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Abstract

Certifiable, adaptive uncertainty estimates for unknown quantities are an essential
ingredient of sequential decision-making algorithms. Standard approaches rely
on problem-dependent concentration results and are limited to a specific combi-
nation of parameterization, noise family, and estimator. In this paper, we revisit the
likelihood-based inference principle and propose to use likelihood ratios to con-
struct any-time valid confidence sequences without requiring specialized treatment
in each application scenario. Our method is especially suitable for problems with
well-specified likelihoods, and the resulting sets always maintain the prescribed
coverage in a model-agnostic manner. The size of the sets depends on a choice of
estimator sequence in the likelihood ratio. We discuss how to provably choose the
best sequence of estimators and shed light on connections to online convex opti-
mization with algorithms such as Follow-the-Regularized-Leader. To counteract
the initially large bias of the estimators, we propose a reweighting scheme that also
opens up deployment in non-parametric settings such as RKHS function classes.
We provide a non-asymptotic analysis of the likelihood ratio confidence sets size for
generalized linear models, using insights from convex duality and online learning.
We showcase the practical strength of our method on generalized linear bandit
problems, survival analysis, and bandits with various additive noise distributions.

1 Introduction

One of the main issues addressed by machine learning and statistics is the estimation of an unknown
model from noisy observations. For example, in supervised learning, this might concern learning
the dependence between an input (covariate) x and a random variable (observation) y. In many
cases, we are not only interested in an estimate θ̂ of the true model parameter θ⋆, but instead in a
set of plausible values that θ⋆ could take. Such confidence sets are of tremendous importance in
sequential decision-making tasks, where uncertainty is used to drive exploration or risk-aversion
needs to be implemented, and covariates are iteratively chosen based on previous observations. This
setting includes problems such as bandit optimization, reinforcement learning, or active learning. In
the former two, the confidence sets are often used to solve the exploration-exploitation dilemma and
more generally influence the selection rule (Mukherjee et al., 2022), termination rule (Katz-Samuels
and Jamieson, 2020), exploration (Auer, 2002) and/or risk-aversion (Makarova et al., 2021).

When we interact with the environment by gathering data sequentially based on previous confidence
sets, we introduce correlations between past noisy observations and future covariates. Data collected
in this manner is referred to as adaptively gathered (Wasserman et al., 2020). Constructing estimators,
confidence sets, and hypothesis tests for such non-i.i.d. data comes with added difficulty. Accordingly,
and also for its importance in light of the reproducibility crisis (Baker, 2016), the task has attracted
significant attention in the statistics community in recent years (Ramdas et al., 2022).
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(a) Gaussian L (b) Laplace L (c) Gaussian L in RKHS

Figure 1: (a) and (b) show examples of confidence sets defined via level sets of the log-likelihood
function in 2D at two dataset sizes, for Gaussian (a) and Laplace (b) likelihoods respectively. The
sets inherit the geometry of the likelihood, and are not always ellipsoidal. (c) shows confidence
bands on an RKHS function in a bandit game searching for the optimum. We compare prior work on
confidence sets (Abbasi-Yadkori et al., 2011), our LR sets, and a common heuristic (orange). Our
sets are nearly as small as the commonly used heuristic, but have provable coverage and can vastly
improve sequential decision-making tasks such as bandits by quickly eliminating hypotheses.

Instead of deriving explicit concentration inequalities around an online estimator, we construct
confidence sets implicitly defined by an inclusion criterion that is easy to evaluate in a computationally
efficient manner and requires little statistical knowledge to implement. Roughly speaking, given a
model pθ(y |x) that describes the conditional dependence of the observation y given the covariate x
under parameter θ, we will build sets based on a weighted modification of the sequential likelihood
ratio statistic (Robbins et al., 1972; Wasserman et al., 2020)

Rt(θ) :=
Lt({θ̂s}ts=1)

Lt(θ)
:=

∏t
s=1 p

ws

θ̂s
(ys |xs)∏t

s=1 p
ws

θ (ys |xs)
, (1)

where {θ̂s}s is a running estimator sequence that we are free to choose, but which may only
depend on previously collected data. Parameters θ for which this statistic is small, i.e., for which
Rt(θ) ≤ 1/α will be included in the set (and considered plausible). Examples of sets in a parametric
and non-parametric setting are shown in Figure 1. The weighting terms ws ∈ (0, 1] are crucial
for dealing with inherent irregularities of many conditional observation models but can be flexibly
chosen. Classically, these are set to ws = 1. The full exposition of our method with choice of
estimators and weights is given in Section 2. Apart from being easy to use and implement, our
approach also comes with performance guarantees. These sets maintain a provable 1− α coverage
– a fact we establish using Ville’s inequality for supermartingales (Ville, 1939), which is known
to be essentially tight for martingales (see Howard et al., 2018, for a discussion). Therefore, in
stark contrast to alternate methods, our confidence sequence is fully data-dependent, making it
empirically tighter than competing approaches. Despite the rich history of sequential testing and
related confidence sets going back to Wald (1945) and Robbins et al. (1972), these sets have found
little use in the interactive machine learning community, which is a gap we fill in the present paper.

Contributions In this work, we revisit the idea of using likelihood ratios to generate anytime-valid
confidence sets. The main insight is that whenever the likelihood of the noise process is known, the
likelihood ratio confidence sets are fully specified. They inherit their geometry from the likelihood
function, and their size depends on the quality of our estimator sequence. We critically evaluate the
likelihood ratio confidence sets and, in particular, we shed light on the following aspects: Firstly, for
generalized linear models, we theoretically analyze the geometry of the LR confidence sets under mild
assumptions. We show their geometry is dictated by Bregman divergences of exponential families
(Chowdhury et al., 2022). Secondly, we show that the size of the confidence set is dictated by an
online prediction game. The size of these sets depends on a sequence of estimators {θ̂s}ts=1 that one
uses to estimate the unknown parameter θ⋆. We discuss how to pick the estimator sequence in order
to yield a provably small radius of the sets, by using the Follow-the-Regularized-Leader algorithm,
which implements a regularized maximum-likelihood estimator. We prove that the radius of the con-
fidence sets is nearly-worst-case optimal, and accordingly, they yield nearly-worst-case regret bounds
when used in generalized linear bandit applications. However, due to their data-dependent nature, they
can be much tighter than this theory suggests. Thirdly, we analyze the limitations of classical (un-
weighted) LR sets when the underlying conditional observation model is not identifiable. In this case,
the resulting (inevitable) estimation bias unnecessarily increases the size of the confidence sets. To
mitigate this, we propose an adaptive reweighting scheme that decreases the effect of uninformed early
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bias of the estimator sequence on the size of the sets downstream. The reweighting does not affect
the coverage guarantees of our sets and utilizes an elegant connection to (robust) powered likelihoods
(Wasserman et al., 2020). Finally, thanks to the adaptive reweighting scheme, our sets are very practi-
cal as we showcase experimentally. We demonstrate that our method works well with exponential and
non-exponential family likelihoods, and in parametric as well as in kernelized settings. We attribute
their practical benefits to the fact that they do not depend on (possibly loose) worst-case parameters.

2 The Likelihood Method
The sequential likelihood ratio process (LRP) in (1) is a statistic that compares the likelihood of
a given model parameter, with the performance of an adaptively chosen estimator sequence. As noted
above, we generalize the traditional definition, which would have ws ≡ 1, and define a corresponding
confidence set as

Ct = {θ | Rt(θ) ≤ 1/α} . (2)
The rationale is that the better a parameter θ is at explaining the data {(xs, ys)}ts from the true model
θ⋆, the smaller this statistic will be, thereby increasing its chances to be included in Ct. When we
construct Rt, the sequence of xs, ws and θ̂s cannot depend on the noisy observation ys. Formally,
consider the filtration (Fs)

∞
s=0 with sub-σ-algebras Fs = σ(x1, . . . , y1, . . . xs, ys, xs+1). We require

that θ̂s and ws are Fs−1-measurable. Under these very mild assumptions and with arbitrary weights
ws ∈ (0, 1], we can show coverage, i.e., our (weighted) confidence sets uniformly track the true
parameter with probability 1− α.
Theorem 1. The stochastic process Rt(θ⋆) in (1) is a non-negative supermartingale with respect
to the filtration (Ft) and satisfies R0(θ⋆) ≡ 1. In addition, the sequence Ct from (2) satisfies
Pθ⋆ (∃t : θ⋆ ̸∈ Ct) ≤ α.

The last statement follows by applying Ville’s inequality for super-martingales on Rt(θ⋆). The proof
closely follows Wasserman et al. (2020). While coverage is always guaranteed irrespective of the
estimator sequence {θ̂s}, we would like to make the sets as small as possible at fixed coverage,
which we do by picking a well-predicting estimator sequence.

2.1 The Estimator Sequence Game

The specification of the LR process (LRP) allows us to choose an arbitrary estimator sequence {θ̂s}s.
To understand the importance of the sequence, let us introduce θ⋆ to the definition of Rt in (1), and
divide by Lt({θ̂s}ts=1). This gives the equivalent formulation

Ct :=

{
θ
∣∣∣ Lt(θ⋆)

Lt(θ)
≤ 1

α

Lt(θ⋆)

Lt({θ̂s}ts=1)
← confidence parameter

}
.

We see that the predictor sequence does not influence the geometry of the confidence set, which is
fully specified by the likelihood function. We also observe that the ratio on the right-hand side serves
as a confidence parameter controlling the size (radius) of the confidence sets measured under the
likelihood ratio distance to θ⋆. If the confidence parameter goes to zero, only θ⋆ is in the set. The
better the estimator sequence is at predicting the data, the smaller the inclusion threshold, and hence
the smaller the sets will ultimately be. Specifically, taking the log, we would like to minimize

Rt := log
Lt(θ⋆)

Lt({θ̂s}ts=1)
=

t∑
s=1

− log(pws

θ̂s
(ys |xs))−

t∑
s=1

− log(pws

θ⋆
(ys |xs)). (3)

The quantityRt corresponds to a regret in an online prediction game, as will become apparent below.

Online Prediction Game Online optimization is a mature field in interactive learning (Cesa-Bianchi
and Lugosi, 2006; Orabona, 2019). The general goal is to minimize a sequence of loss functions as in
Eq. (3) and compete against a baseline, which typically is the best-in-hindsight prediction, or – in our
case – given by the performance of the fixed parameter θ⋆. Specifically, at every timestep s, iteratively,
the agent chooses an action θ̂s based on Fs−1, and a loss function fs(θ) is revealed. In most of the
online optimization literature, fs can be chosen adversarially. In our prediction game, we know the
whole form of loss function fs(θ) = − log(pws

θ (ys |xs)), as can be seen in (3), and not just fs(θ̂s).
Opposed to traditional assumptions in online prediction, in our case, fs are non-adversarial, but have a
stochastic component due to ys. Also, contrary to most instances of online prediction, we do not com-
pare against the best-in-hindsight predictor, but θ⋆ instead, as this is more meaningful in our setting.
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Online Optimization Algorithms Generally, we seek an algorithm that incurs low regret. Here, we
focus on Follow-the-Regularized Leader (FTRL), which corresponds exactly to using regularized max-
imum likelihood estimation, making it a natural and computationally practical choice. The update rule
is defined in Alg. 1 (Line 3). While other algorithms could be considered, FTRL enjoys the optimal
regret rate for generalized linear regression as we show later, and is easily implemented. In order to
run the algorithm, one requires a sequence of strongly convex regularizers. For now, let us think of it
as ψs(θ) = λ||θ||22, which we use in practice. However, one can derive a tighter analysis for a slightly
modified, time-dependent regularization strategy for generalized linear models as we show in Sec. 3.3.

2.2 Adaptive Reweighting: Choosing the Right Loss

There is yet more freedom in the construction of the LR, via the selection of the loss function. Not
only do we select the predictor sequence, but also the weights of the losses via wt. This idea allows
controlling the influence of a particular data point (xt, yt) on the cumulative loss based on the value
of xt. For example, if we know a priori that for a given xt our prediction will be most likely bad, we
can opt out of using the pair (xt, yt) by setting wt = 0. Below we will propose a weighting scheme
that depends on a notion of bias, which captures how much of the error in predicting yt is due to
our uncertainty about θ̂t (compared to the uncertainty we still would have knowing θ⋆). Sometimes
this bias is referred to as epistemic uncertainty in the literature, while the residual part of the error
is referred to as aleatoric. Putting large weight on a data point heavily affected by this bias might
unnecessarily increase the regret of our learner (and hence blow up the size of the confidence set).
Note that, conveniently, even if we put low weight (zero) on a data point, nothing stops us from using
this sample point to improve the estimator sequence in the next prediction round. As we will show
below, our reweighting scheme is crucial in defining a practical algorithm for Reproducing Kernel
Hilbert Space (RKHS) models and in high signal-to-noise ratio scenarios. Since we do not know θ⋆,
our strategy is to compute an estimate of the bias of the estimator θ̂t and its effect on the value of the
likelihood function for a specific x that we played. We use the value of the bias to rescale the loss via
wt such that its effect is of the same magnitude as the statistical error (see Algorithm 1; we call this
step BIAS-WEIGHTING).

Intuition To give a bit more intuition, suppose we have a Gaussian likelihood. Then the negative
log-likelihood of (xt, yt) with weighting is proportional to wt

σ2 (yt − x⊤t θ̂t)2. Now, if xt does not lie
in the span of the data points {xs}t−1

s=1 used to compute θ̂t, it is in general unavoidable to incur large
error, inversely proportional to σ2. To see this, let us decompose the projection onto xt as

x⊤t (θ̂t − θ⋆) = x⊤t (θ̂t − E[θ̂t])︸ ︷︷ ︸
statistical error

+x⊤t (E[θ̂t]− θ⋆)︸ ︷︷ ︸
biasxt (θ̂t)

, (4)

where the first term represents the statistical error up to time t, while the second, bias, is
deterministic, and independent of the actual realization y, depending only θ⋆. Estimators with
non-zero bias are biased. Plugging this into the likelihood function, we see that in expectation
1
σ2E[(yt − x⊤t θ̂t)2|Ft−1] ≲ 1

σ2 bias
2
xt
(θ̂t) + ϵ2 + C

t , where ϵ2 is the unavoidable predictive error
in expectation (due to a noisy objective) and is a constant independent of σ2. C

t is the statistical
error, and C is independent of σ2. Note that the bias term scales inversely with the variance, and
leads to unnecessarily big confidence parameters for small σ2.

In fact, the problem is that we use the likelihood to measure the distance between two parameters,
but this is only a “good“ distance once the deterministic source of the error (bias) vanishes. For this
reason, without weighting, the incurred regret blows up severely in low-noise settings. To counter this,
we balance the deterministic estimation bias and noise variance via proper selection ofwt. In this case,
it turns out thatwt =

σ2

σ2+bias2xt
(θ̂t)

ensures that the overall the scaling is independent of σ2. While the

choice of weights {ws}ts influences the geometry of the confidence sets, with a good data collection
and estimation strategy the bias asymptotically decreases to zero, and hence the weights converge to 1.

Bias estimation In order to generalize this rule beyond Gaussian likelihoods, we need a proper
generalization of the bias. Our generalization is motivated by our analysis of generalized linear
models, but the method can be applied more broadly. The role of the squared statistical error
(variance) is played by the inverse of the smoothness constant of the negative log-likelihood functions
fs, denoted by L. This is the usual smoothness, commonly seen in the convex optimization literature.
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We consider penalized likelihood estimators with strongly convex regularizers (Alg. 1, line 3). For
this estimator class, we define the bias via a hypothetical stochastic-error-free estimate θ̂×t , had we
access to the expected values of the gradient loss functions (a.k.a. score). We use the first-order
optimality conditions and the indicator function of the set Θ, iΘ, to define the error-free-estimate θ̂×t ,
and the bias of the estimator θ̂t as

bias2xt
(θ̂t) = (x⊤t (θ⋆ − θ̂×t ))2 with E

[
t−1∑
s=1

∇ log pθ̂×
t
(ys|xs)

]
−∇ψt(θ̂

×
t ) + iΘ(θ̂

×
t ) = 0, (5)

where the expectation denotes a sequence of expectations conditioned on the prior filtration. This
notion of bias coincides with the definition of bias in Eq. (4) for the Gaussian likelihood. This
quantity cannot be evaluated in general, however, we prove a computable upper bound.
Theorem 2 (Bias estimate). Let the negative log-likelihood have the form,− log pθ(ys|xs) = g(x⊤s θ),
where g : R→ R is µ strongly-convex and let the regularizer be ψt(θ) = λ||θ||22 making the overall
objective strongly convex. Then, defining Vµ;λ

t =
∑t

s=1 µxsx
⊤
s + λI, we can bound

bias2x(θ̂t) ≤ 2λ||θ⋆||22x⊤(V
µ;λ
t )−1x. (6)

The proof is deferred to App. A.3, and requires elementary convex analysis.

This leads us to propose the weighting scheme wt =
1/L

bias2xt
(θ̂t)+1/L

. We justify that this is a sensible

choice by analyzing the confidence set on the GLM class in Section 3, which satisfies the smoothness
and strong-convexity conditions. We show that this rule properly balances the stochastic and bias
components of the error in the regret as in (3). However, this rule is more broadly applicable beyond
the canonical representation of GLM or the GLM family altogether.

Algorithm 1 Constructing the LR Confidence Sequence

1: Input: convex set Θ ⊂ Rd, confidence level α > 0, likelihood pθ(y|x), regularizers {ψt}t
2: for t ∈ N0 do
3: θ̂t = argminθ∈Θ

∑t−1
s=1− log pθ(ys |xs) + ψt(θ) ▷ FTRL

4: wt =

{
1/L

1/L+bias2xt
(θ̂t)

THIS WORK

1 CLASSICAL
▷ BIAS-WEIGHTING biasxt

(θ̂t) in Eq. (5) or Eq.(6)

5: Ct =
{
θ ∈ Θ

∣∣∣∣ ∏t
s=1

pws
θ̂s

(ys | xs)

pws
θ (ys | xs)

≤ 1
α

}
. ▷ Confidence set

6: end for

3 Theory: Linear Models
While the coverage (i.e., “correctness”) of the likelihood ratio confidence sets is always guaranteed,
their worst-case size (affecting the “performance”) cannot be easily bounded in general. We
analyze the size and the geometry of the LR confidence sequence in the special but versatile case
of generalized linear models.

3.1 Generalized Linear Models

We assume knowledge of the conditional probability model pθ(y|x), where the covariates
x ∈ X ⊂ Rd, and the true underlying model parameter lies in a set Θ ⊂ Rd. If t is indexing
(discrete) time, then xt is acquired sequentially, and the – subsequently observed – yt is sampled
from an exponential family distribution parametrized as

pθ(y |xt) = h(y) exp
(
T (y) · x⊤t θ −A(x⊤t θ)

)
. (7)

Here, A is referred to as the log-partition function of the conditional distribution, and T (y) is the suf-
ficient statistic. The function h is the base measure, and has little effect on our further developments,
as it cancels out in the LR. Examples of commonly used exponential families (Gaussian, Binomial,
Poisson or Weibull) with their link functions can be found in Table 1 in App. A.1.

In order to facilitate theoretical analysis for online algorithms, we make the following assumptions
about the covariates x ∈ X and the set of plausible parameters Θ.
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Assumption 1. The covariates are bounded, i.e., supx∈X ||x||2 ≤ 1, and the set Θ is contained in an
ℓ2-ball of radius B. We will also assume that the log-partition function is strongly convex, that is,
that there exists µ := infz∈[−B,B]A

′′(z), and that A is L-smooth, i.e. L := supz∈[−B,B]A
′′(z).

These assumptions are common in other works addressing the confidence sets of GLMs (Filippi et al.,
2010; Faury et al., 2020), who remark that the dependence on µ is undesirable. However, in contrast
to these works, our confidence sets do not use these assumptions in the construction of the sets. We
only require these for our theoretical analysis. As these are worst-case parameters, the practical
performance can be much better for our sets.

3.2 Geometry and Concentration

Before stating our results, we need to define a distance notion that the convex negative log-likelihoods
induce. For a continuously differentiable convex function f , we denote the Bregman divergence
as Df (a, b) := f(a) − f(b) − ∇f(b)⊤(a − b). The ν-regularized sum of log-partition functions
is defined as

Zν
t (θ) :=

t∑
s=1

wsA(x
⊤
s θ) +

ν

2
||θ||22. (8)

This function will capture the geometry of the LR confidence sets. The confidence set size depends
mainly on two terms. One refers to a notion of complexity of the space referred to as Bregman

information gain: Γν
t (θ̃t) = log

( ∫
Rd exp(− ν

2 ||θ||
2
2)dθ∫

Rd exp(−DZν
t
(θ,θ̃t))dθ

)
, first defined by Chowdhury et al. (2022) as

a generalization of the information gain of Srinivas et al. (2009), γνt = log
(
det(

∑
i=1

µ
ν xix

⊤
i + I)

)
for Gaussian likelihoods. We will drop the superscript whenever the regularization is clear
from context and simply refer to γt. This term appears because one can relate the decay of the
likelihood as a function of the Bregman Divergence from θ⋆ with the performance of a (regularized)
maximum likelihood estimator via convex (Fenchel) duality. In particular, if θ̃t is a regularized
MLE, Γν

t := Γν
t (θ̃t) will asymptotically scale as O(d log t) (cf. Chowdhury et al., 2022, for further

discussion). For Gaussian likelihoods and ws ≡ 1, it coincides with the classical information gain
independent of θ̃t. The second term that affects the size is the regretRt of the online prediction game
over t rounds we introduced previously in (3). These two parts together yield the following result:
Theorem 3. Let ν > 0 and α, δ ∈ (0, 1). For the level 1− α confidence set Ct defined in (2) under
the GLM in (7), with probability 1− δ, for all t ≥ 1, any θ ∈ Ct satisfies

DZν
t
(θ, θ⋆) ≤

4L

µ
ξt + 2 log

(
1

δ

)
+ 2Rt, (9)

where ξt =
(
log
(
1
α

)
+ νB2 + Γν

t

)
and L, µ are defined as above and finallyRt is the regret of the

game in Eq. (3).

The set defined via the above divergence does not coincide with the LR confidence set. It is slightly
larger due to a term involving ν (as in Eq. (8)). This is a technical consequence of our proof
technique, where the gradient of Zν

t needs to be invertible, and regularization is added to this
end. We note that this ν > 0 can be chosen freely. Note that the theorem involves two confidence
levels, α and δ: α is a bound on the Type I error – coverage of the confidence sets – while δ upper
bounds the probability of a large radius – and is therefore related to the power and Type II error
of a corresponding hypothesis test. The proof of the theorem is deferred to App. B.2.

To give more intuition on these quantities, let us instantiate them for the Gaussian likelihood case with
ws ≡ 1. In this scenario, Zν

t (θ) =
∑t

s=1
1

2σ2 ||θ||2xsx⊤
s
+ ν

2 ||θ||
2
2, and the (in this case symmetric)

Bregman divergence is equal to DZν
t
(θ⋆, θ) =

1
2 ||θ− θ⋆||

2

Vσ−2;ν
t

, where Vµ;ν
t =

∑t
s=1 µxsx

⊤
s + νI,

which means that our confidence sets are upper bounded by a ball in the same norm as those in the
seminal work on linear bandits (Abbasi-Yadkori et al., 2011).

3.3 Online Optimization in GLMs: Follow the Regularized Leader

The size of the confidence sets in Theorem 3 depends on the regret of the online prediction game
involving the estimator sequence. We now bound this regret when using the Follow-the-Regularized-
Leader (FTRL) algorithm in this setting. This high probability bound is novel to the best of our
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knowledge and may be of independent interest. We state in a weight-agnostic manner first, and then
with our particular choice. The latter variant uses a specifically chosen regularizer. In this case, we
can track the contribution of each time-step towards the regret separately.
Theorem 4. Let ψt(θ) = λ||θ||22. Assume Assumption 1, and additionally that A is L-smooth
everywhere in Rd, and let wt ∈ [0, 1] be arbitrary. Then, with probability 1− δ the regret of FTRL
(Alg. 1) satisfies for all t ≥ 1

Rt ≤ λB2 +
L

µ
(γλt + 2 log(1/δ)) +

2L2B2

µ
γλt . (10)

The regret bounds are optimal in the orders of γλt , matching lower bounds of Ouhamma et al. (2021),
as for linear models γt = O(d log t). Combining results of Thm. 4 with Thm. 3, we get a confidence
parameter that scales with O(√γt), for confidence sets of the form ||θ − θ⋆||Vt , which coincides
with the best-known confidence sets in this setting in the worst-case (Abbasi-Yadkori et al., 2012).
The requirement of global L−smoothness can be relaxed to L−smoothness over Θ. With a more
elaborate (but less insightful) analysis, we can show that we achieve a Õ(γt) bound even in this case.
The proofs of these results are deferred to App. C.4, App. C.5 and App. C.6 respectively.

Regret, Weighting and Estimation Bias Interestingly, the term in Thm. 4 involving the (crude)
proxy to the bias – the bound B – is not scaled by the same L/µ factors as the other terms in
the regret bound (10) and in Theorem 3. Namely, the prefactor is L2/µ instead of L/µ. This
extra dependence manifests itself in the unnecessary penalization through the estimation bias we
introduced in Sec. 2.2, particularly in low-noise settings. We addressed this issue by picking the
weights {wt}. While the above theorem holds for any valid weighting, it does not exhibit the possible
improvement from using specific weights.

We argued earlier that the error in prediction should not be measured by the likelihood function if
there is deterministic error, since initially, we are fully uncertain about the value of θ⋆⊤(·) outside the
span of previous observations. Of course, if our goal would be to purely pick weights to minimize
Rt, then ws = 0 would lead to zero regret and hence be optimal. However, the likelihood ratio would
then be constant, and uninformative. In other words, the associated log-partition Bregman divergence
in Theorem 3 would be trivial and not filter out any hypotheses. Clearly, some balance has to be met.
With this motivation in mind, we proposed a nonzero weighting that decreases the regret contribution
of the bias, namely wt =

1/L

1/L+bias2xt
(θ̂t)

. The advantage of this choice becomes more apparent when

we use the regularizer ψt(θ) = λ||θ||2 +A(x⊤t θ) to obtain the following result.
Theorem 5. Let ψs(θ) = λ||θ||2 + A(x⊤s θ). Assume Assumption 1, and additionally that A is
L-smooth everywhere in Rd, and choose ws = 1/L

1/L+biasxs (θ̂s)
2

. Additionally, let the sequence of

xs be such that,
∑

s(1− ws)(fs(θ⋆)− fs(θ̄s+1)) ≤ L/µγλt , where θ̄s is the FTRL optimizer with
the regularizer λ||θ||22 from Theorem 4 2. Then, with probability 1− δ the regret of FTRL (Alg. 1)
satisfies for all t ≥ 1

Rt ≤ λB2 +
2L

µ

(
γλt + log

(
1

δ

))
+
L

µ

t∑
s=1

B2

1/L+ bias2xs
(θ̂s)

∆γλs ,

where ∆γλs = γλs+1 − γλs .
One can see that for points where the information gain ∆γs is large (corresponding to more unexplored
regions of the space, where the deterministic source of error is then large), the weighting scheme
will make sure that the multiplicative contribution of B2 is mitigated, along with having the correct
prefactor L/µ. The reader may wonder how this result is useful when we replace bias2xs

(θ̂s) with the
upper bound from Thm. 2. While instructive, our bound still only makes the bias proxy B2 appear in
front of the information gain ∆γt, instead of the more desireable bias itself. In the latter case, we
could also directly make use of the upper bound and get an explicit result only using an upper bound
on the bias. We leave this for future work.

We point out that this choice of ψs(θ) in Theorem 5 corresponds to the Vovk-Azoury-Warmuth
predictor (Vovk, 2001; Azoury and Warmuth, 1999) in the online learning literature. This choice is
helpful in order to track the bias contribution more precisely in our proof.

2Note that this assumption was missing in an earlier version. θ̄s+1 corresponds to a regularized MLE that
did observe the data pair (xs, ys).
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4 Application: Linear and Kernelized Bandits

Our main motivation to construct confidence sets is bandit optimization. A prototypical bandit
algorithm – the Upper Confidence Bound (UCB) (Auer, 2002) – sequentially chooses covariates
xs in order to maximize the reward

∑t
s=1 rθ⋆(xs), where rθ⋆ is the unknown pay-off function

parametrized by θ⋆. UCB chooses the action xs which maximizes the optimistic estimate of the
reward in each round, namely

xs = argmax
x∈X

max
θ∈Cs−1

rθ(x), (11)

where Cs−1 is some confidence set for θ⋆, and can be constructed with Algorithm 1 from the first
s− 1 data points. An important special case is when rθ⋆ is linear (Abe and Long, 1999) or modelled
by a generalized linear model (Filippi et al., 2010). In that case, the inner optimization problem is
convex as long as Cs−1 is convex. The outer optimization is tractable for finite X . In the applications
we consider, our confidence sets are convex, and we easily solve the UCB oracle using convex
optimization toolboxes.

Extension to RKHS We introduced the framework of LR confidence sets only for finite-
dimensional Euclidean spaces. However, it can be easily extended to Reproducing Kernel Hilbert
Spaces (RKHS) (Cucker and Smale, 2002). The definition of the LR process in (1) is still well-posed,
but now the sets are subsets of the RKHS, containing functions f ∈ Hk. An outstanding issue
is how to use these sets in downstream applications, and represent them tractably as in Figure 1.
Conveniently, even with infinite-dimensional RKHSs, the inner-optimization in (11) admits a
Lagrangian formulation, and the generalized representer theorem applies (Schölkopf et al., 2001;
Mutný and Krause, 2021). In other words, we can still derive a pointwise upper confidence
band as ucb(x) = maxf∈Hk,||f ||k≤B,f∈Cs

⟨f, k(x, ·)⟩ in terms of {xj}sj=1 ∪ {x}, leading to a
s+ 1-dimensional, tractable optimization problem.

We also point out that the weighting is even more paramount in the RKHS setting, as the bias never
vanishes for many infinite dimensional Hilbert spaces (Mutný and Krause, 2022). For this purpose,
our weighting is of paramount practical importance, as we can see in Figure 2a), where the gray
arrow represents the significant improvement from reweighting.

4.1 Instantiation of the Theory for Linear Bandits

Before going to the experiments, we instantiate our theoretical results from Sec. 3 to the important
and well-studied special case of linear payoffs. In that case, rθ(x) = ⟨x, θ⟩ and the agent observes
ys = ⟨xs, θ⋆⟩+ ηs upon playing action xs, where ηs ∼ N (0, σ2). We are interested in minimizing
the so-called cumulative pseudo-regret, namely, Rt =

∑t
s=1[⟨x⋆, θ⋆⟩ − ⟨xs, θ⋆⟩], where x⋆ refers

to the optimal action. Using the set from (2) along with Theorem 3 and the FTRL result of Theorem 4
we can get a regret bound for the choice ws ≡ 1.
Theorem 6. Let ws ≡ 1. For any λ ≥ 1

σ2 , with probability at least 1− 3δ, for all t ∈ N we have

Rt ≤ 6
√
tγλt

(
σ
√
log(1/δ) + γλt + σλ1/2B +B

√
γλt

)
.

Our results are optimal in both d and t up to constant and logarithmic factors. The proof is deferred to
App. D, but is an instantiation of the aforementioned theorems, along with a standard analysis. There,
we also compare to the seminal result of Abbasi-Yadkori et al. (2011), which does not suffer from the
dependence on B

√
γt. We attribute this to the incurred bias in the absence of the reweighting scheme.

For the weighted likelihood ratio, we can obtain a result similar to the above, but multiplied by an
upper bound on sups≥1 w

−1
s . This is undesirable, as our experiments will show that the reweighting

scheme vastly improves performance. While this could be somewhat mitigated by using the
Theorem 5 instead of Theorem 4 to bound the FTRL regret, a better result should be achievable using
our weighting scheme that improves upon Theorem 6 and possibly even matches Abbasi-Yadkori
et al. (2011) exactly in the worst-case. We leave this for future work.

4.2 Experimental Evaluation

In this subsection, we demonstrate that the practical applicability goes well beyond the Gaussian
theoretical result from the previous subsection. In the examples below, we always use the UCB
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Figure 2: Bandit experiments: On the y-axis we report cumulative regret, while the x-axis shows the
number of iterations. In a) and b) we report the results for linear models with different parametric
additive noise. In c) we report the results on a survival analysis with a log-Weibull distribution (p = 2)
and in d) we showcase Poisson bandits. See App. E for more details. Heuristic methods are dashed,
while provable are solid. Our sets perform the best among all provable methods. Notice in a) the
difference in gray and black represents the improvement due to adaptive weighting over ws = 1 for
all s ∈ [t]. For each experiment we did 10 reruns, median values are plotted.

algorithm but employ different confidence sets. In particular, we compare our LR confidence sets
for different likelihood families with alternatives from the literature, notably classical sub-family
confidence sets (Abbasi-Yadkori et al., 2011; Mutný and Krause, 2021), and the robust confidence
set of Neiswanger and Ramdas (2021). In practice, however, the radius of these confidence sets is
often tuned heuristically. We include such sets as a baseline without provable coverage as well. The
main take-home message from the experiments is that among all the estimators and confidence sets
that enjoy provable coverage, our confidence sets perform the best, on par with successful heuristics.
For all our numerical experiments in Figure 2, the true payoff function is assumed to be an infinite
dimensional RKHS element. For further details and experiments, please refer to App. E.

Additive Noise Models Suppose that rθ⋆ is linear and we observe ys = x⊤s θ⋆ + ηs, where ηs is
additive noise, and θ⋆ is an element of a Hilbert space. We consider classical Gaussian noise as well as
Laplace noise in Fig. 2[a), b)]. Notice that in both cases our confidence sets yield lower regret than any
other provably valid method. In both cases they are performing as good as heuristic confidence sets
with confidence parameter βt ≡ 2 log(1/δ). The sub-Gaussian confidence sets of Abbasi-Yadkori
et al. (2011) (AY 2011) are invalid for the Laplace distribution as it is not sub-Gaussian but only sub-
Exponential. For this reason, we compare also with sub-exponential confidence sets derived similarly
to those of (Faury et al., 2020). The confidence sets of (Neiswanger and Ramdas, 2021) (NR 2021)
perform similarly on Gaussian likelihood, but are only applicable to this setting, as their generalization
to other likelihood families involves intractable posterior inference. We note also the difference be-
tween the unweighted LR and the weighted one. The examples in Fig. 2 use the true payoff functions
r(x) = −(1.4− 3x) sin(18x), which we model as an element of a RKHS with squared exponential
kernel lengthscale γ = 6×10−2 on [0, 1.2], which is the baseline function no. 4 in the global optimiza-
tion benchmark database infinity77 (Gavana, 2021). Additional experiments can be found in App. E.

Poisson Bandits A prominent example of generalized linear bandits (GLB) are Poisson bandits,
where the linear payoff is scaled by an exponential function. We instantiate our results on a common
benchmark problem, and report the results in Fig. 2d). We improve the regret of UCB for GLBs
compared to two alternative confidence sets: one that uses a Laplace approximation with a heuristic
confidence parameter, and one inspired by considerations in Mutný and Krause (2021) (MK 2021),
also with a heuristic confidence parameter. Note that we cannot compare directly to their provable
results in their original form as they do not state them in the canonical form of the exponential family.
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Survival Analysis Survival analysis is a branch of statistics with a rich history that models the
lifespan of a service or product (Breslow, 1975; Cox, 1997; Kleinbaum and Klein, 2010). The
classical approach postulates a well-informed likelihood model. Here, we use a specific hazard
model, where the survival time T is distributed with a Weibull distribution, parametrized by λ and p.
The rate λθ(x) = exp(x⊤θ) differs for each configuration x, and p – which defines the shape of the
survival distribution – is fixed and known. We assume that the unknown part is due to the parameter θ
which is the quantity we build a confidence set around to use within the UCB Algorithm. In particular,
the probability density of the Weibull distribution is P (T = t|x) = λθ(x)pt

p−1 exp(−tpλθ(x)). In
fact, with p = 2, the confidence sets are convex and the UCB rule can be implemented efficiently.

Interestingly, this model admits an alternate linear regression formulation. Namely upon
using the transformation Y = log T , the transformed variables Y |x follow a Gumbel-type
distribution, with the following likelihood that can be obtained by the change of variables
P (Y = y|x) = λθ(x)p exp(y)

p exp(− exp(y)pλθ(x)). The expectation over Y allows us to express
it as a linear regression problem since E[Y |x] = −(θ⊤x+ γ)/p, where γ is the Euler-Mascheroni
constant. More importantly, Y |x is sub-exponential. Hence, this allows us to use confidence sets
for sub-exponential variables constructed with the pseudo-maximization technique inspired by Faury
et al. (2020). More details on how these sets are derived can be found in App. E. However, these
approaches necessarily employ crude worst-case bounds and as can be seen in Figure 2c) the use
of our LR-based confidence sequences substantially reduces the regret of the bandit learner.

5 Related Work and Conclusion

Related Work The adaptive confidence sequences stem from the seminal work of Robbins et al.
(1972), who note that these sets have α-bounded Type I error. The likelihood ratio framework has
been recently popularized by Wasserman et al. (2020) for likelihood families without known test
statistics under the name universal inference. This approach, although long established, is surprisingly
uncommon in sequential decision-making tasks like bandits. This might be due to the absence of
an analysis deriving the size of the confidence sets (Mutný and Krause, 2021), a necessary ingredient
to obtain regret bounds. We address this gap for generalized linear models. Another reason might
be that practitioners might be interested in non-parametric sub-families – a scenario our method does
not cover. That being said, many fields such as survival analysis (Cox, 1997) do have well-informed
likelihoods. However, most importantly, if used naively, this method tends to fail when one departs
from assumptions that our probabilistic model is identifiable (i.e., pθ(· |x) = pθ̃(· |x) even if θ ̸= θ̃).
We mitigate this problem by introducing the scaling parameters wt in Eq. (1) to deal with it.

Prevalent constructions of anytime-valid confidence intervals rely on carefully derived concentration
results and for a specific estimator such as the least-squares estimator and noise sub-families such
as sub-Gaussian, sub-Bernoulli and sub-Poisson Abbasi-Yadkori et al. (2011); Faury et al. (2020);
Mutný and Krause (2021). Their constructions involve bounding the suprema of collections of
self-normalized stochastic processes (Faury et al., 2020; Mutný and Krause, 2021; Chowdhury et al.,
2022). To facilitate closed-form expressions, worst-case parameters are introduced that prohibitively
affect the size of the sets – making them much larger than they need to be.

Chowdhury et al. (2022) use the exact form of the likelihood to build confidence sets for parameters
of exponential families. However, their approach is restricted to exponential family distributions.
They use self-normalization and mixing techniques to explicitly determine the size of the confidence
set and do not use an online learning subroutine as we do here. Neiswanger and Ramdas (2021)
use likelihood ratios for bandit optimization with possibly misspecified Gaussian processes but is
not tractable beyond Gaussian likelihoods. The relation between online convex optimization and
confidence sets has been noted in so-called online-to-confidence conversions (Abbasi-Yadkori et al.,
2012; Jun et al., 2017; Orabona and Jun, 2021; Zhao et al., 2022), where the existence of a low-regret
learner implies a small confidence set. However, these sets still use potentially loose regret bounds to
define confidence sets. Our definition is implicit. We do not necessarily need a regret bound to run
our method, as the radius will depend on the actual, instance-dependent performance of the learner.

Conclusion In this work, we generalized and analyzed sequential likelihood ratio confidence sets
for adaptive inference. We showed that with well-specified likelihoods, this procedure gives small,
any-time valid confidence sets with model-agnostic and precise coverage. For generalized linear
models, we quantitatively analyzed their size and shape. We invite practitioners to explore and use
this very versatile and practical methodology for sequential decision-making tasks.
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A Proofs of Theorem 1 and 2

A.1 GLM Families

Table 1: Examples of exponential family distributions.

Name A(z) A′(z) T (y) µ L
Gaussian z2/(2σ2) z/σ2 y/σ 1/σ2 1/σ2

Poisson exp(z) exp(z) y exp(−B) exp(B)
Binomial log(1 + exp(z)) 1

1+exp(−z) y O(exp(−B)) 1/4

Weibull k log(z)− log k k/z yk 1/B2 ∞

A.2 Proof of Theorem 1 (Coverage)

Proof. Starting with E [Rt(θ⋆) | Ft−1]

= E

[
Rt−1(θ⋆)

pwt

θ̂t
(yt |xt)

pwt

θ⋆
(yt |xt)

∣∣∣∣∣ Ft−1

]

= Rt−1(θ⋆)

∫ pwt

θ̂t
(y |xt)

pwt

θ⋆
(y |xt)

pθ⋆(y |xt)dy

= Rt−1(θ⋆)e
((wt−1)Dr

wt
(pθ⋆ (xt),pθ̂t

(xt)) ≤ Rt−1(θ⋆).

The second equality is due to the fact that Rt−1(θ⋆) only depends on x1, y1 through xt−1, yt−1.
Since θ̂t is Ft−1 measurable by assumption, pθ̂t is a density, and if wt < 1, the integral is equal to an
exponential of the Rényi-divergence Dr

wt
(·, ·). The negativity of the exponent follows from wt < 1

and the non-negativity of the divergence. Note that in the "degenerate" case of wt = 1, we can easily
see that the integral is over a density (cancellation), and hence also bounded by 1. The last part of the
statement follows easily by using Ville’s inequality for supermartingales.

All the elements of the above proof appear in Wasserman et al. (2020) albeit separately, and not with
time-varying powered robust likelihoods.

A.3 Proof of Theorem 2 (Bias)

We will need a gradient characterization of strong-convexity, which we prove in the following lemma.
Lemma 1 (Convexity: Gradient). Defining

Ft(θ) = −
t∑

s=1

E
θ⋆
[∇ logθ p(ys |xs) | Fs−1],

under the assumption pθ(ys|xs) = −g(x⊤s θ) and g is µ-strongly convex, we have for any θ ∈ Θ:

(Ft(θ)− Ft(θ⋆))
⊤(θ − θ⋆) ≥ ||θ − θ⋆||2Vµ;0

t
.

Proof. We assume that g is µ-strongly convex. Therefore, for any s ≤ t, we get the two inequalities

g(x⊤s θ)− g(x⊤s θ⋆) ≥ g′(x⊤s θ⋆)(x⊤s θ − x⊤s θ⋆) +
µ

2
||x⊤s θ⋆ − x⊤s θ||22

g(x⊤s θ⋆)− g(x⊤s θ) ≥ g′(x⊤s θ)(x⊤s θ⋆ − x⊤s θ) +
µ

2
||x⊤s θ⋆ − x⊤s θ||22.

Adding these two together, we obtain

0 ≥ (g′(x⊤s θ⋆)− g′(x⊤s θ))(x⊤s (θ − θ⋆)) + µ||θ − θ⋆||2xsx⊤
s
.

Observing that −∇θpθ(ys |xs) = −g′(x⊤s θ)xs, we can equivalently write

0 ≥ (∇ log pθ(ys |xs)−∇ log pθ⋆(ys |xs))⊤(θ − θ⋆)) + µ||θ − θ⋆||2xsx⊤
s
.
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This holds for any realization of ys, and hence taking expectations yields

(E[∇ log pθ⋆(ys |xs) | Fs−1]− E[∇ log pθ(ys |xs) | Fs−1])
⊤
(θ − θ⋆) ≥ µ||θ − θ⋆||2xsx⊤

s
.

Summing up over s ≤ t and using the definition of Ft we get

(Ft(θ)− Ft(θ⋆))
⊤(θ − θ⋆) ≥ ||θ − θ⋆||2Vµ

t ;0
.

Notice that the estimator in Alg. 1 has to fulfil the KKT conditions. We will denote the condition
for belonging to the set as h(θ) ≤ B2, where h is a squared and twice-differentiable norm (there are
many choices beyond || · ||22). The KKT conditions are

t∑
s=1

−∇θ log pθ(ys|xs) +∇ψt(θ) + l∇h(θ) = 0 (12)

l(h(θ)−B2) = 0

l ≥ 0,

where the second and third conditions represent a complementary slackness requirement. Notice that
the system of these equations has a unique solution due to the strong-convexity of the objective, and
has to attain a unique minimum on a compact convex subset of Rd. Adding the same quantity on
both sides of (12) yields

t∑
s=1

−Eθ⋆ [∇θ log pθ(ys|xs)|Fs−1] +∇ψt(θ) + l∇h(θ)

=

t∑
s=1

[∇θ log pθ(ys|xs)− Eθ⋆ [∇θ log pθ(ys|xs)|Fs−1]]︸ ︷︷ ︸
:=Et

. (13)

This line motivates the definition of the error-free estimator in θ×t (6), where Et is set to zero. We
will also make use of a fundamental property of the score (gradient of log-likelihood), namely

Eyt∼pθ⋆ (· | x)[∇ log pθ⋆(yt|xt)|Ft−1] = 0. (14)

A classical textbook reference for this is e.g. McCullagh (2018) but any other classical statistics
textbook should contain it. Using these observations, we can already prove Theorem 2.

Proof of Theorem 2. Using the optimality conditions of θ×t , h(θ) = ||θ||22 and ψt(θ) = ||θ||22, we
obtain the following statements:

t∑
s=1

−Eθ⋆ [∇ log pθ×
t
(ys|xs)|Fs−1] + λθ×t + 2lθ×t = 0

=⇒
t∑

s=1

−Eθ⋆ [∇ log pθ×
t
(ys|xs)|Fs−1] + Eθ⋆ [∇ log pθ⋆(ys|xs)|Fs−1] + λθ×t + 2lθ×t = 0,

where in the last line we used the property (14). Now, notice that since we know θ⋆ is generating the
data, the best possible explanation without enforcing the constraint and the regularization would be
to set θ×t = θ⋆ as the cross-entropy is minimized at this point, and the above is just the optimality
condition for optimizing the cross-entropy between these two distribution. Of course, this is only in
the absence of regularization or constraints i.e. λ = 0. Now, with the regularization constraint, as
the true θ⋆ lies inside the constraint h(θ) ≤ B2, and both the regularization and constraints induce
star-shaped sets, their effect is to make θ×t smaller in norm than θ∗. This holds generally for any h
which is a norm. As a consequence of this consideration, ||θ×t ||2 < B, and then the complementary
slackness dictates that l = 0.

We can therefore proceed with this simplification. Let us use the shorthand Ft(θ) =∑t
s=1−Eθ⋆ [∇ log pθ(ys|xs)|Fs−1] and compute

Ft(θ
×
t )− F (θ⋆) + λ(θ×t − θ⋆) = −λθ⋆
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=⇒ (θ×t − θ⋆)⊤(Ft(θ
×
t )− F (θ⋆) + λ(θ×t − θ⋆)) = −λ(θ×t − θ⋆)⊤θ⋆

Lemma 1
=⇒ ||θ×t − θ⋆||2Vµ,λ

t

≤ −λ(θ×t − θ⋆)⊤θ⋆. (15)

It suffices to apply the Cauchy-Schwarz Inequality and invoke (15):

biasxs
(θ̂s)

2 = (x⊤s (θ̂
×
t − θ⋆))2

≤ ||xs||2(Vµ,λ
t )−1 ||θ×t − θ⋆||2Vµ,λ

t

≤ λ||xs||2(Vµ,λ
t )−1λ(θ

×
t − θ⋆)⊤(−θ⋆)

≤ λ||xs||2(Vµ,λ
t )−1 ||(θ×t − θ⋆)||2||θ⋆||2

≤ 2λ||xs||2(Vµ,λ
t )−1 ||θ⋆||22,

where in the last inequality we used ||θ×t ||2 ≤ ||θ⋆||2, due to the regularizer, as explained above.

GLM models Let us define the processes

St =

t∑
s=1

xsT (ys) and Wt =

t∑
s=1

xsA
′(x⊤s θ⋆).

In this scenario, an equivalent of (13) then involves the gradient of the regularized (unweighted)
log-partition function Zλ

t we defined in (8) and is equal to
t∑

s=1

A′(x⊤s θ)xs +∇ψt(θ) + l∇h(θ) = Ẽt, (16)

where Ẽt = St for θ̂t and Ẽt =Wt for θ×t .

B Proof of Theorem 3 (Bregman Ball Confidence Set)

Proof sketch We give a quick sketch of the proof. To bound the size of the sets, we will draw
inspiration from the i.i.d. parameter estimation analysis of Wasserman et al. (2020) and separate out
the likelihood ratio in a part that relates the true parameter with the estimator sequence (i.e. regret),
and a part that is independent of the estimator and characterized by a supremum of a stochastic
process. We want to show that any point which is far away from the true parameter will eventually
not be included in the confidence set anymore. Defining L(t)({θ̂s}ts=1) as

∏t
i=1 p

wi

θ̂i
(yi |xi), we

wish to show that for any θ far from θ⋆, we have

log
1

Rt(θ)
= log

L(t)(θ)

L(t)(θ⋆)
+ log

L(t)(θ⋆)

L(t)({θ̂s}ts=1)
≤ log(α),

which is equivalent to saying that θ ̸∈ Ct. The second term corresponds to our notion of regret
exactly (Rt, as discussed above). The first term is what we will focus on. We will bound the
supremum of log L(t)(θ)

L(t)(θ⋆)
for all θ sufficiently far away from θ⋆. "Far away" will be measured in

the Bregman divergence outlined above. Note that this quantity can be expected to be negative, in
general, (especially for "implausible" parameters), since with enough data, θ⋆ should appear much
more likely. Writing this ratio out, we will observe that it is equal to

−DZ0
t
(θ, θ⋆) + ⟨θ − θ⋆,

t∑
s=1

wsxs(T (ys)− E
θ⋆
[T (ys)])⟩︸ ︷︷ ︸

≈S̃t

.

At this point, it will be sufficient to bound the cross term (second term) over the whole of Θ. We view
this supremum as part of the Legendre Fenchel transform of the function Bt(λ) = DZν

t
(θ⋆ + λ, θ⋆):

sup
λ∈Rd

(
λ⊤S̃t − Bt(λ)

)
=(Bt)⋆ (S̃t)

and harness duality properties of the Bregman divergence, along with known concentration arguments
(Chowdhury et al., 2022, Theorem A.1).
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B.1 Technical Lemmas

We need to introduce the concept of Legendre functions:

Definition 1. Let f : Rd → R be a convex function and C = int(dom(f)). Then, a function is
called Legendre if it satisfies

1. C is non-empty.

2. f is differentiable and strictly convex on C.

3. limn→∞||∇f(xn)|| =∞ for any sequence (xn)n with xn ∈ C for all n and limn→∞ xn =
x for some x ∈ ∂C.

This means that the gradient has to blow up near the edge of the domain. Note as well that the
boundary condition is vacuous if there is no boundary. Legendre functions have some nice properties,
most importantly regarding the bijectivity of their gradients (see e.g. Lattimore and Szepesvári
(2020)):

Lemma 2. For a Legendre function f : Rd → R

1. ∇f is a bijection between int(dom(f)) and int(dom(f∗)) with the inverse (∇f)−1 = ∇f∗.

2. Df (x, y) = Df∗(∇f(y),∇f(x)) for all x, y ∈ int(dom(f)).

3. The Fenchel conjugate f∗ is also Legendre.

With this, we can prove a slightly extended result, that appears as Lemma 2.1. in Chowdhury et al.
(2022).

Lemma 3. For a Legendre function f we have the identity

Df (x, y) = (Df,x)
∗(∇f(y)−∇f(x))

where we define Df,x(λ) = Df (x+ λ, x).

Notational Shorthands Remember the model (7), with log-partition function A. We define
As(θ) = wsA(x

⊤
s θ) and Ts(y) := wsxsT (y) to denote the log-partition function and the response

function of the same exponential family distribution, but parametrized by θ instead of x⊤s θ. That
this is a valid parametrization can easily be seen from the likelihood definition. Indeed, denote by
pEF
β the exponential family reward distribution with parameter β. Then our model (7) can be seen to

satisfy

pθ(y |xs) = px⊤
s θ(y) = h(y) exp(T (y)x⊤s θ −A(x⊤s θ)) = h(y) exp(Ts(y)

⊤θ −As(θ)).

Exponentiating the likelihood with a weightingws gives rise to another exponential family distribution.
We can see that

pws

θ (y |xs) = hws(y) exp(wsT (y)x
⊤
s θ − wsA(x

⊤
s θ)) = hws(y) exp(Ts(y)

⊤θ −As(θ)).

Note that this does not necessarily integrate to one, but it is easy to see that there is a normalization
function h̃ that makes it integrate to one. Therefore, the following is a valid parametrization of an
exponential family distribution:

h̃(y) exp(Ts(y)
⊤θ −As(θ)).

Additionally, let A0(θ) =
ν
2 ||θ||

2
2 be defined on Rd (i.e. a Legendre Function). We will also define

the estimator

θ̃t = (∇Zν
t )

−1

(
t∑

s=1

Ts(ys)

)
.

This is a well-defined quantity because the gradient will be invertible, by Lemma 2 above.

Conveniently, Chowdhury et al. (2022) prove the following Theorem 7 using an elegant application
of the method of mixtures.
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Proposition 1 (Theorem 7 in Chowdhury et al. (2022)). With probability 1− δ, for all t ∈ N

DZν
t
(θ⋆, θ̃t) ≤ log(1/δ) +A0(θ⋆) + Γν

t ,

where

Γν
t = log

( ∫
Rd exp(− 1

2 ||θ||
2
2)dθ∫

Rd exp(−DZν
t
(θ, θ̃t))dθ

)
.

Lastly, we will need the (one-argument) function

Bt(λ) = DZν
t
(θ + λ, θ),

i.e. a shortcut for the Bregman divergence of Zν
t at θ. We use this one-argument function as we will

be interested in its dual. We will also need a lemma on the sub-homogeneity properties of this object.

Lemma 4. Under Assumption 1, for θ ∈ Θ and λ such that θ + λ ∈ Θ, we have for any γ ≤ µ
2L

Bt(γλ) ≤
1

2
γBt(λ),

i.e. function g(γ) = Bt(γλ) is sub-homogeneous with contraction parameter 1
2 on [0, µ

2L ].

See Appendix B.3 for a proof.

B.2 Proof of Theorem 3

As mentioned in the main paper, our proof will show that all θ sufficiently far from θ⋆ will be excluded
from Ct eventually. Equation (B) in the main text specifies the exclusion criterion, i.e. θ ̸∈ Ct if and
only if

1

Rt(θ)
= log

L(t)(θ)

L(t)(θ⋆)
+ log

L(t)(θ⋆)

L(t)({θ̂s}ts=1)
≤ log(α). (17)

The second term is bounded by the regret of the online learner. And therefore, a sufficient condition
for θ ̸∈ Ct is

log

(
L(t)(θ)

L(t)(θ⋆)

)
≤ log(α)−Rt.

Henceforth, we will be interested in having an explicit set C̃t such that we can upper bound

sup
θ/∈C̃t

log

(
L(t)(θ)

L(t)(θ⋆)

)
. (18)

This will imply that that C̃ct ⊂ Cct , or in other words, Ct ⊂ C̃t. Without further ado, let us derive a
more convenient form of the ratio in question

log

(
L(t)(θ)

L(t)(θ⋆)

)
= log

( ∏t
s=1 h(ys) exp

(
wsx

⊤
s θT (ys)− wsA(x

⊤
s θ)
)∏t

s=1 h(ys) exp (wsx⊤s θT (ys)− wsA(x⊤s θ⋆))

)

=

t∑
s=1

wsx
⊤
s θT (ys)− wsA(x

⊤
s θ)− wsx

⊤
s θ⋆T (ys) + wsA(x

⊤
s θ⋆)

=

t∑
s=1

⟨θ − θ⋆, wsT (ys)xs⟩+ wsA(x
⊤
s θ⋆)− wsA(x

⊤
s θ)

=

t∑
s=1

⟨θ − θ⋆, wsT (ys)xs⟩ −
(
wsA(x

⊤
s θ)− wsA(x

⊤
s θ⋆)− x⊤s (θ − θ⋆)wsA

′(x⊤s θ⋆)

+ x⊤s (θ − θ⋆)wsA
′(x⊤s θ⋆)

)
=

t∑
s=1

⟨θ − θ⋆, wsT (ys)xs⟩ − wsDA(x
⊤
s θ, x

⊤
s θ⋆)− x⊤s (θ − θ⋆)wsA

′(x⊤s θ⋆)
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= −
t∑

s=1

wsDA(x
⊤
s θ, x

⊤
s θ⋆) +

t∑
s=1

⟨θ − θ⋆, wsT (ys)xs − xswsA
′(x⊤s θ⋆)⟩.

We can switch parametrizations as described above:

log

(
L(t)(θ)

L(t)(θ⋆)

)
= −DZ0

t
(θ, θ⋆) +

t∑
s=1

⟨θ − θ⋆, Ts(ys)−∇As(θ⋆)⟩

= −DZ0
t
(θ, θ⋆) +

t∑
s=1

⟨θ − θ⋆, Ts(ys)− E
θ⋆
[Ts(ys)]⟩

= −DZ0
t
(θ, θ⋆) + ⟨θ − θ⋆, St⟩, (19)

where we define St :=
∑t

s=1 (Ts(ys)− Eθ⋆ [Ts(ys)]).

Zν
t is strictly convex whenever ν ̸= 0, and convex otherwise (it might also be strictly convex

otherwise, corresponding to some cases where the xs span the full d-dimensional Euclidean space
and ws > 0, which will be satisfied uniformly. We note that since dom(Zν

t ) = Rd, Zν
t is, therefore,

Legendre, and its gradient is invertible. We will relate our problem to this estimator via the duality
properties developed above. First, note that by the well-known fact Eθ⋆ [Ts(ys)] = ∇As(θ⋆) and by
the definition of θ̃t, we have

St = ∇Zν
t

(
(∇Zν

t )
−1

(
t∑

s=1

Ts(ys)

))
−∇Z0

t (θ⋆)

= ∇Zν
t

(
θ̃t

)
−∇Zν

t (θ⋆)︸ ︷︷ ︸
=:S̃t

+∇A0(θ⋆)︸ ︷︷ ︸
=νθ⋆

. (20)

Now, we leverage the duality properties: We can write

sup
λ∈Rd

(
λ⊤S̃t − Bt(λ)

)
(i)
= (Bt)⋆ (S̃t)

(20)
= (Bt)⋆ (∇Zν

t (θ̃t)−∇Zν
t (θ⋆))

Lemma 3
= DZν

t
(θ⋆, θ̃t), (21)

where (i) is simply the definition of the Legendre-Fenchel transform. Why did we do all this work?
Well, we are interested in the supremum in Equation (18). It is sufficient to bound the supremum over
all θ ∈ Θ of terms of the form (see Equation (19))

⟨θ − θ⋆, St⟩.

While we could do a covering type argument (carefully relaxing the i.i.d. data assumptions typical in
empirical process theory), it is much easier to relate this supremum to the estimator via duality.

With probability at least 1− δ, Proposition 1 gives us a high-probability time-uniform bound on

DZν
t
(θ⋆, θ̃t) ≤ log(1/δ) +A0(θ⋆) + Γν

t ,

and therefore, by plugging into Equation (21) and making the reparametrization λ = γ(θ − θ⋆) for
some positive γ, it gives us

∀t ≥ 0 ∀θ ∈ Rd ∀γ ∈ R+ : γS̃⊤
t (θ − θ⋆)− Bt(γ(θ − θ⋆)) ≤ log(1/δ) +A0(θ⋆) + Γν

t .

Therefore, for all t ≥ 0 and all θ ∈ Rd, the following holds:

S⊤
t (θ − θ⋆) = S̃⊤

t (θ − θ⋆) +∇A0(θ⋆)
⊤(θ − θ⋆)

≤ 1

γ
log(1/δ) +

1

γ
A0(θ⋆) +

1

γ
Γν
t +

1

γ
Bt(γ(θ − θ⋆)) +∇A0(θ⋆)

⊤(θ − θ⋆).

Since A0(θ) =
ν
2 ||θ||

2
2, restricting our uniform bound over θ ∈ Θ gives us ∀t ≥ 0 ∀θ ∈ Θ:

S⊤
t (θ − θ⋆) ≤

1

γ
log(1/δ) +

ν

2γ
B2 +

1

γ
Γν
t +

1

γ
Bt(γ(θ − θ⋆)) + νB2.
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Now, we note that under Assumption 1, Lemma 4 kicks in and we have for any t ≥ 0, θ ∈ Θ and
γ = µ

2L

S⊤
t (θ − θ⋆) ≤

1

γ
log(1/δ) +

ν

2γ
B2 +

1

γ
Γν
t +

1

2
Bt(θ − θ⋆) + νB2. (22)

Finally, we can use this in (19) to obtain

log

(
L(t)(θ)

L(t)(θ⋆)

)
≤ −Bt(θ − θ⋆) + ⟨θ − θ⋆, St⟩

(22)
≤ −1

2
Bt(θ − θ⋆) +

1

γ
log(1/δ) +

ν

2γ
B2 +

1

γ
Γν
t + νB2

≤ −1

2
Bt(θ − θ⋆) +

2L

µ

(
log(1/δ) +

νB2

2
+ Γν

t

)
+ νB2. (23)

It remains to investigate the full likelihood ratio in (17):
1

Rt(θ)
− log(α)

= log
L(t)(θ)

L(t)(θ⋆)
+ log

L(t)(θ⋆)

L(t)({θ̂s}ts=1)
+ log(1/α)

(23) & (3)
≤ − 1

2
Bt(θ − θ⋆) +

2L

µ

(
log(1/δ) +

νB2

2
+ Γν

t

)
+ νB2 + log(1/α) +Rt. (24)

Note that crucially for θ ∈ Θ, we have

θ ̸∈ Ct ⇐⇒
1

Rt(θ)
− log(α) ≤ 0.

This is implied by

BZν
t
(θ, θ⋆) ≥

4L

µ

(
log(1/δ) +

νB2

2
+ Γν

t

)
+ 2νB2 + 2 log(1/α) + 2Rt,

or, since L ≥ µ, more compactly by

BZν
t
(θ, θ⋆) ≥

4L

µ

(
log(1/δ) + νB2 + Γν

t

)
+ 2 log(1/α) + 2Rt.

B.3 Proof of Technical Lemmas

First, we will prove Lemma 3. The proof exactly follows Chowdhury et al. (2022), we include it here
for convenience because it is very short.

Proof. By definition
(Df,x)

∗(∇f(y)−∇f(x))
= sup

a∈Rd

(⟨a, ∇f(y)−∇f(x)⟩ −Df,x(a))

= sup
a∈Rd

(⟨a, ∇f(y)−∇f(x)⟩ −Df (x+ a, x))

= sup
a∈Rd

(⟨a, ∇f(y)−∇f(x)⟩ − f(x+ a) + f(x) + ⟨∇f(x), a⟩)

= sup
a∈Rd

(⟨a, ∇f(y)⟩ − f(x+ a) + f(x)) .

Since f is strictly convex and differentiable, first-order optimality conditions imply that the optimal
a satisfies∇f(y)−∇f(x+ a) = 0 (a is unconstrained). Since the gradient is invertible, we must
have a = y − x. If we plug this into the above, we have

(Df,x)
∗(∇f(y)−∇f(x)) = ⟨y − x, ∇f(y)⟩ − f(y) + f(x)

= f(x)− f(y)− ⟨∇f(y), x− y⟩
= Df (x, y).
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Now we prove Lemma 4. To this end, we will do a reduction to the one-dimensional case, and prove
the one-dimensional result below.

Lemma 5. Under Assumption 1, for any a ∈ [B,B], any γ ∈ (0, µ
2L ] and any ∆ with a+∆ ∈ [B,B]

A(a+ γ∆)−A(a)−A′(a)γ∆ ≤ 1

2
γ [A(a+∆)−A(a)−A′(a)∆] .

We prove that this implies the desired sublinearity of the full Bregman difference.

Proof. (of Lemma 4). Let θ and λ be such that θ, θ + λ ∈ Θ. We will first show that for any
s ∈ {0, . . . , t}, BAs(θ,θ+·) is sublinear, and then the result follows by the linearity of the Bregman
divergence. Define as = x⊤s θ and ∆s = x⊤s λ. Then we have |∆s| = |x⊤s (λ)| ≤ ||xs||||λ|| ≤
||xs||(||θ||+ ||θ+ λ|| ≤ (B +B) ≤ 2B. Similarly we have |as| ≤ B. Hence we satisfy the premise
of Lemma 5 and we deduce that

DAs
(θ + γλ, θ) = wsA(x

⊤
s θ + γx⊤s λ)− wsA(x

⊤
s θ) + ⟨xswsA

′(x⊤s θ), γλ⟩
= ws(A(as + γ∆s)−A(as) +A′(as)γ∆s)

≤ ws

2
γ [A(as + γ∆s)−A(as) +A′(as)γ∆s]

=
1

2
γ
[
wsA(x

⊤
s θ + x⊤s λ)− wsA(x

⊤
s θ) + wsA

′(x⊤s θ)x
⊤
s λ
]

=
1

2
γDAs

(θ + λ, θ).

We also note that for γ ≤ µ
2L ≤

1
2 ,

DA0(θ + γλ, θ) =
ν

2
||γλ||2 =

γ2ν

2
||λ||2 ≤ γν

4
||λ||2 =

1

2
γDA0(θ + λ, θ). (25)

Therefore, by summing up the terms, we obtain

Bt(γλ) ≤
1

2
γBt(λ).

Then it remains to prove that Assumption 1 implies Lemma 5.

Proof. (Lemma 5) L-Lipschitzness of A′ implies smoothness of A. Additionally, µ’s existence
implies strong convexity of A. With this, we can write for any a and ∆ with a+∆ ∈ [−B,B]

A(a+∆) ≥ A(a) +A′(a)∆ +
µ

2
∆2

=⇒ A(a+∆)−A(a)−A′(a)∆ ≥ µ

2
∆2.

Similarly,

A(a+ γ∆)−A(a)−A′(a)γ∆ ≤ L

2
γ2∆2.

Putting this together, we have

A(a+ γ∆)−A(a)−A′(a)γ∆ ≤ L

2
γ2∆2 =

Lγ2

µ

µ

2
∆2 ≤ Lγ

µ
γ[A(a+∆)−A(a)−A′(a)∆].

The question is therefore: when is Lγ
µ ≤

1
2? Clearly, choosing γ0 = µ

2L makes Lγ
µ ≤

1
2 for all

γ ≤ γ0.
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C FTRL Results: Proofs

C.1 Technical Lemmas I: Exponential Families

Lemma 6 (MGF for Exponential family).

E[exp(T (y)u)|x] = exp(A(θ⋆
⊤x+ u)−A(θ⋆⊤x)).

Proof.

E[exp(T (y)u)|x] =
∫
y

exp(T (y)u)h(y) exp(T (y)θ⋆
⊤x−A(θ⋆⊤x))dy

=

∫
exp(T (y)(θ⋆

⊤x+ u))h(y) exp(−A(θ⋆⊤x))

× exp(−A(θ⋆⊤x+ u)) exp(A(θ⋆
⊤x+ u))dy

=exp(A(θ⋆
⊤x+ u)−A(θ⋆⊤x)),

where the last step follows because the density of a new exponential family distribution with parameter
θ⋆

⊤x+ u also integrates to 1.

C.2 Technical Lemmas II: Elliptical Potential Lemma

We will repeatedly use instantiations of the following key lemma, known as the elliptical potential
lemma. We will use the version from Hazan et al. (2006). Other variants are stated in Abbasi-Yadkori
et al. (2011) or Carpentier et al. (2020).

Lemma 7 (Lemma 11 in Hazan et al. (2006)). Let us ∈ Rd be a sequence of vectors such that
||us|| ≤ r. Define V̄t =

∑t
s=1 usu

⊤
s + λI. Then

t∑
s=1

||us||2V̄−1
s
≤ log

(
det V̄t

detλI

)
≤ d log

(
r2t

λ
+ 1

)
.

We will also need a result where the time indices of the matrix are shifted. For this, note that if
λ ≥ r2, then usu⊤s ⪯ r2I ⪯ λI, and so we get V̄s ≤ V̄s−1+usu

⊤
s ⪯ V̄s−1+λI ⪯ 2V̄s−1. Under

our conditions, it follows that

t∑
s=1

||us||2V̄−1
s−1

≤ 2

t∑
s=1

||us||2V̄−1
s

Corollary 1. We have the following bounds:

γλt = log

(
det(

∑
s=1 µxsx

⊤
s + λI)

det(λI)

)
≤ d log

(
µt

λ
+ 1

)
,

and

t∑
s=1

||xs||2(Vµ;λ
s−1)

−1 ≤
2

µ
γλt .

Proof. The first bound is trivial by instantiating us =
√
µxs. The second bound is by noting

t∑
s=1

||xs||2(Vµ;λ
s−1)

−1 =
1

µ

t∑
s=1

||us||2(Vµ;λ
s−1)

−1 ≤
2

µ

t∑
s=1

||us||2(Vµ;λ
s )−1 ≤

2

µ
γλt .
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C.3 Technical Lemmas III: Supermartingales

Lemma 8 (Martingale Increment). Define the parametrized random processes

Mj(r) = exp(∇fj(θ⋆)⊤r −A′(x⊤j θ⋆)x
⊤
j r −A(x⊤j θ⋆ − x⊤j r) +A(x⊤j θ⋆))

and

Nj(r) = exp(∇fj(θ⋆)⊤r −
L

2
r⊤xjx

⊤
j r).

Then, under Assumption 1 we have for any r ∈ Rd that E[Mj(r) | Fj−1] = 1 and E[Nj(r) | Fj−1] ≤
1.

Proof. First, using the form of the exponential family and and recalling that ∇θfj(θ) =
−∇θ log pθ(yj |xj) = ∇θ[A(x

⊤
j θ)− T (yj)x⊤j θ] we obtain

E[exp(∇fj(θ⋆)⊤r) | Fj−1]

=

∫
y

exp(∇fj(θ⋆)⊤r)× h(y) exp(T (y)x⊤j θ⋆ −A(x⊤j θ⋆))dy

=

∫
y

exp(−T (y)x⊤j r +A′(x⊤j θ⋆)x
⊤
j r)× h(y) exp(T (y)x⊤j θ⋆ −A(x⊤j θ⋆))dy

= exp(A′(x⊤j θ⋆)x
⊤
j r)

∫
y

h(y) exp(T (y)(x⊤j θ⋆ − x⊤j r)) exp(−A(x⊤j θ⋆ − x⊤j r))dy︸ ︷︷ ︸
=1

× exp(A(x⊤j θ⋆ − x⊤j r)) exp(−A(x⊤j θ⋆))
= exp(A′(x⊤j θ⋆)x

⊤
j r) exp(A(x

⊤
j θ⋆ − x⊤j r)) exp(−A(x⊤j θ⋆)),

which finishes the proof. The second statement follows by using L-smoothness on the last equation
and therefore noting that Nj(r) ≤Mj(r).

Lemma 9. (Sequential Mixing) Define the martingale process,

Mt(r1, . . . rt) =

t∏
s=1

Ns(rs),

and recursively define the mixture martingale,

M̄s = M̄s−1 ×
∫
r

Ns(r)ps(r)dr,

where ps is a probability distribution equal N (0,H−1
s ), Hs =

∑s−1
j=1 Lxjx

⊤
j + IλL

µ , and M̄0 = 1.
Then the following statements hold

• {M̄s}s is an adapted super-martingale with respect to the usual filtration.

• M̄t = exp( µL
∑t

s=1∇fs(θ⋆)⊤(Vµ;λ
s )−1∇fs(θ⋆))

√
det(Iλ)

det(Vµ;λ
s )

.

where

Vµ;λ
s =

s∑
j=1

µxjx
⊤
j + λI.

Proof. The first point follows from the fact that ps(r) is deterministic conditioned on the sub-σ-
algebra Fs−1 (since ps makes use of xs but not xs+1). Therefore, under mild regularity conditions

E[M̄s | Fs−1] = E
[
M̄s−1

∫
ps(r)Ns(r)dr | Fs−1

]
= M̄s−1

∫
r

ps(r)E[Ns(r) | Fs−1]dr ≤ M̄s−1.
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In other words, mixing does not affect the supermartingale properties. For the second point, we derive
an explicit form of the mixture martingale. Note that we can write out∫

r

Ns(r)ps(r)dr =
1√

(2π)d det(H−1
s )

∫
r

exp

(
∇fs(θ⋆)⊤r −

L

2
||r||2xsx⊤

s
− 1

2
r⊤Hsr

)
dr.

(26)

We can complete the square to obtain

∇fs(θ⋆)⊤r −
L

2
||r||2xsx⊤

s
− 1

2
r⊤Hsr

=
1

2
||∇fs(θ⋆)||2(Hs+Lxsx⊤

s )−1 −
1

2
||r − (Hs + Lxsx

⊤
s )

−1∇fs(θ⋆)||2Hs+Lxsx⊤
s
.

The second term is the exponent of a exponent of a Gaussian integral with covariance H−1
s+1, and

therefore results in∫
r

exp

(
−1

2
||r − (Hs + Lxsx

⊤
s )

−1∇fs(θ⋆)||2Hs+Lxsx⊤
s

)
dr =

√
(2π)d det(H−1

s+1).

Plugging this into (26) we get∫
r

Ns(r)ps(r)dr =

√
detHs

detHs+1
exp

(
1

2
||∇fs(θ⋆)||2H−1

s+1

)
.

By multiplying the individual steps, we can see that the determinant terms cancel in a telescoping
product. This leads to the formulation

M̄t = exp

(
t∑

s=1

∇fs(θ⋆)⊤H−1
s+1∇fs(θ⋆)

)√
det λL

µ I

detHt+1
.

To conclude the proof, note that Hs+1 = L
µV

µ;λ
s .

Lemma 10. Under assumption of Lemma 9,

P

(
t∑

s=1

||∇fs(θ⋆)||2(Vµ;λ
s )−1 ≤

L

µ
log

(
det(Vµ;λ

s )

det(Iλ)

)
+
L

µ
log

(
1

δ

))
≤ δ. (27)

with probability 1− δ.

Proof. The statement, follows by applying Ville’s inequality for supermartingales, applying the
logarithm, and rearranging. Namely,

P(M̄t ≥ δ) = P(log(M̄t) ≥ log(δ)) ≤ δ.

The following results allow us to upper bound the weighted regret by the unweighted regret:
Lemma 11 (Weighting Reduction). Let {θs}ts=1 be a sequence of vectors adapted to the filtration
{Fs−1}s. Define

∆t({θs}) =
t∑

s=1

ws(fs(θs)− fs(θ⋆))− fs(θs) + fs(θ⋆) =

t∑
s=1

(1− ws)(fs(θ⋆)− fs(θs)).

Then, Pt = exp(∆t({θs}s)) is a non-negative super-martingale for any choice of adapted {ws}, and
hence,

t∑
s=1

ws(fs(θs)− fs(θ⋆)) ≤
t∑

s=1

(fs(θs)− fs(θ⋆)) + log

(
1

δ

)
with probability 1− δ for all t ≥ 0.
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Proof.

E[Pt | Ft−1] = Eθ⋆

[
exp

(
t∑

s=1

−(1− ws)fs(θs) + (1− ws)fs(θ⋆)

)∣∣∣Ft−1

]
= Pt−1 E

yt∼P⋆

exp(−(1− wt)ft(θt) + (1− wt)ft(θ⋆))

= Pt−1

∫
yt

exp(−(1− wt)ft(θt) + (1− wt)ft(θ⋆)) exp(−ft(θ⋆))dyt

= Pt−1

∫
yt

exp(−(1− wt)ft(θt)− wtft(θ⋆))dyt

= Pt−1

∫
yt

pθt(yt |xt)1−wtpθ⋆(yt |xt)wtdyt

= Pt−1 exp(−(1− wt)Dwt
(θ⋆, θt)) ≤ Pt−1.

We have used here the definition of the Renyi-divergence and the fact that it is always non-negative,
namely

Dw(θ1, θ2) =
1

w − 1
log

∫
y

pθ1(y |x)1−wpθ1(y |x)wdy ≥ 0,

for 0 < w ̸= 1.3 The rest follows by the application of Ville’s inequality.

C.4 FTRL Proof: the Unweighted Case

Proof of Theorem 4 (first part). We define the function that FTRL minimizes in each step (to pick θ̂t)
as, gt(θ) =

∑t−1
s=1− log pθ(ys |xs) + λ||θ||22. We can rewrite this objective as

θ̂t = argmin
θ∈Θ

gt(θ) = argmin
θ∈Θ

t−1∑
s=1

fs(θ) + λ||θ||22 = argmin
θ∈Θ

t−1∑
s=1

ms(θ) + ϕt(θ),

where we recall that4
fs(θ) = A(x⊤s θ)− T (ys)x⊤s θ − log h(ys),

and we have introduced the shorthands

ms(θ) = −T (ys)x⊤s θ

and

ϕt(θ) =

t−1∑
s=1

A(θ⊤xs) + λ||θ||22.

In essence, we have shifted some of the objective into what is commonly looked at as the regularizer.
By a standard telescoping sum argument, we obtain for any u

t∑
s=1

(ms(θ̂s)−ms(u))

= ϕt+1(u)−min
θ
ϕ1(θ) +

t∑
s=1

[gs(θ̂s)− gs+1(θ̂s+1) +ms(θ̂s)] + gt+1(θ̂t+1)− gt+1(u)︸ ︷︷ ︸
≤0

≤ ϕt+1(u) +

t∑
s=1

[gs(θ̂s)− gs+1(θ̂s+1) +ms(θ̂s)]

= ϕt+1(u) +

t∑
s=1

[gs(θ̂s)− gs+1(θ̂s+1) + gs+1(θ̂s)− ϕs+1(θ̂s)− gs(θ̂s) + ϕs(θ̂s)]

3The case wt = 1 is trivial for us.
4The log h(ys) term does not play any role in the regret nor the FTRL objective.

25



= ϕt+1(u) +

t∑
s=1

[gs+1(θ̂s)− gs+1(θ̂s+1)− ϕs+1(θ̂s) + ϕs(θ̂s)].

Now we use the strong-convexity of gs+1 under the norm ||·||Vµ;λ
s

where Vµ;λ
s =

∑s
j=1 µxsx

⊤
s +λI,

t∑
s=1

(ms(θ̂s)−ms(u))

≤ ϕt+1(u) +

t∑
s=1

[(θ̂s − θ̂s+1)
⊤∇gs+1(θ̂s)

−1

2
(θ̂s − θ̂s+1)

⊤Vµ;λ
s (θ̂s − θ̂s+1)− ϕs+1(θ̂s) + ϕs(θ̂s)]

≤ ϕt+1(u) +

t∑
s=1

[(θ̂s − θ̂s+1)
⊤∇fs(θ̂s)

−1

2
(θ̂s − θ̂s+1)

⊤Vµ;λ
s (θ̂s − θ̂s+1)− ϕs+1(θ̂s) + ϕs(θ̂s)]

≤ ϕt+1(u) +

t∑
s=1

[
1

2
||∇fs(θ̂s)||2(Vµ;λ

s )−1 − ϕs+1(θ̂s) + ϕs(θ̂s)

]
,

where in the second inequality we used that∇gs(θ̂s)⊤(x− θ̂s) ≥ 0 due to the first-order optimality
conditions for convex constrained minimization. Lastly, we optimized the resulting quadratic function
over θ̂s+1 (over Rd) to get a worst case bound involving the dual-norm.

Note that for the shorthands we defined above:
t∑

s=1

[−ϕs+1(θ̂s) + ϕs(θ̂s)] =

t∑
s=1

−A(θ̂⊤s xs).

Using our previous observations and the definition of ϕt+1(θ⋆), we get for the overall regret:

Rt

=

t∑
s=1

fs(θ̂s)− fs(θ⋆)

=

t∑
s=1

ms(θ̂s)−ms(θ⋆) +

t∑
s=1

A(x⊤s θ̂s)−A(x⊤s θ⋆)

=

t∑
s=1

A(x⊤s θ⋆)−A(x⊤s θ̂s) +
t∑

s=1

A(x⊤s θ̂s)−A(x⊤s θ⋆) +
1

2

t∑
s=1

||∇fs(θ̂s)||2(Vµ;λ
s )−1 + λ||θ⋆||2

≤ 1

2

t∑
s=1

||∇fs(θ̂s)||2(Vµ;λ
s )−1 + λ||θ⋆||2

≤ 1

2

t∑
s=1

||T (ys)xs −A′(x⊤s θ̂s)xs||2(Vµ;λ
s )−1 + λ||θ⋆||2

≤
t∑

s=1

[
||T (ys)xs −A′(x⊤s θ⋆)xs||2(Vµ;λ

s )−1
+ ||(A′(x⊤s θ̂s)−A′(x⊤s θ⋆))xs||2(Vµ;λ

s )−1

]
+ λ||θ⋆||2

≤
t∑

s=1

[
||T (ys)xs −A′(x⊤s θ⋆)xs||2(Vµ;λ

s )−1
+ 2L2B2||xs||2(Vµ;λ

s )−1

]
+ λ||θ⋆||2

≤
t∑

s=1

[
||∇fs(θ⋆)||2(Vµ;λ

s )−1 + 2L2B2||xs||2(Vµ;λ
s )−1

]
+ λB2
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≤ λB2 +
L

µ

(
γλt + log

(
1

δ

))
+

t∑
s=1

2L2B2||xs||2(Vµ;λ
s )−1

≤ λB2 +
L

µ

(
γλt + log

(
1

δ

))
+

2L2B2

µ
γλt .

The last line follows because of Lemma 7, and the second to last one follows because of Lemma 10.
Notice that if we wish to deal with arbitrary weights {wt}, we can simply resort to Lemma 11 and
bound the weighted case with the unweighted case. In that case, we incur an additional additive
log(1δ) term.

C.5 FTRL Analysis: the Weighted Case (Vovk-Azoury-Warmuth Forecaster)

Proof. We define the function that FTRL minimizes in each step (to pick θ̂t) as g̃t(θ) =∑t−1
s=1[A(x

⊤
s θ) − T (ys)x

⊤
s θ] + ψt(θ) with ψt(θ) = A(x⊤t θ) + λ||θ||22. We can rewrite this ob-

jective as

θ̂t = argmin
θ∈Θ

g̃t(θ) = argmin
θ∈Θ

t−1∑
s=1

ms(θ) + ϕt(θ),

by introducing the shorthands
ms(θ) = −T (ys)x⊤s θ

and (notice the difference in time index of the second sum when compared to the proof in the previous
subsection):

ϕt(θ) =

t∑
s=1

A(θ⊤xs) + λ||θ||22.

In addition consider the objective gt from the classical FTRL analysis in Section C.4. It is not used to
run the online algorithm, but is helpful in our analysis. With our new components, it is equal to

gt(θ) =

t−1∑
s=1

ms(θ) +

t−1∑
s=1

A(θ⊤xs) + λ||θ||22 =

t−1∑
s=1

ms(θ) + ϕt−1(θ),

and its minimizer is θ̄t = argminθ∈Θ gt(θ). Also, consider a weighted version of the regularizer

ϕ̄t(θ) =

t∑
s=1

wsA(x
⊤
s θ) + λ||θ||22,

which will be useful. We use a variant of a similar telescoping sum argument as in the previous
proof of Section C.4. We specifically use θ⋆ as the comparator to compete against. Notice that we
insert a telescoping sum involving the objective gs, which is not the objective that our estimator is
minimizing:

t∑
s=1

ws(ms(θ̂s)−ms(θ⋆))

(∗)
= ϕ̄t(θ⋆)− ϕ0(θ̄1) +

t∑
s=1

[gs(θ̄s)− gs+1(θ̄s+1) + wsms(θ̂s)] + gt+1(θ̄t+1)− gt+1(θ⋆)︸ ︷︷ ︸
≤0

+

t∑
s=1

(1− ws)fs(θ⋆)

≤ ϕ̄t(θ⋆) +

t∑
s=1

[ws(gs(θ̄s)− gs+1(θ̄s+1)) + wsms(θ̂s)]

+

t∑
s=1

(1− ws)(gs(θ̄s)− gs+1(θ̄s+1) + fs(θ⋆))
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(∗∗)
= ϕ̄t(θ⋆) +

t∑
s=1

ws[gs(θ̄s)− gs+1(θ̄s+1) + gs+1(θ̂s)− ϕs(θ̂s)− gs(θ̂s) + ϕs−1(θ̂s)]

t∑
s=1

(1− ws)[gs(θ̄s)− gs+1(θ̄s+1) + fs(θ⋆)]

(∗∗∗)
≤ ϕ̄t(θ⋆) +

t∑
s=1

ws[−gs+1(θ̄s+1) + gs+1(θ̂s)− ϕs(θ̂s) + ϕs−1(θ̂s)] + ∆̃t.

In (∗), we used the shorthands and definitions introduced above. In (∗∗), we used the identity
gs+1(θ̂s)−ϕs(θ̂s)−gs(θ̂s)+ϕs−1(θ̂s) = ms(θ̂s). Finally, for (∗∗∗), recall that θ̄s is the minimizer of
gs, and hence, gs(θ̄s)−gs(θ̂s) ≤ 0. Next, define ∆̃t =

∑t
s=1(1−ws)[gs(θ̄s)−gs+1(θ̄s+1)+fs(θ⋆)].

We will bound this term later.

Now, we use the strong-convexity of gs+1(θ) under the norm ||·||Vµ;λ
s

where Vµ;λ
s =

∑s
j=1 µxjx

⊤
j +

λI, namely

gs+1(θ̄s+1) ≥ gs+1(θ̂s+1) +∇gs+1(θ̂s)
⊤(θ̄s+1 − θ̂s) +

1

2
||θ̄s+1 − θ̂s||2Vµ;λ

s
.

We can then proceed as follows:
t∑

s=1

ws(ms(θ̂s)−ms(u))

≤ ∆̃t + ϕ̄t(θ⋆) +

t∑
s=1

ws[∇gs+1(θ̂s)
⊤(θ̂s − θ̄s+1)

−1

2
||θ̄s+1 − θ̂s||2Vµ;λ

s
− ϕs(θ̂s) + ϕs−1(θ̂s)]

≤ ∆̃t + ϕ̄t(θ⋆) +

t∑
s=1

ws[(∇g̃s(θ̂s) +∇ms(θ̂s))
⊤(θ̂s − θ̄s+1)

−1

2
||θ̄s+1 − θ̂s||2Vµ;λ

s
− ϕs(θ̂s) + ϕs−1(θ̂s)]

≤ ∆̃t + ϕ̄t(θ⋆) +
1

2

t∑
s=1

ws||∇ms(θ̂s)||2(Vµ
s )−1 − ws(ϕs(θ̂s) + ϕs−1(θ̂s)), (28)

where in the second to last line we used that ∇g̃s(θ̂s)⊤(x− θ̂s) ≥ 0 for any x, due to the optimality
of θ̂s for the FTRL objective. In the last line, we optimized over θ̄s+1 to get a worst-case bound on
the quadratic function involving it. Also, note that for the shorthands we defined above:

t∑
s=1

ws(−ϕs(θ̂s) + ϕs−1(θ̂s)) =

t∑
s=1

ws(−A(θ̂⊤s xs)).

Our goal here is to upper bound the overall regret:

Rt =

t∑
s=1

ws(fs(θ̂s)− fs(θ⋆))

=

t∑
s=1

ws(ms(θ̂s)−ms(θ⋆)) +

t∑
s=1

ws(A(x
⊤
s θ̂s)−A(x⊤s θ⋆))

≤ ϕ̄t(θ⋆)−
t∑

s=1

wsA(x
⊤
s θ̂s) +

1

2

t∑
s=1

ws||∇ms(θ̂s)||2(Vµ
s )−1 + ∆̃t

+

t∑
s=1

ws(A(x
⊤
s θ̂s)−A(x⊤s θ⋆))
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=

t∑
s=1

ws(A(x
⊤
s θ⋆))−

t∑
s=1

wsA(x
⊤
s θ̂s) +

1

2

t∑
s=1

ws||∇ms(θ̂s)||2(Vµ
s )−1 + λ||θ⋆||2 + ∆̃t

+

t∑
s=1

ws(A(x
⊤
s θ̂s)−A(x⊤s θ⋆))

= ∆̃t +
1

2

t∑
s=1

ws||∇ms(θ̂s)||2(Vµ
s )−1 + λ||θ⋆||2. (29)

The first inequality follows by plugging in (28).

We return back to the term ∆̃t,

∆̃t =

t∑
s=1

(1− ws)[gs(θ̄s)− gs+1(θ̄s+1) + fs(θ⋆)]

=

t∑
s=1

(1− ws)[gs(θ̄s)− gs(θ̄s+1)− fs(θ̄s+1) + fs(θ⋆)]

≤
t∑

s=1

(1− ws)(fs(θ⋆)− fs(θ̄s+1))

≤ L

µ
(γλt + log(1/δ)), (30)

where the second to last line is by the optimality of θ̄s and the last one by the assumption in the
theorem.

Carrying on with the analysis, i.e. with (29), we insert the definition of ms and obtain

Rt

≤ ∆t +
1

2

t∑
s=1

ws||−T (ys)xs||2(Vµ;λ
s )−1

+ λ||θ⋆||2

≤ ∆t +

t∑
s=1

[
ws||T (ys)xs −A′(x⊤s θ⋆)xs||2(Vµ;λ

s )−1
+ ws||(A′(x⊤s θ⋆))xs||2(Vµ;λ

s )−1

]
+ λ||θ⋆||2

(∗)
≤ ∆t +

t∑
s=1

||T (ys)xs −A′(x⊤s θ⋆)xs||2(Vµ;λ
s )−1

+ L2B2
t∑

s=1

ws||xs||2(Vµ;λ
s )−1

+ λ||θ⋆||2

(∗∗)
= ∆t +

t∑
s=1

||∇fs(θ⋆)||2(Vµ
s )−1 + L

t∑
s=1

B2

1/L+ bias2xs
(θ̂s)
||xs||2(Vµ;λ

s )−1
+ λB2

(∗∗∗)
≤ λB2 +

2L

µ

(
γλt + log

(
1

δ

))
+ L

t∑
s=1

B2

1/L+ bias2xs
(θ̂s)
||xs||2(Vµ;λ

s )−1
.

In (∗), we use ws ≤ 1 and the Lipschitzness of A′. In (∗∗), we use the definition of the weights.
Finally, in (∗∗∗), we used Lemma 10 and (30). By substituting ∆γs = µ||xs||2

(V
µ;λ
s )−1

, we finish the
proof. The event in Lemma 10 holds with probability 1− δ, completing the proof.

C.6 FTRL Analysis: Beyond Global Smoothness

In this subsection, we give alternative analysis which avoids the necessity to impose a global
smoothness condition our likelihood; instead strong convexity within a bounded domain suffices, and
we will only assume that

ϵs := E
x⊤
s θ⋆

[T (ys)]− T (ys)

are sub-Exponential random variables, setting us apart from Zhao et al. (2022) which assume sub-
Gaussianity. In particular, we can show the following theorem
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Theorem 7. With probability 1− δ, uniformly over time t ∈ N, we have

Rt ≤ cd log2(t/δ)) log(t),

where the universal constant c hides all constants independent of t, d and δ.

C.6.1 Lemmas

We state the following result on sub-Exponential random variables.
Proposition 2 (Theorem 2.13 in Wainwright (2019)). If X is a centered sub-Exponential variable
with some finite variance proxy, then there exist constants c1, c2 > 0 such that for any t > 0

P(|X| ≥ a) ≤ c1e−c2a.

By some careful union bounds (akin to a stitching argument), we can also provide upper bounds on
anytime-valid upper bounds on the process St = maxs≤t ϵs.
Lemma 12. For any sequence (ϵs)

∞
s=1 of sub-Exponential-variables, there exists a constant c̃

independent of t such that
P(∃t : max

s≤t
|ϵs| ≥ c̃ log(s/δ)) ≤ δ.

Proof. (of Lemma 12) By Proposition 2, there exists c1, c2 > 0 such that we have P(|ϵs| ≥ a) ≤
c1e

−c2a for any fixed s. Note that c1e−c2a ≤ δ is satisfied for a ≥ 1
c2

log(c1/δ) =: c3 log(c1/δ).
Let us denote by Ei the event all j ∈ [2i, 2i+1) ∩ N satisfy the inequality

|ϵj | < c3 log(c1(2
2i+1)/δ).

For a single j, this happens with probability at least 1− δ/22i+1. Therefore, by a union bound, as
|[2i, 2i+1) ∩ N| = 2i, we can bound the probability of the complement, namely P(Eci ) ≤ 2i δ

22i+1 =
δ

2i+1 . Now, by another union bound, we can conclude that

P(∪∞i=0Eci ) ≤
∞∑
i=0

δ

2i+1
=
δ

2

1

1− 1
2

= δ.

Now we also have for any j in this range that 22i+1 ≤ 2j2, and therefore, if Ei holds, we have for
any j ∈ [2i, 2i+1) ∩ N:

ϵj ≤ c3 log(c1(2j2)/δ) ≤ 2c3 log(2c1j/δ) ≤ c̃ log(j/δ).

We can immediately see that this implies

P(∃t : max
s≤t
|ϵs| ≥ c̃ log(s/δ)) ≤ δ.

as desired.

C.6.2 Proof of Theorem 7

Our proof initially follows the FTRL regret bound proofs in the adversarial setting Hazan (2016);
Orabona (2019). It also has overlap with the proof in Zhao et al. (2022). We define the function that
FTRL minimizes in each step as (to pick θ̂t)

gt(θ) =

t−1∑
s=1

− log pθ(ys |xs) + ϕ(θ)

for convenience. We initially use the same steps as in Theorem 4 to see that for any u ∈ Θ

t∑
s=1

(fs(θ̂s)− fs(u))

≤ ϕ(u)−min
θ
ϕ(θ) +

t∑
s=1

[gs(θ̂s)− gs+1(θ̂s+1) + fs(θ̂s)] + gt+1(θ̂t+1)− gt+1(u)
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≤ λB2 +

t∑
s=1

[gs(θ̂s)− gs+1(θ̂s+1) + fs(θ̂s)].

Similarly to the proof of Theorem 4 in Appendix C.4 we bound these increments by the dual norm of
the gradient of the objective.

gs(θ̂s)− gs+1(θ̂s+1) + fs(θ̂s) ≤
||∇fs(θ̂s)||2(Vµ;λ

s )−1

2
. (31)

Now we note that
∇fs(θ) = A′(x⊤s θ)xs − T (ys)xs.

Using properties of the exponential family, we deduce that

∇fs(θ) =
(

E
x⊤
s θ
[T (ys)]− T (ys)

)
xs

=

(
E

x⊤
s θ
[T (ys)]− E

x⊤
s θ⋆

[T (ys)] + E
x⊤
s θ⋆

[T (ys)]− T (ys)
)
xs.

From here on out, we proceed more crudely than in our previous analyses, since we are only concerned
with asymptotic behavior when d and t are large. Let us define

U := sup
θ∈Θ
| E
x⊤
s θ
[T (ys)]− E

x⊤
s θ⋆

[T (ys)]|,

which is a model-dependent, deterministic quantity. Let us define the noise variables

ϵs := E
x⊤
s θ⋆

[T (ys)]− T (ys).

We bound

||∇fs(θ)||2(Vµ;λ
s )−1 ≤ 2(U2 + ϵ2s)||xs||2(Vµ;λ

s )−1 .

Note that the ϵs are centered, independent sub-Exponential variables, and as such are guaranteed to
satisfy

P(∃t : max
s≤t
|ϵs| ≥ c4 log(s/δ)) ≤ δ,

by Lemma 12. This tells us that conditional on this event, we can upper bound for any t

Rt ≤ λB2 +
1

µ
(U2 + c̃2 log2(t/δ))

t∑
s=1

||xs||2(Vµ;λ
s )−1 .

for some constant c̃ independent of t. By Lemma 7, there is thus a constant c′ independent of t and d
such that

Rt ≤ c′d log2(t/δ)) log(t) = O(d log3(t)),

with probability 1− δ uniformly over t ∈ N.

D Regret Consequences for Stochastic Linear Bandits

As a corollary of our analysis, we provide the regret for stochastic linear bandits that use our
confidence sets within the LinUCB algorithm.

Proof. We proceed in two parts: first, we instantiate Theorem 3 and then we follow the classical
regret analysis for stochastic linear bandits.
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Specializing the Bregman divergence results By Theorem 3, we know that for any ν > 0, we
have that with probability 1− δ,

DZν
t
(θ, θ⋆) ≤

4L

µ
ξt + 2 log

(
1

δ

)
+ 2Rt, (32)

for all t, where ξt =
(
log
(
1
α

)
+ νB2 + Γν

t

)
and Rt is the online convex optimization regret. We

also recall that

Zν
t (θ) =

t∑
s=1

wsA(x
⊤
s θ) +

ν

2
||θ||22.

In the Gaussian case, where A(z) = z2/(2σ2). This implies that

∇Zν
t (θ) =

t∑
s=1

ws

σ2
xsx

⊤
s θ + νθ = Wσ−2;ν

t θ,

where we have defined a weighted version of Vσ−2;ν
t as Wσ−2;ν

t =
∑t

s=1
wsxsx

⊤
s

σ2 +νI and therefore
the Bregman divergence is given by DZν

t
(θ, θ⋆) = 1

2 ||θ − θ⋆||
2

Wσ−2;ν
t

. We can also see that the

Bregman information gain is given by

Γν
t = log

( ∫
Rd exp(− 1

2 ||θ||
2
2)dθ∫

Rd exp(−DZν
t
(θ, θ̃t))dθ

)
= log

 ∫
Rd exp(− 1

2 ||θ||2)
2dθ∫

Rd exp(− 1
2 ||θ − θ⋆||

2

Wσ−2;ν
t

)dθ

 .

These Gaussian integrals are straightforward to evaluate. We know that∫
Rd

exp

(
−1

2
||θ||22

)
dθ = (2π)d/2

√
det((νId)−1).

Similarly, ∫
Rd

exp

(
−1

2
||θ − θ⋆||2

Wσ−2;ν
t

)
dθ = (2π)d/2

√
det((Wσ−2;ν

t )−1).

Then, we can compute

Γν
t = log

(
det(Wσ−2;ν

t )

det(νI)

)
= log

(
det

(
t∑

s=1

wsxsx
⊤
s

σ2ν
+ I

))
.

In the unweighted case, with which we proceed, we have Γν
t = γνt , that is we recover the classical

upper bound on the information gain (Srinivas et al., 2009). To summarize, we have specialized the
bound (32) to say that for any θ ∈ Ct, we have (since L = µ = 1/σ2)

||θ − θ⋆||2
Vσ−2;ν

t

≤ 8
(
log(1/α) + νB2 + γνt

)
+ 4 log(3/δ)) + 4Rt.

Now, we instantiate the regret of the online learner using Theorem 4. With probability 1−δ, uniformly
over t, we have

Rt ≤ λB2 +
L

µ

(
γλt + log

(
1

δ

))
+

2L2B2

µ
γλt . (33)

We get by chosing α = δ, and setting ν = λ that

||θ − θ⋆||2
Vσ−2;λ

t

≤ 8
(
log(1/δ) + νB2 + γνt

)
+ 4 log(1/δ)) + 4λB2 + 4(γλt + log(1/δ)) +

8B2

σ2
γλt

≤ 16 log(1/δ) + 12λB2 + 8

(
B2

σ2
+ 1

)
γλt =: βt.
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Linear bandit regret analysis We are ready to proceed with the bandit analysis for the UCB
Algorithm. We follow Lattimore and Szepesvári (2020) and bound the pseudo-regret, letting x⋆ be
the optimal action. We bound the instantaneous regret at step 0 ≤ s ≤ t as

rs = ⟨θ⋆, x⋆ − xs⟩
= ⟨θ⋆, x⋆⟩ − ⟨θ⋆, xs⟩
≤ max

θ∈Cs−1

⟨θ, x⋆⟩ − ⟨θ⋆, xs⟩

≤ max
x∈X

max
θ∈Cs−1

⟨θ, x⟩ − ⟨θ⋆, xs⟩

(∗)
= max

θ∈Cs−1

⟨θ, xs⟩ − ⟨θ⋆, xs⟩

(∗∗)
≤ ||θ̃s − θ⋆||Vσ−2;λ

s−1

||xs||(Vσ−2;λ
s−1 )−1

≤
√
βs−1||xs||(Vσ−2;λ

s−1 )−1

≤
√
βt||xs||(Vσ−2;λ

s−1 )−1
.

The first inequality replaces θ⋆ by the upper confidence bound for action x⋆, which is valid with
probability 1− α = 1− δ uniformly over time. Then, (∗) uses the fact that xt is chosen to maximize
the upper confidence bound. Finally (∗∗) defines the UCB parameter θ̃t. By Corollary 1, we have

t∑
s=1

||xs||2
(Vσ−2;λ

s−1 )−1
≤ 2σ2γλt .

Plugging all this together and using an ℓ1/ℓ2-norm inequality, we get

Rt =

t∑
s=1

rs

≤
√
βt

√√√√t

t∑
s=1

||xs||2
(Vσ−2;λ

s−1 )−1

≤
√
2tβtσ2γλt

≤
√
2σ2t(16 log(1/δ) + 12λB2 + 8γλt + 8B2/σ2γλt )γ

λ
t

≤ 6
√
tγt

(
σ
√
log(1/δ) + γλt + σλ1/2B +B

√
γλt

)
.

To summarize and to justify why this bound holds with probability 1− 3δ uniformly over time, note
that we have bounded the probability of the FTRL bound (33) not holding for some t by δ. Then, the
probability of (32) not holding for some t is at most δ. Finally, the anytime Type I error of our sets is
also bounded by δ. A union bound therefore concludes the proof.

D.1 Comparison to Abbasi-Yadkori et. al. (2011)

We compare our result to the one from Abbasi-Yadkori et al. (2011). Under the assumption that
λ ≥ 1, they show that the regret satisfies

Rt ≤ 4
√
td log(λ+ t/d)

(√
λB + σ

√
2 log(1/δ) + d log(1 + t/(λd)

)
.

Observe that there is a reparametrization for the regularizer to get even more similar bounds. If we
take λ = λ̃/σ2 for some λ̃ ≥ 1, our bound reads as

6

√
tγ

λ̃/σ2

t

(
σ

√
log(1/δ) + γ

λ̃/σ2

t + λ̃1/2B +B

√
γ
λ̃/σ2

t

)
.

33



Given that by Corollary 1, we have

γ
λ̃/σ2

t ≤ d log
(
t

λ̃
+ 1

)
,

we get almost matching bounds, up to an additional B
√
γ
λ̃/σ2

t term blowing up the regret, which we
attribute to the accumulation of bias without the reweighting scheme. The remaining differences are
down to using slightly different versions of the elliptical potential lemma, trading off generality and
tightness (Abbasi-Yadkori et al., 2011; Hazan et al., 2006; Lattimore and Szepesvári, 2020).

E Experimental Details

E.1 Calibration Plots

In Figure 3 we report the calibration of heuristics as well as other theoretically motivated works. The
other theoretically motivated works are very pessimistic and are not appropriately calibrated. Note
that one caveat of reporting calibration is that it is very much influenced by the data collection scheme
in the sequential regime. In our case we use a bandit algorithm to collect the data. Arguably, in this
setting, regret might be a better measure rather than looking at the calibration of the confidence sets.
Additionally, the calibration depends on the true value θ⋆. We report the results for zero parameter
and a random parameter from a unit ball. We also report results for i.i.d. data.

E.2 Baselines and Details

In the following section, we describe the baseline we used in the comparison. The details of
parameters used in the experiments can be found in Table 2. As there is no explicit statement for
sub-exponential variables, we give a formal derivation in Appendix F.

E.2.1 Sub-Exponential Random Variables: Confidence Sets

For this baseline, we will assume a linear model with additive sub-exponential noise, namely that
there is θ∗ ∈ Θ such that yt = ⟨θ∗, xt⟩ + ηt, where ηt is (ν, γ)-conditionally sub-exponential
(Wainwright, 2019). We let as usual

Vν−2;λ
t =

t∑
s=1

xsx
⊤
s

ν2
λI.

With this, one can prove the following time-uniform concentration result:
Proposition 3. For any k ∈ (0, 1), the following holds:

P
(
∃t : ||θ̂t − θ∗||Vν−2;λ

t

≥
√
βSE

)
≤ δ,

where√
βSE =

√
λ||θ⋆||2 +

√
λkB +

d√
λkB

log

(
1

1− k

)
+

1√
λkB

log

(
(det(Vν−2;λ

t ))1/2

δ det(
√
λI)

)
.

The proof is very similar to prior work Faury et al. (2020); Mutný and Krause (2021), and can be found
in Appendix F. This can readily be applied in the survival analysis (after a suitable transformation
explained in the main paper) and Laplace noise experiments.

E.2.2 Poisson Heuristics

We implement two heuristics. One is a Bayesian formulation due to the Laplace method, and one is
due to considerations in Mutný and Krause (2021) of how to construct a valid confidence set using the
Fisher information. The Laplace method creates an ellipsoidal confidence set using the second-order
information evaluated at the penalized maximum likelihood estimator. Namely, the second derivative
of the likelihood evaluated at the maximum penalized likelihood θ̂t is

Vlaplace =

t∑
s=1

exp(θ̂⊤t xs)xsx
⊤
s .
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(a) ADAPTIVE Bandit sequence, random
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(b) ADAPTIVE Bandit sequence, random
||θ⋆||2 = 1, σ = 0.01
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(c) ADAPTIVE Bandit sequence, θ⋆ = 0, σ =
0.1
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(d) ADAPTIVE Bandit sequence θ⋆ = 0, σ =
0.01
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(e) IID sequence, random ||θ⋆||2 = 1, σ = 0.1
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(f) IID sequence, random ||θ⋆||2 = 1, σ = 0.01
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(g) IID sequence, θ⋆ = 0, σ = 0.01
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(h) IID sequence θ⋆ = 0, σ = 0.01

Figure 3: We plot the calibration diagram for data collected from a bandit game trying to optimize a
ground truth function using the same model as in Fig. 2a). Instead of the test function, we use an
explicit member of the confidence set to avoid a potential mismatch between models. We check after
T = 15 whether θ⋆ ∈ Ct and average over 200 runs. We see that the (LR) are more conservative than
the ideal calibration, however, they are provably valid and substantially better than any theoretically
motivated confidence sets. We also see that the heuristic is not calibrated and fails many times. We
see that for i.i.d. data, our sets are somewhat conservative since the data is not adapted, and our
approach is not necessary. We note that the results depend on θ⋆.

We use this to define ellipsoidal confidence sets as ||θ̂t − θ||2Vlaplace
≤ 2 log(1/δ). The other heuristic

suggests using the worst-case parameter instead, namely

Vmutny =

t∑
s=1

exp(B)xsx
⊤
s .

This method would have provable coverage with a proper confidence parameter. Its derivation is
beyond the scope of this paper.
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Benchmark function dim |X | γ B λ Gaussian/Laplace σ/b
1D 1 26 0.06 4 1 0.15

Camelback 2 102 0.2 2 1 0.10
Table 2: Summary of experimental parameters

E.2.3 NR (2021)

This method follows from Neiswanger and Ramdas (2021). Per se, this method was not developed to
be versatile in terms of likelihood but instead provides a confidence set on f , even if it originates
from a misspecified prior. Nevertheless, it provides a likelihood-aware confidence sequence that is
anytime-valid and doesn’t employ worst-case parameters, and hence is a good benchmark for our
analysis. The confidence sets are of the form

{θ | logL(θ) ≤ log(1/δ) + log(p(D))},

where log(p(D)) is the current log-evidence of the data given the Gaussian prior. For more informa-
tion, see Neiswanger and Ramdas (2021).

E.3 Additive Models

We implemented two likelihoods, namely Gaussian and Laplace. We implemented the discretization
of the domain |X |, and in the implementation we used Nystrom features defined on |X | providing the
exact representation of the RKHS on the X , The points were chosen to be on a uniform grid. Notice
that for the regularized estimator, we chose the rule of thumb λ = 1/B as is motivated in (Mutný and
Krause, 2022).

The laplace parameter was picked as b = 0.15 likewise. Note that Laplace distribution is sub-
exponential with parameters (b, 2b2). We use 1/σ2 or 1/b respectively for the value L. Strictly
speaking, the Laplace likelihood is not smooth, but a smoothed objective would most likely inherit
a value depending on b. As we maintain coverage with any choice of weighting, we do not risk
invalidity by using a heuristic choice for L.

E.4 Survival Analysis

We implemented the method exactly as specified, using the Weibull likelihood with parameter p = 2.
Upon log-transformation, the Gumbel distribution is sub-exponential. To determine the parameter,
consider the moment-generating function of the Gumbel distribution (β = 1/p in the canonical
parameterization):

E[eXt] = Γ(1− t/2) exp(t) ≤ exp(t2/2) for t < 1/2,

hence, the sub-exponentiality parameter is 1, and we can use the above sub-exponential confidence
sets with value b = 1. For the likelihood ratio code, we used L = exp(B), as this is the leading term
of the Hessian of log-likelihood. The function is not smooth everywhere, but on a bounded domain,
this turns out to be an appropriate scaling.

E.5 Poisson Bandits

In this case, we implemented a bandit game, where we used the parametrization rθ(x) ∼
Poisson(exp(−θ⊤Φ(x))), where Φ(x) is the RKHS evaluation operator, and θ is the unknown
value.

We used L = exp(B), as this is the leading term of the Hessian of log-likelihood in this parametriza-
tion. The function is not smooth everywhere but on a bounded domain this is an appropriate scaling.

E.6 Additional Benchmark Functions

We focus on an additional baseline function: Camelback in 2D, a standard BO benchmark function.
The results can be see in Figure 4.
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Figure 4: Camelback function. 10 repeats with median and standard quantiles plotted. Note that our
method is the best method with provable coverage.

F Proof of Proposition 3

Define St and the shorthand Vt

St =

t∑
s=1

ηs
xs
ν2

and Vt := Vν−2;λ
t =

t∑
s=1

xsx
⊤
s

ν2
+ λI.

and the parametrized process

Mt(x) = exp(⟨x, St⟩ −
1

2
||x||2Vt

).

Lemma 13. If ηt is (ν, γ)-conditionally sub-Exponential, thenMt(x) is a super-martingale on the
ball {x ∈ Rd | ||x||2 ≤ ν2

γ } withM0(x) ≤ 1.

Note that for γ → 0 (sub-Gaussian case), this recovers Lemma 20.2. in Lattimore and Szepesvári
(2020).

Proof. It is easy to observe that for any x, we have

exp

(
S⊤
0 x−

1

2
||x||2V0

)
= exp

(
−1

2
||x||2λI

)
≤ 1.

For the first part, we can write

E[Mt(x)|Ft−1] = E[exp(⟨x, St⟩ −
1

2
||x||2Vt

) | Ft−1]

= E[exp(⟨x, St−1⟩ −
1

2
||x||2Vt−1

) exp(
1

ν2
⟨x, ηtxt⟩ −

1

2ν2
||x||2xtx⊤

t
) | Ft−1]

=Mt−1(x)E[exp(
1

ν2
ηt⟨x, xt⟩) | Ft−1] exp(−

1

2ν2
||x||2xtx⊤

t
),

where in the last step we use that xt is Ft−1-measurable. Now, as long as 1
ν2 |⟨x, xs⟩| ≤ 1

γ , we can
apply our definition of conditional sub-Exponential noise to bound

E[exp(ηt
1

ν2
⟨x, xt⟩)] ≤ exp

(
(⟨x, xt⟩)2ν2

2ν4

)
≤ exp

(
||x||2

xtx⊤
t

2ν2

)
.
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From this we directly conclude

E[Mt(x)|Ft−1] ≤Mt−1(x).

By Cauchy-Schwarz, a sufficient condition is ||x||2 ≤ ν2

γ as this implies (with our assumptions on
the actions)

|⟨x, xt⟩| ≤ ||x||2||xt||2 ≤ ||x||2 ≤
ν2

γ
.

In the following, will use this result to prove any-time confidence estimates for the parameter θ using
the technique of pseudo-maximization, closely following Mutný and Krause (2021).

Recall thatMt(x) is defined on the ball of radius ν2

γL . This allows us some freedom in choosing the

radius of the ball on which we integrate. In particular, let K be this radius. While we need K ≤ ν2

γL ,
we can make K larger by choosing larger ν2 (increasing ν2 only makes the set of noise distributions
larger).

Ultimately, we wish to bound (following Lattimore and Szepesvári (2020))

||θ̂t − θ∗||Vt
= ||V−1

t X1:t(X1:tθ⋆ + η1:t)− θ⋆||Vt

= ||V−1
t X1:tX1:tθ⋆ − θ⋆ +V−1

t St||Vt

≤ ||St||V−1
t

+
√
λ||θ⋆||2.

We can not control the second term, so we focus on the first: the self-normalized residuals. Via
fenchel duality, one can motivate that the right object to study is the supremum of the martingale
Mt(x) over all x ∈ R.5. Define M̃t to be the martingaleMt from above but with λ = 0, i.e. no
regularisation term. Similarly, let Ṽt = Vt− λI be the design matrix without the regularisation term.
Slightly counterintuitively, we will study

M̄t =

∫
||x||2≤K

M̃t(x)dh(x),

where h is the probability density function of a truncated normal distribution with inverse variance λ,
that is with covariance matrix 1

λI. By Lemma 20.3 in Lattimore and Szepesvári (2020), M̄t is also a
super-martingale with M̄0 ≤ 1. Then we have

M̄t =
1

N(h)

∫
||x||2≤K

exp

(
x⊤St −

1

2
||x||2

Ṽt

)
exp

(
−1

2
x⊤λIx

)
dx

=
1

N(h)

∫
||x||2≤K

exp

(
x⊤St −

1

2
||x||2Vt

)
dx.

We will define the shorthand ft(x) = x⊤St − 1
2x

⊤Vtx = ft(x
∗) +∇ft(x∗)⊤(x − x∗) − 1

2 (x −
x∗)⊤Vt(x − x∗) (by Taylor’s theorem), where x∗ = argmax||x||≤kK ft(x), k ∈ (0, 1) will be
chosen later. We can lower bound M̄t by

M̄t =
1

N(h)

∫
||x||2≤K

exp

(
x⊤St −

1

2
||x||2Vt

)
dx

=
exp(ft(x

∗))

N(h)

∫
||x||2≤K

exp

(
∇ft(x∗)⊤(x− x∗)−

1

2
(x− x∗)⊤Vt(x− x∗)

)
dx

=
exp(ft(x

∗))

N(h)

∫
||y+x∗||2≤K

exp

(
∇ft(x∗)⊤y −

1

2
y⊤Vty

)
dy (34)

≥ exp(ft(x
∗))

N(h)

∫
||y||2≤(1−k)K

exp

(
∇ft(x∗)⊤y −

1

2
y⊤Vty

)
dy (35)

5But that is in our case ill-defined
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=
exp(ft(x

∗))

N(h)

∫
||y||2≤(1−k)K

exp
(
∇ft(x∗)⊤y

)
exp

(
−1

2
y⊤Vty

)
dy

=
exp(ft(x

∗))N(g)

N(h)
E

y∼g

[
exp

(
∇ft(x∗)⊤y

)]
≥ exp(ft(x

∗))N(g)

N(h)
exp

(
E

y∼g
[∇ft(x∗)⊤y]

)
(36)

=
exp(ft(x

∗))N(g)

N(h)
.

where in step (34) we used the change of variables x = y + x∗. In (35) we use that if
||y||2 ≤ (1− k)K, then ||x∗ + y||2 ≤ ||x∗||2 + ||y||2 ≤ (1− k)K + kK = K. Finally, in (36), we
used Jensen’s inequality. The last inequality follows from symmetry. Note that we implicitly defined
g to be a truncated normal distribution with covariance matrix V−1

t on the ball of radius (1− k)K.

This puts us in a position to put Ville’s inequality to good use:

δ ≥ P
(
∃t : log(M̄t) ≥ log(1/δ)

)
≥ P

(
∃t : ft(x

∗) + log

(
N(g)

N(h)

)
≥ log(1/δ)

)
≥ P

(
∃t : ft(x

∗) ≥ log

(
N(h)

N(g)δ

))
.

We now wish to recover ||St||Vt
. Recall the definition of ft(x∗) as the maximum over all x in a ball

of radius kK. Consequently, we can choose x =
V−1

t St

||St||V−1
t

√
λkK, which has norm bounded by kK.

We have

ft(x
∗) ≥ ft

(
V−1

t St

||St||V−1
t

√
λkK

)
= ||St||V−1

t

√
λkK − λk2K2,

which immediately yields

P
(
||St||V−1

t
≥
√
λkK +

1√
λkK

log

(
N(h)

N(g)δ

))
≤ δ.

The only thing that remains is bounding log
(

N(h)
N(g)

)
.

We give the following Lemma that is a slightly generalized version of Mutný and Krause (2021) and
originally inspired by Faury et al. (2020).

Lemma 14. The normalizing constants satisfy

log

(
N(h)

N(g)

)
≤ d log

(
1

1− k

)
+ log

(
(det(Vt))

1/2

det(
√
λI)

)
.

We can use the bound from Lemma 14 to conclude that

P
(
||St||V−1

t
≥
√
λkK +

d√
λkK

log

(
1

1− k

)
+

1√
λkK

log

(
(det(Vt))

1/2

δ det(
√
λI)

))
≤ δ.

We stated earlier that
||θ̂t − θ∗||Vt

≤ ||St||V−1
t

+
√
λ||θ⋆||2.

Combining this with our analysis, we get the Proposition 3.

We may now choose the parameters k, K and λ. Note that to get sub-Gaussian rates as in Abbasi-
Yadkori, one needs to pick a regularization parameter of the order of λ = d log(T ).
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Proof of Lemma 14 We give a proof of the Lemma for completeness, and because the additional
generality makes for a slightly different proof, even though the bound stays the same.

Proof. We have

N(h) =

∫
||x||2≤K

exp(−λ||x||22)dx

=
1

|det(
√
2λI)|

∫
||x||2≤K

exp

(
−1

2
||
√
2λx||22

)
|det(

√
2λI)|dx

=
1

|det(
√
2λI)|

∫
||x||2≤

√
2λK

exp

(
−1

2
||x||22

)
dx.

Further we have

N(g) =

∫
||x||2≤(1−k)K

exp(−1

2
x⊤Vtx)dx

=
1

|det(V1/2
t )|

∫
||x||2≤(1−k)K

exp(−1

2
||V1/2

t x||22)|det(V
1/2
t )|dx

=
1

|det(V1/2
t )|

∫
S

exp(−1

2
||x||22)dx,

where S = {V1/2
t x | ||x|| ≤ (1 − k)K} = {x | ||V−1/2

t x|| ≤ (1 − k)K} = {x |x⊤V−1
t x ≤

(1− k)K}. Note that Vt ⪰ λI and so V−1
t ⪯ 1

λI. Therefore if ||x||22 ≤ (1− k)K
√
λ, we have√

x⊤V−1
t x ≤ 1√

λ
||x||2 ≤ (1− k)K =⇒ x ∈ S.

Thus {x | ||x||2 ≤ (1− k)
√
λK} ⊆ S and

N(g) ≥ 1

|det(V1/2
t )|

∫
||x||2≤(1−k)

√
λK

exp(−1

2
||x||22)dx.

We may therefore bound

N(g)

N(h)
≤ (detVt)

1/2

(det
√
2λI)

∫
||x||2≤

√
2λK

exp
(
− 1

2 ||x||
2
2

)
dx∫

||x||2≤(1−k)
√
λK

exp(− 1
2 ||x||

2
2)dx

.

By a rather crude bound (as 1− k ≤
√
2 in any case) we get

∫
||x||2≤

√
2λK

exp
(
− 1

2 ||x||
2
2

)
dx∫

||x||2(1−k)
√
λK

exp(− 1
2 ||x||

2
2)dx

≤

∫
||x||2≤(1−k)

√
λK

exp
(
− 1

2 ||x||
2
2

)
dx+

∫
(1−k)

√
λK≤||x||2≤

√
2λK

exp
(
− 1

2 ||x||
2
2

)
dx∫

||x||2≤(1−k)
√
λK

exp(− 1
2 ||x||

2
2)dx

= 1 +

∫
(1−k)

√
λK≤||x||2≤

√
2λK

exp
(
− 1

2 ||x||
2
2

)
dx∫

||x||2≤(1−k)
√
λK

exp(− 1
2 ||x||

2
2)dx

≤ 1 +
exp

(
− 1

2 (1− k)
2λK2

)
exp

(
− 1

2 (1− k)2λK2
) ∫(1−k)

√
λK≤||x||2≤

√
2λK

dx∫
||x||2≤(1−k)

√
λK

dx

= 1 +
vold(

√
2λK)− vold((1− k)

√
λK)

vold((1− k)
√
λK)

=
vold(

√
2λK)

vold((1− k)
√
λK)
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= (1− k)−d
√
2
d
.

We can put this together to obtain

N(h)

N(g)
≤ (1− k)−d

√
2
d (det(Vt))

1/2

det(
√
2λI)

= (1− k)−d (det(Vt))
1/2

det(
√
λI)

.
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