
A Deferred details for Section 3

A.1 Technical proofs for theoretical results

Proof of Lemma 2. Hereafter, we condition on the entire unordered graph, all the attribute and label
information, and the index sets Dtrain and Dct. We define the scores evaluated at the original node
indices as

vv = V (xv, yv; {zi}i2Dtrain[Dvalid , {xv}v2Dcalib[Dtest , V, E), v 2 Dcalib [Dtest ✓ V.

By Assumption 1, for any permutation ⇡ of Dct, we always have

vv = V (xv, yv; {zi}i2Dtrain[Dvalid , {x⇡(v)}v2Dcalib[Dtest , V⇡, E⇡).

That is, given Dct, the evaluated score at any v 2 Dct remains invariant no matter which subset of Dct
is designated as Dcalib. This implies that the scores are fixed after conditioning:

[V1, . . . , Vn+m] = [vv]v2Dct ,

where we use [] to emphasize unordered sets. Thus, the calibration scores {Vi}n
i=1

is a subset of size
n of [vv]v2Dct . Note that under random splitting in the transductive setting, any permutation ⇡ of Dct
occurs with the same probability, which gives the conditional probability in Lemma 2.

Proof of Theorem 3. Throughout this proof, we condition on the entire unordered graph, all the
attribute and label information, and the index sets Dtrain and Dct. By Lemma 2, after the conditioning,
the unordered set of {Vi}n+m

i=1
is fixed as [vv]v2Dct , and {Vi}n

i=1
is a simple random sample from

[vv]v2Dct . As a result, any test sample V (Xn+j , Yn+j), j = 1, . . . , m is exchangeable with {Vi}n
i=1

.
By standard theory for conformal prediction [43], this ensures valid marginal coverage, i.e., P(Yn+j 2
bC(Xn+j)) � 1� ↵, where the expectation is over all the randomness.

We now proceed to analyze the distribution of \Cover. For notational convenience, we write N =
m + n, and view Dct as the ‘population’. In this way, {Vi}n

i=1
is a simple random sample from

[vv]v2Dct . For every ⌘ 2 R, we define the ‘population’ cumulative distribution function (c.d.f.)

F (⌘) =
1

N

X

v2Dct

1{vv  ⌘},

which is a deterministic function. We also define the calibration c.d.f. as

bFn(⌘) =
1

n

X

v2Dcalib

1{vv  ⌘} =
1

n

nX

i=1

1{Vi  ⌘},

which is random, and its randomness comes from which subset of Dct is Dcalib. By definition,

b⌘ = inf{⌘ : bFn(⌘) � (1� q)(1 + 1/n)}.

Since the scores have no ties, we know

bFn(b⌘) = d(1� q)(n + 1)e/n.

The test-time coverage can be written as

\Cover =
1

m

mX

j=1

1{Vn+j  b⌘}

=
1

N � n

✓ X

v2Dct

1{vv  b⌘)�
X

v2Dcalib

1{vv  b⌘)

◆

=
N

N � n
F (b⌘)� n

N � n
bFn(b⌘) =

N

N � n
F (b⌘)� d(1� q)(n + 1)e

N � n
.

Now we characterize the distribution of b⌘. For any ⌘ 2 R, by the definition of b⌘,

P(b⌘  ⌘) = P
�
n bFn(⌘) � (n + 1)(1� q)

�
= P

�
n bFn(⌘) � d(n + 1)(1� q)e

�
.
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Note that n bFn(⌘) =
P

v2Dcalib
1{vv  ⌘} is the count of data in Dcalib such that the score is below ⌘.

By the simple random sample (i.e., sampling without replacement), n bFn(⌘) follows a hyper-geometric
distribution with parameter N, n, NF (⌘). That is,

P(n bFn(⌘) = k) =

�NF (⌘)

k

��N�NF (⌘)

n�k

�
�N

n

� , 0  k  NF (⌘).

Denoting the c.d.f. of hypergeometric distribution as �HG(k; N, n, NF (⌘)), we have

P(b⌘  ⌘) = 1� �HG

�
d(n + 1)(1� q)e � 1; N, n, NF (⌘)

�
.

Then, for any t 2 [0, 1],

P
�\Cover  t

�
= P

 
N

N � n
F (b⌘)� d(1� q)(n + 1)e

N � n
 t

!

= P
 

F (b⌘)  d(1� q)(n + 1)e+ (N � n)t

N

!
.

Since F (·) is monotonely increasing,

P
�\Cover  t

�
= P

 
b⌘  F�1

✓
d(1� q)(n + 1)e+ (N � n)t

N

◆!
,

where F�1(s) = inf{⌘ : F (⌘) � s} for any s 2 [0, 1]. Plugging in the previous results on the
distribution of b⌘, we have

P
�\Cover  t

�
= 1� �HG

✓
d(n + 1)(1� q)e � 1; N, n, NF

⇣
F�1

� d(1�q)(n+1)e+(N�n)t
N

�⌘◆

= 1� �HG

✓
d(n + 1)(1� q)e � 1; N, n, N dd(1�q)(n+1)e+(N�n)te

N

◆

= 1� �HG

✓
d(n + 1)(1� q)e � 1; N, n, dd(1� q)(n + 1)e+ (N � n)te

◆

= 1� �HG

✓
d(n + 1)(1� q)e � 1; N, n, d(1� q)(n + 1)e+ d(N � n)te

◆

where the second equality uses the fact that F (⌘) 2 {0, 1/N, . . . , (N � 1)/N, 1}, hence
F (F�1(s)) = dNse/N for any s 2 [0, 1]. By tower property, such an equation also holds for
the unconditional distribution, marginalized over all the randomness. This completes the proof of
Theorem 3.

A.2 Additional visualization of test-time coverage

In this part, we provide more visualization of the distributions of test time coverage \Cover under
various sample size configurations. We note that such results also apply to standard application of
split conformal prediction when the non-conformity score function V is independent of calibration
and test samples, so that Assumption 1 is satisfied.

Figures 6 and 7 plot the p.d.f. of \Cover for ↵ = 0.05 and ↵ = 0.1, respectively, when fixing n

and varying the test sample size m. The y-axis is obtained by computing P(tk�1 < \Cover 
tk)/(tk � tk�1) at x = (tk�1 + tk)/2 for a sequence of evenly spaced {tk} 2 [0, 1]. All figures
in this paper for p.d.f.s are obtained in the same way. We see that \Cover concentrates more tightly
around the target value 1� ↵ as m and n increases.

Figures 8 and 9 plot the p.d.f. of \Cover for ↵ = 0.05 and ↵ = 0.1, respectively, where we fix
N = m + n but vary the calibration sample size n. This mimics the situation where the total number
of nodes on the graph is fixed, while we may have flexibility in collecting data as the calibration
set. We observe a tradeoff between the calibration accuracy determined by n and the test-sample
concentration determined by n. The distribution of \Cover is more concentrated around 1� ↵ when
m and n are relatively balanced.
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Figure 6: P.d.f. of test-time coverage \Cover for n = 500 (left), 1000 (middle), 2000 (right) and ↵ = 0.05 with
curves representing different values of m, the test sample size.
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Figure 7: P.d.f. of test-time coverage \Cover for n = 500 (left), 1000 (middle), 2000 (right) and ↵ = 0.1 with
curves representing different values of m, the test sample size.
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Figure 8: P.d.f. of test-time coverage \Cover for N = m + n = 500 (left), 1000 (middle), 2000 (right) and
↵ = 0.05 with curves representing different values of n, the calibration sample size.
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Figure 9: P.d.f. of test-time coverage \Cover for N = m + n = 500 (left), 1000 (middle), 2000 (right) and
↵ = 0.1 with curves representing different values of n, the calibration sample size.
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B Discussion on full conformal prediction, split conformal prediction

In this part, we discuss the relation of our application of conformal prediction to full conformal
prediction and split conformal prediction, two prominent conformal prediction methods proposed
by Vovk and his coauthors in [43]. Split conformal prediction is mostly widely used due to its
computational efficiency, where exchangeability is usually ensured by independence (which is not
obvious for graph data) as we discussed briefly in the introduction.

Full conformal prediction (FCP) is arguably the most versatile form of conformal prediction. Given
calibration data Zi = (Xi, Yi) 2 X ⇥ Y , i = 1, . . . , n, and given a test point Xn+1 2 X whose
outcome Yn+1 2 Y is unknown, at every hypothesized value y 2 Y , FCP uses any algorithm S to
train the following scores

Sy
i = S(Xi, Yi; Z1, . . . , Zi�1, Zi+1, . . . , Zn, (Xn+1, y)), i = 1, . . . , n,

where S is symmetric in the arguments Z1, . . . , Zi�1, Zi+1, . . . , Zn, (Xn+1, y), as well as

Sy
n+1

= S(Xn+1, y; Z1, . . . , Zn).

Here, for 1  i  n, Sy
i intuitively measures how well the observation (Xi, Yi) conforms to the

observations Z1, . . . , Zi�1, Zi+1, . . . , Zn, (Xn+1, y) with the hypothesized value of y. For instance,
when using a linear prediction model, it can be chosen as the prediction residual

Sy
i = |Yi �X>

i
b✓y|,

where b✓y is the ordinary least squares coefficient by a linear regression of
Y1, . . . , Yi�1, Yi+1, . . . , Yn, y over X1, . . . , Xi�1, Xi+1, . . . , Xn, Xn+1. More generally, one
may train a prediction model bµy : X ! Y using Z1, . . . , Zi�1, Zi+1, . . . , Zn, (Xn+1, y), and set
Sy

i = |Yi � bµy(Xi)|. For a confidence level ↵ 2 (0, 1), the FCP prediction set is then

bC(Xn+1) :=
n

y :
1+1{Sy

i >Sy
n+1}

n+1
 ↵

o
.

Since the original form of FCP involves training n + 1 models at each hypothesized value y, its
computation can be very intense. It is thus impractical to directly apply FCP to GNN models (i.e.,
imagining S as the GNN training process on the entire graph with a hypothesized outcome y).

Split conformal prediction (SCP) is a computationally-efficient special case of FCP that is most
widely used for i.i.d. data. The idea is to set aside an independent fold of data to output a single
trained model. To be specific, we assume access to a given non-conformity score V : X ⇥ Y ! R,
i.i.d. calibration data Zi = (Xi, Yi)n

i=1
, and an independent test sample (Xn+1, Yn+1) from the

same distribution with Yn+1 unobserved. Here by a “given” score, we mean that it is obtained
without knowing the calibration and test sample; usually, it is trained on an independent set of data
{(Xj , Yj)}j2Dtrain before seeing the calibration and test sample. Then define Vi = V (Xi, Yi) for
i = 1, . . . , n. The SCP prediction set is

bC(Xn+1) =
n

y : 1+1{Vi>V (Xn+1,y)}
n+1

 ↵
o

.

The above set is usually convenient to compute, because we only need one single model to obtain
V . The validity of SCP usually relies on the independence of V to calibration and test data as
we mentioned in the introduction. However, the application of SCP to GNN model is also not
straightforward: as we discussed in the main text, the model training step already uses the calibration
and test samples, and the nodes are correlated.

Indeed, our method can be seen as a middle ground between FCP and SCP: it only requires one
single prediction model as SCP does, but allows to use calibration and test data in the training step as
FCP does. In our method introduced in the main text, there exists a fixed function V : Y ⇥ Y ! R
(provided by APS and CQR) such that

Sy
i = V (bµ(Xi), Yi), Sy

n+1
= V (bµ(Xn+1, y),

where bµ is the final output from the second GNN model whose training process does not utilize the
outcomes Y1, . . . , Yn and y, but uses the features X1, . . . , Xn and Xn+1.
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Algorithm 1: Pseudo-code for CF-GNN algorithm.
Input: Graph G = (V, E ,X); a trained base GNN model GNN✓; non-conformity score function
V (X, Y ); pre-specified mis-coverage rate ↵, Randomly initialized # for the conformal
correction model GNN#.

while not done do

for i in {1, ..., |Vcor�calib [ Vcor�test|} do

bµ(Xi) = GNN✓(Xi, G) // Base GNN output scores

µ̃(Xi) = GNN#(bµ(Xi), G) // Correction model output scores

end

n, m = |Vcor�calib|, |Vcor�test| // Size of correction calib/test set

b↵ = 1

n+1
⇤ ↵ // Finite-sample correction

b⌘ = Di↵Quantile({V (Xi, Yi)|i 2 Vcor�calib}) // Compute non-conformity scores

if Classification then

LIne↵ = 1

m

P
i2Vcor�test

1

|Y|
P

k2Y �(V (Xi,k)�b⌘
⌧ )

// Inefficiency proxy for classification tasks

end

if Regression then

LIne↵ = 1

m

P
i2Vcor�test

(µ̃1�↵/2(X)i + b⌘)� (µ̃↵/2(X)i � b⌘)
// Inefficiency proxy for regression tasks

LIne↵+ = � 1

m

P
i2Vcor�test

(µ̃1�↵/2(X)i � bµ1�↵/2(X)i)2 + (µ̃↵/2(X)i � bµ↵/2(X)i)2

// Consistency regularization term

end

# #�r#LIne↵ // Optimizing # to reduce inefficiency

end

C Algorithm overview

We describe the pseudo-code of CF-GNN in Algorithm 1.

D Deferred details for experiments

D.1 Hyperparameters

Table 5 reports our set of hyperparameter ranges. We conduct 100 iterations of Bayesian Optimization
for CF-GNN with the validation set inefficiency proxy as the optimization metric. To avoid overfitting,
each iteration only uses the first GNN run. The optimized hyperparameters are then used for all 10
GNN runs and we then reported the average and standard deviation across runs. Each experiment is
done with a single NVIDIA 2080 Ti RTX 11GB GPU.

Table 5: Hyperparameter range for CF-GNN.

Task Param. Range

Classification

GNN# Hidden dimension [16,32,64,128,256]
Learning rate [1e-1, 1e-2, 1e-3, 1e-4]
GNN# Number of GNN Layers [1,2,3,4]
GNN# Base Model [GCN, GAT, GraphSAGE, SGC]
⌧ [10, 1, 1e-1, 1e-2, 1e-3]

Regression

GNN# Hidden dimension [16,32,64,128,256]
Learning rate [1e-1, 1e-2, 1e-3, 1e-4]
GNN# Number of GNN Layers [1, 2, 3, 4]
GNN# Base Model [GCN, GAT, GraphSAGE, SGC]
Reg. loss coeff. � [1, 1e-1]
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D.2 Baseline Details

We report the details about baselines below and the hyperparameter range in Table 6.

1. Temperature Scaling [13] divides the logits with a learnable scalar. It is optimized over NLL
loss in the validation set.

2. Vector Scaling [13] has a scalar to scale the logits for each class dimension and adds an
additional classwide bias. It is optimized over NLL loss in the validation set.

3. Ensemble Temperature Scaling [49] learns an ensemble of uncalibrated, temperature-scaled
calibrated calibrators.

4. CaGCN [44] uses an additional GCN model that learns a temperature scalar for each node
based on its neighborhood information.

5. GATS [17] identifies five factors that affect GNN calibration and designs a model that ac-
counts for these five factors by using per-node temperature scaling and attentive aggregation
from the local neighborhood.

6. QR [25] uses a pinball loss to produce quantile scores. It is CQR without the conformal
prediction adjustment.

7. MC dropout [9] turns on dropout during evaluation and produces K predictions. We then
take the 95% quantile of the predicted distribution. We also experimented with taking a
95% confidence interval but 95% quantile has better coverage, thus we adopt the quantile
approach.

8. BayesianNN [23] model the label with normal distribution and the model produces two
heads, where one corresponds to the mean and the second log variance. We then calculate
the standard deviation as the square root of the exponent of log variance. Then we take the
[mean-1.96*standard deviation, mean+1.96*standard deviation] for the 95% interval.

Table 6: Hyperparameter range for baselines.

Baseline Param. Range

Temperature Scaling No hyperparameter Not Applicable

Vector Scaling No hyperparameter Not Applicable

Ensemble Temp Scaling No hyperparameter Not Applicable

CaGCN

Dropout [0.3, 0.5, 0.7]
Hidden dimension [16, 32, 64, 128, 256]
Number of GNN Layers [1,2,3,4]
Weight Decay [0, 1e-3, 1e-2, 1e-1]

GATS

Dropout [0.3, 0.5, 0.7]
Hidden dimension [16, 32, 64, 128, 256]
Number of GNN Layers [1,2,3,4]
Weight Decay [0, 1e-3, 1e-2, 1e-1]

MC Dropout Number of Predictions [100, 500, 1,000]

BayesianNN No hyperparameter Not Applicable

D.3 Dataset

For node classification, we use the common node classification datasets in Pytorch Geometric package.
For node regression, we use datasets in [20]. We report the dataset statistics at Table 7.

D.4 Marginal coverage and inefficiency across GNN architectures

We additionally conduct marginal coverage and inefficiency comparisons of CF-GNN over the vanilla
CP across 4 different GNN architectures: GCN, GAT, GraphSAGE, and SGC. The result for marginal
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Table 7: Dataset statistics.
Domain Dataset Task # Nodes # Edges # Features # Labels

Citation

Cora Classification 2,995 16,346 2,879 7
DBLP Classification 17,716 105,734 1,639 4
CiteSeer Classification 4,230 10,674 602 6
PubMed Classification 19,717 88,648 500 3

Co-purchase Computers Classification 13,752 491,722 767 10
Photos Classification 7,650 238,162 745 8

Co-author CS Classification 18,333 163,788 6,805 15
Physics Classification 34,493 495,924 8,415 5

Transportation Anaheim Regression 914 3,881 4 –
Chicago Regression 2,176 15,104 4 –

Geography

Education Regression 3,234 12,717 6 –
Election Regression 3,234 12,717 6 –
Income Regression 3,234 12,717 6 –
Unemployment Regression 3,234 12,717 6 –

Social Twitch Regression 1,912 31,299 3,170 –

Figure 10: Empirical coverage across 15 datasets with 10 independent runs of GNN, using CF-GNN.

coverage is in Figure 10. The result for inefficiency is in Table 8. We observe consistent improvement
in inefficiency reduction across these architectures, suggesting CF-GNN is a GNN-agnostic efficiency
improvement approach.

D.5 CF-GNN with Regularized Adaptive Prediction Sets

To further showcase that CF-GNN is a versatile framework that adapts to any advancement in
non-conformity scores, we experiment on RAPS [2], which regularizes APS to produce a smaller
prediction set size. We report the performance using the GCN backbond in Table 9. We observe that
CF-GNN still obtains impressive inefficiency reduction compared to the vanilla application of RAPS
to GNN.

D.6 Conditional coverage on full set of network features

We report the full set of network features and calculate the worse-slice coverage in Table 10 for
target coverage of 0.9 and Table 11 for a target coverage of 0.95. We observe that CF-GNN achieves
satisfactory conditional coverage across a wide range of diverse network features.

D.7 Prediction accuracy versus uncertainty calibration

As we discussed in the main text, the original GNN trained towards optimal prediction accuracy does
not necessarily yield the most efficient prediction model; this is corrected by the second GNN in
CF-GNN which improves the efficiency of conformal prediction sets/intervals. With our approach,
one can use the output of the original GNN for point prediction while that of the second GNN
for efficient uncertainty quantification, without necessarily overwriting the first accurate prediction
model. However, a natural question here still remains, which is that whether applying the second
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Table 8: Empirical inefficiency measured by the size/length of the prediction set/interval for node classifica-
tion/regression. The result uses APS for classification and CQR for regression. We report the average and
standard deviation calculated from 10 GNN runs with each run of 100 conformal splits.

Task GNN Model GCN GraphSAGE GAT SGC
Dataset CP���!CF-GNN CP���!CF-GNN CP���!CF-GNN CP���!CF-GNN

Node
classif.

Cora 3.80±.28
�58.44%�����!1.58±.22 6.73±.19

�76.50%�����!1.58±.15 4.14±.16
�62.53%�����!1.55±.10 3.88±.19

�62.23%�����!1.47±.10

DBLP 2.43±.03
�49.20%�����!1.23±.01 3.91±.01

�68.27%�����!1.24±.01 2.02±.06
�37.51%�����!1.26±.01 2.44±.04

�48.93%�����!1.24±.02

CiteSeer 3.86±.11
�74.50%�����!0.99±.01 5.88±.02

�83.07%�����!1.00±.01 3.18±.25
�68.56%�����!1.00±.01 3.79±.14

�73.43%�����!1.01±.02

PubMed 1.60±.02
�19.44%�����!1.29±.04 1.93±.28

�36.95%�����!1.22±.03 1.37±.02
�10.54%�����!1.23±.02 1.60±.02

�24.27%�����!1.21±.02

Computers 3.56±.13
�50.22%�����!1.77±.11 6.00±.10

�45.74%�����!3.26±.48 2.33±.11
�8.18%�����!2.14±.12 3.44±.14

�45.69%�����!1.87±.15

Photo 3.79±.13
�57.03%�����!1.63±.17 4.52±.47

�37.22%�����!2.84±.67 2.24±.21
�19.38%�����!1.81±.16 3.81±.14

�62.86%�����!1.41±.05

CS 7.79±.29
�55.83%�����!3.44±.33 14.68±.02

�88.63%�����!1.67±.14 6.87±.48
�73.08%�����!1.85±.10 7.76±.25

�73.92%�����!2.02±.22

Physics 3.11±.07
�65.36%�����!1.08±.10 4.91±.01

�72.97%�����!1.33±.08 2.00±.19
�45.23%�����!1.09±.06 3.10±.08

�57.22%�����!1.32±.12

Average Improvement -53.75% -63.75% -40.63% -56.07%

Node
regress.

Anaheim 2.89±.39
�25.00%�����!2.17±.11 2.37±.05

�23.12%�����!1.82±.07 3.12±.38
�31.27%�����!2.14±.11 2.94±.24

�24.90%�����!2.21±.16

Chicago 2.05±.07
�0.48%�����!2.04±.17 2.08±.05

�7.90%�����!1.92±.09 1.95±.04
�68.15%�����!0.62±.93 2.02±.03

�1.37%�����!1.99±.07

Education 2.56±.02
�5.07%�����!2.43±.05 2.20±.04

+8.44%�����!2.38±.08 2.48±.05
�2.76%�����!2.41±.04 2.55±.02

�2.80%�����!2.48±.04

Election 0.90±.01
+0.21%�����!0.90±.02 0.87±.01

�0.80%�����!0.86±.02 0.89±.00
�1.23%�����!0.88±.02 0.90±.00

�0.42%�����!0.90±.02

Income 2.51±.12
�4.58%�����!2.40±.05 2.08±.04

+32.23%�����!2.75±.23 2.35±.03
�0.23%�����!2.34±.07 2.42±.01

+3.04%�����!2.49±.04

Unemploy. 2.72±.03
�10.83%�����!2.43±.04 2.75±.06

�12.90%�����!2.39±.05 2.80±.08
�14.56%�����!2.40±.04 2.72±.02

�11.05%�����!2.42±.04

Twitch 2.43±.10
�1.36%�����!2.39±.07 2.48±.09

�3.06%�����!2.40±.07 2.50±.14
�5.53%�����!2.36±.07 2.42±.08

�1.43%�����!2.38±.06

Average Improvement -6.73% -1.02% -17.68% -5.56%

Table 9: Comparison with other non-conformity scores that reduce inefficiency.

Size CP �! CF-GNN

Cora 1.67±.11
�15.35%�����!1.42±.05

DBLP 1.39±.02
�5.00%�����!1.32±.01

CiteSeer 1.30±.07
�19.85%�����!1.04±.04

PubMed 1.23±.01
+2.40%�����!1.26±.02

Computers 1.58±.02
�4.59%�����!1.51±.05

Photo 1.34±.01
�10.47%�����!1.20±.01

CS 1.29±.04
�6.13%�����!1.21±.02

GNN drastically changes the prediction accuracy. This question is more relevant to the classification
problem since for regression our method only adjusts the confidence band. For classification, we
consider top-1 class prediction as the “point prediction”. We present its accuracy "Before" and "After"
the correction in Table 12, which shows that this correction typically does not result in a visible
change in accuracy. In addition, in a new experiment on Cora, we find that 100% of the top-1 class
from the base GNN are in CF-GNN’s prediction sets. The potential to develop steps that explicitly
consider point prediction accuracy is an exciting avenue for future research.

E Extended Related Works

Uncertainty quantification for graph neural networks. Uncertainty quantification (UQ) is a well-
studied subject in general machine learning and also recently in GNNs. For multi-class classification,
the raw prediction scores are often under/over-confident and thus various calibration methods are
proposed for valid uncertainty estimation such as temperate scaling [13], vector scaling [13], ensemble
temperate scaling [49], and so on [14, 27, 39, 1]. Recently, specialized calibration methods that
leverage network principles such as homophily have been developed: examples include CaGCN [44]
and GATS [17]. In regression, various methods have been proposed to construct prediction intervals,
such as quantile regression [25, 41, 38], bootstrapping with subsampling, model ensembles, and
dropout initialization [9, 28, 26, 35], and bayesian approaches with strong modeling assumptions on
parameter and data distributions [23, 19]. However, these UQ methods can fail to provide statistically
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Table 10: CF-GNN achieves conditional coverage. We use Cora/Twitch as an example classification/regression
dataset.

Target: 0.9 Classification Regression

Model CP CF-GNN CP CF-GNN

Marginal Cov. 0.90±.02 0.90±.01 0.91±.02 0.91±.03

Cond. Cov. (Input Feat.) 0.89±.04 0.90±.03 0.90±.07 0.86±.08

Cond. Cov. (Cluster) 0.82±.07 0.89±.03 0.90±.06 0.88±.07
Cond. Cov. (Between) 0.82±.06 0.89±.03 0.86±.08 0.88±.07
Cond. Cov. (PageRank) 0.71±.08 0.87±.05 0.87±.09 0.89±.07
Cond. Cov. (Load) 0.83±.05 0.90±.03 0.86±.08 0.88±.07
Cond. Cov. (Harmonic) 0.89±.04 0.87±.05 0.88±.08 0.91±.06
Cond. Cov. (Degree) 0.79±.05 0.89±.04 0.86±.08 0.89±.06

Table 11: CF-GNN achieves conditional coverage. We use Cora/Twitch as an example classification/regression
dataset.

Target: 0.95 Classification Regression

Model CP CF-GNN CP CF-GNN

Marginal Cov. 0.95±.01 0.95±.01 0.96±.02 0.96±.02

Cond. Cov. (Input Feat.) 0.94±.02 0.94±.03 0.95±.04 0.94±.05

Cond. Cov. (Cluster) 0.89±.06 0.93±.04 0.96±.03 0.96±.03
Cond. Cov. (Between) 0.81±.06 0.95±.03 0.94±.05 0.94±.05
Cond. Cov. (PageRank) 0.78±.06 0.94±.03 0.94±.05 0.94±.05
Cond. Cov. (Load) 0.81±.06 0.94±.03 0.94±.05 0.95±.05
Cond. Cov. (Harmonic) 0.88±.04 0.95±.03 0.96±.04 0.95±.04
Cond. Cov. (Degree) 0.83±.05 0.88±.06 0.94±.04 0.94±.04

rigorous and empirically valid coverage guarantee (see Table 1). In contrast, CF-GNN achieves valid
marginal coverage in both theory and practice. Uncertainty quantification has also been leveraged to
deal with out-of-distribution detection and imbalanced data in graph neural networks [50, 10]. While
it is not the focus here, we remark that conformal prediction can also be extended to tackle such
issues [18], and it would be interesting to explore such applications for graph data.

Conformal prediction for graph neural networks. As we discussed, the application of conformal
prediction to graph-structured data remains largely unexplored. At the time of submission, the
only work we awared of is [7], who claims that nodes in the graph are not exchangeable in the
inductive setting and employs the framework of [3] to construct conformal prediction sets using
neighborhood nodes as the calibration data. In contrast, we study the transductive setting where
certain exchangeablility property holds and allows for flexibility in the training step. We also study
the efficiency aspect that is absent in [7]. In addition, there have been concurrent works [15, 33] that
observe similar exchangeability and validity of conformal prediction in either transductive setting
or other network models. In particular, [15] proposes a diffusion-based method that aggregates non-
conformity scores of neighbor nodes to improve efficiency, while our approach learns the aggregation
of neighbor scores, which is more general than their approach. [32] studies the exchangeability for
node regression under certain network models instead of our transductive setting with GNNs, and
without considering the efficiency aspect. With a growing recent interest in conformal prediction for
graphs, there are even more recent works that focus on validity [32] and link prediction [34].

Efficiency of conformal prediction. While conformal prediction enjoys distribution-free coverage
for any non-conformity score based on any prediction model, its efficiency (i.e., size of prediction sets
or length of prediction intervals) varies with specific choice of the scores and models. How to achieve
desirable properties such as efficiency is a topic under intense research in conformal prediction. To
this end, one major thread designs good non-conformity scores such as APS [37] and CQR [36]. More
recent works take another approach, by modifying the training process of the prediction model to
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Table 12: CF-GNN does not change the top-1 class prediction accuracy for classification tasks.

Dataset Before After

Cora 0.844±0.004 0.843±0.016
DBLP 0.835±0.001 0.832±0.002
CiteSeer 0.913±0.002 0.911±0.002

further improve efficiency. This work falls into the latter case. Our idea applies to any non-conformity
scores, as demonstrated with APS and CQR, two prominent examples of the former case. Related
to our work, ConfTr [40] also simulates conformal prediction so as to train a prediction model
that eventually leads to more efficient conformal prediction sets. However, our approach differs
from theirs in significant ways. First, ConfTr modifies model training, while CF-GNN conducts
post-hoc correction without changing the original prediction. Second, ConfTr uses the training set to
simultaneously optimize model prediction and efficiency of conformal prediction, while we withhold
a fraction of calibration data to optimize the efficiency. Third, our approach specifically leverages
the rich topological information in graph-structured data to achieve more improvement in efficiency.
Finally, we also propose a novel loss for efficiency in regression tasks.

23


