
Appendix

A Overview

Dataset and code in LAMM has been open sourced at https://github.com/OpenLAMM/
LAMM. In this Appendix, we present construction pipeline and more examples of our dataset in
Sec. B. Then, Sec. C shows details of benchmark and related evaluation metrics. Sec.D presents
implementation details of our framework. Training a model based on our framework takes about 20
A100 GPU hours. Finally, more examples and results are visualized in Sec. E.

B Dataset

The paper introduces a novel method for constructing instruction tuning data, which represents
an innovative departure from traditional techniques that rely solely on daily dialogue and detailed
description. Instead, our dataset leverages additional factual knowledge extracted from Wikipedia
to improve the quality and diversity of the training data. In addition, we also explore the use of
traditional vision task data, covering common tasks in both 2D and 3D fields, which is converted into
instruction tuning data for training purposes. By combining our new data construction method with
traditional vision task data, we aim to improve the accuracy and effectiveness of instruction-tuned
models in various vision-related applications. Specifically, we delve into the design of 2D and 3D
portion of our dataset in Section B.1 and B.2, respectively. We also outlined the manual approach
for checking the quality of the generated data in Section B.3. Finally, we provide a comprehensive
explanation of the license and social impact information of our dataset in Section B.4.

B.1 Image Instruction Tuning Dataset

C1: n-round Daily Dialogue & C3: 1-round Detailed Description. The first step of our approach
involves incorporating more visual information, such as visual relationships and fine-grained cate-
gories as input to GPT-API, providing dense visual context to the generated responses. To construct
the C1: n-round Daily Dialogue and C3: 1-round Detailed Description data, we use the COCO
images [56], similar to the LLaVA [15] approach. However, we further extract object attributes and
relationships from the Visual Genome dataset [57] to emphasize fine-grained and dense information
in the generated responses. Specifically, Our approach leverages image scene graph information to
provide a structured representation of the objects and their relationships within the image. By doing
so, we generated multi-modal dialogue data that enables us to capture the relationships between
objects in the image and generate more accurate and natural language instructions. Figures 6 and 7
display the messages utilized to generate daily dialogue and detailed description data in the GPT-API.
Additionally, Figure 8 provides detailed examples of the generated results for both types of data.

C2: n-round Factual Knowledge Dialogue. In the second step of our approach, we expand the dataset
by incorporating 42K classes of knowledge graph facts from Wikipedia using the Bamboo dataset.
This addition enables MLLMs to generate question-answering data related to factual knowledge,
which is a valuable addition to the dataset. To generate C2: n-round Factual Knowledge Dialogue
data, we utilize the Bamboo dataset and Wikipedia to obtain relevant information, and then use
GPT-API to generate a dialogue based on the given content. Specifically, we extract the QID labels
and their corresponding Wikipedia descriptions from the Bamboo dataset to generate instruction
tuning data. This approach allows us to incorporate common sense knowledge into the dataset,
thereby enhancing the ability of MLLMs to generate responses that draw upon a broader range
of factual knowledge. The messages used to generate factual knowledge data in the GPT-API are
presented in Figure 9, while Figure 10 showcases detailed examples of the factual knowledge data
generated by these messages.

C4: 1-round Visual Task Dialogue. In addition to the three types of data discussed earlier, we
also incorporate established computer vision tasks, such as image classification, object detection,
keypoint detection, OCR, and object counting, into our dataset. This enables MLLMs to handle
traditional computer vision tasks and generate responses that incorporate both language and visual
information. The typical computer vision dataset consists of a set of images or videos, along with
their corresponding labels or annotations that represent the desired output of the computer vision task,
such as the class of objects present in the image or the location of an object. However, these discrete

15

https://github.com/OpenLAMM/LAMM
https://github.com/OpenLAMM/LAMM


Figure 6: Messages used to construct n-round Daily Dialogue data for image instruction tuning.

Figure 7: Messages used to construct 1-round Detailed Description data for image instruction tuning.

results are not suitable for large language model dialogues, as they do not allow for natural language
interactions. To address this issue, our proposed approach involves converting computer vision tasks,
such as image classification, into natural language dialogues to enable large language models to
perform these tasks through dialogue interactions. In detail, we first use GPT-API to generate a
template pool of questions and answers for each task. Then, we randomly select a pair from the
question template pool and answer template pool to combine with a piece of data from the computer
vision dataset, creating the C4: 1-round Visual Task Dialogue data. Figure 27-30 provide some
examples of the dialogues generated using our proposed approach for converting computer vision
tasks into natural language dialogues. This approach allows us to leverage the rich visual information
in traditional computer vision datasets and incorporate it into the instruction tuning process, thereby
enhancing the ability of MLLMs to understand and respond to natural language instructions related
to these tasks.

In summary, the construction of 2D part in our dataset provides a comprehensive and diverse samples
of real-world scenarios, incorporating fine-grained and dense information from object relationships
and factual knowledge sources. The dataset contains 186K unique language-image instruction-
following samples, including 49K in daily dialogues, 49K in detailed descriptions, 42K in factual
Knowledge dialogues, and 46K in visual task dialogues. Our experiments showed that the use of
GPT-API consistently provides higher-quality instruction-following data, such as spatial reasoning.

16



Figure 8: Example of generated n-round daily dialogue and 1-round detailed description data.

Figure 9: Messages used to construct n-round Factual Knowledge Dialogue data for image instruction
tuning.

These features make our dataset a valuable resource for researchers and practitioners working in the
computer vision and natural language processing fields.

B.2 Point Cloud Instruction Tuning Dataset

The construction pipeline of point cloud instruction tuning data is similar to that of image instruction
tuning data. However, due to the limited availability of 3D data, point cloud instruction tuning dataset
only consists of three major components: n-round plain conversation and 1-round detalied description
data from GPT-API and 1-round visual dialogue data converted from datasets for existing 3D vision
tasks.

C1: n-round Daily Dialogue & C3: 1-round Detailed Description. To construct the C1: n-round
Daily Dialogue and C3: 1-round Detailed Description data, we choose point clouds from 3RScan [59]

17



Figure 10: The example for constructing n-round Factual Knowledge Dialogue data. The description
is from Wikipedia page.

Figure 11: Message to transfer visual question answering annotations from CLEVR3D [58] to
declarative sentences for 3D data.

as data source and use its original 3D bounding box annotations. Since there is no caption annotation
for 3RScan, we input visual question answering (VQA) annotations from CLEVR3D [58] to GPT-API
and ask it to convert the Q&A data into declarative sentences, which serves as point cloud captions in
further steps. Figure 11 shows the corresponding prompts. Object attributes and relationships are
extracted from scene graph annotation in 3DSSG [60]. Figure 12 and 13 show the prompts to let
GPT-API generate daily dialogue and detailed description data for point clouds. Since full annotation
of a scene point cloud may easily exceed input token limits of GPT-API, we randomly selected 10
captions and keep bounding box and relationships of corresponding objects as input contexts. For
GPT-generated data, We limit the number of turns in each dialogue data to no more than 10, and
any data exceeding this limit will be split into different samples. Figure 14 shows an example of
GPT-generated data.

C4: 1-round Visual Task Dialogue. On the other hand, we also leverage annotations for existing 3D
vision tasks, such as point cloud classification, 3D object detection, and CLEVR3D for 3D VQA.
Similar to 2D datasets, we designed 15 templates for instruction and response by sending definitions
of the corresponding tasks to GPT-API. Then instruction data are formulated by replacing keywords
with corresponding annotations. Templates of 3 tasks involved are presented in Figure 31, 32 and 33,
respectively.

18



Figure 12: Message to generate n-round Daily Conversation Dialogue data in 3D portion of our
dataset.

Figure 13: Message to generate 1-round Detailed Description data in 3D portion of our dataset.

Finally, 3D portion of our dataset contains 10K samples in total, and the number of ShapeNet, 3RScan
detection, CLEVR3D, and GPT-generated dialogue are 2K, 1.3K, 2K, and 4.9K, respectively.

B.3 Quality Check

In order to ensure the quality of the generated instruction tuning data, we implemented several
measures. Firstly, we generate a small amount of data as a cold start and conduct manual check on
the generated data. This involved carefully assessing the quality and making necessary adjustments
to the message information provided as input to GPT-API. The iterative process aimed to eliminate
ethical concerns and establish a strong correlation between the generated data and the corresponding
inputs. We repeated this process until the desired level of quality was achieved. Once satisfied, we
proceeded to generate a large volume of data. Furthermore, to verify the quality of the generated
dataset, we randomly select a subset of 10% data for manual checks. This step allowed us to evaluate
the generated data against our specific requirements and quality standards. During this evaluation, any
formatting issues or incorrect answers generated by GPT-4 were filtered out to ensure the usability
and reliability of the data. By combining manual checks during the iterative generation process and

19



Figure 14: Example of GPT-generated n-round daily dialogue and 1-round detailed description data
in 3D portion of our dataset.

subsequent random manual checks on the final dataset, we strive to ensure that the generated data
meets our rigorous quality standards and aligns with the specific needs of our dataset.

B.4 Social Impact

Our dataset is a compilation of publicly available datasets that have been licensed under the Creative
Commons license (CC-BY). We have taken great care to follow all necessary legal protocols to use
this data in our research, and believe that transparency in data licensing is crucial for ensuring proper
attribution and appropriate use of the data. Besides, the dataset includes images sourced from publicly
available datasets and language data generated using the GPT-API. While we have taken steps to
ensure appropriate content, we acknowledge that problematic content may exist. If you encounter any
such content, please notify us immediately, and we will make necessary modifications to maintain
a high-quality dataset that is free of inappropriate content. To protect the privacy of individuals
and vehicles captured in the images, we plan to obfuscate sensitive information, such as faces and
license plates, before publishing the dataset. We are committed to maintaining a dataset that is both
high-quality and ethically responsible and pledge to uphold principles of privacy and transparency in
our work.

C Benchmark

C.1 Benchmark on image tasks

We selected a set of nine commonly used CV tasks to evaluate the performance of MLLM models
in our benchmark on image tasks. Our task selection criteria were based on widely studied tasks
in the CV field that can showcase the MLLM model’s abilities in visual interpretation, localization,
and question-answering. Table 5 provides a summary of the tasks and the corresponding common
evaluation metrics, which are based on the output that the MLLM models are required to generate for
each task. We utilized a prompt-based approach to instruct the MLLM models to understand the task
definition and generate the desired output. The ability of the models to understand and interpret the
given instruction was also evaluated as part of the assessment criteria. As the models’ outputs are
text, we use different text-processing techniques for each task to extract entities as the final answers
for evaluation. For each task, We selected datasets that are distinct from the training datasets, as our
benchmark evaluation is conducted in an out-of-distribution zero-shot setting.

20



Table 5: CV tasks in Our Benchmark

Task Output Metrics

Classification label name Acc
Detection list of object label and bbox mAP50
VQA option and answer Acc
Image Caption captions BLEU4
Fine-grained classification fine-grained label name Acc
Object counting number MAE
OCR list of words word Acc
Facial classification answer Acc
Keypoints detection keypoints PCK
3D Detection list of object label and bbox mAP50
3D VQA option and answer Acc
3D Visual Grounding bbox mAP50

Classification This task involves predicting the most likely category label for an image. For MLLM
models, the task involves performing open-vocabulary classification. We selected CIFAR-10 [41]
as the test dataset for the evaluation of classification. CIFAR10 contains 10000 test images across
10 common categories. We utilize NLTK to extract noun entities from the models’ output text, and
expand them to a synonym set for accuracy evaluation calculation.

Object Detection We selected the VOC 2012[42] datasets to evaluate the model’s ability to detect
objects in images while considering both its visual interpretation and localization capabilities. To
evaluate the accuracy of object category predictions, we employ a similar approach to classification
tasks. We also use regular expression matching to extract the models’ output bounding boxes for
mAP50 calculation.

Visual Question Answering We selected the ScienceQA[43] and AI2D[44] datasets to evaluate
the MLLM model’s ability to answer questions about images. The ScienceQA and AI2D datasets
include over 2017 and 5793 multiple-choice questions with images, respectively. We extract the
image-containing data from the ScienceQA dataset to create the SQAimage dataset. We then tested
MLLM models on the SQAimage dataset to evaluate their multimodal understanding skills. As both
ScienceQA and AI2D datasets are presented in a multiple-choice format, we evaluated the model’s
performance using the accuracy metric. Following LLaVA [15], we prompt the MLLM to output the
complex reasoning procession, followed by the final option answer.

Image Caption The image caption task involves generating a textual description of an image. We
selected the Flickr30k[45] dataset to evaluate the MLLM model’s ability to understand images and
generate descriptive captions. Flickr30k contains a variety of objects and scenes with diverse captions,
providing a challenging task for the MLLM model. To evaluate the quality of the models’ text outputs,
we split the generated text into sentences and calculate the BLEU-4 score for each. The highest score
is selected as the final result.

Fine-grained classification Similar to the classification task, the fine-grained classification task
requires the model to make predictions across a large number of fine-grained categories. We selected
UCMerced Land Use dataset [46] as the test set. UCMerced Land Use contains 21 classes of land-use
categories, including airports, forests, and residential areas. Similar to classification, we report
Accuracy.

Object counting We selected the FSC147 dataset for object counting evaluation. FSC147[47] is a
dataset of 1190 images containing various objects, including animals, vehicles, and household items.
The images in this dataset are challenging and contain occlusions and overlapping objects, making
it a suitable choice to test the model’s object recognition and localization capabilities. We utilize
regular expression matching to extract the numeric entity and evaluate the model’s performance using
the mean absolute error (MAE) metric.

Optical Character Recognition The OCR (Optical Character Recognition) task involves recognizing
and transcribing text from images. To evaluate the MLLM model’s ability to recognize text from
images, we selected SVT dataset [48]. We extract the entities enclosed in quotation marks from the
generated text as the predicted word list. Word Accuracy is adopted as the evaluation metric.

21



Figure 15: Template instructions for VQA inference. "Response a" is the generated reasoning process,
which is the output of the first inference. "Response b" is the output answer, which is the ouput
following the prompt "### ANSWER".

Facial Classification Due to the difficulty of performing face recognition tasks using MLLM, we
evaluated the model’s performance on facial attribute classification tasks. We selected the CelebA[49]
dataset, which contains 19962 images for testing with annotations for 40 facial attributes, including
hair color and facial expression. Specifically, we evaluated the model’s ability to predict whether
a person in an image is smiling, named CelebA(Smile) dataset, and the color of their hair, named
CelebA(Hair) dataset. We aimed to evaluate the MLLM model’s ability to understand facial images.
Classification accuracy is used as the evaluation metric.

Keypoints Detection To evaluate the models’ ability to perform fine-grained point localization, we
utilized the LSP[50] dataset for keypoint detection. To simplify the task difficulty for MLLM models,
we employed a grounding approach, where we sequentially asked the model to predict the position
of each human body keypoints in the image. The evaluation metric used for this task was PCK
(Percentage of Correct Keypoints).

C.2 Inference Details

C.2.1 System messages for image tasks

Figure 17 shows the system messages defined for each image task. The system messages, which
include the task definition and the output structure, is a part of the instruction that prompt the MLLM
models to generated responses. This is designed to enable the model to better understand the task it is
performing, focus on the critical aspects, and output the appropriate structure. Note that some tasks
do not require a defined output structure. In such cases, the model can output any text as a response.

C.2.2 Instructions for VQA

Different from other common image tasks, besides the system messages designed in C.2.1, we prompt
MLLM to generate the reasoning process additionally, as figure 15 shows. To prompt the model to
output its reasoning process, we first use conventional instruction texts to generate "Response a". We
then combine the first instructions , the "Response a", and the prompt "### ANSWER" to make the
model generate the option as the final answer.

C.2.3 Metrics

Our benchmark includes two evaluation settings. The first is a zero-shot setting, where we selected
downstream tasks that have no intersection with the MLLM’s training data. We provide the zero-shot
results of the current MLLM models on these datasets. The second setting involves fine-tuning on
mainstream task datasets, covering tasks such as detection, classification, and VQA.

C.2.4 Binary Locating Metric

The ability to accurately localize objects in an image is a crucial component of MLLM models’ visual
understanding skills. In addition to using conventional detection tasks to calculate mAP, we attempted
a more direct method for evaluating the models’ localization ability, namely Binary Locating Metric.
Distinct from object detection, which requires the model to output a bounding box, we instructed the
model with "output the position of the object" instead of "output the bounding box of the object" to
output the approximate position. During the evaluation phase, the model’s predicted keypoint was
considered correct as long as it was within the object’s bounding box. Object locating is evaluated on
all datasets involving object localization, including object detection, object counting, and keypoints
detection. Compared to the traditional detection evaluation methods, the object locating evaluation

22



method provides a more reasonable and direct approach for evaluating the localization ability of
MLLM.

C.2.5 GPT Metric

To evaluate the overall understanding and question-answering abilities of MLLM models, we utilized
the GPT Metric. Unlike LLaVA[15] and Vicuna [9], we ranked the answers of multiple models using
GPT. Similar to the pipeline approach, we give GPT an instruction, informing it of the task definition,
the question, and the answer provided by each model. We then ranked each model’s response based
on its relevance and accuracy with the answer. Each model received a score based on its ranking,
and the average score obtained on all test data served as a metric for measuring the model’s overall
ability. Our GPT evaluation datasets cover various visual tasks, including captioning and VQA tasks
involving image description and answering, as well as a small number of detection and counting tasks
related to object localization.

C.3 Benchmark on point cloud tasks

For benchmark on point cloud tasks, we focus on three tasks of scene perception, including 3D object
detection, visual grounding, and 3D visual question answering. Figure 18 presents system messages
for point cloud tasks.

3D Object Detection. As it’s widely used in 3D object detection, we select ScanNetv2 [51] as the
dataset to evaluate MLLM’s ability to locate objects in a point cloud and identify semantics, whose
validation set contains 312 scenes. In this task, MLLM is expected to list all objects along with
bounding boxes, and we extract bounding boxes from the response text by entity extraction. Boxes
whose IoU with ground truth is larger than 50% count for positive predictions and we use mean
Average Precision (mAP) to evaluate performance.

Visual Grounding. This task aims to locate the object described by a given caption and output the
corresponding bounding box. We test on ScanRefer [52] in this task, which provides human-labeled
captions towards each object in ScanNet and its test set contains 9508 samples. Similar with object
detection, mean average precision (mAP) is reported to evaluate MLLM’s capacity.

3D Visual Question Answering. ScanQA [53] is proposed for 3D visual question answering
before, and models are required to answer the given questions based on the point cloud. It has been
formatted as an attribute classification task in previous work [53]. However, MLLM’s output cannot
be constrained with several classes consistently and is usually long text to explain details, so the
original metrics in ScanQA, Exact Matching & BLEU, cannot be used for test, as long text is different
from the style of given ground truth and the BLEU score inevitably decreases for long-text results.
Following ScienceQA in 2D VQA task, we transfer this task to be a multiple-choice problem. First,
we feed the original question-answer pairs to GPT-API and ask for 5 confusing options. Then MLLM
is expected to choose the correct option or output the correct content. Thus, a metric of accuracy is
used to evaluate model performance.

Evaluation Settings Similar to evaluation for 2D tasks, our 3D benchmark includes two settings for
evaluation. The first one is a zero-shot setting. MLLM is trained on instruction data from 3D portion
of our dataset, whose point clouds come from 3RScan or ShapeNet and has no overlap with ones in
downstream tasks. Furthermore, we finetune the models trained on our 3D datasets by training a set
of downstream tasks and reporting metrics on the corresponding test set.

D Implementation Details

In our experiments, 2D and 3D models are trained independently, and only the feature projection
layer and LoRA parameters are optimized during training while LLM can be shared among tasks.

For all experiments, trainable parameters are optimized by Adam optimizer with a learning rate
initialized to be 5e-4, and scheduled using a linear decay scheduler. We For 2D experiments, models
are trained for 2 epochs. For 3D experiments, we increase the number of iterations to 10,000 in case
of too few samples. We use 4 A100-80GB to conduct experiments. Each GPU process 2 samples
every iteration and the effective batch size are set to 64 by gradient accumulation. For reference, 2D

23



Figure 16: Template for multi-modal data pairs. Bold words stand for corresponding text data and
italic words indicate fixed templates. < vision > & < /vision > stand for start & end token for
vision contents.

experiments at most last for about 8 hours for 186K samples, while 3D experiments require about 3
hours.

Following Vicuna [9], we format multi-modal training data as Figure 16. [SystemMesssage]
specifies the corresponding task of sample, [Query] refers to position of texts from human and
[Response] refers to contents expected for LLM. The special tokens < vision > & < /vision >
represents start and end positions for vision content. We use < Img >< /Img > and < Pcl ><
/Pcl > in 2D and 3D datasets, respectively. The training objective used is next token prediction loss,
and only text tokens of [Response] count for loss computation. As we use CLIP [38] pre-trained
ViT-Large-14 as visual encoder, the number of vision tokens are 256 and length of text tokens after
vision tokens are limited to 400 in training.

E Demonstrations

E.1 Results on CIFAR10

Figure 19 presents some examples responses from model trained by our dataset on CIFAR10, where
the model’s answers were judged as incorrect in the evaluation, but in fact, our model provided a more
granular classification result. The left column shows the test images from CIFAR10, and the right
column displays the images of the objects that the model classified, including toad [61], Land Rover
Series II [62], Mirage 2000D fighter aircraft [63] and police car [64]. It is evident that the fine-grained
objects classified by our model have very similar features to the input images, demonstrating its
ability to perform fine-grained classification.

E.2 More detailed information on image caption

Our model performed poorly on the Flickr30k dataset in terms of BLEU scores. This is because
model’s responses include additional details that are not captured by the ground truth captions. Figure
20 illustrates this phenomenon, where the highlighted text in red represents the matching ground
truth captions, while the text in orange is not matched but is still relevant to the image content. It is
evident that our model is capable of providing more detailed descriptions of the image, which is not
captured by the traditional BLEU metric.

E.3 Comparison with LLaVA on detection and counting tasks

We compared the performance of model trained by our dataset with that by LLaVA on both object
detection and counting tasks. Figure 21 illustrates the comparison results on detection, where
the leftmost images represent the ground truth bounding box, and the rightmost images show the
visualizations of the responses after entity extraction.

Although LLaVA was able to identify the approximate location of the object, it was unable to provide
precise bounding box coordinates. On the other hand, our model demonstrated superior detection
capabilities after fine-tuning on detection-related data and was able to provide more accurate bounding
box coordinates. Additionally, our model also exhibited better counting performance, as shown in
Figure 22. It is worth noting that counting is essentially a task that tests the model’s localization
ability.

E.4 Results of binary-loc metric and GPT metric

We present the results of our model and LLaVA on the binary locating metric in Figure 24 (a),
where our model demonstrates more precise localization abilities. The green points in the image are

24



the visualization of the predicted key points. In the second row of the figure, our model outputs a
bounding box, which we break down into two position coordinates (top-left and bottom-right) during
entity extraction.

In Figure 24 (b), we show the evaluation results of the two models’ image captioning responses using
the GPT metric. The GPT metric considers our model’s responses to be more specific and accurate
compared to LLaVA, resulting in a higher ranking. These results further demonstrate the effectiveness
of the model trained on our dataset in accurately detecting, locating, and describing objects in images.

E.5 More demonstration examples

Figure 23 shows the results of our model on VQA task and Figure 25 shows its example results on
3DVQA task. Figure 26 shows the results on in-the-wild images.

25



Figure 17: System messages for benchmark on image tasks

26



Figure 18: System messages for benchmark on point cloud tasks

Figure 19: Results of model trained by our dataset on CIFAR10. (a) The images from CIFAR10 test
set. (b) The instruction, response from our model and the ground truth. (c) The reference images.

27



Figure 20: Our model’s Response on fickr30k dataset. The highlighted text in red represents the
matching ground truth captions in BLEU evaluation. The text in orange is not matched but is still
relevant to the image content.

28



Figure 21: Comparison of models trained on our dataset and LLaVA on VOC2012.

Figure 22: Comparison of models trained on our dataset and LLaVA on FSC147.

Figure 23: (a) Example results of models trained on our dataset on SQAimage. (b) Example results
of our model on AI2D.

29



Figure 24: Comparison of models trained on our dataset and LLaVA on binary-loc metric and GPT
metric. (a) The comparison on binary-loc metric. (b) The results of GPT metric.

30



Figure 25: Example results of our model on ScanQA.

Figure 26: Example results of our model on in-the-wild images.

31



Figure 27: Question template pool and Answer template pool for classification task.

32



Figure 28: Question template pool and Answer template pool for detection task in 2D vision.

33



Figure 29: Question template pool and Answer template pool for keypoint detection task in 2D vision.

34



Figure 30: Question template pool and Answer template pool for counting task in 2D vision.

Figure 31: Question template pool and Answer template pool for object classification in 3D vision.

35



Figure 32: Question template pool and Answer template pool for object detection in 3D vision.

Figure 33: Question template pool and Answer template pool for visual question answering in 3D
vision.

36


