν ∈ P1, W1(Φ(µ),Φ(ν)) ≤ W1(µ, ν) (1 +mµ,x⋆ +mν,x⋆)CΦ.
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4 KSD Discretization Error of SVGD

Our next result translates the Wasserstein error bounds of Theorem 1 into KSD error bounds.
Theorem 2 (KSD discretization error of SVGD). Suppose Assumptions 1, 2, and 3 hold. For any
µn
0 , µ

∞
0 ∈ P1, the outputs of Algorithm 2, µn

r = SVGD(µn
0 , r) and µ∞

r = SVGD(µ∞
0 , r), satisfy

KSDP (µ
n
r , µ

∞
r ) ≤ (κ1L+ κ2d)w0,n exp(br−1(A+B exp(Cbr−1)))

+ κ1d
1/4L

√
2Mµ∞

0 ,Pw0,n exp(br−1(2C +A+B exp(Cbr−1))/2)

for w0,n ≜W1(µ
n
0 , µ

∞
0 ) and A,B,C defined as in Theorem 1.

Our proof of Theorem 2 relies on the following lemma, proved in Section 8, that shows that the KSD
is controlled by the 1-Wasserstein distance.
Lemma 4 (KSD-Wasserstein bound). Suppose Assumptions 1 and 2 hold. For any µ, ν ∈ P1,

KSDP (µ, ν) ≤ (κ1L+ κ2d)W1(µ, ν)+κ1d
1/4L

√
2Mν,PW1(µ, ν).

Lemma 4 is proved in two steps. We first linearize (TP g)(x) in the KSD definition through the
Lipschitzness of sp and the boundedness and Lipschitzness of RKHS functions. Then, we assign a
1-Wasserstein optimal coupling of (µ, ν) to obtain the Wasserstein bound on the right.

Proof of Theorem 2 The result follows directly from Lemma 4, the second moment bound of
Lemma 3, and Theorem 1. ■

5 A Finite-particle Convergence Rate for SVGD

To establish our main SVGD convergence result, we combine Theorems 1 and 2 with the following
descent lemma for continuous SVGD error due to Salim et al. [22] which shows that continuous
SVGD decreases the KL divergence to P and drives the KSD to P to zero.
Lemma 5 (Continuous SVGD descent lemma [22, Thm. 3.2]). Suppose Assumptions 1, 2, and 4
hold, and consider the outputs µ∞

r = SVGD(µ∞
0 , r) and µ∞

r+1 = SVGD(µ∞
0 , r + 1) of Algorithm 2

with µ∞
0 ≪ P . If max0≤s≤r ϵs ≤ Rα,2 for some α > 1 and

Rα,p≜min
(

p
κ2
1(L+α2)

,(α−1)(1 + Lmµ∞
0 ,x⋆ + 2L

√
2
λKL(µ∞

0 ∥P ))
)

for p ∈ {1, 2}, (1)

then

KL(µ∞
r+1∥P )− KL(µ∞

r ∥P ) ≤ −ϵr
(
1− κ2

1(L+α2)
2 ϵr

)
KSDP (µ

∞
r , P )

2. (2)

By summing the result (2) over r ∈ {0, . . . , t}, we obtain the following corollary.
Corollary 1. Under the assumptions and notation of Lemma 5, suppose max0≤r≤t ϵr ≤ Rα,1 for

some α > 1, and let πr ≜ c(ϵr)∑t
r=0 c(ϵr)

for c(ϵ) ≜ ϵ
(
1− κ2

1(L+α2)
2 ϵ

)
. Since ϵ

2 ≤ c(ϵ) < ϵ, we have∑t
r=0 πrKSDP (µ

∞
r , P )

2 ≤ 1∑t
r=0 c(ϵr)

KL(µ∞
0 ∥P ) ≤ 2∑t

r=0 ϵr
KL(µ∞

0 ∥P ).

Finally, we arrive at our main result that bounds the approximation error of n-particle SVGD in terms
of the chosen step size sequence and the initial discretization error W1(µ

n
0 , µ

∞
0 ).

Theorem 3 (KSD error of finite-particle SVGD). Suppose Assumptions 1, 2, 3, and 4 hold, fix any
µ∞
0 ≪ P and µn

0 ∈ P1, and let w0,n ≜W1(µ
n
0 , µ

∞
0 ). If max0≤r<t ϵr ≤ ϵt ≜ Rα,1

3 for some α > 1
and Rα,1 defined in Lemma 5, then the Algorithm 2 outputs µn

r = SVGD(µn
0 , r) satisfy

min0≤r≤t KSDP (µ
n
r , P ) ≤

∑t
r=0 πrKSDP (µ

n
r , P ) ≤ at−1 +

√
2

Rα,1+ bt−1
KL(µ∞

0 ∥P ), (3)

for πr as defined in Lemma 5, (A,B,C) as defined in Theorem 1, bt−1 ≜
∑t−1

r=0 ϵr, and

at−1 ≜ (κ1L+ κ2d)w0,n exp(bt−1(A+B exp(Cbt−1))) (4)

+ κ1d
1/4L

√
2Mµ∞

0 ,Pw0,n exp(bt−1(2C +A+B exp(Cbt−1))/2).
3Note that the value assigned to ϵt does not have any impact on the algorithm that generates µn

r when r ≤ t.
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Proof. By the triangle inequality (Lemma 1) and Theorem 2 we have

|KSDP (µ
n
r , P )− KSDP (µ

∞
r , P )| ≤ KSDP (µ

n
r , µ

∞
r ) ≤ ar−1

for each r. Therefore∑t
r=0 πr(KSDP (µ

n
r , P )− ar−1)

2 ≤
∑t

r=0 πrKSDP (µ
∞
r , P )

2 ≤ 2
Rα,1+ bt−1

KL(µ∞
0 ∥P ), (5)

where the last inequality follows from Corollary 1. Moreover, by Jensen’s inequality,∑t
r=0 πr(KSDP (µ

n
r , P )− ar−1)

2 ≥
(∑t

r=0 πrKSDP (µ
n
r , P )−

∑t
r=0 πrar−1

)2

. (6)

Combining (5) and (6), we have∑t
r=0 πrKSDP (µ

n
r , P ) ≤

∑t
r=0 πrar−1 +

√
2

Rα,1+ bt−1
KL(µ∞

0 ∥P ).

We finish the proof by noticing that
∑t

r=0 πrar−1 ≤ max0≤r≤t ar−1 = at−1.

The following corollary, proved in Appendix B, provides an explicit SVGD convergence bound and
rate by choosing the step size sum to balance the terms on the right-hand side of (3). In particular,
Corollary 2 instantiates an explicit SVGD step size sequence that drives the kernel Stein discrepancy
to zero at an order 1/

√
log log(n) rate.

Corollary 2 (A finite-particle convergence rate for SVGD). Instantiate the notation and assumptions
of Theorem 3, let (w̄0,n, Ā, B̄, C̄) be any upper bounds on (w0,n, A,B,C) respectively, and define
the growth functions

ϕ(w) ≜ log log(ee + 1
w ) and ψB̄,C̄(x, y, β) ≜

1
C̄
log( 1

B̄
max(B̄, 1

β log 1
x−y)).

If the step size sum bt−1 =
∑t−1

r=0 ϵr = s⋆n for

s⋆n ≜ min
(
ψB̄,C̄

(
w̄0,n

√
ϕ(w̄0,n), Ā, β1

)
, ψB̄,C̄

(
w̄0,n ϕ(w̄0,n), Ā+ 2C̄, β2

))
,

β1 ≜ max
(
1, ψB̄,C̄

(
w̄0,n

√
ϕ(w̄0,n), Ā, 1

))
, and

β2 ≜ max
(
1, ψB̄,C̄

(
w̄0,n ϕ(w̄0,n), Ā+ 2C̄, 1

))
then

min
0≤r≤t

KSDP (µ
n
r , P )

≤


(κ1L+ κ2d)w̄0,n + κ1d

1/4L
√

2Mµ∞
0 ,P w̄0,n +

√
2

Rα,1
KL(µ∞

0 ∥P ) if s⋆n = 0

(κ1L+κ2d)+κd1/4L
√

2Mµ∞0 ,P√
ϕ(w̄0,n)

+
√

2KL(µ∞
0 ∥P )

Rα,1+
1
C̄

log( 1
B̄
(

log(1/(w̄0,n ϕ(w̄0,n)))

max(1,ψB̄,C̄ (w̄0,n,0,1))
−Ā−2C̄))

otherwise
(7)

= O

(
1√

log log(ee+ 1
w̄0,n

)

)
. (8)

If, in addition, µn
0 = 1

n

∑n
i=1 δxi for xi

i.i.d.∼ µ∞
0 with Mµ∞

0
≜ Eµ∞

0
[∥·∥22] <∞, then

w̄0,n ≜
Mµ∞0

log(n)I[d=2]

δ n1/(2∨d) ≥ w0,n (9)

with probability at least 1− cδ for a universal constant c > 0. Hence, with this choice of w̄0,n,

min0≤r≤t KSDP (µ
n
r , P ) = O

(
1√

log log(nδ)

)
with probability at least 1− cδ.

Specifically, given any upper bounds (w̄0,n, Ā, B̄, C̄) on the quantities (w0,n, A,B,C) defined
in Theorem 3, Corollary 2 specifies a recommended step size sum s⋆n to achieve an order
1/

√
log log(ee + 1

w̄0,n
) rate of SVGD convergence in KSD. Several remarks are in order. First,
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the target step size sum s⋆n is easily computed given (w̄0,n, Ā, B̄, C̄). Second, we note that the
target s⋆n can equal 0 when the initial Wasserstein upper bound w̄0,n is insufficiently small since
log( 1

B̄
max(B̄, 1

β log 1
x−y)) = log( B̄

B̄
) = 0 for small arguments x. In this case, the setting bt−1 = 0

amounts to not running SVGD at all or, equivalently, to setting all step sizes to 0.

Third, Corollary 2 also implies a time complexity for achieving an order 1/
√

log log(ee + 1
w̄0,n

) error

rate. Recall that Theorem 3 assumes that max0≤r<t ϵr ≤ Rα,1 for Rα,1 defined in (1). Hence, t⋆ ≜

⌈s⋆n/Rα,1⌉ rounds of SVGD are necessary to achieve the recommended setting
∑t⋆−1

r=0 ϵr = s⋆n while
also satisfying the constraints of Theorem 3. Moreover, t⋆ rounds are also sufficient if each step size is
chosen equal to s⋆n/t

⋆. In addition, since s⋆n = O(log log(ee+ 1
w̄0,n

)), Corollary 2 implies that SVGD
can deliver min0≤r≤t⋆ KSDP (µ

n
r , P ) ≤ ∆ in t⋆ = O(1/∆2) rounds. Since the computational

complexity of each SVGD round is dominated by Θ(n2) kernel gradient evaluations (i.e., evaluating
∇xk(xi, xj) for each pair of particles (xi, xj)), the overall computational complexity to achieve the

order 1/
√
log log(ee + 1

w̄0,n
) error rate is O(n2⌈s⋆n/Rα,1⌉) = O(n2 log log(ee + 1

w̄0,n
)).

6 Proof of Theorem 1: Wasserstein discretization error of SVGD

In order to leverage Lemma 2, we first show that the pseudo-Lipschitzness conditions of Lemma 2
hold given our Assumptions 1 to 3. Recall that sp is Lipschitz and x⋆ satisfies sp(x⋆) = 0 by
Assumption 1. Then, by the triangle inequality, the definition of ∥·∥op, ∥k(x, z)∥2 ≤ κ21 and
∥∇z∇xk(x, z)∥op ≤ κ21 from Assumption 2, and Cauchy-Schwartz,

Lip(sp(x)k(x, ·) +∇xk(x, ·))
≤ ∥sp(x)− sp(x⋆)∥2∥∇zk(x, z)∥2 + ∥∇z∇xk(x, z)∥op
= sup∥u∥2≤1(∥sp(x)− sp(x⋆)∥2|∇zk(x, z)

⊤u|) + ∥∇z∇xk(x, z)∥op
≤ L∥x− x⋆∥2∥∇zk(x, z)∥2 + ∥∇z∇xk(x, z)∥op
≤ max(κ21L, κ

2
1)(1 + ∥x− x⋆∥2).

Letting c1 = max(κ21L, κ
2
1) and taking supremum over z proves the first pseudo-Lipschitzness

condition. Similarly, we have

Lip(spk(·, z) +∇xk(·, z))
≤ supx∈Rd Lip(sp)|k(x, z)|+ ∥sp(x)− sp(x⋆)∥2∥∇xk(x, z)∥2 +

∥∥∇2
xk(x, z)

∥∥
op

≤ κ21L+ supx∈Rd L∥x− x⋆∥2∥∇xk(x, z)∥2 + κ21, (10)

where we used the Lipschitzness of sp from Assumption 1 and |k(x, z)| ≤ κ21,
∥∥∇2

xk(x, z)
∥∥
op
≤ κ21

from Assumption 2. Now we consider two cases separately: when ∥x− z∥2 ≥ 1 and ∥x− z∥2 < 1.

• Case 1: ∥x− z∥2 ≥ 1. Recall that there exists γ > 0 such that ∥∇xk(x, z)∥2 ≤ γ/∥x− z∥2 by
Assumption 3. Then, using this together with the triangle inequality, we have

∥x− x⋆∥2∥∇xk(x, z)∥2 ≤ γ
∥x−z∥2+∥z−x⋆∥2

∥x−z∥2
≤ γ(1 + ∥z − x⋆∥2). (11)

• Case 2: ∥x− z∥2 < 1. Then, using ∥∇xk(x, z)∥2 ≤ κ21 from Assumption 2 and by the triangle
inequality, we have

∥x− x⋆∥2∥∇xk(x, z)∥2 ≤ κ21(∥x− z∥2 + ∥z − x⋆∥2) < κ21(1 + ∥z − x⋆∥2). (12)

Combining (11) and (12) and using the triangle inequality, we get

∥x− x⋆∥2∥∇xk(x, z)∥2 ≤ max(γ, κ21)(1 + ∥z − x⋆∥2). (13)

Plugging (13) back into (10), we can show the second pseudo-Lipschitzness condition holds for
c2 = max(κ21(L+ 1) + Lmax(γ, κ21), Lmax(γ, κ21)) = κ21(L+ 1) + Lmax(γ, κ21).
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Now we have proved that both pseudo-Lipschitzness preconditions of Lemma 2 hold under our
Assumptions 1 to 3. By repeated application of Lemma 2 and the inequality (1 + x) ≤ ex, we have

W1(µ
n
r+1, µ

∞
r+1) =W1(Φϵr (µ

n
r ),Φϵr (µ

∞
r )) ≤ (1 + ϵrDr)W (µn

r , µ
∞
r )

≤W1(µ
n
0 , µ

∞
0 )

∏r

s=0
(1 + ϵsDs) ≤W1(µ

n
0 , µ

∞
0 ) exp(

∑r

s=0
ϵsDs) (14)

for Ds = c1(1 +mµns ,x
⋆) + c2(1 +mµ∞

s ,x⋆).

Using the result from Lemma 3, we have

Ds+1 ≤ A+B exp(Cbs)

for A = (c1 + c2)(1 +mP,x⋆), B = c1mµn0 ,P
+ c2mµ∞

0 ,P , and C = κ21(3L+ d). Therefore∑r
s=0 ϵsDs ≤ max0≤s≤rDs

∑r
s=0 ϵs ≤ br(A+B exp(Cbr−1)) ≤ br(A+B exp(Cbr)).

Plugging this back into (14) proves the result.

7 Proof of Lemma 3: SVGD moment growth

From Assumption 2 we know |k(y, x)| ≤ κ21 and
∥∥∇2

yk(y, x)
∥∥
op
≤ κ21. The latter implies

∥∇yk(y, x)−∇zk(z, x)∥2 ≤ κ
2
1∥y − z∥2.

Recall that sp is Lipschitz and satisfies EP [sp(·)] = 0 by Assumption 1. Let µ be any probability
measure. Using the above results, Jensen’s inequality and the fact that EZ∼P [(AP k(·, x))(Z)] = 0,
we have

∥Tµ,ϵ(x)− x∥2 ≤ ϵ∥EX∼µ[(AP k(·, x))(X)]∥2
= ϵ∥EX∼µ[(AP k(·, x))(X)]− EZ∼P [(AP k(·, x))(Z)]∥2
= ϵ∥E(X,Z)∼µ⊗P [k(Z, x)(sp(X)− sp(Z)) + (k(X,x)− k(Z, x))(sp(X)− EP [sp(·)])
+ (∇Xk(X,x)−∇Zk(Z, x))]∥2
≤ ϵE(X,Z)∼µ⊗P [|k(Z, x)|∥sp(X)− sp(Z)∥2 + (|k(X,x)|+ |k(Z, x)|)∥sp(X)− EY∼P [sp(Y )]∥2
+ ∥∇Xk(X,x)−∇Zk(Z, x)∥2]
≤ ϵE(X,Z)∼µ⊗P [κ

2
1(L+ 1)∥X − Z∥2] + ϵ · 2κ21LE(X,Y )∼µ⊗P [∥X − Y ∥2]

= ϵκ21(3L+ 1)E(X,Z)∼µ⊗P [∥X − Z∥2]
= ϵCmµ,P . (15)

The last step used the definitions mµ,P ≜ E(X,Z)∼µ⊗P [∥X − Z∥2] and C = κ21(3L + 1). Then,
applying the triangle inequality and (15), we have

mµr+1,P = E(X,Z)∼µr+1⊗P [∥X − Z∥2] = E(X,Z)∼µr⊗P [∥Tµr,ϵr (X)− Z∥2]
≤ E(X,Z)∼µr⊗P [∥Tµr,ϵr (X)−X∥2 + ∥X − Z∥2] ≤ (1 + ϵrC)mµr,P , (16)

Mµr+1,P = E(X,Z)∼µr+1⊗P [∥X − Z∥
2
2] = E(X,Z)∼µr⊗P [∥Tµr,ϵr (X)− Z∥22]

≤ E(X,Z)∼µr⊗P [∥Tµr,ϵr (X)−X∥22 + 2∥Tµr,ϵr (X)−X∥2∥X − Z∥2 + ∥X − Z∥
2
2]

≤ (ϵ2rC
2 + 2ϵrC)m

2
µr,P

+Mµr,P ≤ (1 + 2ϵrC + ϵ2rC
2)Mµr,P

= (1 + ϵrC)
2Mµr,P , (17)

where the second last step used Jensen’s inequality m2
µr,P

≤Mµr,P . Then, we repeatedly apply (16)
and (17) together with the triangle inequality and the bound 1 + x ≤ ex to get

Mµr,P ≤Mµ0,P

∏r−1
s=0(1 + ϵsC)

2 ≤Mµ0,P exp(2C
∑r−1

s=0 ϵs) ≤Mµ0,P exp(2Cbr−1) and

mµr,x⋆ −mP,x⋆ ≤ mµr,P ≤ mµ0,P

∏r−1
s=0(1 + ϵsC) ≤ mµ0,P exp(Cbr−1).
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8 Proof of Lemma 4: KSD-Wasserstein bound

Our proof generalizes that of Gorham and Mackey [9, Lem. 18]. Consider any g ∈ Hd satisfying
∥g∥2Hd ≜

∑d
i=1∥gi∥

2
H ≤ 1. From Assumption 2 we know

∥g(x)∥22 ≤ k(x, x)
∑d

i=1∥gi∥
2
H ≤ κ21, (18)

∥∇g(x)∥2op ≤ ∥∇g(x)∥
2
F =

∑d
i=1

∑d
j=1 |∇xigj(x)|2 ≤ ∥g∥

2
Hdtr(∇y∇xk(x, y)|y=x)

≤ d∥∇y∇xk(x, y)|y=x∥op ≤ κ
2
1d, and (19)

∥∇(∇ · g(x))∥22 =
∑d

i=1

(∑d
j=1∇xi∇xjgj(x)

)2

≤ d
∑d

i=1

∑d
j=1 |∇xi∇xjgj(x)|2

≤ d
∑d

i=1

∑d
j=1∥gj∥

2
H(∇yi∇yj∇xi∇xjk(x, y)|y=x) ≤ κ22d2,

Suppose X,Y, Z are distributed so that (X,Y ) is a 1-Wasserstein optimal coupling of (µ, ν) and Z
is independent of (X,Y ). Since sp is L-Lipschitz with EP [sp] = 0 (Assumption 1), g is bounded
(18), and g and ∇ · g are Lipschitz (19), repeated use of Cauchy-Schwarz gives

Eµ[TP g]− Eν [TP g]
= E[∇ · g(X)−∇ · g(Y )] + E[⟨sp(X)− sp(Y ), g(X)⟩] + E[⟨sp(Y )− sp(Z), g(X)− g(Y )⟩]
≤ (κ2d+ κ1L)W1(µ, ν) + LE[∥Y − Z∥2 min(2κ1, κ1

√
d∥X − Y ∥2)].

Since our choice of g was arbitrary, the first advertised result now follows from the definition
of KSD (Definition 4). The second claim then follows from Cauchy-Schwarz and the inequality
min(a, b)2 ≤ ab for a, b ≥ 0, since

E[∥Y − Z∥2 min(2κ1, κ1
√
d∥X − Y ∥2)] ≤M

1/2
ν,P E[min(2κ1, κ1

√
d∥X − Y ∥2)2]1/2

≤
√

2Mν,Pκ1d
1/4E[∥X − Y ∥2]1/2 =

√
2Mν,PW1(µ, ν)κ1d

1/4.

9 Conclusions and Limitations

In summary, we have proved the first unified convergence bound and rate for finite-particle SVGD. In
particular, our results show that with a suitably chosen step size sequence, SVGD with n-particles
drives the KSD to zero at an order 1/

√
log log(n) rate. The assumptions we have made on the

target and kernel are mild and strictly weaker than those used in prior work to establish KSD weak
convergence control [9, 3, 12, 1]. However, we suspect that, with additional effort, the Lipschitz score
assumption (Assumption 1) can be relaxed to accommodate pseudo-Lipschitz scores as in Erdogdu
et al. [7] or weakly-smooth scores as in Sun et al. [24]. A second limitation of this work is that the
obtained rate of convergence is quite slow. However, we hope that this initial recipe for explicit,
non-asymptotic convergence will serve as both a template and a catalyst for the field to develop
refined upper and lower bounds for SVGD error. To this end, we leave the reader with several open
challenges. First, can one establish a non-trivial minimax lower bound for the convergence of SVGD?
Second, can one identify which types of target distributions lead to worst-case convergence behavior
for SVGD? Finally, can one identify commonly met assumptions on the target distribution and kernel
under which the guaranteed convergence rate of SVGD can be significantly improved? Promising
follow-up work has already begun investigating speed-ups obtainable by focusing on the convergence
of a finite set of moments [20] or by modifying the SVGD algorithm [5].
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A Kernel Assumptions

To show that Assumptions 2 and 3 are met by the most commonly used SVGD kernels with constants
independent of dimension, we begin by bounding the derivatives of any radial kernel of the form
k(x, y) = ϕ(∥x− y∥22/2) with ϕ : R → R four times differentiable. By the reproducing property
and Cauchy-Schwarz we have

|k(x, y)| = |⟨k(x, ·), k(y, ·)⟩H| ≤ ∥k(x, ·)∥H∥k(y, ·)∥H =
√
k(x, x)

√
k(y, y) = ϕ(0),

∥∇xk(x, y)∥2 = |ϕ′(∥x− y∥22/2)|∥x− y∥2,

∥∇y∇xk(x, y)∥op =
∥∥∥−ϕ′′(∥x− y∥22/2)(x− y)(x− y)⊤ − ϕ′(∥x− y∥22/2)I∥∥∥

op

≤ |ϕ′′(∥x− y∥22/2)|∥x− y∥
2
2 + |ϕ′(∥x− y∥

2
2/2)|, and∥∥∇2

xk(x, y)
∥∥
op

=
∥∥∥ϕ′′(∥x− y∥22/2)(x− y)(x− y)⊤ + ϕ′(∥x− y∥22/2)I

∥∥∥
op

≤ |ϕ′′(∥x− y∥22/2)|∥x− y∥
2
2 + |ϕ′(∥x− y∥

2
2/2)|.

Similarly, the partial derivatives take the form

∇xjk(x, y) = ϕ′(∥x− y∥22/2)(xj − yj)
∇yj∇xjk(x, y) = −ϕ′(∥x− y∥

2
2/2)− ϕ

′′(∥x− y∥22/2)(yj − xj)
2

∇xi∇yj∇xjk(x, y) = −ϕ′′(∥x− y∥
2
2/2)(xi − yi)− ϕ

′′′(∥x− y∥22/2)(yj − xj)
2(xi − yi)

− I[i = j]2ϕ′′(∥x− y∥22/2)(xi − yi)
= −ϕ′′(∥x− y∥22/2)(xi − yi)
− I[i ̸= j]ϕ′′′(∥x− y∥22/2)(yj − xj)

2(xi − yi)
+ I[i = j](ϕ′′′(∥x− y∥22/2)(yi − xi)

3 − 2ϕ′′(∥x− y∥22/2)(xi − yi))
∇yi∇xi∇yj∇xjk(x, y) = ϕ′′′(∥x− y∥22/2)(xi − yi)

2 + ϕ′′(∥x− y∥22/2)
+ I[i ̸= j](ϕ′′′′(∥x− y∥22/2)(yj − xj)

2(xi − yi)2

+ ϕ′′′(∥x− y∥22/2)(yj − xj)
2)

+ I[i = j](ϕ′′′′(∥x− y∥22/2)(yi − xi)
4 + 5ϕ′′′(∥x− y∥22/2)(yi − xi)

2

+ 2ϕ′′(∥x− y∥22/2))
= ϕ′′′(∥x− y∥22/2)((xi − yi)

2 + (xj − yj)2) + ϕ′′(∥x− y∥22/2)
+ ϕ′′′′(∥x− y∥22/2)(yj − xj)

2(xi − yi)2

+ I[i = j](4ϕ′′′(∥x− y∥22/2)(yi − xi)
2 + 2ϕ′′(∥x− y∥22/2))

so that both |k(x, y)| and
∇yi∇xi∇yj∇xjk(x, y)|y=x = ϕ′′(0) + I[i = j]2ϕ′′(0)

are bounded (Assumption 2) by constants independent of dimension.

Gorham and Mackey [9] popularized the use of IMQ kernels for SVGD, by establishing the
convergence-determining properties of the associated KSD. The corresponding ϕ satisfies

ϕ(t) = (c2 + 2t)β for c > 0 and β ∈ (−1, 0),
ϕ′(t) = 2β(c2 + 2t)β−1, and ϕ′′(t) = 4β(β − 1)(c2 + 2t)β−2.

In this case, ∥∇y∇xk(x, y)∥op and
∥∥∇2

xk(x, y)
∥∥
op

are bounded (Assumption 2) by constants inde-
pendent of dimension as

|ϕ′(∥x− y∥22/2)| = −2β(c2 + ∥x− y∥
2
2)

β−1

≤ −2βmin(c2β−2, ∥x− y∥2β−2
2 ) ≤ −2βc2β−2 and

|ϕ′′(∥x− y∥2/2)|∥x− y∥
2
2 = 4β(β − 1)(c2 + ∥x− y∥22)β−2∥x− y∥22
≤ 4β(β − 1)(c2 + ∥x− y∥22)β−1 ≤ 4β(β − 1)c2β−2.

For ∥∇xk(x, y)∥2, we consider two cases:
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• When ∥x− y∥2 ≥ 1,

|ϕ′(∥x− y∥22/2)|∥x− y∥2 ≤ −2β∥x− y∥
2β−2
2 ∥x− y∥2 = −2β∥x− y∥2β−1

2

≤ −2β/∥x− y∥2 ≤ −2β.

• When ∥x− y∥2 < 1, |ϕ′(∥x− y∥22/2)|∥x− y∥2 < |ϕ′(∥x− y∥
2
2/2)| ≤ −2βc2β−2.

Therefore, ∥∇xk(x, y)∥2 is also bounded (Assumption 2) by constants independent of dimension,
and Assumption 3 holds with γ = −2β.

The original SVGD paper [18] used Gaussian kernels in all experiments, and they remain perhaps the
most common choice in the literature. In this case, ϕ satisfies

ϕ(t) = e−2αt for α > 0, ϕ′(t) = −2αe−2αt = −2αϕ(t), and ϕ′′(t) = 4α2ϕ(t).

Using the inequality x ≤ ex−1, we find that

|ϕ′(∥x− y∥22/2)| = 2αe−α∥x−y∥2
2 ≤ min(2α, 2/(e∥x− y∥22)) and

|ϕ′′(∥x− y∥2/2)|∥x− y∥
2
2 = 4α2e−α∥x−y∥2

2∥x− y∥22 ≤ 4α/e

so that ∥∇y∇xk(x, y)∥op,
∥∥∇2

xk(x, y)
∥∥
op

, and ∥∇xk(x, y)∥2 are bounded (Assumption 2) by con-
stants independent of dimension, and Assumption 3 holds with γ = 2/e.

B Proof of Corollary 2: A finite-particle convergence rate for SVGD

We begin by establishing a lower bound on bt−1. Let

b
(1)
t−1 = ψB̄,C̄(w̄0,n

√
ϕ(w̄0,n), Ā, β1) and b

(2)
t−1 = ψB̄,C̄(w̄0,n ϕ(w̄0,n), Ā+ 2C̄, β2)

so that bt−1 = min(b
(1)
t−1, b

(2)
t−1). Since β1, β2, ϕ(w̄0,n) ≥ 1, we have

β1 = max(1, 1
C̄
log( 1

B̄
(log 1

w̄0,n

√
ϕ(w̄0,n)

−Ā)))

≤ max(1, 1
C̄
log( 1

B̄
(log 1

w̄0,n

√
ϕ(w̄0,n)

)))

≤ max(1, 1
C̄
log( 1

B̄
(log 1

w̄0,n
))) and

β2 = max(1, 1
C̄
log( 1

B̄
(log 1

w̄0,nϕ(w̄0,n)
−Ā− 2C̄)))

≤ max(1, 1
C̄
log( 1

B̄
(log 1

w̄0,nϕ(w̄0,n)
)))

≤ max(1, 1
C̄
log( 1

B̄
(log 1

w̄0,n
))).

Hence, ϕ(w̄0,n) ≥ 1 implies that

b
(1)
t−1 ≥ 1

C̄
log( 1

B̄
(

log 1
w̄0,n

√
ϕ(w̄0,n)

max(1, 1
C̄

log( 1
B̄
(log 1

w̄0,n
)))
−Ā))

≥ 1
C̄
log( 1

B̄
(

log 1
w̄0,n ϕ(w̄0,n)

max(1, 1
C̄

log( 1
B̄
(log 1

w̄0,n
)))
−Ā− 2C̄)) and (20)

b
(2)
t−1 ≥ 1

C̄
log( 1

B̄
(

log 1
w̄0,n ϕ(w̄0,n)

max(1, 1
C̄

log( 1
B̄
(log 1

w̄0,n
)))
−Ā− 2C̄)).

We divide the remainder of our proof into four parts. First we prove each of the two cases in the
generic KSD bound (7) in Appendices B.1 and B.2. Next we show in Appendix B.3 that these two
cases yield the generic convergence rate (8). Finally, we prove the high probability upper estimate (9)
for w0,n under i.i.d. initialization in Appendix B.4.

B.1 Case bt−1 = 0

In this case, the error bound (7) follows directly from Theorem 3.
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B.2 Case bt−1 > 0

We first state and prove a useful lemma.
Lemma 6. Suppose x = f(β) for a non-increasing function f : R → R and β = max(1, f(1)).
Then x ≤ β and x ≤ f(x).

Proof. Because f is non-increasing and β ≥ 1, x = f(β) ≤ f(1) ≤ β . Since x ≤ β and f is
non-increasing, we further have f(x) ≥ f(β) = x as advertised.

Since ψB̄,C̄ is non-increasing in its third argument, Lemma 6 implies that b(1)t−1 ≤ β1 and

b
(1)
t−1 ≤ ψB̄,C̄(w̄0,n

√
ϕ(w̄0,n), Ā, b

(1)
t−1).

Rearranging the terms and noting that

B̄ < 1
β1

log 1

w̄0,n

√
ϕ(w̄0,n)

−Ā ≤ 1

b
(1)
t−1

log 1

w̄0,n

√
ϕ(w̄0,n)

−Ā

since b(1)t−1 ≥ bt−1 > 0, we have

w̄0,n exp(b
(1)
t−1(Ā+ B̄ exp(C̄b

(1)
t−1))) ≤ 1√

ϕ(w̄0,n)
. (21)

Similarly, we have b(2)t−1 ≤ ψB̄,C̄(w̄0,n log log
1

w̄0,n
, Ā+ 2C̄, b

(2)
t−1) and

√
w̄0,n exp(b

(2)
t−1(2C̄ + Ā+ B̄ exp(C̄b

(2)
t−1))/2) ≤ 1√

ϕ(w̄0,n)
. (22)

Since bt−1 = min(b
(1)
t−1, b

(2)
t−1), the inequalities (21) and (22) are also satisfied when bt is substituted

for b(1)t−1 and b(2)t−1. Since the error term at−1 (4) is non-decreasing in each of (w0,n, A,B,C), we
have

at−1 ≤ (κ1L+ κ2d+ κ1d
1/4L

√
2Mµ∞

0 ,P )/
√
ϕ(w̄0,n).

Since bt−1 = min(b
(1)
t−1, b

(2)
t−1), the claim (7) follows from this estimate, the lower bounds (20), and

Theorem 3.

B.3 Generic convergence rate

The generic convergence rate (8) holds as, by the lower bounds (20), bt−1 = min(b
(1)
t−1, b

(2)
t−1) > 0

whenever

e−(B̄+Ā+2C̄) > w̄0,nϕ(w̄0,n) and B̄(B̄+Ā+2C̄)/C̄ > w̄0,nϕ(w̄0,n)(log(1/w̄0,n))
(B̄+Ā+2C̄)/C̄ ,

a condition which occurs whenever w̄0,n is sufficiently small since the right-hand side of each
inequality converges to zero as w̄0,n → 0.

B.4 Initializing with i.i.d. particles

We begin by restating an expected Wasserstein bound due to Lei [16].

Lemma 7 (Lei [16, Thm. 3.1]). Suppose µn
0 = 1

n

∑n
i=1 δxi for xi

i.i.d.∼ µ∞
0 withMµ∞

0
≜ Eµ∞

0
[∥·∥22] <

∞. Then, for a universal constant c > 0,

E[W1(µ
n
0 , µ

∞
0 )] ≤ cMµ∞

0

log(n)I[d=2]

n1/(2∨d)
.

Together, Lemma 7 and Markov’s inequality imply that

W1(µ
n
0 , µ

∞
0 ) ≤ E[W1(µ

n
0 , µ

∞
0 )]/(cδ) ≤Mµ∞

0

log(n)I[d=2]

n1/(2∨d) /δ

with probability at least 1− cδ, proving the high probability upper estimate (9).
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